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Abstract—Structural hole spanners (SHSs) are nodes that
connect different communities to facilitate efficient information
dissemination in complex networks. Existing efforts to identify
SHS nodes have predominantly focused on undirected networks,
rendering them inadequate to capture directional data flow. This
paper presents a novel lightweight approach to motif span scores,
called mSpan that leverages network substructures called feed
forward loop (FFL) motifs, to detect SHS in directed, weighted
as well as unweighted social networks. The proposed approach
measures the spanning score of a node in terms of its participation
in FFL motifs that bridge network communities. Our theoretical
analysis establishes a strong association between the variants of
the scores for a given node and the likelihood of its removal
disrupting connectivity. We also utilize mSpan to detect spanner
motifs that bridge the structural holes in social networks. We
validate the efficacy of mSpan in detecting SHS in practical
scenarios through comparative evaluations of three real-world
social networks against existing spanner detection metrics.

Index Terms—Spanners, Feed Forward Loop, Social Network

I. INTRODUCTION

Analysis of social networks helps understand relation-

ships among individuals and groups in complex networks.

These networks are characterized by the small-world property,

power-law degree distribution, homophily, and community

structure [1]–[4]. Structural hole spanners (SHSs) in social

networks play a crucial role in forming connections and

bridges among communities. According to the structural hole

(SH) theory [5], holes emerge when groups of individuals are

disconnected from one another in social networks. Thus, SHS

nodes acting as bridges or intermediaries between unconnected

communities fill the holes [6]. Due to their unique position-

ing within social networks, these spanners have access to a

rich diversity of information. This implies the importance of

detecting SHSs in social and organizational applications for

information diffusion, opinions, and rumor spreading.

The weight or strength of the links connecting individuals in

a social network influences their structural properties as well as

information flow dynamics [7]. While strong ties capture close

interaction among entities within a social network community,

they may limit individuals to acquire local information from

shared common acquaintances, leaving little scope for the

exchange of unknown information. The role of weak ties in

connecting distant clusters, thereby tapping into fresh ideas,

is explained in [8]. According to [5], a social group stands

to benefit the most by pinpointing the presence of holes and

bridging them to facilitate non-redundant information flow

among myriad tightly networked clusters. This necessitates a

combination of strong and weak ties to strike the balance of

stability and innovation in networked systems.

While existing literature on SHS detection deals with undi-

rected networks, the majority of interactions in complex social

systems are often directional, implying the derived social

networks are directed. have the following limitations. Since

SHS detection is an NP-hard problem [9], exact (determin-

istic) algorithms are computationally expensive and do not

scale to large networks. Moreover, the link weights in social

networks contain key information (e.g., trust, nature, extent

of the relationship) shared between the entities. Our work

addresses a research gap in current solutions by incorporating

the combined effect of direction and weights in SHS detection.

Contributions. To the best of our knowledge, this paper is the

first to propose a lightweight node (vertex) scoring technique

to find the top SHSs in weighted, directed social networks.

Our novel contributions are as follows.

• We leverage the recurrent substructures in directed social

networks, termed network motifs, for SHS identification.

The proposed approach is called motif span or mSpan. It

comprises two vertex scoring metrics (Z1 and Z2) that

quantify the likelihood of a node being an SHS based

on its participation in a 3-node feed forward loop (FFL)

motif configuration of strong and weak ties capturing the

ability to span network communities.

• We extend the concept of a spanner vertex to a spanner

motif, thus developing a scoring technique where a high-

scoring FFL effectively functions as a spanner.

• We theoretically analyze the proposed motif-based scor-

ing approach. Experimental evaluation of mSpan demon-

strates its efficacy against state-of-the-art baseline metrics

on three real-world social network datasets.

The paper is organized as follows. Section II gives an overview
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of existing works related to SHS detection and FFL motifs.

Section III introduces the background necessary for mSpan

approach to identifying SHS nodes and motifs, including a

theoretical analysis. Section IV experimentally evaluates the

approach. The final section concludes the paper.

II. RELATED WORK

This section reviews existing literature on SHS detection. It

also covers studies on network motifs, as mSpan relies on it.

A. Structural Hole Spanners

The existing SHS detection approaches can be grouped

into two classes. The first class centers around information

dissemination, identifying key nodes crucial for maintaining

information flow across various communities within the net-

work [6], [10], [11]. In [11], the authors state that SHSs

typically connect with core members of different communities

and propose a kernel detection method for their identification.

In [10], a link prediction method is introduced to identify

SHSs by predicting the types of social relationships. Both

these methods [10], [11] require community labels of nodes in

advance. Lou et al. proposed two methods, HIS and MaxD, to

identify top-K SHSs by considering the importance score of

nodes and maximizing the drop of minimal cut, respectively.

These approaches outperform community kernel detection and

link prediction-based methods [10], [11].

The second class of approaches leverages centrality-based

metrics. These algorithms identify SHSs by assessing the posi-

tions and significance of the nodes within social networks [8],

[12], [13]. Song et al. developed a heuristic based on weak tie

theory [12], while Rezvani et al. employed inverse closeness

centrality to identify the top-K SHSs [13].

However, all existing approaches consider only undirected

networks for SHS detection, neglecting edge weights that

represent social aspects such as trust and relationship strength.

Our work addresses these gaps in the current state-of-the-art.

B. Network Motifs

Network motifs are recurring patterns within complex net-

works that play a fundamental role in facilitating informa-

tion flow across network types, including neuronal, protein-

protein interaction, and social networks [14]. Motifs, namely,

dense overlapping regulons, bi fans, single input modules,

and auto-regulation, are crucial for combinatorial decision-

making, signal integration, and sequential gene expression.

They have been observed in various network types, including

social networks derived from email communication and neu-

ronal networks involved in memory formation and complex

dynamics [15], [16]. Also, the role of motifs in optimizing

network robustness and stability is an active research area [17].

Motif aggregation has been proposed as a means to typify

complex networks, while motif participation serves as a cri-

terion for selecting links to achieve immunization in social

networks [18], [19]. Motif-based analysis has helped assess the

robustness of power-grid networks against adversarial attacks

and improve network resilience [20]. Additionally, studies

have explored the role of motifs like the feed-forward loop

(FFL) in improving performance objectives in communication

networks, highlighting the practical implications of motif-

based approaches in network optimization [21]–[23]. In this

work, we propose a motif-based approach for detecting SHS.

III. PROPOSED APPROACH: mSpan

This section covers the preliminary concepts and proposed

motif-based spanner detection approach, mSpan.

A. Preliminaries

1) Social Network: Let G(V,E) be a directed, weighted

social network, where each link (u, v) ∈ E has a weight

W ((u, v)) = {+,−} denoting strong and weak ties, respec-

tively. If G is unweighted, then it is converted into a weighted

graph by treating existing links as strong ties and nonexistent

links as weak ties. From a communication standpoint in a

social network, a strong tie serves as a primary channel for

reliable, high-bandwidth information flow, while a weak tie

represents a less reliable channel with lower bandwidth.

(a) Feed For-
ward Loop

(b) Feedback
Loop

Fig. 1: Closed 3-node motifs: Feed forward loop – S is the

master regulator, I is the intermediate regulator, and T is the

regulated node; and feedback loop.

2) Three-node triads: A feed forward loop (FFL) is a

network motif with three nodes marked S, I , and T . As shown

in Figure 1a, there is a direct link from S to T as well as an

indirect path via an intermediate node I [24]. Unlike an FFL,

which is an acyclic triangle, a feedback loop (FBL) is another

3-node motif that forms a cyclic triangle (see Figure 1b).

3) Community detection: A network community is a subset

of nodes within a graph that are more densely connected to

each other than to the rest of the network. We use Louvain

community detection to find modules within G, attaching a

community ID to each node u ∈ V . The best community

configuration selected by maximizing network modularity,

measuring the density of links inside communities compared

to links between them, as:

Q =
1

2× |E|
×

∑

u,v

[Au,v −
d(u)× d(v)

2× |E|
]δ(C(u), C(v)) (1)

Here, A is the adjacency matrix of the undirected version of

G, where Au,v = 1 if u to v share a link, and 0 otherwise;

d(u) is the total degree (i.e., sum of in- and out-degree of

node u; C(u) is the community ID of node u; and δ(x, y) is

1 if x = y, and 0 otherwise.

B. Feed Forward Loop-based SHS Detection

We leverage the feed forward loop (FFL) motifs for struc-

tural hole spanner (SHS) detection in directed and weighted

social networks. The following are the reasons behind the

choice of FFL motifs in SHS identification.
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• FFLs are one of the most frequent 3-node motifs in

directed complex networks [25], significantly more abun-

dant than the feedback loop (FBL) as reported later in

Tables I. They are the building blocks of directed net-

works, making them ideal for analyzing the connectivity

and information flow characteristics of networks.

• FFLs have two directional paths for unidirectional data

flow from source S to target T (see Figure 1a). A node

participating in FFLs spanning two communities can act

as a conduit for one-way communication between them.

• FFLs can be used to model the presence of a weak tie

or the absence of a link (shown in dotted lines in Figure

2) between node pairs. This makes them generalizable

to analyze weighted or unweighted directed complex

networks and their inter-community information flow.

Fig. 2: Illustrative example of valid motif configuration.

The reasons behind the choice of FFLs are captured in an

illustrative example. Consider a directed social network with

3 communities µ1, µ2, µ3 (shown in red, green, and blue dotted

lines), where the solid and dotted lines represent strong ties

+ and weak ties −, respectively (see Figure 2). Node v

participates in FFL motifs, (u1, v, w), (u2, v, w), each having

W ((ui, v)) = +, W ((v, w)) = +, W ((ui, w)) = − (for

i = 1, 2). It spans distinct community pairs (µ1, µ2) and

(µ1, µ3), facilitating directional information flow node x1 to

x3 belonging to those communities µ1 and µ2, respectively.

1) Valid Motif Configurations: It measures the number of

instances of FFL motif triads (u, v, w) spanning different

communities in a directed social network G that node v

participates in.

Z1(v) = {(u, v, w) : α(G,m)× β(G,C,m) = 1

∀m ≡ (u, v, w) ∈ M & u,w ∈ V }
(2)

Here α(G,m) = 1 if W ((u, v)) = + & W ((v, w)) = + &

W ((u,w)) = −, and 0 otherwise; β(G,C,m) = 1 if C(u) ̸=
C(w), and 0 otherwise.

For instance, in Figure 2, node v is part of Z1(v) = 2 FFLs

(u1, v, w) and (u2, v, w) bridging distinct community pairs

(u1, u3) and (u2, u3), respectively. Both FFLs are charac-

terized by weak ties (u1, w) and (u2, w), shown in dotted

lines, suggesting the absence of a strong connection (or no

connection at all) between the communities.

Z1(v) computes the total connections between different

communities C(u) and C(w) for all valid motifs m ≡
(u, v, w) through vertex v. However, Z1(v) fails to mea-

sure the diversity of the communities connected through v.

For example, it does not detect whether C(u1) = C(u2)
(or C(w1) = C(w2)) for two valid motifs (u1, v, w) and

(u2, v, w) (or (u, v, w1) and (u, v, w2), respectively).

2) Vertex Score (Z2): The quality of SHS vertices can

be measured by its ability to connect diverse communities.

Utilizing entropy as a measure of diversity in community

participation, we propose a scoring mechanism (Z2) for SHS

detection. Additionally, in Z2, we normalize Z1 by the degree

of node v, assigning a higher score to nodes that participate

in many valid motif configurations, despite having low con-

nectivity. The score is computed as follows.

Z2(v) =
|Z1(v)|

din(v)× dout(v)
×H(Γ(v)) (3)

Here, H(Γ(v)) =
∑

c∈γ(v) p(c)log(p(c)) is the entropy of a

list (Γ) containing community IDs of the neighbors of node v

forming valid FFL configurations. H(Γ(v)) is high when the

probability distribution p(c) of the unique IDs spanned by v

is uniform, i.e., the IDs have a comparable presence in Γ.

3) Motif Score (M): We envision that an FFL motif can

serve as a single spanner unit. For a given FFL m ≡ (u, v, w),
we calculate the spanning score using the simple sum of

the Z1 scores of u, v, and w. This sum inherently captures

the connectivity among different communities. However, the

method could be improved by incorporating entropy and using

a weighted sum, which we plan to explore in future research.

M(m ≡ (u, v, w)) = Z(w) + Z(v) + Z(u) (4)

Algorithm 1: Compute Z1-score

1 Initialize an array Z1 of size |V | with each element 0
2 for each edge (u, v) ∈ E+ do
3 itru ← 0, itrv ← 0 // Initialize iterators

4 count← 0 // Initialize local count

5 while itru < |N−

u
| and itrv < |N+

v
| do

6 if N−

u
(itru) < N+

v
(itrv) then

7 itru ← itru + 1

8 else if N−

u
(itru) > N+

v
(itrv) then

9 itrv ← itrv + 1

10 else

11 w ← N+
v
(itrv)

12 if C(u) ̸= C(w) then
13 count← count+ 1

14 itru ← itru + 1
15 itrv ← itrv + 1

16 Z1(v)← Z(v) + count

C. Proposed mSpan Algorithm

Let the set of strong and weak ties of graph G be E+

and E− respectively. Let N−
u and N+

u denote the sorted lists

of out-neighbor vertices connected to vertex u via weak and

strong ties, respectively. Algorithm 1 utilizes these neighbor

lists to efficiently compute Z1-score for all the vertices.

According to Eq. (2), the contribution of a strong tie (u, v)
towards the Z1-score of vertex v depends on the number of
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common neighbors w : w ∈ N−
u ∩N+

v . Therefore, the algo-

rithm processes each edge (u, v) ∈ E+ and computes the

intersection of the two sorted sets N−
u and N+

v . This computa-

tion can be performed using a merge-like method, requiring at

most |N−
u |+|N+

v | comparisons. We use two iterators, itru and

itrv , that operate on N−
u and N+

v , respectively, and find the

common neighbor w = N−
u (itru) = N+

v (itrv). Algorithm 1,

at Line 12, checks the condition for β as specified in Eq. (2).

Complexity Analysis. Let d+out and d−out represent the maxi-

mum out-degree of a graph G associated with strong ties and

weak ties, respectively. Algorithm 1 visits each element of

the lists N−
u and N+

v at most one time to find valid triads

and count common vertices w for each strong tie (u, v).
In the worst case, this operation takes O(d+out + d−out) time

per strong tie. Consequently, computing Z1 score for all

vertices or finding valid motifs across the entire graph requires

O(|E+| × (d+out + d−out)) time.

D. Expected Spanning Potential of Nodes with High Z1-Score

Theorem 1. The number of node pairs disconnected by

removing a given node in a random, directed clustered network

is expected to be proportional to its Z1-score.

Proof. Let us consider a N -node random, directed, and clus-

tered network G(V,E) with C communities, where each com-

munity c = 1, 2, · · · , C has nc nodes (s.t. n1+n2+· · ·+nC =
N ). The probability of an edge between any pair of (a) intra-

community nodes is p and (b) inter-community nodes ≈ 0.

(a) (b)

Fig. 3: Directed weighted networks: a) 3-node directed com-

plete network G; b) Transition of a random walker from node

u to v in 2-hops along links with transition probability p.

Let us generate an infinite set of such N -node networks,

each having C communities. Let the subset of nodes par-

ticipating in each c = 1, 2, · · · , C be identical across all

the networks. Combining all these networks, we get a single

network G where the fraction of times any link (u1, u2) (s.t.,

u1, u2 ∈ V and belongs to the same community) exists is

given by p. We term this directed, complete network G to be

the expected network (see Figure 3a), where the probability of

transitioning from any node to any other is p.

Lemma 2. The probability of reaching from any node u to v

belonging to the same community c in k > 0 hops is given by

nk−1
c × pk.

Proof. We know that the probability of traversing from any

node u to any other v within the same community is given by

the likelihood of link existence p.

Since G may have self-loops, it is possible for any random

walker to stay at the current node. Thus, the probability of

moving from u to v in k = 2 hops must be via a node w,

where w can equal u and v due to self-loops. As depicted in

Figure 3b, u → wi and wi → v have a transition probability

p. Since there are nc nodes, the probability of possible 2-hop

walks equal
∑nc

i=1 p × p = nc × p2. Generalizing to k-hop

walks, the probability is nk−1
c × pk.

The above probability can also be derived from the adja-

cency matrix of G, say A, where each element Au,v (the

probability of transitioning from u to v) is equal to p. Here

the probability of a walk from u to v in 2 hops can be

inferred from a matrix product: A
2
u,v = nc × p2 (as shown

below). Generalizing to k hops we get a probability of an

intra-community walk equal to A
k
u,v = nk−1

c × pk.







p · · · p
...

p






×







p · · · p
...

p






=







nc × p2 · · · nc × p2

...

nc × p2







Lemma 3. The probability of a walk from any node u to v

belonging to the same community c is given by
p

1−nc×p
(s.t.,

nc × p < 1).

Proof. From Lemma 2, let P k(u, v) = nk−1
c × pk be the

probability of a path from node u to v in k-hops. This makes

the total probability of moving from u to v:

P(u, v) = P 1(u, v) + P 2(u, v) + · · · ,+P∞(u, v) (5)

P(u, v) = p+ ncp
2 + n2

cp
3 + · · · (6)

P(u, v) =
p

1− nc × p
(7)

Eq. (7) gives the sum of an infinite geometric progression with

the first term p and common ratio nc × p. The common ratio

nc × p < 1 ensures the convergence of the sum.

From Eq. (2), the definition of Z1-score of a node w ∈ V

(Z1(w)) is the number of inter-community node pairs it

connects. Since the probability of inter-community link in the

expected random clustered network G ≈ 0, the number of

node pairs disconnected by the removal of w is Z1(w) ×
p

1−nµ(c)×p
× p

1−nµ(c)×p
, where µ(c) is the mean community

size in G. Finally, if κ = p
1−nµ(c)×p

× p
1−nµ(c)×p

, the expected

number of node pairs disconnected by the removal of w is

κ × Z1(w), i.e., proportional to its Z1-score in a random,

directed and clustered network.

TABLE I: Networks

Network |V | |E| FFL FBL

moreno innovation [26] 241 1098 1144 636

soc-ANU-residence [27] 217 2672 10727 9003

fb-pages-politician [27] 5908 41729 174957 23
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Fig. 4: Analysis of different spanning scoring using Average Weighted number of Connected Community (AWCC).

Fig. 5: Motif score (M) vs node disruption index (NDI) that evaluates the extent to which the removal of network motifs with

varying robust spanning scores disrupts the shortest communication paths between the social network communities.

IV. EXPERIMENTAL EVALUATION

The experiments were designed using Python on an Intel

Core i7 CPU equipped with 12 threads and 16GB DDR4

RAM. Since a valid motif configuration (refer to Sec. III-B1)

requires FFLs to span communities, we employ the Louvain

approach (see Sec. III-A3) to identify network communities as

a preprocessing step. The spanner scoring and structural hole

spanners (SHS) motif detection have been performed on three

real social network datasets. Refer to Table I for the order,

size, and a higher relative abundance of FFLs in comparison

with another 3-node motif type, FBL (see Sec. III-A2).

We use the following metrics to quantify the likelihood of

a set of nodes to be SHS [13], [28].

1) Average Weighted number of Connected Community

(AWCC): AWCC of a given set of potential structural holes

S is measured in terms of the set of communities connected

to it as 1
|S|

∑

v∈S
|ζ(v)|
d(v) , where ζ(v) is the set of community

IDs of neighbors of v.

2) Network Disruption Index (NDI): NDI measures how the

shortest communication paths among the communities can be

disrupted due to substructure removal. NDI of a substructure,

such as an FFL motif m ≡ (u, v, w), is D′(G)−D′(G−m),
where D′(G) = avg.{ 1

D(u,v)∀(x, y) : x, y ∈ V,C(x) ̸=

C(y)}, D′(G − m) = avg.{ 1
D(x,y)∀(x, y) : x, y ∈ {V −

u, v, w}, C(x) ̸= C(y)}, and D(x, y) is the shortest distance

between nodes x and y. Specifically, we leverage NDI to

capture the intuition that the shortest path length between a

pair of communities may increase, or they may potentially

be disconnected upon the removal of a network substructure

acting as a spanner in a network.

A. Spanning Score for a Set of Nodes

We apply the proposed FFL-based SHS detection technique,

mSpan, on three social networks. We compute Z1, and Z2

scores for each node and select top-K (ranging from 2 to 10)

scoring nodes in each category as SHS. We also find top-K

SHSs using HIS [6] and AP BICC [13] methods and top-K

nodes with high approximate betweenness centrality (ABC)

and PageRank (PR) [29]. Next, we evaluate each such set

of top spanners/important vertices using the AWCC metric.

Figure 4 depicts a comparison of the AWCC scores for Z1,

Z2, HIS, AP BICC, ABC, and PR for varying values of K.

We observe that Z2 consistently achieves the highest AWCC

scores showing the effectiveness of our proposed method.

Fig. 6: Pearson Correlation between motif score and NDI.

B. Spanning Potential of Feed Forward Loop Motifs

In Sec. III-B3, we intuit that a set of nodes constituting

a network motif may collectively serve as effective spanners.

We examine the spanning potential of FFL motifs using their

node disruption index (NDI). It is worth noting that calculating
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NDI is a computationally expensive operation since it entails

the identification of all pair shortest paths where the vertices in

each pair belong to different communities. Therefore, we apply

NDI to subnetworks with 50, 100, and 150 vertices, sampled

from the networks in Table I. These subnetworks are obtained

by randomly selecting seed vertices and their ego networks.

Before comparing NDI results, we compute the motif scores

using the proposed motif scoring function (Eq. 4).

These experiments aim to demonstrate that the impact of

removing an FFL on inter-community connectivity correlates

with its motif score. In other words, removing a high-scoring

motif is more likely to disrupt the connections between com-

munities in a directed social network. We present the results in

Figure 5, where FFLs with varying motif scores are removed

one by one, and NDI is computed. We observe a consistent

linear relationship between motif scores and NDI.

Finally, we summarize this positive association by estimat-

ing the Pearson correlation coefficient (PCC) between M and

NDI in 100-node subnetworks of the same datasets across 15

runs. The high mean PCC (along with error bars) depicted in

Figure 6 provide further evidence that mSpan offers a useful

measure of motif spanning in complex social networks.

V. CONCLUSION

We introduced a network motif-based spanner detection

mechanism, mSpan, for directed social networks. It comprises

metrics measuring the spanning potential of a node in terms

of its participation in a type of network motif, termed Feed

Forward Loop (FFL), that spans different network communi-

ties. Our theoretical analysis shows that the spanning score of

a node quantifies the number of inter-community node pairs

disconnected upon the removal of the node. Furthermore, the

comparison with baseline metrics on three network datasets

shows that the proposed motif-based metrics capture the

spanning potential of nodes and motif substructures. In the

future, we plan to extend mSpan into a distributed solution

that would leverage message passing to identify structural hole

spanners without prior knowledge of communities or motif

participation of other nodes in large social networks.
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