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ABSTRACT shortest path computation is challenging for large dynamic net-

In dynamic networks, where continuous topological changes are
prevalent, it becomes paramount to find and update different graph
properties without the computational burden of recalculating from
the ground up. However finding or updating a multi-objective short-
est path (MOSP) in such a network is challenging, as it involves
simultaneously optimizing multiple (conflicting) objectives. In light
of this, our paper focuses on shortest path search and proposes paral-
lel algorithms tailored specifically for large incremental graphs. We
first present an efficient algorithm that updates the single-objective
shortest path (SOSP) whenever a new set of edges are introduced.
Leveraging this SOSP update algorithm, we also devise a novel
heuristic approach to adaptively update a MOSP in large networks.
Empirical evaluations on both real and synthetic incremental net-
works with shared memory implementations attest to the scalability
and efficacy of the proposed algorithms.
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1 INTRODUCTION

Shortest path computations have numerous real-world applica-
tions, such as route recommendations in road transportation net-
works [9], centrality computations in social network analysis [18],
efficient communications in wireline, wireless, or sensor networks
[34], drone-based goods delivery [15, 16], to name a few. However,
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works, where the underlying graph topology changes with time.
This complexity intensifies when the paths seek to optimize mul-
tiple objectives. For example, in road transportation networks, one
may optimize different objectives such as distance, estimated travel
time, traffic congestion, road conditions, fuel consumption, and
road safety. On the other hand, in wireless sensor networks (WSNs),
the data gathered by the sensor nodes are usually transferred to
a data collection point (called the sink), and the data collection
route typically follows a tree structure rooted at the sink. While a
shortest-distance route from the sensor nodes to the sink decreases
the data collection latency, it will deplete faster the energy (battery
power) of the nodes closer to the sink, which in turn may reduce
the overall lifetime of the network. Therefore, it is necessary to
jointly optimize the latency and energy consumption along the data
collection routes in WSNs [13].

In the above example scenarios, finding the most efficient routes
is the same problem as finding the shortest paths that optimize
various factors, known as the multi-objective shortest path (MOSP)
search. Pareto optimality is a well-known method for finding rea-
sonable solutions to multi-objective search problems, as it provides
a condition where no preference criterion can be improved with-
out harming at least one other preference criterion [4]. Therefore,
many solution approaches seek Pareto optimal paths to achieve
multi-objective optimization along the routes. Although there ex-
ists a few parallel algorithms to compute all Pareto optimal shortest
paths [31], parallel algorithms for the MOSP problem in large dy-
namic networks are yet to be explored.

Since the networks representing many real-world complex sys-
tems are often dynamic, the MOSP computation can become stale
due to topological changes over time. Recomputing the MOSP on pe-
riodic snapshots can be inefficient due to repetitive and redundant
calculations. The temporal nature of dynamic networks poses addi-
tional challenges, as the uncertainty of changes creates irregular
access patterns for graph algorithms. These motivate our work.

In this paper, we mainly focus on incremental networks, i.e., the
networks that grow with time. We first develop a parallel algorithm
(SOSP-update) to update a shortest path optimizing a single objec-
tive function. Then we exploit the SOSP-update algorithm to design
an efficient heuristic for updating a MOSP in rapidly growing large
networks. To the best of our knowledge, we propose the first paral-
lel algorithms for updating MOSP in dynamic networks. Our novel
contributions are summarized as follows:

o We first propose a parallel SOSP update algorithm that uses
grouping techniques to reduce the total work while main-
taining correctness.
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e Then we use our proposed SOSP update algorithm to design
a novel heuristic algorithm that quickly updates a single
MOSP in a large network under time-varying dynamics.

e We present a shared-memory parallel implementation to
compute SOSPs and MOSPs in large dynamic networks. Scal-
ability tests on real and synthetic networks affirm our imple-
mentation’s effectiveness.

The organization of the rest of this paper is as follows. Section 2
introduces preliminary concepts of SOSP, MOSP, Pareto optimality,
and dynamic networks. Section 3.1 presents a parallel algorithm
for updating SOSP; while Section 3.2 describes a parallel heuristic
algorithm to find a single MOSP in dynamic networks. Section 4
describes a shared memory parallel implementation and experimen-
tal results. Section 5 reviews previous work related to SOSP and
MOSP search, and relevant parallel approaches. The final section
concludes the paper with future directions.

2 PRELIMINARIES

Let G(V,E) be a directed graph, where V is the vertex set and E is
the edge set. Each directed edge e(u,v) € E from vertex u to v has
a non-negative weight W (e). A directed path between two vertices
is called a shortest path if the sum of the weights of edges between
these two vertices is the smallest. The single source shortest path
problem computes the shortest paths from a source vertex to all
other vertices as destinations. For only one objective (i.e., k = 1),
the problem is called Single Objective Shortest Path (SOSP) and the
output is an SOSP tree (say, T) containing only those edges along
shortest paths from the source to all other vertices.

2.1 Multi-objective Shortest Path (MOSP)

When a complex system with multiple objectives is modeled as a
graph, the weight of an edge e € E becomes a vector, where it"
element of the vector describes the distance/similarity between two
interacting entities considering only ith objective. As a result, the
shortest path problem optimizes multiple objective functions and
becomes a MOSP search. Let the weight vector of edge e be W(e) =
(w1, ..., wg), where wy is the weight related to kth objective.

Pareto optimization is a well-known technique [4] that provides
solutions not worse than any other solution in a multi-objective
optimization problem. In the context of shortest path search, the
Pareto optimal shortest paths are those for which the multi-objective
distance vectors are not dominated by any other path’s distance vec-
tor. In this paper, we design efficient parallel algorithms to update
Pareto optimal paths in large dynamic networks.

Let the shortest distance (Pareto optimal labels) of a vertex v from

7N = gegPt p1 pz pz
the source vertex be (v, [) = {{d ""’dlpll}""’{dl ""’d\pzl}}’

where df " denotes the j Pareto optimal distance measured from

the source through parent vertex p;. Each d?" contains an indi-
vidual distance component for each objective function, and hence
d = (61,...,0;), where & is the distance component computed
just for objective k along the Pareto optimal path.

Let Figure 1 be an illustration of a road network graph. Each edge
has dual weights: travel time and fuel consumption between two
points (nodes). Note that travel time and fuel consumptions are not
linearly correlated due to road elevation and traffic. Here, the Pareto
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optimal label for vertex ug is (u6,—l)) = {uq : {(6,16), (12,4)},us :
{(17,9), (23,7), (14, 12) } }. It indicates there are two and three short-
est paths passing through vertex u4 and us respectively. Each tuple
in the label has two distance components showing the required
time and fuel consumption along a path.

Dominated distance: In the process of Pareto optimal shortest
path computation, for a vertex v, a potential path distance d; =
(8., 5,’;) is called dominated iff there exists at least another

distance d; = ((Sj, e §£) such that:
5,1; < 5;, for a single value of x, where 1 < x <k (1)

8y <ol forally#xand1<y<k @)
If d; is dominated by d;, we will denote it as d; < d;. A dominated
distance is eliminated from the Pareto optimal distance set.
null:(0,0)

1 (2,5
1;;:;((8,3)) @ uq:(7,1)
(3,4) (2,9)
uy:(5,9), ezt
(11,7) w: (11,7), (17,5),
uq: (8,10) A48y

uy: (6,16), (12,14), us: (17,9), (23,7), (14,12)
Figure 1: MOSP in an example graph

In Figure 1, {u3 : (9,10)} is dominated by Pareto optimal label
{ug : (8,10)} in the process of shortest distance computation of
vertex e. Similarly, {uq : (14,8)} is dominated by {uz : (11,7)}.
Table 1 enumerates the list of symbols used in this paper.

Table 1: List of Symbols

Symbols | Meaning
G(V,E) | A directed weighted graph
W(e) Weight vector (related to objectives) of edge e
k Number of objectives
AE Set of changed edges
Ins Set of inserted edges in AE
T; SOSP tree related to objective i
L A vector of Pareto optimal labels
(u, 1) Tuple containing vertex u and a vector
of all Pareto optimal labels of u
d}‘ j*h Pareto optimal distance through parent u
i Distance component related to objective i

2.2 Dynamic Networks

Time-varying dynamics in a graph include both vertex and edge-
level changes. As vertex insertion (resp. deletion) can be converted
to the addition (resp. deletion) of connecting edges, without loss
of generality, we can assume all changes in the network are due
to edge modifications. A dynamic graph algorithm accommodates
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modifications in graph topology, including edge insertions, and
deletions while determining specific graph attributes. Such algo-
rithms can operate in real-time, updating after every alteration [30],
or handle a batch of changes [14] in near real-time. Instead of recal-
culating from the beginning, a dynamic update algorithm tweaks
the graph property in response to these changes requiring less
computational resources.

SOSP is a classic shortest-path problem, for which numerous
solutions have been proposed in the literature [1, 17, 33]. It has been
observed that in a dynamic network, updating an SOSP requires
less time than recomputing it from scratch when changes occur
in the network topology [17]. Inspired by this finding we develop
an enhanced algorithm for updating SOSP in large incremental
networks and later design a MOSP search heuristic.

3 PROPOSED APPROACH

Here, we first develop an algorithm to update SOSP and use the
technique to design a MOSP search algorithm in a dynamic incre-
mental network. Let G;(V;, E;) be the directed graph at time step ¢

and (v,—l)) + € L; be the Pareto optimal distance labels (shortest dis-
tances in case of SOSP) of a vertex v. Let from time step ¢ to t+1, the
set of inserted edges be Ins; = E;+1 — E;. Thus, the updated graph
Gt+1(Vis1, Ers1) contains the edge set E;1 = (E;UIns;). Our aimis

A
to efficiently compute the shortest distance labels (v, [ );+1 € L+1
for all v € V341, without recomputing from scratch. For generality,
we omit the subscript ¢ in our algorithm notation.

3.1 Single-objective Shortest Path Update

The proposed SOSP update algorithm uses G(V, E), the SOSP tree
T = {{(v,0) : v € V}, Parent} of the last time instance, and the set
of changed edges Ins as the inputs. (v, §) and Parent[v] store the
distance and parent vertex of v in the SOSP tree respectively. A new
set of directed edges {(u1,9),..., (ux,v)} can affect the distance of
vertex v only. If they are processed using multiple asynchronous
threads, each thread may update the distance differently and result
in an incorrect shortest distance. Existing solutions [17] use multi-
ple iterations to achieve correctness in such scenarios. Unlike this
approach, we use a simple grouping technique to avoid multiple
iterations. Preprocessing (Step 0): At preprocessing stage all the
inserted directed edges (u, v) are grouped by the second endpoint
o and stored in 7 [v]. Here, the j element of I'stores the set of
changed edges having the possibility of affecting j'* vertex. The
grouping simply performs set insert operations (O(1) time on aver-
age), while reading the changed edges. Process Changed Edges
(Step 1): In this step, each group of inserted edges is processed by a
single thread. Therefore, the distance of a vertex v is updated only
by a single thread and it removes the possibility of incorrect update
due to race condition. If a newly added edge (u,v) decreases the
distance of v, then the distance is updated as (u, ) + W(u,v), and
v is marked as affected (Algorithm 1 line 8 to 12). Propagate the
Update (Step 2): An affected vertex may also affect the distance
of its neighbors and updating the neighbors’ distance is necessary
to maintain the correctness. As multiple affected vertices can have
common neighbors, processing the neighbors of each affected ver-
tex in different threads may lead to race conditions. To avoid such
a situation, step 2 first gathers all unique neighbors of all the af-
fected vertices in a vector V. Then the vertices v € N are assigned
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to parallel threads where each thread checks for the predecessors
which are already marked as affected. If found, the edge between
the predecessor and v is relaxed to find if a path through the affected
predecessor can decrease the distance of v. If v’s distance decreases,
it’s marked as affected and its neighbors are processed in the next
iteration. Therefore, Step 2 is an iterative process and it completes
when no new affected vertices are identified (Algorithm 1 line 14).
The SOSP update algorithm finds the updated shortest path for all
the vertices from the source, i.e., the updated SOSP tree.

Figure 2 illustrates the proposed SOSP update algorithm. Let Fig-
ure 2a and 2b be an example network and its initial SOSP tree respec-
tively. Let the changed edges be Ins = {(u1, u2, 7), (u3, us, 1), (u1, us
,4)}. Then after the preprocessing step, the group of changed edges
becomes I [uz] = {(u1,u2,7)} and I [us] = {(us3, us, 1), (u1,us,4)}.
After processing these two groups using two asynchronous threads
in step 1, the distance of up and us are updated (see Figure 2c). At
the first iteration of step 2, N contains {us, u¢} and the distances of
these two vertices are updated (see Figure 2d). In the next iteration,
N contains only ug and its distance update is shown in Figure 2e.
Finally, the iteration stops as no neighbor is left for update and the
final updated SOSP tree is found (see Figure 2f).

3.2 Multi-objective Shortest Path Update

The Pareto optimal solution to find MOSP generally produces nu-
merous shortest paths where none can be considered worse than
the other. However, in most cases, the application requires only one
MOSP. In a dynamic network, as the network topology changes fast,
it is more important to find a single path quickly than to find all the
paths. Searching for a single MOSP rather than finding all MOSPs
can improve execution time and decrease resource requirements.
To achieve this goal, we propose a novel time-efficient heuristic
algorithm that finds a single MOSP in a large dynamic graph.

Step 1: Update SOSP trees In the presence of newly inserted
edges, the algorithm (Algorithm 2) first updates each SOSP tree T;
related to it objective using Algorithm 1.

Step 2: Create a combined graph Each updated SOSP tree T;
provides an updated path for which the distance component §; is the
minimum for all the vertices. However, the path T; considers a single
objective only. Real applications often require MOSP balancing all
the objectives or combining different priorities and constraints.
Therefore, in this step, the algorithm balances the objectives or
prioritize ith objective function by increasing the probability of
selecting an edge (or sub-path) from T;. The algorithm first creates
an ensemble graph E by considering all the edges from the SOSP
trees T;Vi = 1,...k. If an edge e € E appears in x number of SOSP
trees, then the balanced approach assigns edge weight (k—x+1) to
that edge. This approach assigns less weight to edges that appear in
more SOSP trees while assigning more weight to uncommon edges.

Objectives with different priorities also can be dealt with using
a similar method where the weight of an edge in T; is assigned a
positive value inversely proportional to the priority of objective i.

Application Scenario: In a drone-based delivery system, let
there be two efficient delivery routes T/, and T¢ depending on
the shortest flying time and the lowest energy consumption, re-
spectively. Let the energy budget be B, and energy consumption
to deliver an item by following Tf (resp. T¢) be cy(resp. ce). If
cf > B > ce, the system prioritizes energy cost over delivery
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(a) Original network (b) SOSP tree (c)Step 1 (d) Step 2, iteration 1 (e) Step 2, iteration 2 (f) Updated SOSP tree
Figure 2: SOSP update.
Algorithm 1: SOSP_Update(G(V, E), T, Ins) Algorithm 2: MOSP_Update(G(V, E),{T1, ..., Tr }, Ins)
/* Step 0: Preprocessing */ /* Step 1: Find updated SOSP tree T; */
1 Initialize an array I of size |V| where each element is an 1 fori=1tok do
empty list. 2 L SOSP_Update(G(V, E), T;, Ins)
2 for each directed edge e(u,v) € Ins do /* Step 2: Create a combined graph %/
3 L Add (u,v) to I [v] 5 E=U§:1(€€Ti)
/* Step 1: Process Changed Edges */ 4 for each e € E in parallel do
4 Initialize an empty vector Af f 5 if e appears in x number of SSSP trees then
5 Initialize an array marked containing zeroes of size |V| 6 L Assign edge weight (k —x +1) fore € E
o for each vertexo € V in parallel do /* Step 3: Find SOSP in combined graph */
7 for each edge (u,v) € I [v] do Find SOSP in E
8 if (0,8) > (u,8) + W(,0) then 7 e m ,
. Addoin Aff 8 Assign actual edge weights from updated G on the output
10 Change the distance of v to (u, §) + W(u,0) SOSP tree to find the MOSP
11 Parent[v] « u
12 marked[v] « 1
13
L = time to ensure the drones can return to their charging point. How-
/* Step 2: Propagate the update */ ever, if B > c¢f > ce, the system may choose to follow TS to deliver

14
15
16
17

18
19
20
21

22

23

24

25

26

27

28

while Af f in not empty do
Initialize empty vectors N and Af f’
for eachv € Aff in parallel do

L Add the neighbors of v in N

for eachv € N in parallel do

for each predecessor neighbor u of v do

if marked|u] # 1 then

L continue

if (v,6) > (u,6) + W(u,0) then
Add v in Aff’
Change the distance of v to (u, §) + W(u,0)
Parent[v] « u
marked[v] « 1

Aff — Aff’

Aff’ is reset to empty vector
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the items faster. In addition, the system may need to adjust its
delivery objectives under varying wind conditions. In a dynamic
scenario, it may be beneficial to reserve some energy budget for
emergencies and follow a MOSP approach to balance both time and
energy objectives while delivering goods.

Step 3: Find SOSP in the combined graph The combined
graph E contains the edges appearing in one SOSP tree at least,
and the edge weights are assigned depending on the priority of
the objectives. Next, the algorithm finds an SOSP in the combined
graph using any parallel single source shortest path algorithm. If
the edge weights from the actual graph G are reassigned to the
edges of SOSP computed on the combined graph, it provides an
optimal or sub-optimal solution for MOSP that satisfies the targeted
combination of objectives.

Let Figure 1 be an updated graph G;,; after a set of edge inser-
tions; Figure 3a and 3b be the updated SOSP trees (after Algorithm 2
step 1) related to objectives 1 and 2, respectively. Following Step 2,
a combined graph is created, as shown in Figure 3c. When SOSP is
computed on this combined graph and the original edge weights
from Gy are reassigned, the resulting path provides one of the
MOSPs presented in Figure 1, as illustrated in Figure 3e.
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(a) SOSP: objective 1 (b) SOSP: objective 2

(c) Combined graph
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null:(0,0)

(e) Final MOSP

(d) SOSP in combined
graph

Figure 3: Finding a single MOSP.

THEOREM 1. Let T; be the only SOSP tree related to objective i in
graph G. Let an ensemble graph E be obtained by using all the edges
from SOSP trees T;Vi = 1, ...k and by assigning a single and equal
edge weight for each of these edges. Let TE be a possible SOSP in the
ensemble graph. If real edge weights are reassigned for the edges of
TE, it will give a Pareto optimal shortest path solution for G.

Proor. If there exists a single objective, trivially, the SOSP will
be the Pareto optimal path. For a set of objectives, let us assume
we found the Pareto optimal path from source to u that follows
the edges from TE. u itself can be the source vertex (base case). Let
there be an edge (u,v) € TE. Now we need to prove that the path
to v through u is Pareto optimal.

As we assume there exists only one SOSP tree for a single ob-
jective, there cannot exist other paths (not through u) to v that are
better in terms of at least one objective function without being
worse in the other objectives. Therefore, per the Pareto optimality’s
definition, the path to v through u is Pareto optimal. O

LEMMA 2. IfT; is the only SOSP tree related to objective i, any path
along the tree will be a subpath of the Pareto optimal MOSP solution.

PRroOF. Let the distance of vertex v be d(v) = (61,...,6i,...,0%)
along T; and dyx(v) = (37,...,67, ..., 5]’5) along an alternate path.
Assume, d(v) is not Pareto-optimal and dx (v) < d(v). Then 6} < §;.
However, it is impossible as J; is the shortest distance of v along
the only SOSP related to objective i. So, d(v) is the Pareto optimal
distance. Thus, any path along T; overlaps with the Pareto optimal
MOSP solution. O

THEOREM 3. If at time t + 1, the updated dynamic graph G41 =
(Gt U Ins) has only one SOSP tree T; for each objective i, the path
found in Gry1 by Algorithm 2 will be a Pareto optimal shortest path.

PRrOOF. According to the definition of Pareto optimality, a label
is Pareto optimal if it has at least one objective component less or
equal to all other Pareto optimal labels. Finding the SOSP tree for
each objective contributes exactly one Pareto optimal candidate. In
the combined graph, the proposed algorithm provides weights to
the edges to give priority to selecting the optimal path suggested
by most of the SOSP trees. As we are choosing the path of the

743

graph having the highest occurrence path among the SOSP trees,
the algorithm provides exactly one, not necessarily all possible,
Pareto optimal path. O

Probable Optimization- Updating SOSP in Combined Graph:
Initially the algorithm needs to compute the SOSP tree in the com-
bined graph from scratch. Later the algorithm can use the SOSP
tree computed in E; (at time t) and the changed edges found in the
new ensemble graph E;4; to update the SOSP tree using a similar
approach proposed in Algorithm 2 Step 1A and 1B.

Discussion on Our Approach:

1. Finding a MOSP with two or more objectives is known to be an
NP-hard problem. Our approach converts a MOSP problem into an
SOSP problem, reducing total execution time.

2. Our algorithm helps to find an optimal or sub-optimal path where
the multiple objectives are balanced. Reduced weight for the edges
common in multiple SOSP trees increases the chance of those edges
being selected in Step 3, which means the edges, optimizing multiple
objectives together, get priority.

3. The weight assignment in the ensemble graph can be modified to
implement objectives with different priorities. This allows the user
to customize the optimization criteria according to their needs.

4. A single MOSP update algorithm in a dynamic network saves
execution time and resources.

4 PERFORMANCE EVALUATION

We implement Algorithm 1 and use it to implement 2 for shared-
memory computing architecture using C++ and OpenMP. The adja-
cency list and changed edges are stored using arrays of structures.
Each element in the change edge structure stores the endpoints of
an edge, edge weight, and a flag to indicate insertion/deletion sta-
tus. As we modify the MOSP problem to a combination of multiple
SOSP update problems, the SOSP tree is an important data structure
in our implementation. We store the SOSP tree as a parent-child
relationship among the vertices. Each element of the SOSP tree
contains the Parent vertex, and Distance from the source. A vertex
is marked as affected whenever the vertex’s distance is changed in
the process of MOSP update.

Updating an SOSP tree takes advantage of both edge-centric and
vertex-centric parallel operations. Each group of changed edges is
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AE =200k —— |

Time in Milliseconds

Threads
(c) road-roadNet-CA

processed by each shared-memory thread, which is scheduled dy-
namically. On the other hand, each neighbor of the affected vertices
is assigned to a single thread for processing. In the current imple-
mentation, an SOSP tree T; related to the i/ objective is updated
only when T;_; completes its update. However, in a distributed ar-
chitecture or a scenario with a massive number of parallel threads,
they can be updated independently.

In Step 2 of Algorithm 2, computing a set union and finding
common edges from all T; can be computationally expensive. To
address this, we directly use the parent-child relationship in the
tree structure to find the edges. We assign a single thread to each
vertex to compare its parents among all the SOSP trees. Then,
we use an OpenMP custom reduction to gather all the edges after
assigning the weight (k — x + 1) as described in the algorithm. For
Step 3 of Algorithm 2, we use a parallel Bellman-Ford algorithm
implementation to compute the SOSP on the combined graph.

Experimental Setup: All experiments are conducted on dual 32-
core AMD EPYC Rome 7452 CPUs with 64 GB DDR4 RAM allocated.
Four Large graphs from the network-repository collection [29] are
chosen and a set of random edge weights are added depending
on the number of objectives. Details of the networks are given in
Table 2. We choose road networks and a random geometric graph,
particularly considering the multi-objective application scenarios
of road transportation and wireless sensor network respectively.
To make our datasets dynamic in our experiment, we randomly
generate batches of changed edges.

4.1 Scalability Analysis

For strong scaling analysis, we increase the number of OpenMP
threads from 1 to 64 while keeping the batch size constant for each
experiment. Figure 4 shows threads vs time when batch size is
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Table 2: Networks in Our Test Suite [29]

Name Num. of Vertices Num. of Edges
road-usa 23M 28.9M
rgg-n-2-20-s0 1,048,576 6,891,620
roadNet-CA 1,971,281 5,533,214
roadNet-PA 1,090,920 3,083,796

varied among three different sizes of AE 50K, 100K, and 200K. The
general trend shows that the execution time decreases gradually
when the number of threads increases.

Although the execution time depends on the location of the
change in the graph, it is possible to explain the general nature of
the plots for the different sizes of edge insertion.

SpeedUp for 100K
16 T T T T T T T

1901220:0 B oad-road-usa B

Speed Up
-
T
.

1 2 4 8 16 32 64
Threads

Figure 5: Execution time ratio (speedup) compared to single
thread execution.
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In our algorithm 3, lines 18 and 19 indicate that the exterior
loop in line 18 is processed in parallel and the inner loop in line
19 is processed with a single thread due to nesting. If the graph is
sparse, the sequential inner loop in line 19 will not significantly
hinder the parallel performance compared to a dense graph. The
scalability of sparse graphs will be greater than that of dense graphs.
Similar experimental results are depicted in Figure 4. Despite the
vast scale of the road-road-usa network, its scalability performance
is superior to that of other plots. For obvious reasons, the scala-
bility performance of smaller graphs with a large number of edge
insertions is negatively impacted. In line 18 of Algorithm 3, the
probability of having the same node affected by other nodes for
multiple iterations increases if a large number of edge modifications
are applied to smaller-scale graphs. For MOSP, the most dominant
operation is the SOSP_update operation according to the Figure 6
covering around 90% of space regardless of the size and sparsity of
the graph. Thus, the scalability performance of SOSP_update also
implies the scalability performance of MOSP problem.

To the best of our knowledge, no parallel implementation is
available to update a single MOSP in dynamic networks. Therefore,
we consider a single thread execution, i.e., sequential approach as
our baseline. Figure 5 shows the execution time ratio (speedup)
of single and multi-thread executions when the datasets are var-
ied. The largest network in our test suite, i.e., road-usa shows the

maximum speedup (up to 15X).
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Figure 6: Execution time of different steps.

4.2 Experiment on Different Algorithmic Steps

Figure 6 shows the percentage of time taken for executing different
steps of the algorithm when the number of threads is fixed to 4.
Without loss of generality, we consider a bi-objective case here. In
the figure, SOSP1 (resp. SOSP2) indicates the time taken to update Ty
(resp. T2) in presence of AE be 100K. Updating T; and T takes the
most time in the whole process, whereas creation of the combined
tree (merge operation) takes barely any time. The Parallel Bellman-
Ford algorithm finds an SOSP on a combined graph of 2 = (|V| — 1)
or fewer edges and consumes a small fraction of the total time.

5 RELATED WORKS

This section reviews previous works related to MOSP search, paral-
lel SOSP, MOSP in dynamic networks, and parallel MOSP search.

5.1 Multi-objective Shortest Path

An algorithm to compute bi-objective shortest path was first in-
troduced in [8]. In [21], it was generalized into a multi-objective
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technique by including lexicographic ordering of labels. Later, the
algorithm in [8] was expanded and the concept of Pareto optimality
was introduced in [32]. The authors in [10] conducted a comparison
study to determine if there was a relationship between the graph
density and label setting and label correction algorithm perfor-
mance. Using a bi-objective shortest path as the focus, a thorough
analysis of label-setting algorithms was reported in [26]. This study
demonstrated the potential of parallelism for a two-phase strategy,
the first of which decomposes the actual problem. In [24] is inves-
tigated a collection of previously known labeling techniques. A
method to support multi-objective Ax algorithms that can estimate
the cost of achieving the target state for more than one objective
was proposed in [20]. The research presented in [19] determined
that the multi-objective A% algorithm provides high-quality solu-
tions and can significantly benefit from heuristic information.

5.2 Parallel Single-objective Shortest Path

A plethora of parallel SOSP algorithms have been proposed in the
literature. In [19], Dijkstra’s method was divided into independent
phases. The authors in [22] adopted the bucket data structure to
keep track of the approximate distances. A high-performance graph
library, called Gunrock [33], provides a three-step architecture (ad-
vance, filter, and compute) based implementation to compute SOSP
on Nvidia GPUs. Efficient dynamic parallelism-based implementa-
tion of the Bellman-Ford algorithm using two queues on GPU is
proposed in [1]. An architecture-independent framework to update
SOSP in fully dynamic networks is proposed in [17], which provides
shared memory and GPU-based implementations.

5.3 MOSP in Dynamic Networks

The first attempt to compute MOSP in dynamic networks was made
in [2], which modified Bellman’s method and used a recursive
formula to determine the shortest distance. The author in [6] ex-
tended it for dynamic instances based on first-in first-out (FIFO)
property and non-overtaking property. By managing numerous
modifications simultaneously, the dynamic shortest path problem
was generalized in [27]. Dynamic all-pair shortest path methods
were first used in practice in [5]. Two factors of dynamic nature ,
namely temporal variation and weight updates, were considered
in [23]. Multiple objective optimization in transportation is dealt
in [11], which demonstrated that fuel usage varies with truckload
and is correlated with carbon emission levels. To adopt the SOSP
algorithm for multiple objectives, the authors combined the three
elements into a single polynomial. A dynamic programming-based
shortest path algorithm is proposed in [28] for non-additive edge
weights maintaining multi-objectives and multi-constraints.

5.4 Parallel MOSP

The authors in [31] were the first to tackle the parallel MOSP chal-
lenge. They developed a shared-memory parallel algorithm for
bi-objective shortest path problem [7] and hypothesized a paral-
lel multi-objective variant. To achieve further parallelism, they
used the B-tree data structure for two objectives. However, The
data structure fails in multi-objective instances. Strategies to lower
the dimensionality and convert the multi-objective problem into
a bi-criteria dilemma are proposed in [25]. A new pruning-based
technique which was devised in [3] to check the dominance of
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the labels concurrently. This algorithm performed up to 2-9 times
better than the Martin’s algorithm[12].

To the best of our knowledge, the parallel MOSP problem in
large dynamic graphs is not explored before.

6 CONCLUSION

In this work, we first presented a parallel SOSP update algorithm
that incorporates grouping techniques. This approach effectively
reduces computational efforts by decreasing the total iteration
count. Building on this foundation, we devised a heuristic algo-
rithm tailored to promptly update a single MOSP in large networks,
particularly under time-varying dynamics. Finally, we developed
shared-memory parallel implementations optimized for efficient
computation of both SOSPs and MOSPs in incremental networks.
The effectiveness and practicality of our implementations are vali-
dated through scalability assessments conducted on both real-world
and synthetic networks.

While our paper primarily focuses on incremental graphs, specif-
ically edge insertions, the algorithm has the potential to be adapted
for edge deletions. We plan to address this in upcoming work. Our
current implementation updates the SOSP trees one after another
leading to longer execution times with a higher number of ob-
jectives. A potential solution lies in adopting hybrid parallelism:
distributing tasks associated with each SOSP tree across processors,
and then utilizing shared-memory parallelism within each proces-
sor for the SOSP update. We foresee a reduction in execution time
with this approach and aim to investigate this area in the future.
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