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Abstract—Structural hole spanners (SHSs) are nodes that
connect different communities to facilitate efficient information
dissemination in complex networks. Existing efforts to identify
SHS nodes have predominantly focused on undirected networks,
rendering them inadequate to capture directional data flow. This
paper presents a novel lightweight approach to motif span scores,
called mSpan that leverages network substructures called feed
Jorward loop (FFL) motifs, to detect SHS in directed, weighted
as well as unweighted social networks. The proposed approach
measures the spanning score of a node in terms of its participation
in FFL motifs that bridge network communities. Our theoretical
analysis establishes a strong association between the variants of
the scores for a given node and the likelihood of its removal
disrupting connectivity. We also utilize mSpan to detect spanner
motifs that bridge the structural holes in social networks. We
validate the efficacy of mSpan in detecting SHS in practical
scenarios through comparative evaluations of three real-world
social networks against existing spanner detection metrics.

Index Terms—Spanners, Feed Forward Loop, Social Network

I. INTRODUCTION

Analysis of social networks helps understand relation-
ships among individuals and groups in complex networks.
These networks are characterized by the small-world property,
power-law degree distribution, homophily, and community
structure [1]-[4]. Structural hole spanners (SHSs) in social
networks play a crucial role in forming connections and
bridges among communities. According to the structural hole
(SH) theory [5], holes emerge when groups of individuals are
disconnected from one another in social networks. Thus, SHS
nodes acting as bridges or intermediaries between unconnected
communities fill the holes [6]. Due to their unique position-
ing within social networks, these spanners have access to a
rich diversity of information. This implies the importance of
detecting SHSs in social and organizational applications for
information diffusion, opinions, and rumor spreading.

The weight or strength of the links connecting individuals in
a social network influences their structural properties as well as
information flow dynamics [7]. While strong ties capture close
interaction among entities within a social network community,
they may limit individuals to acquire local information from
shared common acquaintances, leaving little scope for the

exchange of unknown information. The role of weak ties in
connecting distant clusters, thereby tapping into fresh ideas,
is explained in [8]. According to [5], a social group stands
to benefit the most by pinpointing the presence of holes and
bridging them to facilitate non-redundant information flow
among myriad tightly networked clusters. This necessitates a
combination of strong and weak ties to strike the balance of
stability and innovation in networked systems.

While existing literature on SHS detection deals with undi-
rected networks, the majority of interactions in complex social
systems are often directional, implying the derived social
networks are directed. have the following limitations. Since
SHS detection is an NP-hard problem [9], exact (determin-
istic) algorithms are computationally expensive and do not
scale to large networks. Moreover, the link weights in social
networks contain key information (e.g., trust, nature, extent
of the relationship) shared between the entities. Our work
addresses a research gap in current solutions by incorporating
the combined effect of direction and weights in SHS detection.

Contributions. To the best of our knowledge, this paper is the
first to propose a lightweight node (vertex) scoring technique
to find the top SHSs in weighted, directed social networks.
Our novel contributions are as follows.

o We leverage the recurrent substructures in directed social
networks, termed network motifs, for SHS identification.
The proposed approach is called motif span or mSpan. It
comprises two vertex scoring metrics (£ and Z) that
quantify the likelihood of a node being an SHS based
on its participation in a 3-node feed forward loop (FFL)
motif configuration of strong and weak ties capturing the
ability to span network communities.

« We extend the concept of a spanner vertex to a spanner
motif, thus developing a scoring technique where a high-
scoring FFL effectively functions as a spanner.

o We theoretically analyze the proposed motif-based scor-
ing approach. Experimental evaluation of mSpan demon-
strates its efficacy against state-of-the-art baseline metrics
on three real-world social network datasets.

The paper is organized as follows. Section II gives an overview
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of existing works related to SHS detection and FFL motifs.
Section III introduces the background necessary for mSpan
approach to identifying SHS nodes and motifs, including a
theoretical analysis. Section IV experimentally evaluates the
approach. The final section concludes the paper.

II. RELATED WORK

This section reviews existing literature on SHS detection. It
also covers studies on network motifs, as mSpan relies on it.

A. Structural Hole Spanners

The existing SHS detection approaches can be grouped
into two classes. The first class centers around information
dissemination, identifying key nodes crucial for maintaining
information flow across various communities within the net-
work [6], [10], [11]. In [11], the authors state that SHSs
typically connect with core members of different communities
and propose a kernel detection method for their identification.
In [10], a link prediction method is introduced to identify
SHSs by predicting the types of social relationships. Both
these methods [10], [11] require community labels of nodes in
advance. Lou et al. proposed two methods, HIS and MaxD, to
identify top-K SHSs by considering the importance score of
nodes and maximizing the drop of minimal cut, respectively.
These approaches outperform community kernel detection and
link prediction-based methods [10], [11].

The second class of approaches leverages centrality-based
metrics. These algorithms identify SHSs by assessing the posi-
tions and significance of the nodes within social networks [8],
[12], [13]. Song et al. developed a heuristic based on weak tie
theory [12], while Rezvani et al. employed inverse closeness
centrality to identify the top-K SHSs [13].

However, all existing approaches consider only undirected
networks for SHS detection, neglecting edge weights that
represent social aspects such as trust and relationship strength.
Our work addresses these gaps in the current state-of-the-art.

B. Network Motifs

Network motifs are recurring patterns within complex net-
works that play a fundamental role in facilitating informa-
tion flow across network types, including neuronal, protein-
protein interaction, and social networks [14]. Motifs, namely,
dense overlapping regulons, bi fans, single input modules,
and auto-regulation, are crucial for combinatorial decision-
making, signal integration, and sequential gene expression.
They have been observed in various network types, including
social networks derived from email communication and neu-
ronal networks involved in memory formation and complex
dynamics [15], [16]. Also, the role of motifs in optimizing
network robustness and stability is an active research area [17].
Motif aggregation has been proposed as a means to typify
complex networks, while motif participation serves as a cri-
terion for selecting links to achieve immunization in social
networks [18], [19]. Motif-based analysis has helped assess the
robustness of power-grid networks against adversarial attacks
and improve network resilience [20]. Additionally, studies
have explored the role of motifs like the feed-forward loop
(FFL) in improving performance objectives in communication

networks, highlighting the practical implications of motif-
based approaches in network optimization [21]-[23]. In this
work, we propose a motif-based approach for detecting SHS.

III. PROPOSED APPROACH: mSpan

This section covers the preliminary concepts and proposed
motif-based spanner detection approach, mSpan.

A. Preliminaries

1) Social Network: Let G(V, E) be a directed, weighted
social network, where each link (u,v) € E has a weight
W((u,v)) = {+, —} denoting strong and weak ties, respec-
tively. If G is unweighted, then it is converted into a weighted
graph by treating existing links as strong ties and nonexistent
links as weak ties. From a communication standpoint in a
social network, a strong tie serves as a primary channel for
reliable, high-bandwidth information flow, while a weak tie
represents a less reliable channel with lower bandwidth.

(a) Feed For- (b) Feedback
ward Loop Loop

Fig. 1: Closed 3-node motifs: Feed forward loop — S is the
master regulator, I is the intermediate regulator, and 7' is the
regulated node; and feedback loop.

2) Three-node triads: A feed forward loop (FFL) is a
network motif with three nodes marked S, I, and T'. As shown
in Figure 1a, there is a direct link from S to T as well as an
indirect path via an intermediate node I [24]. Unlike an FFL,
which is an acyclic triangle, a feedback loop (FBL) is another
3-node motif that forms a cyclic triangle (see Figure 1b).

3) Community detection: A network community is a subset
of nodes within a graph that are more densely connected to
each other than to the rest of the network. We use Louvain
community detection to find modules within G, attaching a
community ID to each node v € V. The best community
configuration selected by maximizing network modularity,
measuring the density of links inside communities compared
to links between them, as:

1
Q= W X Z[Au,u -

U,v

d(u) x d(v
S e(C . )
Here, A is the adjacency matrix of the undirected version of
G, where A, , = 1 if u to v share a link, and O otherwise;
d(u) is the total degree (i.e., sum of in- and out-degree of
node u; C'(u) is the community ID of node w; and 6(z,y) is
1 if x =y, and O otherwise.

B. Feed Forward Loop-based SHS Detection

We leverage the feed forward loop (FFL) motifs for struc-
tural hole spanner (SHS) detection in directed and weighted
social networks. The following are the reasons behind the
choice of FFL motifs in SHS identification.
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o FFLs are one of the most frequent 3-node motifs in
directed complex networks [25], significantly more abun-
dant than the feedback loop (FBL) as reported later in
Tables 1. They are the building blocks of directed net-
works, making them ideal for analyzing the connectivity
and information flow characteristics of networks.

o FFLs have two directional paths for unidirectional data
flow from source S to target 7' (see Figure 1a). A node
participating in FFLs spanning two communities can act
as a conduit for one-way communication between them.

o FFLs can be used to model the presence of a weak tie
or the absence of a link (shown in dotted lines in Figure
2) between node pairs. This makes them generalizable
to analyze weighted or unweighted directed complex
networks and their inter-community information flow.

Fig. 2: Illustrative example of valid motif configuration.

The reasons behind the choice of FFLs are captured in an
illustrative example. Consider a directed social network with
3 communities p1, pt2, pt3 (shown in red, green, and blue dotted
lines), where the solid and dotted lines represent strong ties
+ and weak ties —, respectively (see Figure 2). Node v
participates in FFL motifs, (u1,v,w), (uz,v,w), each having
W((uiv)) = + W((v,w) = + W((us,w)) = — (for
i = 1,2). It spans distinct community pairs (i1, p2) and
(p1, p3), facilitating directional information flow node z; to
x3 belonging to those communities 7 and ps, respectively.

1) Valid Motif Configurations: It measures the number of
instances of FFL motif triads (u,v,w) spanning different
communities in a directed social network G that node v
participates in.

Z1(v) = {(u,v,w) : a(G,m) x B(G,Cym) =1
vm = (u,v,w) € M & u,weV}

Here a(G,m) = 1 if W((u,v)) = + & W((v,w)) =+ &
W((u,w)) = —, and 0 otherwise; 3(G,C,m) =1 if C(u) #
C(w), and O otherwise.

For instance, in Figure 2, node v is part of Z;(v) = 2 FFLs
(u1,v,w) and (ug2,v,w) bridging distinct community pairs
(u1,u3) and (ug,us), respectively. Both FFLs are charac-
terized by weak ties (u1,w) and (ug,w), shown in dotted
lines, suggesting the absence of a strong connection (or no
connection at all) between the communities.

Zi(v) computes the total connections between different
communities C'(u) and C(w) for all valid motifs m =
(u,v,w) through vertex v. However, Z;(v) fails to mea-
sure the diversity of the communities connected through v.

2

For example, it does not detect whether C'(u1) = C(us)
(or C(wy) = C(ws)) for two valid motifs (uy,v,w) and
(ug, v, w) (or (u,v,w;r) and (u,v,ws), respectively).

2) Vertex Score (Z3): The quality of SHS vertices can
be measured by its ability to connect diverse communities.
Utilizing entropy as a measure of diversity in community
participation, we propose a scoring mechanism (Z5) for SHS
detection. Additionally, in Z5, we normalize Z; by the degree
of node v, assigning a higher score to nodes that participate
in many valid motif configurations, despite having low con-
nectivity. The score is computed as follows.

Zs(v) = [21(v)] x H(T(v)) 3)

din (V) X dout(v)
Here, H(I'(v)) = 3" c. () P(c)log(p(c)) is the entropy of a
list (I') containing community IDs of the neighbors of node v
forming valid FFL configurations. H(T'(v)) is high when the
probability distribution p(c) of the unique IDs spanned by v

is uniform, i.e., the IDs have a comparable presence in I'.

3) Motif Score (M): We envision that an FFL motif can
serve as a single spanner unit. For a given FFL m = (u, v, w),
we calculate the spanning score using the simple sum of
the Z; scores of u, v, and w. This sum inherently captures
the connectivity among different communities. However, the
method could be improved by incorporating entropy and using
a weighted sum, which we plan to explore in future research.

M(m = (u,0,0) = Z(w) + Z(0) + Z(u) (&)

Algorithm 1: Compute Z;-score

1 Initialize an array Z; of size |V| with each element 0
2 for each edge (u,v) € E* do

3 itry < 0, itr, < 0 // Initialize iterators
4 count < 0 // Initialize local count
5 while itr, < |Ng | and itr, < |N, | do

6 if N, (itr.) < N,f(itr,) then

7 L Gtry — itry + 1

8 else if N (itr,) > N, (itr,) then

9 L itry < itry + 1

10 else

1 w 4+ N (itry)

12 if C(u) # C(w) then

13 L count < count + 1

14 itry < itry + 1

15 itry — itry + 1

16 | Z1(v) < Z(v) + count

)

. Proposed mSpan Algorithm

Let the set of strong and weak ties of graph G be ET
and E~ respectively. Let N, and N, denote the sorted lists
of out-neighbor vertices connected to vertex u via weak and
strong ties, respectively. Algorithm 1 utilizes these neighbor
lists to efficiently compute Z;-score for all the vertices.

According to Eq. (2), the contribution of a strong tie (u, v)
towards the Zj-score of vertex v depends on the number of
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common neighbors w : w € N, N N,. Therefore, the algo-
rithm processes each edge (u,v) € ET and computes the
intersection of the two sorted sets IV, and N,}. This computa-
tion can be performed using a merge-like method, requiring at
most | N, |+| N, | comparisons. We use two iterators, itr,, and
itr,, that operate on N, and N;“ , respectively, and find the
common neighbor w = N, (itr,) = N,f (itr,). Algorithm 1,
at Line 12, checks the condition for 3 as specified in Eq. (2).
Complexity Analysis. Let d.',, and d,, represent the maxi-
mum out-degree of a graph G associated with strong ties and
weak ties, respectively. Algorithm 1 visits each element of
the lists IV, and N,& at most one time to find valid triads
and count common vertices w for each strong tie (u,v).
In the worst case, this operation takes O(d,, + d_ ) time
per strong tie. Consequently, computing Z; score for all
vertices or finding valid motifs across the entire graph requires
O(E*| x (dh, + dyyy)) time.

D. Expected Spanning Potential of Nodes with High Z1-Score

Theorem 1. The number of node pairs disconnected by
removing a given node in a random, directed clustered network
is expected to be proportional to its Z-score.

Proof. Let us consider a N-node random, directed, and clus-
tered network G(V, E') with C communities, where each com-
munity ¢ = 1,2,--- ,C has n. nodes (s.t. ny+ns+---+ng =
N). The probability of an edge between any pair of (a) intra-
community nodes is p and (b) inter-community nodes ~ 0.

(@ (b)
Fig. 3: Directed weighted networks: a) 3-node directed com-
plete network G; b) Transition of a random walker from node
u to v in 2-hops along links with transition probability p.

Let us generate an infinite set of such N-node networks,
each having C' communities. Let the subset of nodes par-
ticipating in each ¢ = 1,2,--- ,C be identical across all
the networks. Combining all these networks, we get a single
network G where the fraction of times any link (u7,u2) (s.t.,
ui,us € V and belongs to the same community) exists is
given by p. We term this directed, complete network G to be
the expected network (see Figure 3a), where the probability of
transitioning from any node to any other is p.

Lemma 2. The probability of reaching from any node u to v
belonging to the same community c in k > 0 hops is given by

n’j_l X pk.

Proof. We know that the probability of traversing from any
node u to any other v within the same community is given by
the likelihood of link existence p.

Since G may have self-loops, it is possible for any random
walker to stay at the current node. Thus, the probability of
moving from u to v in kK = 2 hops must be via a node w,
where w can equal u and v due to self-loops. As depicted in
Figure 3b, v — w; and w; — v have a transition probability
p. Since there are n,. nodes, the probability of possible 2-hop
walks equal Y7, p X p = n. x p®. Generalizing to k-hop
walks, the probability is n¥~1 x pk.

The above probability can also be derived from the adja-
cency matrix of G, say A, where each element A, , (the
probability of transitioning from u to v) is equal to p. Here
the probability of a walk from » to v in 2 hops can be
inferred from a matrix product: A2 = = n. x p* (as shown
below). Generalizing to k hops we get a probability of an
intra-community walk equal to A’Z’U =nk=1 x pk.

p ne x p? ne X p?

Ne X P2

O

Lemma 3. The probability of a walk from any node u to v
belonging to the same community c is given by ﬁ (s.t.,
Ne X p < 1).

Proof. From Lemma 2, let P*(u,v) = nF~! x p* be the
probability of a path from node v to v in k-hops. This makes
the total probability of moving from wu to v:

P(u,v) = P'(u,v) + P?(u,v) +--- , +P>(u,v) ®)

P(u,v) :p+ncp2+nzp3+~~ (6)
P
P =
(u,0) 1—nexp ™

Eq. (7) gives the sum of an infinite geometric progression with
the first term p and common ratio n. X p. The common ratio
ne X p < 1 ensures the convergence of the sum. O

From Egq. (2), the definition of Z;-score of a node w € V
(Z1(w)) is the number of inter-community node pairs it
connects. Since the probability of inter-community link in the
expected random clustered network G ~ 0, the number of
node pairs disconnected by the removal of w is Z7(w) X
» » . .

=0 %P >< T where u(c) is the mean community
size in G. Finally, if k = —2 — L , the expected

K .1 TLH(C)Xp 1 ’ILM(C)Xp .
number of node pairs disconnected by the removal of w is
Kk X Zi(w), i.e., proportional to its Z;-score in a random,
directed and clustered network. O

TABLE I: Networks

Network V] |E| FFL FBL
moreno_innovation [26] 241 1098 1144 636
soc-ANU-residence [27] | 217 2672 10727 9003
fb-pages-politician [27] 5908 | 41729 | 174957 | 23
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AWCC Score (Graph: moreno_innovation)

AWCC Score (Graph: soc-ANU-residence)
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Fig. 4: Analysis of different spanning scoring using Average Weighted number of Connected Community (AWCC).
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Fig. 5: Motif score (M) vs node disruption index (NDI) that evaluates the extent to which the removal of network motifs with
varying robust spanning scores disrupts the shortest communication paths between the social network communities.

IV. EXPERIMENTAL EVALUATION

The experiments were designed using Python on an Intel
Core i7 CPU equipped with 12 threads and 16GB DDR4
RAM. Since a valid motif configuration (refer to Sec. III-B1)
requires FFLs to span communities, we employ the Louvain
approach (see Sec. I11-A3) to identify network communities as
a preprocessing step. The spanner scoring and structural hole
spanners (SHS) motif detection have been performed on three
real social network datasets. Refer to Table I for the order,
size, and a higher relative abundance of FFLs in comparison
with another 3-node motif type, FBL (see Sec. III-A2).

We use the following metrics to quantify the likelihood of
a set of nodes to be SHS [13], [28].

1) Average Weighted number of Connected Community
(AWCC): AWCC of a given set of potential structural holes
S is measured in terms of the set of communities connected
to it as ﬁ > oves %, where ((v) is the set of community
IDs of neighbors of v.

2) Network Disruption Index (NDI): NDI measures how the
shortest communication paths among the communities can be
disrupted due to substructure removal. NDI of a substructure,
such as an FFL motif m = (u,v,w), is D'(G) — D'(G —m),
where D'(G) = avg.{ﬁh’(m,y) cxyy € V,C(z) #
C(y)}, D'(G —m) = avg.{mV(m,y) cx,y € {V -
u,v,w}, C(x) # C(y)}, and D(x,y) is the shortest distance
between nodes x and y. Specifically, we leverage NDI to
capture the intuition that the shortest path length between a
pair of communities may increase, or they may potentially
be disconnected upon the removal of a network substructure
acting as a spanner in a network.

A. Spanning Score for a Set of Nodes

We apply the proposed FFL-based SHS detection technique,
mSpan, on three social networks. We compute Z;, and Zo
scores for each node and select top-K (ranging from 2 to 10)
scoring nodes in each category as SHS. We also find top-K
SHSs using HIS [6] and AP_BICC [13] methods and top-K
nodes with high approximate betweenness centrality (ABC)
and PageRank (PR) [29]. Next, we evaluate each such set
of top spanners/important vertices using the AWCC metric.
Figure 4 depicts a comparison of the AWCC scores for 7,
Zs, HIS, AP_BICC, ABC, and PR for varying values of K.
We observe that 75 consistently achieves the highest AWCC
scores showing the effectiveness of our proposed method.

Correlation b/w Motif score and NDI

o o o by
> o o =)

o
N

Avg. correlation coefficient

0.0
fb-pages-politician moreno_innovation soc-ANU-residence

Fig. 6: Pearson Correlation between motif score and NDI.

B. Spanning Potential of Feed Forward Loop Motifs

In Sec. III-B3, we intuit that a set of nodes constituting
a network motif may collectively serve as effective spanners.
We examine the spanning potential of FFL motifs using their
node disruption index (NDI). It is worth noting that calculating

4694

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 20:36:07 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE Global Communications Conference: Selected Areas in Communications: Social Networks

NDI is a computationally expensive operation since it entails
the identification of all pair shortest paths where the vertices in
each pair belong to different communities. Therefore, we apply
NDI to subnetworks with 50, 100, and 150 vertices, sampled
from the networks in Table I. These subnetworks are obtained
by randomly selecting seed vertices and their ego networks.
Before comparing NDI results, we compute the motif scores
using the proposed motif scoring function (Eq. 4).

These experiments aim to demonstrate that the impact of
removing an FFL on inter-community connectivity correlates
with its motif score. In other words, removing a high-scoring
motif is more likely to disrupt the connections between com-
munities in a directed social network. We present the results in
Figure 5, where FFLs with varying motif scores are removed
one by one, and NDI is computed. We observe a consistent
linear relationship between motif scores and NDI.

Finally, we summarize this positive association by estimat-
ing the Pearson correlation coefficient (PCC) between M and
NDI in 100-node subnetworks of the same datasets across 15
runs. The high mean PCC (along with error bars) depicted in
Figure 6 provide further evidence that mSpan offers a useful
measure of motif spanning in complex social networks.

V. CONCLUSION

We introduced a network motif-based spanner detection
mechanism, mSpan, for directed social networks. It comprises
metrics measuring the spanning potential of a node in terms
of its participation in a type of network motif, termed Feed
Forward Loop (FFL), that spans different network communi-
ties. Our theoretical analysis shows that the spanning score of
a node quantifies the number of inter-community node pairs
disconnected upon the removal of the node. Furthermore, the
comparison with baseline metrics on three network datasets
shows that the proposed motif-based metrics capture the
spanning potential of nodes and motif substructures. In the
future, we plan to extend mSpan into a distributed solution
that would leverage message passing to identify structural hole
spanners without prior knowledge of communities or motif
participation of other nodes in large social networks.
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