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ABSTRACT

Stateful serverless workflows consist of multiple serverless
functions that access state on a remote database. Devel-
opers sometimes add a cache layer between the serverless
runtime and the database to improve I/O latency. How-
ever, in a serverless environment, functions in the same
workflow may be scheduled to different nodes with differ-
ent caches, which can cause non-intuitive anomalies. This
paper presents CausalMesh, a novel approach to causally
consistent caching in serverless computing. CausalMesh is
the first cache system that supports coordination-free and
abort-free read /write operations and read transactions when
clients roam among multiple servers. CausalMesh also sup-
ports read-write transactional causal consistency in the pres-
ence of client roaming but at the cost of abort-freedom. Our
evaluation shows that CausalMesh has lower latency and
higher throughput than existing proposals.

1 Introduction

Serverless functions allow clients to run their applications
on cloud providers without needing to manage or operate
servers, load balance requests across VMs / containers, scale
resources up or down based on load, or deal with failures.
This paradigm has proven to be popular, with all large cloud
providers offering a range of options for serverless execution.

One remaining sticking point is how to deal with state-
ful functions that need to access shared and often persistent
state. Existing solutions [16, 27, 34, 14, 4] take a straightfor-
ward approach: ensure the serverless functions are stateless
(so they can be scheduled anywhere without constraints)
and, instead, store the state in a set of backend databases.
The stateless function can then query these databases to re-
trieve the necessary state on every execution, perform its
operations, and update the databases as needed.

Given that accessing remote databases is expensive [11,
26] (e.g., 10-20ms to read or write to DynamoDB), re-
cent works [28, 18] ask whether serverless functions can use
caches to keep the state closer to these functions. Propos-
als here include having (i) a large cache or multiple caches
with a cache coherence protocol, which provides strong con-
sistency but does not scale, or (ii) a cluster of caches such
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Figure 1: Anomalies rate of a two-function workflow, where
the second function reads the data written by the first. The
workflow runs on AWS Lambda and using DynamoDB Ac-
celerator (DAX) as the cache. There are no anomalies when
utilizing a single cache node, but it lacks scalability.

as Amazon DynamoDB Accelerator (DAX) that scales well
but provides only weak (eventual) consistency.

More so than in traditional applications and data stores,
in serverless applications, weak consistency is problematic in
the common scenario where developers use workflows, which
are directed graphs of functions that collectively implement
the application’s logic. To see this issue, imagine a social me-
dia website that uses a workflow that contains two serverless
functions that run one after the other and that access the
same state: the first function blocks the author of a post,
and the second function regenerates a timeline for the user
that should exclude the blocked sources.

Because these functions themselves are supposed to be
stateless, cloud providers will frequently schedule these func-
tions on different machines. Normally, this flexibility is a
major advantage to scheduling efficiency and resource pro-
visioning, but here, it means that the functions may end up
accessing different, eventually consistent caches. In such a
case, the workflow would not be able to even read its own
writes (i.e., the second function will not see the effect of the
first), and the user may see posts from the blocked source.
This is a violation of basic session consistency and just one
example of why weakly consistent caches can make writing
workflows exceedingly difficult (see Section 2.2 for more de-
tails). To better characterize this issue, we implement a min-
imal serverless workflow on AWS Lambda and DynamoDB
DAX. The workflow consists of two serverless functions that
access the same state, where the first function writes to the
state and the second function reads from it. As shown in Fig-
ure 1, we observe that in this simple example, the anomaly
probability can be as high as 14.2% when there are 8 cache
nodes in DAX.

Recent works, in particular HydroCache [32] and FaaS-
TCC [21], aim to address this issue by introducing a causal
cache: a set of caches that collectively guarantee causal con-
sistency. Both HydroCache and FaaSTCC provide trans-
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actional causal consistency [2, 19] which they adopt from
traditional causal databases. The main technical challenge
present in serverless computing that is addressed by them
and other prior works [33, 23] is dealing with client mobility:
a client, or serverless workflow in our context, can access one
cache during one function, and then a completely different
cache in another function within the same workflow.

All prior works handle client mobility by introducing ex-
pensive coordination and aborts that significantly reduce the
benefits of introducing a cache in the first place. In partic-
ular, HydroCache requires cache servers to coordinate with
each other before execution to fetch necessary versions of
data items. It also requires aborts and retries of the entire
workflow when the transactions fail to commit. Both can
introduce significant overheads to applications.

To improve the performance of stateful serverless and en-
sure that workflows work as intended, we present Causal-
Mesh, a novel cache for stateful serverless functions that
supports client mobility. CausalMesh has several features:

1. Per-workflow causal consistency. CausalMesh ensures
that any data accessed by a serverless function observes
the effects of prior serverless functions in the same work-
flow, even if they run on different servers and access
different caches.

2. Coordination-free reads and writes. In CausalMesh, a
cache never has to synchronize with peers to process an
operation.

3. No aborts. All functions in a workflow that use Causal-
Mesh always read from a causally consistent snapshot,
so they never need to abort due to inconsistencies.

4. High throughput and low latency. CausalMesh achieves
high throughput and its latency is low and stays nearly
constant as we vary the number of caches.

To simultaneously achieve all of these features, Causal-
Mesh needs to: (i) ensure that caches can process read and
write operations independently, without aborts or blocking
coordination with other caches; (ii) ensure that read opera-
tions return state from a causally consistent snapshot; and
(iii) make new writes to one cache visible in other caches
in a timely manner. To address (i) and (ii), CausalMesh
introduces a novel data structure—the dual cache—and an
asynchronous protocol that we call dependency integration
(84). A dual cache represents two caches, one serving read
requests and the other serving write requests. Dependency
integration updates the dual cache from time to time and
makes the subcache serving read requests always contain
clients’ dependencies so that it does not require communica-
tion with other servers to fetch the missing versions of some
data items. To address (iii), CausalMesh connects servers
into a series of causally consistent chains (§5.2), where each
server simultaneously serves as the head, intermediate, and
tail node in the chain. Within a chain, writes are stored ini-
tially in the head and are propagated towards the tail; the
tail then reveals it to the client.

To make the benefits of CausalMesh broadly applicable,
we build a library that exposes an intuitive interface similar
to that of a traditional key-value store (§6). Developers can
use this library to build their serverless applications. We also
describe a variant of CausalMesh, CausalMesh-TCC (§7),
that provides support for arbitrary read/write transactions
across multiple serverless functions, although this comes at
the cost of losing the abort-free property.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

We implement CausalMesh and CausalMesh-TCC on top
of Nightcore [15], a serverless runtime platform. We then
use the key-value store interface provided by CausalMesh’s
client library to implement real-world applications consisting
of workflows with 13 serverless functions (§10.2) to evaluate
the performance.

To put our results in context, we compare CausalMesh and
CausalMesh-TCC with HydroCache [32] and FaaSTCC [21],
recent caches for serverless workflows that aim to play a sim-
ilar role. In a nutshell, CausalMesh is faster: up to 59%
reduction in median latency, up to 97% reduction in tail la-
tency, and 1.3-2x higher throughput. Furthermore, caches
in CausalMesh do not need to coordinate with other caches
or abort (whereas HydroCache and FaaSTCC must do one
of the two). When we extend the comparison to the trans-
actional variant of CausalMesh (CausalMesh-TCC), Causal-
Mesh still achieves 1.35-1.6x higher throughput and com-
parable latency than HydroCache and FaaSTCC.

In summary, the contributions of this work are:

1. CausalMesh, a cache system that provides causal+ con-
sistency. To our knowledge, CausalMesh is the first gen-
eral causal cache system that supports coordination-free
reads and writes in the presence of client roaming, which
is critical to the performance of serverless computing.

2. A lock- and coordination-free read transaction protocol
that allows developers to get a causally consistent view
across multiple keys within a single serverless function.

3. CausalMesh-TCC, an extension that supports transac-
tional causal consisteny across serverless functions.

4. Demonstrating experimentally that CausalMesh has low
latency and high throughput.

5. A formal specification of CausalMesh in TLA+ and the
corresponding model checking effort to provide evidence
for the correctness of our algorithms.

2 Background and Goals

We begin by providing context on serverless execution mod-
els as well as our target consistency levels.

2.1 Serverless Architecture

When deploying a traditional application to the cloud, users
allocate VMs and deploy their software to the resulting in-
stances. While the cloud handles the management of the
physical infrastructure, users remain responsible for many
tasks before their applications can execute, e.g., requesting
a batch of VMs from the cloud provider, specifying their re-
source profiles, choosing their base VM images, setting per-
missions/firewall rules, deploying dependencies, and moni-
toring the application as it runs, among others.

Serverless computing promises to free users from all of the
above concerns. Instead, users supply the cloud provider
with a function that executes their application logic, and
the provider handles all provisioning, scaling, load balanc-
ing, and management of the execution instances. The func-
tions can even be composed into workflows, which are graphs
of serverless functions that collectively perform the logic
of an application. Three aspects of this architecture are
particularly salient to CausalMesh and differentiate server-
less from traditional applications interacting with traditional
databases and data stores:

(1) Provisioning and scheduling. Unlike in traditional execu-
tion environments, one of the core responsibilities of cloud
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providers in serverless is managing function workers and as-
signing requests to those workers. In cases when a request
for a function arrives and finds that all existing instances of
that function are busy, the provider deploys a new instance
of the function to handle the request, i.e., a cold start. After
handling the request, the instance will be kept warm (provi-
sioned) for some time before being reclaimed—up to 1hr in
the case of AWS Lambda. Requests are generally handled
in FIFO order and routed to random instances among the
set of unsaturated, pre-warmed instances when possible.

For a workflow that has a few functions, each function
can be assigned to a different worker. We say a workflow
migrates to a new worker when a function in the workflow
is allocated to a different worker than its predecessor. Note
that a workflow can migrate to multiple workers concur-
rently if it has a fan-out structure.

In reality, the workers that execute a workflow are typ-
ically located close to each other, e.g., in the same data
center or availability zone, because a cluster often defines
the management boundary for workloads. Once a workload
is deployed to a cluster, it is typically not moved to another
cluster because each cluster usually has its own isolated con-
trol plane [30]. In AWS Lambda, to improve cache locality,
enable connection re-use, and amortize the costs of moving
and loading customer code, events for a single function are
sticky-routed to as few workers as possible [1].

(2) State management. A side effect of the above approach is
that users must carefully manage any state that should per-
sist across function executions, as the number of underlying
instances and the routing of requests to instances is opaque
to users. There is no guarantee that two requests will be
executed in the same worker, whether the requests are for
the same function or different functions in the same work-
flow. To handle stateful serverless functions, external stor-
age services, such as relational databases or key-value stores,
are standard solutions for persisting application state. Of
course, access to these remote services can incur high la-
tency and block critical path execution.

(3) Caching. To reduce the latency of accessing remote stor-
age services, a cluster of cache nodes is deployed between
the application and the remote storage. Taking Amazon’s
DynamoDB Accelerator (DAX) in write-through mode as
an example, a write request is first directed to the primary
cache and then replicated to other cache nodes. This repli-
cation is eventually consistent and can take seconds to com-
plete. Consequently, two functions may obtain different val-
ues when accessing the same key from the same DAX cluster,
depending on which cache node each function accesses.

2.2 Consistency Goals

As we describe above, caching the remote state at each pro-
visioned instance is critical to reduce latency, as it allows
functions to access the state immediately if the data is in the
cache. But to maintain consistency across an entire work-
flow, traditional caches either need to block and confirm
that they have the latest state by synchronizing with other
caches, or they must proceed speculatively but then abort if
an inconsistency is ever detected (as is the case in systems
like HydroCache [32] and classic cache coherency protocols).
This results in higher latency, particularly at the tail. An-
other approach altogether is to ignore strong consistency in
favor of weaker guarantees (as is the case in AWS’s DAX ser-
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vice [8]), but as we alluded to in the introduction, writing
serverless workflows with weak consistency is hard. To strike
a balance between performance and meaningful consistency
semantics, we settle on causal+ consistency (CC+). Recent
work [22] has shown that no model stronger than causal con-
sistency is achievable with high availability, making it ideal
for our coordination-free goal.

Providing causal consistency in the cache can greatly sim-
plify programming in serverless workflows and make them
less error-prone. A simple example is that it can avoid the
anomaly discussed in Section 1. In a more complex example,
consider a serverless workflow that implements a Twitter-
like social media service. This example was previously im-
plemented in serverless by Beldi [34] and was ported from
the microservice library DeathStarBench [9]. When Alice
replies to Bob’s post, a serverless function will store the re-
ply in the database’s reply table and notification table; it
also stores the id of the reply in the database’s post table
as foreign keys. When Bob receives the notification and
interacts with this serverless application, a serverless func-
tion will fetch the post content and all its replies to render
the page. There is a dependency between the notification
and the post’s replies, and without causal consistency, when
the serverless function returns the page to Bob with the
rendered post, it might not contain the reply that triggers
the notification. Another common example includes appli-
cations whereby a user sets permission (e.g., removes a user
from an access control list), and then posts a sensitive file.
Without causal consistency, the removed user may see the
sensitive file [5, 19, 25].

3 CausalMesh Overview

The goal of CausalMesh is to provide a high-performance,
resilient, and causally consistent cache for serverless plat-
forms that addresses the challenge of maintaining consis-
tency while supporting the mobility of serverless workflows.

3.1 Architecture

Figure 2 illustrates the architecture of CausalMesh. The
architecture consists of four components:

Serverless Platform. The serverless platform acts as the run-
time environment for user applications. It orchestrates the
workflow and dispatches functions to available workers.

Databases. The database stores application data. Causal-
Mesh supports any database that admits custom conflict
resolution policies to resolve concurrent updates (e.g., Azure
CosmosDB [6], Couchbase [7], and MongoDB [24]).

CausalMesh. CausalMesh is a middleware that sits between
the serverless platform and the backend databases. It con-
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tains two components, cache servers and a client library. The
user functions interact with the cache servers using the client
library. Cache servers communicate with each other via re-
mote procedure calls (RPCs). The messages between cache
servers follow a FIFO order but can experience arbitrary de-
lays. CausalMesh plays a similar role to DynamoDB DAX
or HydroCache. In our setup, CausalMesh’s cache servers
run in a 1-to-1 correspondence with physical machines. All
database requests from functions that originate from a given
machine are routed to the cache server on the same machine.
This setup provides the best locality. However, other con-
figurations are also possible. For example, machines in the
same rack may be assigned to the same cache server. Cache
servers are managed and configured by a fault-tolerant co-
ordinator (e.g. Zookeeper [12]).

End-to-end procedure. Using the above components, the
journey of a stateful serverless workflow proceeds as follows:

1. The workflow is triggered by an event, e.g., a request
from a browser or some service arriving at a gateway.

2. The scheduler dispatches the first function in the work-
flow to a worker machine based on resource usage, hard-
ware requirements, and other factors.

3. The function accesses state via CausalMesh’s library.

4. When a function calls another function, the scheduler
gathers the state updates before dispatching the sub-
sequent function (or functions in the context of a fan-
out workflow) to potentially different worker machine(s)
than the previous one. When a function returns, its
state updates are also collected by the scheduler.

5. Repeat until the workflow is complete.

3.2 CC+in CausalMesh

CausalMesh provides causal consistency with convergent con-
flict handling [19] or CC+ with two components:

Vector Clocks (VC) [29]. Used to identify different versions
of an object and capture the happens-before relation [17]
between them. We use version and vector clock interchange-
ably in the paper. A vector clock VC' is a set of (server id,
timestamp) pairs; each server maintains its corresponding
timestamp and increments it as needed. For simplicity, we
assume that given N servers, each server is assigned an id
from 0 to N so that a VC can be represented using a list of
timestamps where VC[i] is the timestamp of server i.

We define the union of two VCs, VCi U Vs, as their
element-wise maximum, e.g., [1,0] U [0,1] = [1,1]. By using
vector clocks, we can implement a custom conflict resolution
policy to ensure state convergence in CC+. Informally, new
versions overwrite old versions; if two versions are concur-
rent, we merge the vector clocks and pick one of the values
as the new value in a deterministic way. In the implementa-
tion, we break ties by picking the value of the larger version
by lexicographical ordering.

Dependencies (deps). Used to track causal relationships
across different keys. They are stored as a map from a key
to the vector clocks of the writes that it depends on.

deps = {Keyw— VC}
To reduce the size of metadata, it only contains the nearest
dependencies, meaning that if x — y (z happens before y,

y depends on z) and y — z, 2’s dependency will contain
y but not z. Dependencies can be merged using the same
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1 # self is a cache server

2 def integrate(self, deps):

3 all_deps = {V[k, {vci, vc2, ...}] | [k, vc_i] 1is
transitive predecessor of deps (inclusive)}

4 for k, ves in all_deps.items():

5 consistent_versions =

6 self.Inconsistent[k].remove(

7 filter(vc € vcs)

8

9

self.vc.merge_all(vcs)

10 self.Consistent[k].merge_all(
11 consistent_versions
12 )

Figure 3: Pseudocode for dependency integration.

mechanism as vector clocks.

4 The Dual Cache

A core component of CausalMesh is its dual cache. The dual
cache is what makes CausalMesh coordination-free. Each
cache server maintains an instance of this dual cache, which
is essentially two subcaches, a Consistent cache (C-cache),
and an Inconsistent cache (I-cache).

C-cache is a hash map from keys to values and their cor-
responding versions; it acts like a single-version key-value
store. As its name suggests, all versions in C-cache are guar-
anteed to be synchronized on all cache servers and, therefore,
visible to clients.

I-cache, on the other hand, is a hash map from keys to
a tuple (Value, VC, Deps). It functions as a multi-version
key-value store, storing versions that the cache server is un-
sure have been synchronized to all servers. As a result, the
contents of I-cache are not safe to reveal to clients.

C-cache := { Keyw ( Value, VC) }

I-cache = { Keyw> [ ( Value, VC,deps )]}
C-cache and I-cache have different functionalities. All read
requests are served by C-cache, and all write requests are
processed by I-cache, then moved to C-cache when they are
safe to be revealed to clients through a procedure called
dependency integration (or integration).

Dependency Integration. Integration is triggered whenever
the cache server wants to make a version visible, i.e., when
it receives a read from a client (§5.3) or when it determines
a write exists on all servers (§5.2). The pseudo-code for this
procedure is shown in Figure 3 and follows the steps below:

1. Iterate over the dependencies.

2. For each key-version pair in the dependencies, check if
this version has already been merged into C-cache.

3. If not, search I-cache for this version, remove it from
I-cache (Lines 6-8), and merge it into C-cache (Lines 9-
11) using the same procedure of merging two versions.
Note that unlike I-cache, C-cache has no dependency
metadata; the dependencies are automatically dropped
when merged into C-cache.

As previously mentioned, a writer's dependencies only
consist of their nearest dependencies. Therefore, it is nec-
essary to recursively integrate the dependencies of these de-
pendencies as well (Figure 3 Line 3). It’s worth noting that
integration is a purely local operation on the data structure
and does not require blocking on any communication.

The purpose of integration is to ensure that, when updat-
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ing C-cache, it is always a strict causal cut, or simply a cut.
Informally, this means that the dependencies for each write
in the cut should either be in the cut or should happen be-
fore a write to the same key that is already in the cut. The
formal definition is as follows.

DEFINITION 1 (STRICT CAUSAL CUT). A set of writes
S is a strict causal cut <= Yz € S,Vy € z.deps,Iy’ €

S| ykey=y' keyN(y'=yVy—1y)

5 CausalMesh Protocol

This section describes how CausalMesh works internally. We
will begin by introducing CausalMesh’s APIs and then de-
scribe how read and write requests are processed, followed
by how read transactions are implemented, and end with an
intuitive explanation on how CausalMesh achieves CC+.

5.1 CausalMesh APIs

CausalMesh APIs include a client API and a server API.
The client API is used by developers; the server API is used
internally and opaque to developers.

Client API. CausalMesh’s client library offers an interface
similar to a traditional key-value store, with the added func-
tionality of the ReadTxn operation, which returns a consis-
tent view of multiple keys. The client API is as follows:

1. Read(key) — value
2. Write(key, value)
3. ReadTxn(keys) — values

Server API. Server API is used by the client library to com-
municate with the cache servers, or by the cache servers to
communicate with each other. Figure 4 lists all server API
functions. The first three operations correspond to those in
the client library’s API, with additional metadata includ-
ing VC, deps and local. local contains the client’s own
writes in a map from keys to their corresponding value, vec-
tor clocks, and dependencies.

5.2 Write Path

Clients’ writes are first saved in the server’s I-cache because
they only exist in one server. When saving it to the I-cache,
CausalMesh first integrates carried writes (described at the
end of this subsection), then assigns a version based on the
server’s global vector clock to the client’s new write.

Global Vector Clock (GVC). Each cache server maintains its
own GVC, which records its view of version clocks on all
servers. When receiving a write, the server increments the
corresponding index in its GVC' to create a unique version
for the write. For example, in a three-server setup, if the
GVC for server Sy is [7,5,2], then when it receives a new
write from a client the assigned vector clock will be [8, 5, 2].
The value in the corresponding index of the GV, namely
GV(0], is used as a unique identifier for the writes received
by So. The rest of GVC represent the newest visible versions
that Sp is aware of for other servers. In the previous exam-
ple, 5 in the GVC indicates that among all vector clocks in
C-cache, the largest value in the second index is 5. Even if
So has values larger than 5 in the second index in its I-cache,
they do not contribute to the GVC until they are integrated.

After assigning a new version to a write, the cache server
adds the write to the I-cache and flushes it to the database.
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The server can then safely return an acknowledgment to the
client. However, at this point, the new value is not yet visible
to other clients. To make the value visible, the server will
notify its peer servers by asynchronously sending the new
write to its successor in the propagation chain.

Propagation Chain. Our data propagation design is inspired
by, but is different from, Chain Replication [31]. Each S; —
S(i+1) mod N —* -+ —> S(i4N—1) mod n forms a chain. Thus,
in a three-server system, there are three chains in total:
So — 51 — Sz, S1 — S2 — So, and S2 — So — S1. For each
chain, cache servers can take on one of three roles: head,
intermediate, or tail; however, every cache server serves all
three roles, just for different chains.

Writes are forwarded to the head of the chain and are
propagated until they reach the tail in a FIFO manner.
When an intermediate cache server receives a write from
its predecessor, it adds the write to its I-cache and forwards
it to its successor. When a tail cache server receives a write,
it integrates the write (and the dependencies) to its C-cache.
Figure 5 illustrates the propagation chains of a system with
three servers. This asynchronous propagation happens after
the server responds to the client and is off the critical path.

Integrating carried writes. After a client migrates to a new
server, it will piggyback its Local on its first write request.
Unless the versions in Local have been previously received,
the cache server will append them to I-cache before process-
ing the client’s current write. To see why this is necessary,
consider the scenario shown in Figure 6. In a two-server
setup where the connection Sy to S; is very slow, suppose a
client ¢; first writes z to Sp, then migrates to S1 and writes
y that depends on z. As the connection Sy to S is slow, y
appears on Sy before z arrives at S;. However, if another
client ¢ now reads y on Sy, followed by z on Si, it can
see y but not z, violating causal consistency. To solve this
problem, CausalMesh’s client library carries its local writes.
The carried writes are stored in the workflow context, and
the scheduler will pass along the context to the subsequent
functions within the same workflow. This design decision
mirrors other systems that consider client roaming [32, 33].

As a result, when performing a write w, the client at-
taches its deps and local. The cache server iterates over
all writes in local, and adds those not seen before into its
I-cache (Figure 7 Lines 9-11). In this example, when the
client migrates from Sy to Si, it also carries the previous
write z to S1, so that ce can see both z and y at Si.

5.3 Read Path

The read request includes its dependencies, and the server
will integrate the dependencies and return the value and its
version from C-cache, shown in Figure 7. The integration
ensures that the client never reads an older version than its
dependencies. For example, if a client reads y; in the past,
where 1 — w1, then when it reads z later, it will get a
version at least as new as .

If the requested key does not exist in the cache, the client
has to read directly from the underlying storage. The cache
server, in the background, will add the result to I-cache as if
it were written by a client. This value will follow the same
propagation chain as a write.

Each cache server serves read requests independently with-
out consulting other servers or going through the propaga-
tion chain, making reads in CausalMesh coordination-free.
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CausalMesh Server API \ Description

ClientRead(key, deps) — value, vc

client’s read request with a key and its dependencies, return the value and version.

ClientWrite(key, value, deps, local) — vc | client’s write request with the key, value, dependencies and the client’s own writes, return the version.

ClientReadTxn(keys, deps) — values, vcs
ServerWrite(key, value, vc, deps)

client’s read transaction request with keys and their dependencies, return values and their versions.
write request from another server with the key, value, version and dependencies.

Figure 4: CausalMesh’s Server APIs. The first three APIs (Clientx) are used in CausalMesh’s client library. ServerWrite
is called by other CausalMesh servers via RPC to propagate writes. Note that developers do not use these functions.

Inconsistent Cache

Consistent Cache

So S S,
Figure 5: Propagation chain in a three-server setup. The
cache servers Sp, S1, and Sz respectively serve as the head
nodes for the solid, dashed, and dotted chains.

2: Migrate
G—G

1: x 3y

X
—X
So S

4:y
Figure 6: Without carrying and sending its own write to the
cache, the client may fail to read causally consistent values.
The text on the arrows contains the step number and the
data being transferred.

1 # self is a cache server
2 def ClientRead(self, key, deps):
self.integrate(deps)
return self.Consistent[key]

def ClientWrite(self, key, value, deps, local):

self.vc[self.id] += 1;

for k, (v, vc, k_deps) in local.items():
if not self.has_seen(k, vc):

self.Inconsistent[k].add((v, vc, k_deps))

deps.add(k, vc)

self.Inconsistent[key].add((
self.vc, value, deps

)

self.successor.ServerWrite(
key, self.vc, value, deps
)

return self.vc

HEHRBREBRRERR
VCONOAOUAWNKROOO~NOU &AW

21 def ServerWrite(self, key, vc, value, deps):
22 if self dis tail:

23 self.vc.merge(vc)

24 self.integrate(deps)

25 self.Consistent[key].merge(

26 (vc, value, deps)

27 )

28 else:

29 if not self.has_seen(key, vc):
30 self.Inconsistent.merge_all(local)
31 self.successor.ServerWrite(
32 key, vc, value, deps

33 )

Figure 7: Pseudocode for CausalMesh’s server.
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5.4 Read Transactions

CausalMesh supports causally-consistent read transactions.
A transactional read request includes a set of keys. When
the cache server receives such requests, it integrates the de-
pendencies before reading each key from C-cache. As pre-
viously mentioned, all versions in C-cache naturally form a
consistent view because it is a cut. Furthermore, Causal-
Mesh’s read transactions do not communicate with other
servers or wait for a specific version to arrive.

If the client reads a key that it has written before, similar
to read operations, the client library merges the result from
the server with its own write. However, the client’s own
writes may not be part of the same causal cut as the other
keys in the request. In this case, the transaction has to
abort unless the returned value is at least as new as the
one in local. Aborts are handled by the client library by
notifying the scheduler and are opaque to the users. Aborts
can only occur in cases where read transactions include keys
that have been previously written by the same client, such
as when a client writes z and then reads z and y within a
transaction. To prevent aborts, developers can rearrange the
order of operations by placing writes after read transactions
if their keys happen to overlap.

6 Client Library

In serverless, the “client” in our setting is a workflow made
up of multiple functions. When a workflow starts, the client
library creates two maps, local and deps. These two maps
track the client’s own writes and dependencies, respectively,
and are carried along the workflow during migration. The
client library proxies reads and writes, interacting with the
cache server via RPC and providing the necessary metadata.
Figure 8 shows the pseudocode.

Read. Issues a ClientRead request to the designated cache
server along with deps. The cache server responds with
Weached, containing the value and its corresponding vector
clock. Subsequently, the client library checks local to de-
termine if it has previously written to the same key. If there
has been no prior write, the client library returns the value
received from the cache server. However, if there has been
a prior write, the client library returns the value by merg-
ing the value obtained from the cache server and the value
stored in local, Weached U Wiocatl. Finally, the client library
adds the returned version to deps.

Write. Attaches deps and local to the ClientWrite re-
quest sent to the cache server. The cache server then returns
a vector clock assigned to the write. The client library adds
this vector clock to its Local map.

7 CausalMesh-TCC

CausalMesh supports read transactions within a single server-
less function. However, certain workloads need read-write
transactions (e.g., when dealing with access-control lists)
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1 # self is a client

2 def read(self, key):

3 value, vc = ClientRead(key, self.deps)
4 self.deps.merge(key, vc)

5 if key in self.local:

6 return merge(self.locallkey],

7 {value, vc}).value

8 return value

9

10 def write(self, key, value):

11 vc = ClientWrite(key, value,
12 self.deps, self.local)
13 self.locallkey].merge(value, vc)

Figure 8: Pseudocode for CausalMesh’s client library.

and read transactions across multiple serverless functions.
This raises a question: what kind of transactional isola-
tion semantics should CausalMesh provide that satisfy our
goals of high performance and at least causal consistency.
Two potential options are Transactional Causal Consistency
(TCC) [2, 19] and Snapshot Isolation (SI) [3].

TCC can be seen as an extension of CC+ to the transac-
tional context. TCC ensures atomicity of writes, meaning
that all writes from a transaction are either fully visible or
not visible at all. In contrast, CC+ does not offer such atom-
icity guarantees. Second, TCC enforces that all reads within
a transaction must originate from the same causal cut. For
example, if a client reads = = 0, all subsequent reads of z
within the same transaction will also return 0. On the other
hand, CC+ allows for the possibility of reading newer values
in subsequent reads by reading from a monotonic cut.

Compared with Snapshot Isolation (SI), TCC may lead
to reading stale data whereas SI ensures that reads always
reflect all committed transactions. Additionally, SI pre-
vents write-write conflicts. It has a first-committer-wins
feature [3] to abort concurrent writes and serialize all com-
mitted writes. In contrast, TCC allows concurrent writes
and resolves conflicts by merging versions. Consequently,
SI is a stronger isolation level but prior works have shown
that it is an order of magnitude slower than TCC [32], with
notably higher tail latencies. Consistent with our goal of ob-
taining good performance, we therefore settle on using TCC
to support transactional semantics in CausalMesh.

In particular, we implement a variant of CausalMesh that
we call CausalMesh-T'CC. In CausalMesh-TCC, each work-
flow is treated as a transaction. To enforce atomic writes,
CausalMesh-TCC’s client library saves writes in a buffer and
returns to the client immediately. The writes are then sent
to the server in a batch at the end of the workflow; to do
this, we add a dummy sink function at the end of the work-
flow. During dependency integration, the cache server will
integrate all writes in the same batch atomically.

To make all reads come from the same cut, CausalMesh-
TCC extends C-cache to be a map from a key to a list of
tuples that includes the value, VC, and deps.

C-cache := {Key > [ (Value, VC, Deps) |)}

During dependency integration, rather than updating the
value in C-cache in place as CausalMesh does, the cache
server in CausalMesh-TCC creates a new version and ap-
pends it to the list so that the list contains multiple versions
for each key. Upon receiving a read request, the cache server
returns the oldest version from this list that, when combined
with the previous read set, forms a cut—thus adhering to
TCC. If no such version is found, the workflow aborts and
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retries. In the case of multiple parallel functions within the
workflow, CausalMesh-TCC runs a validation phase that
checks if the union of the read sets from these functions
forms a cut. If it does not, the workflow aborts and retries.

8 Correctness

The full version of this paper [36] and our codebase [35]
contain proofs and TLA+ models of CausalMesh.

9 Implementation

We implemented CausalMesh, CausalMesh-TCC, and two
baselines: HydroCache [32] and FaaSTCC [21]. HydroCache
has two versions: a conservative version (HydroCache-Con)
and an optimistic version (HydroCache-Opt). Figure 9 sum-
marizes the properties of these systems.

10 Evaluation

CausalMesh improves performance without the headaches of
weak consistency. To see how well CausalMesh works, we
answer these questions (our full paper covers more):

e How does CausalMesh scale with server count? (§10.1)
e What are the latency and throughput of representative
applications running on CausalMesh? (§10.2)

10.1 Effect of the Number of Caches

To evaluate how CausalMesh scales with the number of
servers, we conduct experiments with 2-16 servers (the same
order of magnitude as AWS DAX’s maximum of 11 cache
nodes). More servers result in more concurrent clients. We
issue requests in increments of 50 req/s until the system is
nearly saturated, which we determine by observing a tail la-
tency longer than 10ms. Each function randomly reads two
keys and writes one key.

Results. We normalize the results by dividing the raw through-
put by the number of servers. Figure 10 includes a histogram
illustrating the raw throughput and a line plot depicting the
normalized throughput. It shows that CausalMesh’s nor-
malized throughput is nearly constant, which means Causal-
Mesh scales almost linearly with respect to the number of
servers. On the other hand, CausalMesh-T'CC reaches satu-
ration at around 2800 request/second due to increased con-
tention. FaaSTCC experiences throughput degradation as
the number of servers increases. CausalMesh-TCC achieves
1.3x—-1.8% higher throughput than FaaSTCC. Both versions
of HydroCache perform worse than both CausalMesh-TCC
and FaaSTCC; HydroCache does not scale to 8 servers or be-
yond because the cost of coordinating between those servers
and pulling dependencies is far too high. HydroCache-Opt
performs even worse.

Takeaway. Developers should use CausalMesh whenever al-
lowed, as it has better performance when there’s more cache
servers; developers should only use CausalMesh-TCC when
read transactions across multiple serverless functions or read-
write transactions are necessary. We discuss scalability fur-
ther in our full paper [36].

10.2 Movie Review Service

We evaluate CausalMesh’s performance on the movie review
service described in DeathStarBench [10, 9], where users cre-
ate accounts, read reviews, view the plot and cast of movies,
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Consistency Unk. ReadSet  Coordination Cost Read / Write Abort Free Visibility

CausalMesh CC+ Yes 0 RTT 0 RTT /1 RTT to DB Yes N x RTT

CausalMesh-TCC TCC Yes 0 RTT 0 RTT /1 RTT to DB No N x RTT
HydroCache-Con TCC No 2 RTTs 0 RTT /1 RTT to DB Yes refresh period
HydroCache-Opt TCC No* 0RTT ~2N RTT ORTT /1RTT to DB No refresh period
FaaSTCC TCC Yes 0RTT ~2N RTT ORTT /1RTT to DB No refresh period

Figure 9: Comparison between CausalMesh, CausalMesh-TCC, HydroCache-Con, and HydroCache-Opt. N is the number of
servers. Unknown ReadSet means that the read set does not need to be known ahead of time, which is needed for supporting
dynamic workflows. HydroCache-Opt’s Unknown ReadSet field is No* because it supports partially dynamic workflows (§11).
In HydroCache and FaaSTCC, writes become visible after a refresh period, set to 100ms and 50ms in the original papers.
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Figure 10: The histogram with y-axis on the left depicts the
throughput as we vary the number of servers. The line plot
with y-axis on the right shows the normalized throughput
by dividing the throughput by the number of servers.

and write movie reviews. We use Beldi’s implementation [34]
which is a V-shape workflow of 13 serverless functions.

We evaluate a mixed workload, consisting of 50% Com-
poseReview and 50% ReadReview. ComposeReview gener-
ates a review for a random user and movie, and then saves
the review ID to the profiles of both the movie and the
user. ReadReview involves two functions. First, it reads
the profile of a movie to retrieve all associated review IDs.
Then, it reads the contents of the reviews using those IDs.
It is worth noting that HydroCache-Con cannot support this
type of workload as it requires prior knowledge of the keys.

Results. Figure 11 shows that both HydroCache-Opt and
FaaSTCC start experiencing high tail latency at around
1,500 req/s. In contrast, CausalMesh achieves 2x higher
throughput while reducing median latency by up to 10%
and tail latency by up to 64% before HydroCache-Opt and
FaaSTCC become saturated. CausalMesh-TCC achieves up
to 1.35x higher throughput and similar latency.

Takeaway. Both CausalMesh and CausalMesh-TCC outper-
form HydroCache and FaaSTCC in throughput for real-
world applications. As Causal+ consistency is sufficient
for many applications, including the movie review service
above, CausalMesh significantly reduces the latency when
compared to the others.

11 Discussion

Dynamic workflows. Workflows can be highly dynamic, such
as reading one object and using its result to decide which
other objects to read [20, 13]. HydroCache cannot support
this, while both CausalMesh and CausalMesh-TCC do.

Metadata and garbage collection. The accumulation of de-
pendencies can slow the system over time. CausalMesh and

CausalMesh-TCC clear unnecessary metadata seamlessly while

processing requests, without the need for dedicated GC pro-
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Figure 11: Comparison of CausalMesh, HydroCache, and
FaaSTCC in terms of median and tail response time and
throughput in a mixed workload that has contention be-
tween reads and writes.

cesses. In CausalMesh, dependencies are discarded during
dependency integration. In CausalMesh-TCC, C-cache is a
ring buffer that automatically removes both old values along
with their associated dependencies when it is full.

Cache eviction. We consider cache eviction an orthogonal
problem. The design of dual cache allows it to benefit from
any eviction policy. The only additional requirement is
upon the eviction of a key, all keys that depend on it are
also evicted so that C-cache remains a cut. Since C-cache
drops dependencies, the system will need to include a coarse-
grained dependency tracking method, e.g., a hashtable that
indicates which keys should be evicted together. We can im-
prove accuracy by adding more detailed dependency track-
ing in the C-cache at the cost of more memory.

12 Conclusion

This paper presents CausalMesh, the first cache system to

support coordination-free and abort-free causal read/write

operations when clients move from server to server. It also

presents CausalMesh-TCC that supports transactional causal
consistency within a workflow. They enable developers to

build applications that take advantage of both the scalability

of serverless computing and the low latency of a local cache.

Our evaluation shows that CausalMesh(-TCC) achieves sig-

nificantly better performance than the state-of-the-art and

is a great addition to the serverless ecosystem.
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