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ARTICLE INFO ABSTRACT

Keywords: Pretrained language models (PLMs) have demonstrated strong performance on many natural language process-
Pre-trained language models ing (NLP) tasks. Despite their great success, these PLMs are typically pretrained only on unstructured free texts
Knowledge bases

without leveraging existing structured knowledge bases that are readily available for many domains, especially
scientific domains. As a result, these PLMs may not achieve satisfactory performance on knowledge-intensive
tasks such as biomedical NLP. Comprehending a complex biomedical document without domain-specific
knowledge is challenging, even for humans. Inspired by this observation, we propose a general framework
for incorporating various types of domain knowledge from multiple sources into biomedical PLMs.

We encode domain knowledge using lightweight adapter modules, bottleneck feed-forward networks that
are inserted into different locations of a backbone PLM. For each knowledge source of interest, we pretrain an
adapter module to capture the knowledge in a self-supervised way. We design a wide range of self-supervised
objectives to accommodate diverse types of knowledge, ranging from entity relations to description sentences.

Once a set of pretrained adapters is available, we employ fusion layers to combine the knowledge encoded
within these adapters for downstream tasks. Each fusion layer is a parameterized mixer of the available trained
adapters that can identify and activate the most useful adapters for a given input. Our method diverges
from prior work by including a knowledge consolidation phase, during which we teach the fusion layers to
effectively combine knowledge from both the original PLM and newly-acquired external knowledge using a
large collection of unannotated texts. After the consolidation phase, the complete knowledge-enhanced model
can be fine-tuned for any downstream task of interest to achieve optimal performance.

Extensive experiments on many biomedical NLP datasets show that our proposed framework consistently
improves the performance of the underlying PLMs on various downstream tasks such as natural language
inference, question answering, and entity linking. These results demonstrate the benefits of using multiple
sources of external knowledge to enhance PLMs and the effectiveness of the framework for incorporating
knowledge into PLMs. While primarily focused on the biomedical domain in this work, our framework is
highly adaptable and can be easily applied to other domains, such as the bioenergy sector.

Domain knowledge

1. Introduction example, SciBERT [10] is a language model trained on a multi-domain
corpus of 1.14M scientific publications from Semantic Scholar [13].
Pretrained language models (PLMs) such as BERT [1] and T5 [2] Another example is BioBERT [11], a model pretrained on large amounts

have recently revolutionized the field of natural language processing of PubMed abstracts and PMC full-text articles. By being pretrained on
(NLP). The main idea is to pretrain a model on a large-scale corpus of domain-specific texts, these domain-specific PLMs are generally more
unannotated text using one or more self-supervised learning objectives,

effective than generic PLMs for NLP tasks within the corresponding
such as the popular masked language modeling (MLM) objective [1, domain [14].

3,4]. PLMs have been shown to effectively capture rich semantic and
syntactic patterns from plain texts [5,6]. As such, for a task of interest
with some supervised data, a PLM can typically be fine-tuned to achieve
very competitive performance on the target task [7-9].

However, all these PLMs are trained using only unstructured text
content, typically by optimizing a self-supervised training objective.
They do not explicitly leverage external knowledge from high-quality
While the majority of PLMs are pretrained on a general-domain structured knowledge bases (KBs) such as UMLS [15] and PubChem

corpus such as Wikipedia, more and more PLMs are being introduced [16]. As a result, these PLMs may not achieve satisfactory perfor-
for more specific domains, such as scientific domains [10-12]. For mance on knowledge-intensive tasks such as biomedical NLP. Indeed,
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Fig. 1. An example in the BioRelEx dataset [25]. UIM is an abbreviation of “Ubiquitin-Interacting Motif”. In our preliminary experiments, we found that our baseline SciBERT
model incorrectly predicts the mention as a “DNA” instead of a “Protein Motif”, even though SciBERT was already pretrained on 1.14 million scientific papers.

comprehending a complex biomedical document without domain-specific
knowledge is quite challenging, even for humans. While the current
PLMs may acquire some domain-specific knowledge implicitly from
the unstructured literature articles, such domain-specific knowledge is
implicitly stored in their model parameters. Due to the exponential
growth of scientific publications and knowledge [17], models that do
not go beyond their fixed set of parameters will likely fall behind [18-
21]. In fact, recent studies on probing biomedical PLMs suggest that
these models possess a very limited amount of biomedical factual
knowledge compared to a typical knowledge base (KB) [22,23]. The
main reason is that biomedical documents, either formal (e.g., scientific
papers) or informal ones (e.g., clinical notes), are written for domain
experts [20,24]. As such, they contain many highly specialized terms,
acronyms, and abbreviations of entities, whose definitions and proper-
ties are not presented in the local contextual sentences that are used to
train the existing PLMs. For example, in the BioRelEx dataset [25], a
biomedical information extraction dataset, we find that about 65% of
the annotated entity mentions are abbreviations of biological entities,
and an example is shown in Fig. 1.

Due to the limited capability of many existing PLMs in learning
domain-specific knowledge from literature articles, recently, several
methods have been proposed to enhance biomedical PLMs directly with
external domain knowledge [19,20,26,27]. For example, KECI [20], a
biomedical information extraction framework, utilizes an entity linker
as a bridge for transferring knowledge from UMLS [15] to neural
models. Given that many high-quality domain knowledge bases already
exist in scientific domains and human experts are also making an
effort to maintain and grow such knowledge bases over time, such an
approach of knowledge-enhanced PLMs is appealing. It can empower
PLMs with more domain knowledge without requiring extra human
effort and would also enable PLMs to scale up to incorporate more
knowledge naturally over time.

Despite their effectiveness, many current methods for incorporating
domain knowledge bases, such as KECI, can only leverage a single
source of knowledge (e.g., UMLS). This limitation restricts the total
amount of knowledge that can be utilized for downstream tasks. In the
biomedical domain, there are many high-quality KBs that contain com-
plementary knowledge [15,16,28]. It is thus important to incorporate
all of them into PLMs to maximize the amount of encoded knowledge
in the PLMs. However, this is technically challenging as the types of
knowledge vary greatly, and each tends to require a different method
of incorporation.

To address this challenge, we propose a novel general framework,
called KEBLM (Knowledge-Enhanced Biomedical Language Models),
for incorporating various types of knowledge from multiple sources
into biomedical PLMs. More concretely, KEBLM encodes knowledge
using adapter modules [29-31], lightweight neural networks that are
typically inserted into different layers of a backbone PLM. For each
knowledge source of interest, we pretrain an adapter module to memo-
rize the knowledge in it in a self-supervised way. We design a wide
range of self-supervised objectives to accommodate diverse types of
knowledge, ranging from entity-entity relations to description sen-
tences. Given a set of pretrained adapters, we use fusion layers [30] to
combine the knowledge encoded in the adapters for downstream tasks.

Each fusion layer is a parameterized mixer of the available trained
adapters that can identify and activate the most useful adapters for a
given input.

Different from previous studies that also attempt to incorporate
knowledge from multiple sources using adapters [21], our method
explicitly includes a knowledge consolidation phase. During this phase,
we teach the fusion layers to effectively combine knowledge from both
the original PLM and newly-acquired external knowledge by using
a large collection of unannotated texts. Following the consolidation
phase, the complete knowledge-enhanced model can be fine-tuned
for any downstream task of interest to achieve optimal performance.
The knowledge consolidation phase is crucial, as different types of
knowledge typically vary significantly. Consequently, the fusion layers
may not learn to incorporate them effectively if relying solely on fine-
tuning from a downstream task, especially in scientific domains where
available task-specific datasets are relatively small in size.

We evaluate the effectiveness of KEBLM by instantiating it to in-
corporate three types of biomedical domain knowledge: (1) entity de-
scriptions, (2) entity-entity relations, and (3) entity synonyms. We use
multiple biomedical NLP datasets to study the impact of the incorpo-
rated knowledge on three representative downstream tasks, i.e., natural
language inference (NLI), question answering (QA), and entity linking
(EL). Our experiment results show that KEBLM consistently outperforms
the baseline PLMs on all the tasks in all measures. Furthermore, we
observe that incorporating more domain knowledge generally leads to
greater improvement. This showcases the effectiveness of KEBLM as a
general framework for incorporating multiple sources of knowledge,
as well as the overall benefits of including explicit domain-specific
knowledge to enhance task performance. Note that while primarily
focused on the biomedical domain in this work, our framework is highly
adaptable and can be easily applied to other domains, such as the
bioenergy sector.

In the following parts, we first describe our proposed framework
for external knowledge incorporation in Section 2. We then discuss
the conducted experiments and their results in Section 3. After that,
Section 4 outlines previous related work. Finally, we conclude this work
in Section 5.

2. Methods

Fig. 2 shows an overview of KEBLM, our proposed framework. KE-
BLM encodes external domain knowledge using adapter modules [30,
31] (Section 2.1). We pretrain one adapter module for each knowledge
source of interest (Section 2.2). As adapter modules are essentially
lightweight neural networks, their pretraining process is typically less
computationally demanding compared to the standard pretraining of
full PLMs.

In this work, we consider three different types of knowledge: (1)
entity descriptions, (2) entity-entity relations, and (3) entity synonyms.
Table 1 provides an overview of the knowledge types. As different
adapter modules learn to encode different kinds of knowledge and
features, we propose to use fusion layers to combine their knowledge
for downstream tasks (Section 2.3). Each fusion layer is a parameterized
mixer of the available trained adapters [30]. Basically, using fusion
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Fig. 2. An overview of KEBLM. An adapter module is a group of adapters pretrained together to encode knowledge from a particular source of knowledge.

Table 1
Knowledge types we consider in this work.

Knowledge type Knowledge base(s)

Example(s)

Entity descriptions UMLS [15,32] and PubChem [16]

Phenylephrine(1+) is an organic cation obtained by protonation of
the secondary amino function of phenylephrine. It is an ammonium
ion derivative and an organic cation. It is a conjugate acid of a
phenylephrine.

Entity-entity relations MSI (multiscale interactome) [33]

(SLBP, interacts with, CSTF3)
(EPB41L2, interacts with, EFTUD2)
(APOA2, has function, phosphatidylcholine biosynthetic process)

Entity synonyms UMLS [15]

Synonym pairs: (Cancer, Malignant Neoplasms), (Influenza, Human
Flu), (EGFR, Epidermal Growth Factor Receptor)

layers allows for the identification and activation of the most useful
adapters for a given input, as the knowledge from some adapters may
be more helpful than others for a specific task/input.

Compared to earlier studies that also integrate knowledge from
various sources using adapters [21], our approach specifically includes
a knowledge consolidation phase. In this phase, we teach the fusion
layers to effectively combine knowledge from the original PLM and
newly-acquired external knowledge by using a large collection of unan-
notated texts. This knowledge consolidation phase is discussed in more
detail in Section 2.3.

2.1. Adapter modules

A common transfer learning technique in NLP is full fine-tuning,
which involves copying the weights of a PLM and tuning all of them
on some downstream task of interest [34]. Despite its effectiveness [1,
35,361, full fine-tuning can be computationally expensive as the entire
PLM needs to be tuned. Adapter modules [29,30] were introduced as
an alternative method for more parameter-efficient adaptation of PLMs.
Adapters are small neural networks added between layers of a PLM.
During model tuning on a downstream task, only the parameters of the
added adapters are updated while the weights of the original PLM are
frozen. Therefore, adapter-based tuning adds only a small amount of
parameters for each downstream task of interest.

In this work, we use adapter modules to encode external domain
knowledge. For each knowledge source of interest, we pretrain an
adapter module to memorize the knowledge in it. This approach en-
ables a highly extensible integration of knowledge. When a new source

of knowledge emerges, we need to pretrain a new adapter module;
however, we do not need to update the parameters of any existing
pretrained adapter modules. A related work, DAKI [21], also aims to
incorporate domain knowledge from multiple sources using adapters.
We compare and contrast our approach with DAKI in greater detail in
Section 4.

We use a simple but effective bottleneck architecture for the
adapters [30,31], which is illustrated in the left part of Fig. 2. Each
layer of a typical Transformer-based PLM contains two primary sub-
layers: a multi-head attention layer and a feed-forward layer [37]. In
addition, a residual connection is employed around each of the two
sub-layers, followed by layer normalization. We insert an adapter after
each feed-forward sub-layer and its corresponding Add & Norm layer
(see Fig. 2).

Each adapter first projects the features it receives into a smaller
dimension, applies a non-linearity (e.g., ReLU), and then projects the
resulting vector back to the original dimension. There is also a skip-
connection that connects the output of the feed-forward layer to the
output of the up-projection layer. If we denote the dimension of the
hidden states in the backbone PLM as d and the bottleneck dimension
as m, then the total number of new parameters in a single adapter is
2md + d + m. In practice, m < d, therefore, the number of parameters
per adapter is typically small.

Note that we use the term “adapter module” to refer to a group of
adapters pretrained together to encode a particular type of knowledge.
In other words, for a knowledge source of interest, we first add an
adapter to every Transformer layer of the backbone PLM. After that,
we pretrain them together on some self-supervised learning task to be
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discussed in Section 2.2. For example, suppose we want to enhance a
PLM consisting of 12 Transformer layers with knowledge from three
different sources. Then the number of adapter modules will be 3, and
the total number of adapters will be 12 x 3 = 36.

In this work, we add adapters to all layers of the backbone PLM
because we aim to adapt every single layer to capture the external
knowledge. Despite the addition of adapters to all the layers, the
computational cost remains low as the number of parameters in each
adapter is minimal.

2.2. Adapters pre-training

In this work, we explore three different types of knowledge: (1)
entity descriptions, (2) entity-entity relations, and (3) entity synonyms.
These knowledge types are popular and commonly available in various
knowledge bases. Table 1 provides an overview of the knowledge types.
For each knowledge type, we pretrain an adapter module using a self-
supervised learning objective specifically designed for it. During the
pretraining process, only the parameters of the adapter modules are
updated while the weights of the backbone PLM are frozen. Note that
our proposed KEBLM is highly extensible and not constrained to only
the knowledge types discussed here.

In general, our approach to designing learning objectives is to
encourage a model to accurately predict the information contained
in a knowledge source of interest. However, the specific form of the
objective depends on the type of knowledge. For instance, since entity
descriptions offer rich textual information, employing the masked lan-
guage modeling objective [1] appears to be a natural choice. On the
other hand, for more structured entity relations, a ranking objective
would be more suitable, requiring the model to rank all the actual re-
lations present in the knowledge source higher than negatively sampled
relations.

Entity descriptions. Biomedical KBs typically have informative descrip-
tions about many different entities. For example, at least 100 million
pairs of concepts and corresponding definitions or descriptions can be
constructed from UMLS [15]. Biomedical documents typically contain
many highly specialized terms, acronyms, and abbreviations. There-
fore, knowledge from the description sentences in external KBs can be
extremely helpful when trying to comprehend biomedical documents.
To this end, we propose to use the masked language modeling (MLM)
objective [1] to incorporate knowledge from the description sentences.
The MLM objective is a form of denoising-autoencoding, where
the task is to restore a corrupted input sequence. More specifically,
given the textual description of some biomedical entity, we first mask
some percentage of its tokens at random to produce a corrupted input
sequence. The model then needs to predict the masked tokens.

Entity-entity relations. Several biomedical knowledge graphs (KGs),
such as UMLS [15] and MSI [33], have a lot of information about the
relations between different entities. Let 7 = {(h,r,t) | h,t € €, r € R}
be the collection of ordered triples in a KG of interest, where £ and R
are the sets of entities and relations (respectively). We aim to pretrain
an adapter module to memorize all the relations stored in 7.
Concretely, the pre-training task is to train a model to assign high
scores to correct positive triples in 7 and low scores to triples that are
likely to be incorrect [38]. We use the max-margin loss function:

B
()= 5 X max(0, 4= f() + £(5) ¢h)
i=1

where f(.) takes a triple as input and returns a score indicating its
plausibility. x € T is a positive triple. %; is a negative triple constructed
by swapping the head or tail entity of x with a random entity. B
is the number of negative samples per positive triple. 4 is a margin
hyperparameter.

In order to compute f(x), we first convert the triple x = (h,r,t) to
a textual sequence Text[x] by concatenating the words in the names
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of its components. We then use the backbone PLM augmented with the
adapter module to transform Text[x] into a feature vector x. Finally, we
apply an additional linear layer to x to get the final plausibility score.
This process is summarized as follows:

X = reduce(ngPLngER (Text[x]))
£ (x) = FFNN,(x)

(2)

where ¢g, o, () denotes the entire encoder stack consisting of the
PLM and the adapter module. 0p;); denotes the parameters of the PLM,
while gz denotes the parameters of the adapter module. reduce(.)
is a function that returns the final hidden state of the encoder that
corresponds to the first input token. FFNN;, is a feed-forward neural
network with a single output dimension. Only 6pz and FFNN; are
updated during pretraining.

Entity synonyms. A biomedical KB such as UMLS [15] typically has
a comprehensive collection of biomedical synonyms in various forms.
For example, the 2020AA version of UMLS has 4M+ concepts and
10M+ synonyms that stem from over 150 controlled vocabularies such
as MeSH, SNOMED CT, RxNorm, Gene Ontology, and OMIM [39].
Knowledge of biomedical synonyms can be useful for various down-
stream tasks such as entity linking [39,40], information extraction [41],
and paraphrase detection [42]. To this end, we propose to use a con-
trastive training objective [39] to incorporate knowledge of biomedical
synonyms.

Note that it is technically possible to utilize the same ranking objec-
tive presented for entity-entity relations for incorporating knowledge
of entity synonyms. Nevertheless, we choose the contrastive training
objective in this context, as previous research, such as CLIP [43], has
demonstrated its efficacy in modeling the similarity between different
objects. The contrastive loss function is highly effective for models that
need to prioritize the measurement of similar objects over dissimilar
ones.

Formally, let £ = {e},e,, ... ,ex} be the set of all entities in a KB of
interest. We assume that each entity e is associated with a set of textual
names N'(e). For example, in UMLS, some of the names associated
with the entity C0004057 include “aspirin” and “2-(Acetyloxy)benzoic
Acid”. If two names are associated with the same entity, then we
consider them as synonyms. Finally, let /' denote the set of all names
in the KB (i.e.,, N' = UK N(e)).

The objective is to learn a function g : A — R? that maps each
entity name in A to a feature vector. If n; and n; are synonyms, the
similarity between g(n;) and g(n;) needs to be high (and vice versa).
We model the function g as follows:

g(n) = reduce (¢9pLM-0Es (Text[n])) ©)

where n € N is an entity name. Text[n] consists of all the words in the
name. g, g, () is the encoder stack consisting of the PLM and the
adapter module. 6g denotes the parameters of the adapters.

In this work, we use the contrastive learning framework defined
in [44] to train the function g. During pretraining, we freeze Op;); and
only update Ozg. We use the cosine similarity function to evaluate the
similarity of any two feature vectors.

Lastly, it is worth noting that when discussing the incorporation of
knowledge types such as entity-entity relations and entity synonyms,
we introduce a function Text[x] that essentially transforms an object,
like a relation triple or a mention, into a textual sequence. While
the strategy for creating input text from such an object could impact
the performance, we reserve this exploration for future research and
employ only the simple strategies discussed here.

2.3. Knowledge fusion
Once the adapter modules are pretrained, we use fusion layers to

combine their knowledge for downstream tasks. We directly utilize
the AdapterFusion mixture layers [30] that can learn to identify and



T.M. Lai et al.

substituted anilines

Mention m

anilines
phenylamines

Entity C0003038

O

Entity C0002607

Knowledge Base Encoder
(a) Entity linking.

Vector Space

Journal of Biomedical Informatics 143 (2023) 104392

Prediction Scores

t

Classification Head

T
KEBLM

T

Input A

T

Input B

(b) Text pair classification.

Fig. 3. Our approaches for using KEBLM in downstream tasks such as entity linking (EL), natural language inference (NLI), and question answering (QA). The left part presents
a high-level overview of our EL method, while the right part outlines our approaches for NLI and QA.

activate the most useful adapters for a given input. We refer readers
to [30] for a complete description of the mixture layers.

After incorporating randomly initialized fusion layers into the model
stack (see the right part of Fig. 2), it becomes possible to fine-tune
the entire model for a specific downstream task of interest. However,
since each adapter module encodes a distinct type of knowledge, the
fusion layers may face difficulties in learning to effectively combine
them, particularly if the fine-tuning dataset contains a limited number
of examples. To address this issue, we propose conducting a knowledge
consolidation phase to aid the fusion layers in its learning process.

More specifically, we first gather a large collection of biomedical
texts (e.g., publication abstracts) that can be easily obtained from the
internet. Next, we attach a masked language modeling (MLM) head to
the model stack and train the entire system for the MLM task using
the collected corpus. During this process, we freeze the parameters of
the backbone PLM and the pretrained adapter modules, allowing only
the fusion layers and the newly attached MLM head to be trained.
The intuition behind this approach is that it forces the fusion layers to
effectively synthesize knowledge from different adapter modules and
the original PLM.

Following the knowledge consolidation phase, we simply remove
the MLM head, rendering the entire stack ready for fine-tuning on any
downstream task of interest.

3. Experiments and results
3.1. Datasets and experimental settings

3.1.1. Downstream tasks

We evaluate our KEBLM on six datasets over three downstream
tasks, including four entity linking (EL) datasets, one natural language
inference (NLI) dataset, and one question answering (QA) dataset.

Entity linking. Biomedical EL is the task of mapping entity mentions
in a biomedical document to referent entities in a given KB [45,46].
Our approach to EL is to train an encoder ¢ that encodes mentions
and entity names into the same vector space [46,47]. Before inference,
we use ¢ to pre-compute embeddings for all the entity names in the
KB. During inference, mentions are also encoded by ¢ and entities are
retrieved using the cosine similarity function. ¢ can be based on an
existing PLM (e.g., SciBERT, BioBERT) or our newly proposed KEBLM.
The left part of Fig. 3 provides a high-level overview of our approach
to EL.

We use four EL datasets: NCBI-d [48], BC5CDR-c and BC5CDR-
d [49], and COMETA [50]. For each dataset, we follow the data split
by [39]. We refer the readers to [39,46] for more information about
the problem formulation, the general EL approach, and the datasets.

Natural language inference. NLI is the task of determining whether a
hypothesis is true (entailment), false (contradiction), or undetermined
(neutral) based on a given premise. For example, consider the following
premise and hypothesis:

» Premise: Watermelon stomach with gastric varices, without bleed

in more than 2 years

» Hypothesis: Patient has hematemesis.

Informally speaking, “hematemesis” refers to the vomiting of blood.
Therefore, the hypothesis contradicts the premise.

Compared to the general domain, there are relatively fewer studies
on NLI in the biomedical domain [51,52]. In this work, we simply
formulate the task as a text pair classification problem (see the right
part of Fig. 3). Specifically, for each example, we concatenate the
premise and hypothesis into a single input sequence and feed it into
a Transformer-based model, such as KEBLM, with a classification head.

We train and evaluate NLI models on MedNLI [51], an NLI dataset
consisting of sentence pairs extracted from MIMIC-III, a comprehensive
clinical database. MedNLI has 11,232 premise-hypothesis pairs in the
training set, 1395 pairs in the development set, and 1422 pairs in the
test set.

Question answering. We also evaluate KEBLM on the task of ques-
tion answering (QA) using the PubMedQA dataset [53]. PubMedQA
contains a collection of research questions and corresponding refer-
ence texts taken from PubMed abstracts, each of which is labeled
with whether the text contains the answer to the research question
(yes/maybe/no). We use the original train/dev/test split, which con-
sists of 450/50/500 questions, respectively, for our experiments. Sim-
ilar to NLI, we also formulate QA as a text pair classification problem
(see the right part of Fig. 3). For each example, the input is the
concatenation of the question and the reference text.

Table 2 presents a summary of the statistics for all the downstream
task datasets. To ensure compatibility with the underlying PLM, inputs
that exceed the maximum token length are truncated. Specifically, after
preprocessing and tokenization, inputs are truncated to retain only the
first N tokens, where N represents the maximum token limit allowed
by the PLM.

3.1.2. Pretraining setup

In this work, we use BioBERT [11] and SciBERT [10] as our base
PLMs. For each base PLM, we pretrain three different adapter modules
to incorporate three different types of knowledge (see Table 1 for an
overview): (1) entity descriptions, (2) entity-entity relations, and (3)
entity synonyms.

We utilize UMLS [15] and PubChem [16] to gather entity descrip-
tions. More specifically, following the procedure of [32], we first collect
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Table 2

Statistics of the downstream task datasets. The table shows the number of train, dev,
and test examples, as well as the estimated maximum input length (measured in terms
of the number of words) for each dataset.

Dataset Train Dev Test Estimated max. input
examples examples examples length (Words)
NCBI-d 5,134 787 960 12
BC5CDR-c 5,203 5,347 5,385 26
BC5CDR-d 4,182 4,244 4,424 17
COMETA 13,489 2,176 4,350 6
MedNLI 11,232 1,395 1,422 207
PubMedQA 450 50 500 487

over 100 million pairs of concepts and corresponding definitions or
descriptions from UMLS [15]. In addition, we extract approximately
102,980 compound-description pairs from PubChem [54]. After com-
bining the descriptions from the two sources and doing some filtering
(e.g., removing PubChem descriptions that are too short), our final
set consists of 130 million descriptions or definitions of a diverse
range of entities from the chemistry and biomedical domains, including
molecules, genes, and diseases.

We utilize a knowledge graph (KG) called MSI [33] to collect entity-
entity relationships. This recent network encompasses diseases, pro-
teins, genes, drug targets, and biological functions. Overall, MSI com-
prises 29,959 entities, 6 relation types, and allows for the extraction of
484,654 positive triples.

To collect information of biomedical synonyms from UMLS [15], we
use the same procedure employed for pretraining SAPBERT [39].

Finally, we gather more than 30 million abstracts from PubMed for
the knowledge consolidation phase. During the knowledge consolida-
tion phase, the parameters of the base PLM are frozen, while only the
parameters of the fusion layers and a new MLM head are updated. As
a result, the knowledge consolidation process should be considerably
less computationally demanding compared to the standard pretraining
of full PLMs on all these abstracts.

To implement the adapters, we utilize the AdapterHub frame-
work.! [31] Each adapter has a bottleneck architecture, as proposed
by [55], which corresponds to the PfeifferConfig in AdapterHub.
We initialize each adapter using the default parameters provided by
PfeifferConfig, with the exception of the reduction factor, which
we set to 4.

3.1.3. Hyperparameters

For fine-tuning on EL datasets, we utilize our existing codebase”
that was previously used in a different study on biomedical EL [46].
We explore a range of parameter values for the fine-tuning process,
including lower learning rates of {le—5,5e—5}, upper learning rates of
{0.001,0.0001}, batch sizes of {64, 128}, and training epochs of {25,50}.
The lower learning rate is applied to update the backbone LM, adapter
modules, and fusion layers (if applicable), while the upper learning rate
is designated for updating other parameters in the entire model stack.

For fine-tuning on NLI and QA datasets, the optimal values are
variant-specific. We experiment with the following range of possible
values: a learning rate of {le-5,5e-5}, a batch size of {8,16,32}, the
number of training epochs set to {10,25,50}, and a weight decay of
{0,0.01}. The maximum number of input tokens is set to 512. For
each variant, we evaluate the test performance of the checkpoint that
achieves the best score on the designated development set.

3.2. Performance on downstream tasks
Table 3 shows the performance of various entity linking (EL) mod-

els. We observe that KEBLM consistently improves the performance

1 https://docs.adapterhub.ml/index.html
2 https://github.com/laituan245/rescnn_bioel
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Table 3

Overall test results on the four biomedical EL datasets. The best ones are highlighted
in bold, while “1” denotes that improvements are observed when comparing KE-
BLM with the corresponding baseline model. All observed improvements are statistically
significant with a p-value < 0.05.

Top-1 Accuracy (on test sets)

Models

NCBI-d BC5CDR-d BC5CDR-c COMETA
Previous SOTA Methods
BioSyn [56] 91.1 93.2 96.6 71.3
SapBERT [39] 92.5 93.8 96.8 77.0
ResCNN (Max Pooling) [46] 92.4 93.1 96.8 80.1
BioBERT 92.0 93.3 96.2 80.6
KEBLM (BioBERT) - Ours 93.21 93.7" 96.6" 80.8!
SciBERT 91.5 93.0 96.2 77.3
KEBLM (SciBERT) - Ours 93.5! 93.3" 96.5' 77.8!

Table 4
Overall test results on the NLI and QA datasets. DAKI [21] did not use PubMedQA in
their study.

MedNLI (Accuracy) PubMedQA (Accuracy)

SciBERT - Ours 80.59 55.2
KEBLM (SciBERT) - Ours 82.14 59.0
SciBERT + MoP [19] 81.43 54.78
BioBERT - Ours 82.21 62.2
KEBLM (BioBERT) - Ours 84.24 68.0
BioBERT + MoP [19] 83.44 61.82
BioBERT + DAKI [21] 83.41 -
Table 5

Overall results on the development sets of the four biomedical EL datasets.

Top-1 Accuracy (on development sets)

Models
NCBI-d BC5CDR-d BC5CDR-c COMETA
BioBERT 94.3 93.5 98.2 80.3
KEBLM (BioBERT) - Ours 94.5 93.7 98.3 80.7
SciBERT 92.2 92.5 97.6 77.2
KEBLM (SciBERT) - Ours 94.2 92.6 98.2 77.3
Table 6

Overall results on the development sets of NLI and QA datasets.
MedNLI (Accuracy) PubMedQA (Accuracy)

SciBERT - Ours 82.94 54.0
KEBLM (SciBERT) - Ours 83.01 56.0
BioBERT - Ours 83.58 66.0
KEBLM (BioBERT) - Ours 84.66 70.0

of both BioBERT and SciBERT on all datasets. Table 4 presents the
overall results on the NLI and QA datasets. Similar to the EL results,
KEBLM is also effective in enhancing the performance of the base
PLMs. Furthermore, in Table 4, we compare KEBLM to MoP [19] and
DAKI [21], which are previous methods that also incorporate external
knowledge. KEBLM consistently outperforms these competing methods
in terms of absolute performance scores. It is worth noting that, similar
to our study, DAKI [21] aims to incorporate domain knowledge from
multiple sources using adapters. However, a key distinction lies in our
method’s inclusion of an explicit knowledge consolidation phase.

For a more comprehensive comparison of the models, Tables 5 and
6 also present the results on the development sets. Overall, these results
align well with those from the test sets. For instance, based on the
development set scores, it is evident that our proposed framework effec-
tively integrates diverse external knowledge types, leading to improved
performance in the target tasks.
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Table 7

Ablation analysis. Here, KC refers to the knowledge consolidation phase. In addi-
tion, ED, ER, and ES refer to the adapter modules that encode entity descriptions,
entity-entity relations, and entity synonyms, respectively.

MedNLI (Accuracy)

KEBLM (BioBERT) 84.24
without KC 83.90
without KC and ED 83.68
without KC and ER 83.61
without KC and ES 83.26
without KC and [ED, ER] 82.63
without KC and [ED, ES] 82.42
without KC and [ER, ES] 83.19
BioBERT (without any external knowledge) 82.21
3.3. Analysis

Ablation study. We thoroughly examine the impact of the knowledge
modules through an ablation study and present the findings in Table 7.
Evidently, the knowledge consolidation phase plays a crucial role in
enabling the fusion layers to effectively integrate knowledge from var-
ious adapter modules. A noticeable decline in performance is observed
when the knowledge consolidation phase is omitted. Moreover, we
find that, generally, incorporating more external knowledge leads to
more improvement. When incorporating knowledge from two or more
sources, we can achieve better performance on MedNLI than when we
leverage only one single knowledge source. These results demonstrate
the effectiveness of KEBLM as a general framework for incorporating
multiple sources of knowledge.

Qualitative analysis. We attempted to manually examine some predic-
tions made by both our knowledge-enhanced models and the baseline
models. Generally, it is not always possible to ascertain the exact
reasons why a model made an error, given the inherent complexity of
each model with hundreds of millions of parameters and the fact that
interpretable machine learning remains an active area of research. As
a result, it is not always straightforward to determine when knowledge
proves beneficial. Nevertheless, to gain some insights, we will present
instances where knowledge is evidently helpful.

First, we provide some qualitative analyses to demonstrate the
strengths of our models over the baseline models in Table 8.

In the first example, which comes from MedNLI, the baseline model
incorrectly predicts the relation between the given premise and hy-
pothesis to be “neutral”. This is likely because the baseline model does
not understand the technical term “hematemesis”, which refers to the
vomiting of blood (informally speaking). However, the definition of this
term is readily available on UMLS and is also part of our pretraining
data. As such, it is likely the reason why KEBLM is able to correctly
predict that the relation should be “contradiction”.

In the second example related to QA, the reference text is a long
abstract that does not provide an explicit yes or no answer to the
given question. Instead, a large part of it discusses conducted analyses
and numerical results (not shown in Table 8 due to space constraints),
which can make it difficult for an automatic model to determine
the correct answer. As a result, our baseline model, which does not
incorporate external knowledge, incorrectly predicts the answer to be
“no”. However, by looking at the definition of “spasticity” in UMLS,
we can see that it is a form of muscle disorder. With this knowledge,
we can guess that reducing spasticity is likely to increase functional
benefit, even without reading the abstract. This is likely the reason why
KEBLM is able to return the correct answer of “yes”, since one of the
knowledge types we consider is definition sentences from UMLS.

The final example in Table 8, taken from the COMETA corpus for
medical entities in social media, is challenging for our baseline model to
handle. The context in this example, as is typical in tweets or Facebook
posts, is relatively short. Additionally, the surface form of the target
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mention, “SHTP”, differs from all the names of the correct entity stored
in COMETA’s KB. In contrast, by utilizing synonym information from
UMLS, KEBLM can easily identify the correct entity and rank it at the
top.

4. Related work

In recent years, there have been many studies that explicitly aim to
inject external knowledge into PLMs [57-67]. A promising direction is
to utilize structured knowledge bases (KBs) to augment Transformer-
based PLMs. Some notable studies include ERNIE [59] and Know-
BERT [58], where the entity information from KBs is explicitly linked
with the input text during pre-training yielding entity-enhanced vari-
ants of BERT models. For ERNIE and KnowBERT to work, an entity
linker is required to connect the input text to information in the
external KBs. In contrast, KEBLM, our proposed framework, does not
have such a requirement. This characteristic makes KEBLM applicable
to new scientific domains that do not have any high-quality entity
linkers.

Another line of work adopts the retrieve-and-read framework [57,
60,61,63,67]. Typically, given an input of some NLP task, a retrieval
component first retrieves potentially relevant text snippets (e.g., sen-
tences or paragraphs) from a corpus (e.g., Wikipedia). After that,
another model produces the final output conditioned on the original
input and the retrieved information. While advancing the state-of-the-
art of many knowledge-intensive tasks, most methods in this direction
focus only on retrieving information from Wikipedia [57,60,67]. This
is different from our KEBLM, which leverages knowledge from multiple
sources.

Compared to the general domain, there have been fewer studies on
incorporating external knowledge into biomedical models [19-21,68,
69]. For instance, UmIsBERT [69] is a contextual embedding model
that integrates clinical domain knowledge from the UMLS Metathe-
sauru during the pre-training process. Another noteworthy study is that
of SAPBERT [39], which is a pre-training scheme designed to learn
information from a collection of biomedical synonyms from UMLS. In
our research, we not only utilize knowledge from UMLS but also incor-
porate information from other knowledge bases, such as PubChem [16]
and MSI [33]. Additionally, our study differs from SAPBERT in that we
not only evaluate our proposed KEBLM on entity linking tasks but also
on other downstream tasks, such as NLI and QA.

Mixture-of-Partitions (MoP) [19] is a novel approach for infusing
knowledge by partitioning knowledge graphs into smaller sub-graphs.
While MoP focuses only on knowledge triples of (subject, relation,
object), our KEBLM incorporates a broader range of knowledge types.
In this work, our specific instantiation of KEBLM also considers knowl-
edge such as entity descriptions and synonyms in addition to entity
relations. This makes KEBLM a more general and versatile approach
to knowledge infusion. Additionally, KEBLM can be easily extended
to apply the idea of graph partitioning of MoP when incorporating
knowledge of entity relations.

A closely related work, DAKI [21], also aims to integrate domain
knowledge from multiple sources using adapters. Unlike DAKI, our
method explicitly includes a knowledge consolidation phase (see Sec-
tion 2.3). During this phase, we train the fusion layers to effectively
combine knowledge from both the original PLM and newly acquired
external knowledge by utilizing a vast collection of unannotated texts.
Furthermore, different from our work, DAKI does not explicitly incor-
porate synonym information from external KBs, which can be extremely
useful for tasks such as entity linking. Our experimental results on
MedNLI also suggest that KEBLM can be more effective than DAKI
in incorporating external knowledge into biomedical PLMs (refer to
Section 3).
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Table 8

Examples showing how external knowledge improves prediction accuracy.

Input Label Model predictions
Task: Natural Language Inference (MedNLI) Contradiction SciBERT: Neural

Premise: Watermelon stomach with gastric varices, without bleed
in more than 2 years.
Hypothesis: Patient has hematemesis.

KEBLM (SciBERT): Contradiction

Task: Question Answering (PubMedQA)
Question: Does reducing spasticity translate into functional benefit?

Reference Text: Spasticity and loss of function in an affected arm
are common after stroke. Although botulinum toxin is used to
reduce spasticity, its functional benefits are less easily
demonstrated. This paper reports an exploratory meta-analysis to ...

Yes BioBERT: No
KEBLM (BioBERT): Yes

Task: Entity Linking (COMETA)
Mention and its context: I was recommended the SHTP and as I
said it initially worked but havn’t been taking it since.

SciBERT: Azacitidine
KEBLM (SciBERT): Oxitriptan

Oxitriptan
(substance)

5. Conclusions and future work

This work proposes KEBLM, a general framework for incorporating
various types of domain knowledge from many sources into biomedical
PLMs. Extensive experiments show that KEBLM is highly effective as
it can consistently improve the performance of the underlying PLMs.
In the future, we plan to extend KEBLM to incorporate other types of
complex knowledge, such as molecule structures, and to explore its
use for incorporating knowledge from general-domain KBs to tackle
general-domain NLP tasks.
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