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ABSTRACT

In dynamic networks, where continuous topological changes are

prevalent, it becomes paramount to �nd and update di�erent graph

properties without the computational burden of recalculating from

the ground up. However �nding or updating a multi-objective short-

est path (MOSP) in such a network is challenging, as it involves

simultaneously optimizing multiple (con�icting) objectives. In light

of this, our paper focuses on shortest path search and proposes paral-

lel algorithms tailored speci�cally for large incremental graphs. We

�rst present an e�cient algorithm that updates the single-objective

shortest path (SOSP) whenever a new set of edges are introduced.

Leveraging this SOSP update algorithm, we also devise a novel

heuristic approach to adaptively update a MOSP in large networks.

Empirical evaluations on both real and synthetic incremental net-

works with shared memory implementations attest to the scalability

and e�cacy of the proposed algorithms.
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1 INTRODUCTION

Shortest path computations have numerous real-world applica-

tions, such as route recommendations in road transportation net-

works [9], centrality computations in social network analysis [18],

e�cient communications in wireline, wireless, or sensor networks

[34], drone-based goods delivery [15, 16], to name a few. However,
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shortest path computation is challenging for large dynamic net-

works, where the underlying graph topology changes with time.

This complexity intensi�es when the paths seek to optimize mul-

tiple objectives. For example, in road transportation networks, one

may optimize di�erent objectives such as distance, estimated travel

time, tra�c congestion, road conditions, fuel consumption, and

road safety. On the other hand, in wireless sensor networks (WSNs),

the data gathered by the sensor nodes are usually transferred to

a data collection point (called the sink), and the data collection

route typically follows a tree structure rooted at the sink. While a

shortest-distance route from the sensor nodes to the sink decreases

the data collection latency, it will deplete faster the energy (battery

power) of the nodes closer to the sink, which in turn may reduce

the overall lifetime of the network. Therefore, it is necessary to

jointly optimize the latency and energy consumption along the data

collection routes in WSNs [13].

In the above example scenarios, �nding the most e�cient routes

is the same problem as �nding the shortest paths that optimize

various factors, known as the multi-objective shortest path (MOSP)

search. Pareto optimality is a well-known method for �nding rea-

sonable solutions to multi-objective search problems, as it provides

a condition where no preference criterion can be improved with-

out harming at least one other preference criterion [4]. Therefore,

many solution approaches seek Pareto optimal paths to achieve

multi-objective optimization along the routes. Although there ex-

ists a few parallel algorithms to compute all Pareto optimal shortest

paths [31], parallel algorithms for the MOSP problem in large dy-

namic networks are yet to be explored.

Since the networks representing many real-world complex sys-

tems are often dynamic, the MOSP computation can become stale

due to topological changes over time. Recomputing theMOSP on pe-

riodic snapshots can be ine�cient due to repetitive and redundant

calculations. The temporal nature of dynamic networks poses addi-

tional challenges, as the uncertainty of changes creates irregular

access patterns for graph algorithms. These motivate our work.

In this paper, we mainly focus on incremental networks, i.e., the

networks that grow with time. We �rst develop a parallel algorithm

(SOSP-update) to update a shortest path optimizing a single objec-

tive function. Then we exploit the SOSP-update algorithm to design

an e�cient heuristic for updating a MOSP in rapidly growing large

networks. To the best of our knowledge, we propose the �rst paral-

lel algorithms for updating MOSP in dynamic networks. Our novel

contributions are summarized as follows:

• We �rst propose a parallel SOSP update algorithm that uses

grouping techniques to reduce the total work while main-

taining correctness.

739



SC-W 2023, November 12–17, 2023, Denver, CO, USA Khanda, et al.

• Then we use our proposed SOSP update algorithm to design

a novel heuristic algorithm that quickly updates a single

MOSP in a large network under time-varying dynamics.

• We present a shared-memory parallel implementation to

compute SOSPs and MOSPs in large dynamic networks. Scal-

ability tests on real and synthetic networks a�rm our imple-

mentation’s e�ectiveness.

The organization of the rest of this paper is as follows. Section 2

introduces preliminary concepts of SOSP, MOSP, Pareto optimality,

and dynamic networks. Section 3.1 presents a parallel algorithm

for updating SOSP; while Section 3.2 describes a parallel heuristic

algorithm to �nd a single MOSP in dynamic networks. Section 4

describes a shared memory parallel implementation and experimen-

tal results. Section 5 reviews previous work related to SOSP and

MOSP search, and relevant parallel approaches. The �nal section

concludes the paper with future directions.

2 PRELIMINARIES

Let � (+ , �) be a directed graph, where + is the vertex set and � is

the edge set. Each directed edge 4 (D, E) ∈ � from vertex D to E has

a non-negative weight, (4). A directed path between two vertices

is called a shortest path if the sum of the weights of edges between

these two vertices is the smallest. The single source shortest path

problem computes the shortest paths from a source vertex to all

other vertices as destinations. For only one objective (i.e., : = 1),

the problem is called Single Objective Shortest Path (SOSP) and the

output is an SOSP tree (say, ) ) containing only those edges along

shortest paths from the source to all other vertices.

2.1 Multi-objective Shortest Path (MOSP)

When a complex system with multiple objectives is modeled as a

graph, the weight of an edge 4 ∈ � becomes a vector, where 8Cℎ

element of the vector describes the distance/similarity between two

interacting entities considering only 8Cℎ objective. As a result, the

shortest path problem optimizes multiple objective functions and

becomes a MOSP search. Let the weight vector of edge 4 be, (4) =

(F1, . . . ,F: ), whereF: is the weight related to :Cℎ objective.

Pareto optimization is a well-known technique [4] that provides

solutions not worse than any other solution in a multi-objective

optimization problem. In the context of shortest path search, the

Pareto optimal shortest paths are those for which the multi-objective

distance vectors are not dominated by any other path’s distance vec-

tor. In this paper, we design e�cient parallel algorithms to update

Pareto optimal paths in large dynamic networks.

Let the shortest distance (Pareto optimal labels) of a vertex E from

the source vertex be (E,
−→
; ) = {{3

?1
1
, . . . , 3

?1

|?1 |
}, . . . , {3

?I
1
, . . . , 3

?I

|?I |
}},

where 3
?8
9 denotes the 9Cℎ Pareto optimal distance measured from

the source through parent vertex ?8 . Each 3
?8
9 contains an indi-

vidual distance component for each objective function, and hence

3 = (X1, . . . , X: ), where X: is the distance component computed

just for objective : along the Pareto optimal path.

Let Figure 1 be an illustration of a road network graph. Each edge

has dual weights: travel time and fuel consumption between two

points (nodes). Note that travel time and fuel consumptions are not

linearly correlated due to road elevation and tra�c. Here, the Pareto

optimal label for vertex D6 is (D6,
−→
; ) = {D4 : {(6, 16), (12, 4)}, D5 :

{(17, 9), (23, 7), (14, 12)}}. It indicates there are two and three short-

est paths passing through vertex D4 and D5 respectively. Each tuple

in the label has two distance components showing the required

time and fuel consumption along a path.

Dominated distance: In the process of Pareto optimal shortest

path computation, for a vertex E , a potential path distance 38 =

(X8
1
, . . . , X8

:
) is called dominated i� there exists at least another

distance 3 9 = (X
9
1
, . . . , X

9

:
) such that:

X
9
G < X8G , for a single value of G, where 1 f G f : (1)

X
9
~ f X8~, for all ~ ≠ G and 1 f ~ f : (2)

If 38 is dominated by 3 9 , we will denote it as 3 9 z 38 . A dominated

distance is eliminated from the Pareto optimal distance set.�1
�2
�4 �5

�3
�6

(2,5) (7,1)

(1,2)

(9,2)
(3,4)

(3,1)

(1,7)
(6,2)

(2,9)

null:(0,0)

�1: (2,5),�3: (8,3) �1: (7,1)
�3: (9,10),�2: (11,7), (17,5),�4: (8,10), (14,8)�2: (5,9),

(11,7)

�4: 6,16 , 12,14 ,�5: (17,9), (23,7), (14,12)
Figure 1: MOSP in an example graph

In Figure 1, {D3 : (9, 10)} is dominated by Pareto optimal label

{D4 : (8, 10)} in the process of shortest distance computation of

vertex 4 . Similarly, {D4 : (14, 8)} is dominated by {D2 : (11, 7)}.

Table 1 enumerates the list of symbols used in this paper.

Table 1: List of Symbols

Symbols Meaning

� (+ , �) A directed weighted graph

, (4) Weight vector (related to objectives) of edge 4

: Number of objectives

�� Set of changed edges

�=B Set of inserted edges in ��

)8 SOSP tree related to objective 8

! A vector of Pareto optimal labels

(D,
−→
; ) Tuple containing vertex D and a vector

of all Pareto optimal labels of D

3D9 9Cℎ Pareto optimal distance through parent D

X8 Distance component related to objective 8

2.2 Dynamic Networks
Time-varying dynamics in a graph include both vertex and edge-

level changes. As vertex insertion (resp. deletion) can be converted

to the addition (resp. deletion) of connecting edges, without loss

of generality, we can assume all changes in the network are due

to edge modi�cations. A dynamic graph algorithm accommodates
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modi�cations in graph topology, including edge insertions, and

deletions while determining speci�c graph attributes. Such algo-

rithms can operate in real-time, updating after every alteration [30],

or handle a batch of changes [14] in near real-time. Instead of recal-

culating from the beginning, a dynamic update algorithm tweaks

the graph property in response to these changes requiring less

computational resources.

SOSP is a classic shortest-path problem, for which numerous

solutions have been proposed in the literature [1, 17, 33]. It has been

observed that in a dynamic network, updating an SOSP requires

less time than recomputing it from scratch when changes occur

in the network topology [17]. Inspired by this �nding we develop

an enhanced algorithm for updating SOSP in large incremental

networks and later design a MOSP search heuristic.

3 PROPOSED APPROACH

Here, we �rst develop an algorithm to update SOSP and use the

technique to design a MOSP search algorithm in a dynamic incre-

mental network. Let �C (+C , �C ) be the directed graph at time step C

and (E,
−→
; )C ∈ !C be the Pareto optimal distance labels (shortest dis-

tances in case of SOSP) of a vertex E . Let from time step C to C +1, the

set of inserted edges be �=BC = �C+1 − �C . Thus, the updated graph

�C+1 (+C+1, �C+1) contains the edge set �C+1 = (�C ∪�=BC ). Our aim is

to e�ciently compute the shortest distance labels (E,
−→
; )C+1 ∈ !C+1

for all E ∈ +C+1, without recomputing from scratch. For generality,

we omit the subscript C in our algorithm notation.

3.1 Single-objective Shortest Path Update

The proposed SOSP update algorithm uses� (+ , �), the SOSP tree

) = {{(E, X) : E ∈ + }, %0A4=C} of the last time instance, and the set

of changed edges �=B as the inputs. (E, X) and %0A4=C [E] store the

distance and parent vertex of E in the SOSP tree respectively. A new

set of directed edges {(D1, E), . . . , (DG , E)} can a�ect the distance of

vertex E only. If they are processed using multiple asynchronous

threads, each thread may update the distance di�erently and result

in an incorrect shortest distance. Existing solutions [17] use multi-

ple iterations to achieve correctness in such scenarios. Unlike this

approach, we use a simple grouping technique to avoid multiple

iterations. Preprocessing (Step 0): At preprocessing stage all the

inserted directed edges (D, E) are grouped by the second endpoint

E and stored in I[E]. Here, the 9Cℎ element of Istores the set of

changed edges having the possibility of a�ecting 9Cℎ vertex. The

grouping simply performs set insert operations ($ (1) time on aver-

age), while reading the changed edges. Process Changed Edges

(Step 1): In this step, each group of inserted edges is processed by a

single thread. Therefore, the distance of a vertex E is updated only

by a single thread and it removes the possibility of incorrect update

due to race condition. If a newly added edge (D, E) decreases the

distance of E , then the distance is updated as (D, X) +, (D, E), and

E is marked as a�ected (Algorithm 1 line 8 to 12). Propagate the

Update (Step 2): An a�ected vertex may also a�ect the distance

of its neighbors and updating the neighbors’ distance is necessary

to maintain the correctness. As multiple a�ected vertices can have

common neighbors, processing the neighbors of each a�ected ver-

tex in di�erent threads may lead to race conditions. To avoid such

a situation, step 2 �rst gathers all unique neighbors of all the af-

fected vertices in a vector N . Then the vertices E ∈ N are assigned

to parallel threads where each thread checks for the predecessors

which are already marked as a�ected. If found, the edge between

the predecessor and E is relaxed to �nd if a path through the a�ected

predecessor can decrease the distance of E . If E ’s distance decreases,

it’s marked as a�ected and its neighbors are processed in the next

iteration. Therefore, Step 2 is an iterative process and it completes

when no new a�ected vertices are identi�ed (Algorithm 1 line 14).

The SOSP update algorithm �nds the updated shortest path for all

the vertices from the source, i.e., the updated SOSP tree.

Figure 2 illustrates the proposed SOSP update algorithm. Let Fig-

ure 2a and 2b be an example network and its initial SOSP tree respec-

tively. Let the changed edges be �=B = {(D1, D2, 7), (D3, D5, 1), (D1, D5
, 4)}. Then after the preprocessing step, the group of changed edges

becomes I[D2] = {(D1, D2, 7)} and I[D5] = {(D3, D5, 1), (D1, D5, 4)}.

After processing these two groups using two asynchronous threads

in step 1, the distance of D2 and D5 are updated (see Figure 2c). At

the �rst iteration of step 2,N contains {D4, D6} and the distances of

these two vertices are updated (see Figure 2d). In the next iteration,

N contains only D6 and its distance update is shown in Figure 2e.

Finally, the iteration stops as no neighbor is left for update and the

�nal updated SOSP tree is found (see Figure 2f).

3.2 Multi-objective Shortest Path Update

The Pareto optimal solution to �nd MOSP generally produces nu-

merous shortest paths where none can be considered worse than

the other. However, in most cases, the application requires only one

MOSP. In a dynamic network, as the network topology changes fast,

it is more important to �nd a single path quickly than to �nd all the

paths. Searching for a single MOSP rather than �nding all MOSPs

can improve execution time and decrease resource requirements.

To achieve this goal, we propose a novel time-e�cient heuristic

algorithm that �nds a single MOSP in a large dynamic graph.

Step 1: Update SOSP trees In the presence of newly inserted

edges, the algorithm (Algorithm 2) �rst updates each SOSP tree )8
related to 8Cℎ objective using Algorithm 1.

Step 2: Create a combined graph Each updated SOSP tree )8
provides an updated path for which the distance component X8 is the

minimum for all the vertices. However, the path)8 considers a single

objective only. Real applications often require MOSP balancing all

the objectives or combining di�erent priorities and constraints.

Therefore, in this step, the algorithm balances the objectives or

prioritize 8Cℎ objective function by increasing the probability of

selecting an edge (or sub-path) from )8 . The algorithm �rst creates

an ensemble graph E by considering all the edges from the SOSP

trees )8∀8 = 1, . . . : . If an edge 4 ∈ E appears in G number of SOSP

trees, then the balanced approach assigns edge weight (: −G +1) to

that edge. This approach assigns less weight to edges that appear in

more SOSP trees while assigning more weight to uncommon edges.

Objectives with di�erent priorities also can be dealt with using

a similar method where the weight of an edge in )8 is assigned a

positive value inversely proportional to the priority of objective 8 .

Application Scenario: In a drone-based delivery system, let

there be two e�cient delivery routes ) 5 , and ) 4 depending on

the shortest �ying time and the lowest energy consumption, re-

spectively. Let the energy budget be �, and energy consumption

to deliver an item by following ) 5 (resp. ) 4 ) be 2 5 (resp. 24 ). If

2 5 > � > 24 , the system prioritizes energy cost over delivery
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Figure 2: SOSP update.

Algorithm 1: SOSP_Update(� (+ , �),) , �=B)

/* Step 0: Preprocessing */

1 Initialize an array I of size |+ | where each element is an

empty list.

2 for each directed edge 4 (D, E) ∈ �=B do

3 Add (D, E) to I[E]

/* Step 1: Process Changed Edges */

4 Initialize an empty vector �5 5

5 Initialize an array<0A:43 containing zeroes of size |+ |

6 for each vertex E ∈ + in parallel do

7 for each edge (D, E) ∈ I[E] do

8 if (E, X) > (D, X) +, (D, E) then

9 Add E in �5 5

10 Change the distance of E to (D, X) +, (D, E)

11 %0A4=C [E] ← D

12 <0A:43 [E] ← 1

13

/* Step 2: Propagate the update */

14 while �5 5 in not empty do

15 Initialize empty vectors N and �5 5 ′

16 for each E ∈ �5 5 in parallel do

17 Add the neighbors of E in N

18 for each E ∈ N in parallel do

19 for each predecessor neighbor D of E do

20 if <0A:43 [D] ≠ 1 then

21 continue

22 if (E, X) > (D, X) +, (D, E) then

23 Add E in �5 5 ′

24 Change the distance of E to (D, X) +, (D, E)

25 %0A4=C [E] ← D

26 <0A:43 [E] ← 1

27 �5 5 ← �5 5 ′

28 �5 5 ′ is reset to empty vector

Algorithm 2:MOSP_Update(� (+ , �), {)1, . . . ,): }, �=B)

/* Step 1: Find updated SOSP tree )8 */

1 for 8 = 1 to : do

2 SOSP_Update(� (+ , �),)8 , �=B)

/* Step 2: Create a combined graph */

3 E = ∪:8=1 (4 ∈ )8 )

4 for each 4 ∈ E in parallel do

5 if 4 appears in G number of SSSP trees then

6 Assign edge weight (: − G + 1) for 4 ∈ E

/* Step 3: Find SOSP in combined graph */

7 Find SOSP in E

8 Assign actual edge weights from updated � on the output

SOSP tree to �nd the MOSP

time to ensure the drones can return to their charging point. How-

ever, if � > 2 5 g 24 , the system may choose to follow ) 5 to deliver

the items faster. In addition, the system may need to adjust its

delivery objectives under varying wind conditions. In a dynamic

scenario, it may be bene�cial to reserve some energy budget for

emergencies and follow a MOSP approach to balance both time and

energy objectives while delivering goods.

Step 3: Find SOSP in the combined graph The combined

graph E contains the edges appearing in one SOSP tree at least,

and the edge weights are assigned depending on the priority of

the objectives. Next, the algorithm �nds an SOSP in the combined

graph using any parallel single source shortest path algorithm. If

the edge weights from the actual graph � are reassigned to the

edges of SOSP computed on the combined graph, it provides an

optimal or sub-optimal solution for MOSP that satis�es the targeted

combination of objectives.

Let Figure 1 be an updated graph �C+1 after a set of edge inser-

tions; Figure 3a and 3b be the updated SOSP trees (after Algorithm 2

step 1) related to objectives 1 and 2, respectively. Following Step 2,

a combined graph is created, as shown in Figure 3c. When SOSP is

computed on this combined graph and the original edge weights

from �C+1 are reassigned, the resulting path provides one of the

MOSPs presented in Figure 1, as illustrated in Figure 3e.
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Figure 3: Finding a single MOSP.

Theorem 1. Let )8 be the only SOSP tree related to objective 8 in

graph � . Let an ensemble graph E be obtained by using all the edges

from SOSP trees )8∀8 = 1, . . . : and by assigning a single and equal

edge weight for each of these edges. Let )� be a possible SOSP in the

ensemble graph. If real edge weights are reassigned for the edges of

)� , it will give a Pareto optimal shortest path solution for � .

Proof. If there exists a single objective, trivially, the SOSP will

be the Pareto optimal path. For a set of objectives, let us assume

we found the Pareto optimal path from source to D that follows

the edges from )� . D itself can be the source vertex (base case). Let

there be an edge (D, E) ∈ )� . Now we need to prove that the path

to E through D is Pareto optimal.

As we assume there exists only one SOSP tree for a single ob-

jective, there cannot exist other paths (not through D) to E that are

better in terms of at least one objective function without being

worse in the other objectives. Therefore, per the Pareto optimality’s

de�nition, the path to E through D is Pareto optimal. □

Lemma 2. If)8 is the only SOSP tree related to objective 8 , any path

along the tree will be a subpath of the Pareto optimal MOSP solution.

Proof. Let the distance of vertex E be 3 (E) = (X1, . . . , X8 , . . . , X: )

along )8 and 3G (E) = (X
G
1
, . . . , XG8 , . . . , X

G
:
) along an alternate path.

Assume, 3 (E) is not Pareto-optimal and 3G (E) z 3 (E). Then XG8 f X8 .

However, it is impossible as X8 is the shortest distance of E along

the only SOSP related to objective 8 . So, 3 (E) is the Pareto optimal

distance. Thus, any path along )8 overlaps with the Pareto optimal

MOSP solution. □

Theorem 3. If at time C + 1, the updated dynamic graph �C+1 =

(�C ∪ �=B) has only one SOSP tree )8 for each objective 8 , the path

found in �C+1 by Algorithm 2 will be a Pareto optimal shortest path.

Proof. According to the de�nition of Pareto optimality, a label

is Pareto optimal if it has at least one objective component less or

equal to all other Pareto optimal labels. Finding the SOSP tree for

each objective contributes exactly one Pareto optimal candidate. In

the combined graph, the proposed algorithm provides weights to

the edges to give priority to selecting the optimal path suggested

by most of the SOSP trees. As we are choosing the path of the

graph having the highest occurrence path among the SOSP trees,

the algorithm provides exactly one, not necessarily all possible,

Pareto optimal path. □

ProbableOptimization-Updating SOSP inCombinedGraph:

Initially the algorithm needs to compute the SOSP tree in the com-

bined graph from scratch. Later the algorithm can use the SOSP

tree computed in EC (at time C ) and the changed edges found in the

new ensemble graph EC+1 to update the SOSP tree using a similar

approach proposed in Algorithm 2 Step 1A and 1B.

Discussion on Our Approach:

1. Finding a MOSP with two or more objectives is known to be an

NP-hard problem. Our approach converts a MOSP problem into an

SOSP problem, reducing total execution time.

2. Our algorithm helps to �nd an optimal or sub-optimal path where

the multiple objectives are balanced. Reduced weight for the edges

common in multiple SOSP trees increases the chance of those edges

being selected in Step 3, whichmeans the edges, optimizingmultiple

objectives together, get priority.

3. The weight assignment in the ensemble graph can be modi�ed to

implement objectives with di�erent priorities. This allows the user

to customize the optimization criteria according to their needs.

4. A single MOSP update algorithm in a dynamic network saves

execution time and resources.

4 PERFORMANCE EVALUATION

We implement Algorithm 1 and use it to implement 2 for shared-

memory computing architecture using C++ and OpenMP. The adja-

cency list and changed edges are stored using arrays of structures.

Each element in the change edge structure stores the endpoints of

an edge, edge weight, and a �ag to indicate insertion/deletion sta-

tus. As we modify the MOSP problem to a combination of multiple

SOSP update problems, the SOSP tree is an important data structure

in our implementation. We store the SOSP tree as a parent-child

relationship among the vertices. Each element of the SOSP tree

contains the Parent vertex, and Distance from the source. A vertex

is marked as a�ected whenever the vertex’s distance is changed in

the process of MOSP update.

Updating an SOSP tree takes advantage of both edge-centric and

vertex-centric parallel operations. Each group of changed edges is
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(a) road-road-usa (b) rgg_n_2_20_s0

(c) road-roadNet-CA (d) road-roadNet-PAFigure 4: Scalability Analysis.

processed by each shared-memory thread, which is scheduled dy-

namically. On the other hand, each neighbor of the a�ected vertices

is assigned to a single thread for processing. In the current imple-

mentation, an SOSP tree Đğ related to the ğĪℎ objective is updated

only when Đğ−1 completes its update. However, in a distributed ar-

chitecture or a scenario with a massive number of parallel threads,

they can be updated independently.

In Step 2 of Algorithm 2, computing a set union and �nding

common edges from all Đğ can be computationally expensive. To

address this, we directly use the parent-child relationship in the

tree structure to �nd the edges. We assign a single thread to each

vertex to compare its parents among all the SOSP trees. Then,

we use an OpenMP custom reduction to gather all the edges after

assigning the weight (ġ − Į + 1) as described in the algorithm. For

Step 3 of Algorithm 2, we use a parallel Bellman-Ford algorithm

implementation to compute the SOSP on the combined graph.

Experimental Setup:All experiments are conducted on dual 32-

core AMD EPYC Rome 7452 CPUs with 64 GB DDR4 RAM allocated.

Four Large graphs from the network-repository collection [29] are

chosen and a set of random edge weights are added depending

on the number of objectives. Details of the networks are given in

Table 2. We choose road networks and a random geometric graph,

particularly considering the multi-objective application scenarios

of road transportation and wireless sensor network respectively.

To make our datasets dynamic in our experiment, we randomly

generate batches of changed edges.

4.1 Scalability Analysis

For strong scaling analysis, we increase the number of OpenMP

threads from 1 to 64 while keeping the batch size constant for each

experiment. Figure 4 shows threads vs time when batch size is

Table 2: Networks in Our Test Suite [29]

Name Num. of Vertices Num. of Edges

road-usa 23M 28.9M

rgg-n-2-20-s0 1,048,576 6,891,620

roadNet-CA 1,971,281 5,533,214

roadNet-PA 1,090,920 3,083,796

varied among three di�erent sizes of �ā 50K, 100K, and 200K. The

general trend shows that the execution time decreases gradually

when the number of threads increases.

Although the execution time depends on the location of the

change in the graph, it is possible to explain the general nature of

the plots for the di�erent sizes of edge insertion.

Figure 5: Execution time ratio (speedup) compared to single

thread execution.
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In our algorithm 3, lines 18 and 19 indicate that the exterior

loop in line 18 is processed in parallel and the inner loop in line

19 is processed with a single thread due to nesting. If the graph is

sparse, the sequential inner loop in line 19 will not signi�cantly

hinder the parallel performance compared to a dense graph. The

scalability of sparse graphs will be greater than that of dense graphs.

Similar experimental results are depicted in Figure 4. Despite the

vast scale of the road-road-usa network, its scalability performance

is superior to that of other plots. For obvious reasons, the scala-

bility performance of smaller graphs with a large number of edge

insertions is negatively impacted. In line 18 of Algorithm 3, the

probability of having the same node a�ected by other nodes for

multiple iterations increases if a large number of edge modi�cations

are applied to smaller-scale graphs. For MOSP, the most dominant

operation is the ďċďČ_īĦĚėĪě operation according to the Figure 6

covering around 90% of space regardless of the size and sparsity of

the graph. Thus, the scalability performance of ďċďČ_īĦĚėĪě also

implies the scalability performance of MOSP problem.

To the best of our knowledge, no parallel implementation is

available to update a single MOSP in dynamic networks. Therefore,

we consider a single thread execution, i.e., sequential approach as

our baseline. Figure 5 shows the execution time ratio (speedup)

of single and multi-thread executions when the datasets are var-

ied. The largest network in our test suite, i.e., road-usa shows the

maximum speedup (up to 15Ĕ ).

Figure 6: Execution time of di�erent steps.

4.2 Experiment on Di�erent Algorithmic Steps

Figure 6 shows the percentage of time taken for executing di�erent

steps of the algorithm when the number of threads is �xed to 4.

Without loss of generality, we consider a bi-objective case here. In

the �gure, SOSP1 (resp. SOSP2) indicates the time taken to updateĐ1
(resp. Đ2) in presence of �ā be 100K. Updating Đ1 and Đ2 takes the

most time in the whole process, whereas creation of the combined

tree (merge operation) takes barely any time. The Parallel Bellman-

Ford algorithm �nds an SOSP on a combined graph of 2 ∗ (|Ē | − 1)

or fewer edges and consumes a small fraction of the total time.

5 RELATED WORKS
This section reviews previous works related to MOSP search, paral-

lel SOSP, MOSP in dynamic networks, and parallel MOSP search.

5.1 Multi-objective Shortest Path

An algorithm to compute bi-objective shortest path was �rst in-

troduced in [8]. In [21], it was generalized into a multi-objective

technique by including lexicographic ordering of labels. Later, the

algorithm in [8] was expanded and the concept of Pareto optimality

was introduced in [32]. The authors in [10] conducted a comparison

study to determine if there was a relationship between the graph

density and label setting and label correction algorithm perfor-

mance. Using a bi-objective shortest path as the focus, a thorough

analysis of label-setting algorithms was reported in [26]. This study

demonstrated the potential of parallelism for a two-phase strategy,

the �rst of which decomposes the actual problem. In [24] is inves-

tigated a collection of previously known labeling techniques. A

method to support multi-objective ý∗ algorithms that can estimate

the cost of achieving the target state for more than one objective

was proposed in [20]. The research presented in [19] determined

that the multi-objective ý∗ algorithm provides high-quality solu-

tions and can signi�cantly bene�t from heuristic information.

5.2 Parallel Single-objective Shortest Path

A plethora of parallel SOSP algorithms have been proposed in the

literature. In [19], Dijkstra’s method was divided into independent

phases. The authors in [22] adopted the bucket data structure to

keep track of the approximate distances. A high-performance graph

library, called Gunrock [33], provides a three-step architecture (ad-

vance, �lter, and compute) based implementation to compute SOSP

on Nvidia GPUs. E�cient dynamic parallelism-based implementa-

tion of the Bellman-Ford algorithm using two queues on GPU is

proposed in [1]. An architecture-independent framework to update

SOSP in fully dynamic networks is proposed in [17], which provides

shared memory and GPU-based implementations.

5.3 MOSP in Dynamic Networks

The �rst attempt to compute MOSP in dynamic networks was made

in [2], which modi�ed Bellman’s method and used a recursive

formula to determine the shortest distance. The author in [6] ex-

tended it for dynamic instances based on �rst-in �rst-out (FIFO)

property and non-overtaking property. By managing numerous

modi�cations simultaneously, the dynamic shortest path problem

was generalized in [27]. Dynamic all-pair shortest path methods

were �rst used in practice in [5]. Two factors of dynamic nature ,

namely temporal variation and weight updates, were considered

in [23]. Multiple objective optimization in transportation is dealt

in [11], which demonstrated that fuel usage varies with truckload

and is correlated with carbon emission levels. To adopt the SOSP

algorithm for multiple objectives, the authors combined the three

elements into a single polynomial. A dynamic programming-based

shortest path algorithm is proposed in [28] for non-additive edge

weights maintaining multi-objectives and multi-constraints.

5.4 Parallel MOSP

The authors in [31] were the �rst to tackle the parallel MOSP chal-

lenge. They developed a shared-memory parallel algorithm for

bi-objective shortest path problem [7] and hypothesized a paral-

lel multi-objective variant. To achieve further parallelism, they

used the B-tree data structure for two objectives. However, The

data structure fails in multi-objective instances. Strategies to lower

the dimensionality and convert the multi-objective problem into

a bi-criteria dilemma are proposed in [25]. A new pruning-based

technique which was devised in [3] to check the dominance of
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the labels concurrently. This algorithm performed up to 2–9 times

better than the Martin’s algorithm[12].

To the best of our knowledge, the parallel MOSP problem in

large dynamic graphs is not explored before.

6 CONCLUSION

In this work, we �rst presented a parallel SOSP update algorithm

that incorporates grouping techniques. This approach e�ectively

reduces computational e�orts by decreasing the total iteration

count. Building on this foundation, we devised a heuristic algo-

rithm tailored to promptly update a single MOSP in large networks,

particularly under time-varying dynamics. Finally, we developed

shared-memory parallel implementations optimized for e�cient

computation of both SOSPs and MOSPs in incremental networks.

The e�ectiveness and practicality of our implementations are vali-

dated through scalability assessments conducted on both real-world

and synthetic networks.

While our paper primarily focuses on incremental graphs, specif-

ically edge insertions, the algorithm has the potential to be adapted

for edge deletions. We plan to address this in upcoming work. Our

current implementation updates the SOSP trees one after another

leading to longer execution times with a higher number of ob-

jectives. A potential solution lies in adopting hybrid parallelism:

distributing tasks associated with each SOSP tree across processors,

and then utilizing shared-memory parallelism within each proces-

sor for the SOSP update. We foresee a reduction in execution time

with this approach and aim to investigate this area in the future.
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