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Calibrated geometric deep learning 
improves kinase–drug binding predictions

Yunan Luo    1,3  , Yang Liu2,3 & Jian Peng    2 

Protein kinases regulate various cellular functions and hold significant 
pharmacological promise in cancer and other diseases. Although 
kinase inhibitors are one of the largest groups of approved drugs, 
much of the human kinome remains unexplored but potentially 
druggable. Computational approaches, such as machine learning, offer 
efficient solutions for exploring kinase–compound interactions and 
uncovering novel binding activities. Despite the increasing availability 
of three-dimensional (3D) protein and compound structures, existing 
methods predominantly focus on exploiting local features from 
one-dimensional protein sequences and two-dimensional molecular 
graphs to predict binding affinities, overlooking the 3D nature of the 
binding process. Here we present KDBNet, a deep learning algorithm 
that incorporates 3D protein and molecule structure data to predict 
binding affinities. KDBNet uses graph neural networks to learn structure 
representations of protein binding pockets and drug molecules, capturing 
the geometric and spatial characteristics of binding activity. In addition, 
we introduce an algorithm to quantify and calibrate the uncertainties of 
KDBNet’s predictions, enhancing its utility in model-guided discovery 
in chemical or protein space. Experiments demonstrated that KDBNet 
outperforms existing deep learning models in predicting kinase–drug 
binding affinities. The uncertainties estimated by KDBNet are informative 
and well-calibrated with respect to prediction errors. When integrated 
with a Bayesian optimization framework, KDBNet enables data-efficient 
active learning and accelerates the exploration and exploitation of diverse 
high-binding kinase–drug pairs.

Proteins are vital drug targets for therapeutic purposes, but at present 
only 11% of human proteome can be targeted by drugs or small molecules, 
leaving a large proportion to be explored for therapeutic opportunities1. 
A group of proteins called kinase is of particular interest as drug targets 
because of their tractability in drug development and diverse pharmaco-
logical implications in various diseases2,3. Protein kinases present high 
evolutionary conservation in sequence and structure. Most of the kinase 

inhibitors bind to conserved adenosine triphosphate (ATP)-binding 
pockets of kinases, leading to extensive target promiscuity4. Chemical 
compounds that inhibit a single kinase are still rare despite significant 
research efforts devoted to target-based drug discovery5. It is therefore 
crucial to map out target binding profiles of kinase inhibitors to uncover 
new therapeutic effects and better predict and manage possible adverse 
effects. Unfortunately, even with automated high-throughput profiling 
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training data, rendering them vulnerable to failures when applied to 
out-of-distribution scenarios. To mitigate this issue, one solution is to 
quantify the uncertainty of model predictions, providing a confidence 
assessment to support human decision-making, as higher novelty 
often comes with a higher risk of failure. Although the importance 
of uncertainty estimation in ML algorithms has been recognized24–26, 
most existing methods of compound–protein binding prediction 
only provide point-estimate predictions without quantifying uncer-
tainty12–16. In the context of compound or target discovery, relying solely 
on point-estimate predictions to select top candidates for validation 
may result in false positives. Ref. 17 introduced uncertainty estimation 
using Gaussian processes (GPs) to prioritize strong-binding com-
pound–protein pairs, but quantifying uncertainty with more expressive 
deep neural networks has not been explored for kinase–drug binding 
prediction.

Here, we develop the kinase–drug binding prediction neural net-
work (KDBNet), a deep learning algorithm that integrates 3D structure 
information to predict the binding affinity of kinase–drug binding 
while also estimating prediction uncertainties. KDBNet represents the 
3D protein and molecule structure data as graphs and uses graph neu-
ral networks (GNNs) to learn structure representations from binding 
pocket structures of proteins and atom coordinates of molecules. We 
built KDBNet as an ensemble model of several replicates of individual 
neural networks, which not only improves prediction accuracy and 
robustness but also allows us to estimate the uncertainty of model 
predictions. We further applied an uncertainty recalibration tech-
nique to refine the uncertainty estimates, enhancing KDBNet’s utility 
in the ML-guided discovery of proteins and targets. Benchmarking on 
public datasets of kinase–drug binding-affinity measurements, we 
found that KDBNet achieved more accurate predictions than exist-
ing models that used only 1D or 2D representations of proteins and 
drugs. Our experiments also indicated that KDBNet’s uncertainty 
estimates were largely consistent with respect to prediction errors, 
meaning predictions with lower uncertainty are often more accu-
rate. Furthermore, we found the uncertainty estimates were also 
well-calibrated, providing interpretable confidence intervals for indi-
vidual predictions. Finally, we extended KDBNet into a Bayesian opti-
mization (BO) framework, showcasing its capability for data-efficient 
active learning and accelerated exploration of strong-binding  
kinase–drug pairs.

assays, it is still infeasible to exhaustively measure compound-target 
binding activities because of the vast chemical space.

Machine learning (ML) methods have emerged as alternative 
solutions to efficiently map compound–protein interaction profiles6. 
Early studies included bipartite graph-based methods that framed 
the prediction problem as a recommendation system-like task7–11. 
These methods computed the similarity between compounds or 
proteins on the basis of simple features like molecule fingerprints or 
sequence-alignment scores, enabling the prediction of new protein–
drug interactions on the basis of known, similar proteins and drugs. 
With recent advancements in deep learning, a series of studies12–16 
leveraged deep neural networks to automatically learn features from 
raw compounds and protein representations in a fully data-driven 
way, also known as end-to-end learning. Commonly used data rep-
resentations include one-dimensional (1D) features such as protein 
sequences and molecule simplified molecular-input line-entry system 
(SMILES) strings12,13. Recent approaches indicated that incorporating 
two-dimensional (2D) features, including molecular graphs and pro-
tein contact maps, enhanced prediction accuracy14–17. Although the 
compound–protein binding is, in essence, a physicochemical process 
in the three-dimensional (3D) space, there remains a paucity of studies 
that incorporate 3D structure information to enhance protein–drug 
binding prediction, in part because of the scarcity of protein structure 
data and the absence of predictive models that effectively use 3D 
structure data. Fortunately, for kinases, the data bottleneck is less 
pronounced owing to their biological significance. Kinases are one of 
the best-represented protein families in the Protein Data Bank (PDB) 
database18, with a rapidly growing number of solved kinase struc-
tures19,20. In parallel, recent progress in graph deep learning offers 
promising avenues for effectively modelling 3D protein structures21–23. 
Jointly, there are great opportunities and pressing needs to develop 
new methods that integrate 3D structure information to improve 
predictions of kinase–drug binding affinity.

The primary importance of ML approaches for compound–protein  
binding prediction is to accelerate the discovery of compounds or 
targets. With an accurate ML predictive model, virtual screening can 
be performed by applying the model to generate hypotheses about 
binding activities, allowing the selection of candidates with the 
highest predicted activities for further validation. However, these 
data-driven methods are susceptible to inherent noise and bias in the 
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Fig. 1 | Overview of KDBNet. KDBNet is a neural network that integrates protein 
3D structure and compound 3D structure to predict compound–protein binding 
affinity. KDBNet derives a set of features, including sequence (seq), evolutionary 
representations and 3D-invariant geometric features, on the basis of the input 3D 
structure and uses a GNN to learn structure-aware representations of a protein. 

For the input compound, KDBNet uses a 3D-equivariant GNN to directly learn 
structure representations from the compound’s coordinates in the 3D space. 
The representations of the input protein and are then used to predict the binding 
affinity as well as the uncertainty of the prediction.
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Results
Overview of KDBNet
KDBNet is a deep learning model that integrates 3D structures to predict 
binding affinities between kinases and small-molecule compounds 
(Fig. 1). KDBNet receives 3D structures of proteins and compounds and 
represents them as two graphs: the graphs’ nodes are protein residues 
or molecule atoms, and the edges encode residue contacts or atom 
distance. A set of features, which collectively describe the structural, 
evolutionary, biophysical and chemical properties of protein residues 
or chemical atoms, are also derived for each node and edge in the pro-
tein and molecule graphs. Next, KDBNet uses GNNs to learn structure 
representations of the input kinase and compound, reflecting the spa-
tial organization and topological neighbourhood of the 3D protein and 
molecule structures. The learned representations are then combined to 
predict the binding affinity through another fully connected (FC) neural 
network. In addition to the binding-affinity prediction, KDBNet also 
associates each of its predictions with an uncertainty estimate, quan-
tifying its confidence about the prediction. KDBNets achieves this by 
training an ensemble of models and estimating the uncertainty using 
the variance of individual models’ predictions.

Accurate prediction of kinase–drug binding affinity
We first assessed KDBNet’s performance in predicting kinase–drug 
binding affinity using two public datasets of experimental measure-
ments of kinase–compound binding affinity, Davis27 and KIBA28, which 
were widely used to benchmark previous methods10,12,15–17. We created 
three evaluation settings to simulate out-of-distribution scenarios 
in which the training and test sets do not share any drugs or proteins  
(Fig. 2a and Supplementary Notes 1.1 and 1.2). We compared KDBNet 
with several state-of-the-art methods for predicting kinase–drug 
binding affinity, including three deep-learning-based methods12,15,16, 
a GP-based method17 and a kernel-based method29. These baseline 
methods rely solely on 1D and 2D representations or pairwise similari-
ties of compounds and proteins, without incorporating 3D structural 
information (Supplementary Note 1.3).

The evaluation results (Fig. 2 and Supplementary Fig. 1) indicated 
that KDBNet consistently outperformed other methods across several 
metrics, including Pearson correlation, Spearman correlation and 
mean squared error (MSE; one-sided rank test P < 10−3). These improve-
ments held across various split settings. The enhancements achieved by 
KDBNet also underscored the efficacy of end-to-end feature learning in 
comparison to methods (for example, GP) that rely on precomputed, 
fixed feature embeddings. Similar observations were made when apply-
ing KDBNet to the larger KIBA dataset, where it surpassed the baseline 
methods and even outperformed two recently developed methods that 
used protein language model embeddings30 or contrastive learning 
strategies31 (Extended Data Fig. 1).

The improvements of KDBNet primarily stem from its direct mod-
elling of 3D structures of proteins and molecules in the neural network. 
This was confirmed by our ablation study, in which 3D structure data of 
either the input protein or drug were dropped (Fig. 2c). Compared to 
baselines that consider only 1D or 2D representations of proteins and 
compounds, the 3D structure data and structure-derived geometric 
features in KDBNet (Supplementary Fig. 2) provided more explicit 
information related to the binding activity, which better respects the 
3D physical symmetries of binding activities that might not be fully 
reflected by the 1D or 2D features. Even compared to recent methods 
that use the 3D protein–compound binding complex structure as input 
(CNN3D32,33, GNN3D34 and SIGN35) on the PDBbind database36, KDBNet 
achieved performance comparable to these complex-based baselines 
(Fig. 2d and Supplementary Fig. 3) and substantially higher than base-
lines that used non-3D input (DeepDTA and GraphDTA; one-sided 
rank test P < 10-3). It is noteworthy that complex-based methods had 
an advantage in this comparison, as they can capture the interaction 
features from the complex structure. Although slightly superior in 

prediction performance, those complex-based methods32–35,37–41 are 
constrained by the availability of binding complex structures. In con-
trast, KDBNet achieved comparable prediction performance using 
separate 3D structures, which are more readily accessible, making it 
suitable for numerous tasks such as virtual drug screening for which 
complex structures between novel targets and compounds are rarely 
available.

Overall, these results demonstrated that by incorporating 3D 
structure data and leveraging geometry-aware deep learning, KDBNet 
made clear performance improvements in kinase–drug binding predic-
tion compared to several existing methods and was able to generalize 
to predictions for unseen proteins, unseen drugs or both.

Informative and calibrated uncertainty estimation
One immediate application of an accurate ML model for protein– 
compound binding-affinity prediction is using it to generate new 
hypotheses, such as prioritizing promising compounds, to assist drug 
discovery and drug repurposing. From a practical perspective, in addi-
tion to predicting affinity, it is also desirable that the model can pro-
vide associated uncertainty estimates, allowing researchers to assess  
the likelihood of hypothesis success and allocate experimental efforts 
more effectively. Unlike many previous deep learning methods that only 
predict a point estimate of binding affinity while overlooking uncertain-
ties in the data or model12,15,16, KDBNet goes a step further by providing 
an uncertainty estimate for each affinity prediction (Methods).

First we aimed to investigate whether KDBNet’s uncertainty esti-
mate is indicative of prediction accuracy. Ideally, the model’s uncer-
tainty would be correlated with its prediction error, and predictions 
with lower uncertainty would have lower prediction errors. We assessed 
KDBNet’s uncertainty quantification on the Davis dataset. We ranked 
all of KDBNet’s predictions by their associated uncertainty estimates 
(Supplementary Note 1.4) and observed that there was a consistent 
trend for KDBNet’s predictions with lower uncertainty to exhibit lower 
prediction errors across various split settings (Fig. 3a; average Spear-
man’s correlation ρ̄ = 0.98). Compared to the two GP-based methods, 
GP and GP-multilayer perceptron (GP-MLP)17, KDBNet achieved much 
lower mean absolute errors (MAEs) across different uncertainty per-
centiles (Fig. 3a) and higher correlations between the estimated uncer-
tainty and prediction errors (Fig. 3b and Supplementary Fig. 4a). These 
indicated that KDBNet’s uncertainty estimates were correctly ranked 
with respect to prediction errors, and its predictions were highly accu-
rate when it had a low level of uncertainty.

The previous evaluation confirmed that KDBNet’s uncertainty 
estimates provided indicative ranking. We now examined whether the 
magnitude of these uncertainty estimates was statistically meaningful. 
Models that are over-confident or under-confident usually produce 
uncertainty estimates that are either too small or large, rendering them 
challenging to interpret as credible intervals with statistical meaning. 
This issue is known as miscalibration in uncertainty quantification42. 
Ideally, we desire well-calibrated uncertainty estimation from the 
model, meaning, for instance, that if the model predicts a 95% confi-
dence interval, we anticipate the true values to fall within the interval 
95% of the time. We computed the miscalibration area26,42,43 to quantify 
the degree of uncertainty calibration, which is defined as the area 
between the model’s calibration curve (Supplementary Note 1.5) and 
the diagonal line representing a perfectly calibrated model (Fig. 3c).  
A lower miscalibration area signifies superior calibration. We noted 
that KDBNet’s calibration curves closely resembled the ideal diagonal 
curve (Fig. 3d), resulting in substantially lower miscalibration areas 
than those observed with GP-based methods (Fig. 3e and Supplemen-
tary Fig. 4b). Additionally, KDBNet’s recalibration algorithm (Meth-
ods) effectively pushed the calibration curves closer to the diagonal 
and reduced the miscalibration area (Fig. 3d,e and Supplementary  
Fig. 4b; one-sided rank test P < 10−3). These results indicated that KDB-
Net’s uncertainty estimates were calibrated and scaled with errors.
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Together, these two sets of experiments demonstrated that the 
uncertainty estimates of KDBNet were both accurate with respect to 
prediction errors and well-calibrated. The accurate quantification 
of uncertainty holds important implications for iterative ML-guided 
experiment design for which the uncertainty estimates can guide 
data acquisition and candidate prioritization, as we illustrate in the 
next section.

Uncertainty-guided, data-efficient active learning
Having validated that KDBNet provides informative and calibrated 
uncertainty estimation, we set out to assess the utility of uncertainty 

in ML-guided discovery. The first application is active learning, for 
which the objective is to strategically select training samples to achieve 
improved prediction performance with fewer training data. Analogous 
to human experts who rely on intuitive confidence to acquire and test 
new samples, KDBNet used its estimated uncertainty for iterative train-
ing and selection (Fig. 4a). We initiated the training of KDBNet using a 
random 1% subset of the KIBA training data. In each subsequent round, 
KDBNet predicted binding affinities and uncertainties for the remaining 
training data and then ranked these samples (drug–protein pairs) on 
the basis of the predicted uncertainty from highest to lowest (referred 
to as the ‘explorative’ strategy). Two other ranking strategies (Methods) 
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Fig. 2 | KDBNet achieves accurate prediction of kinase–drug binding affinity. 
a, Four train–test split evaluation settings in which the model is evaluated on 
data of unseen drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or 
both (‘both-new split’) and unseen proteins with low (<50%) sequence identity 
(‘seq-id split’). b, Comparison of KDBNet prediction performance with KronRLS, 
DeepDTA, GraphDTA, DGraphDTA and GP on the four train–test split settings. 
c, Comparisons between KDBNet variants that use or do not use 3D structure 
data on the both-new split. When 3D drug structure is not used, the 2D molecule 
graph parsed from a SMILES string is used as the representation of the input 
drug, and no 3D geometric features are used in the molecule GNN. When 3D 
protein structure is not used, the sequence is used as the representation of 
the input protein, and the protein GNN is replaced by a convolutional neural 
networ. The full model use both 3D drug and protein structures. d, Comparisons 

between KDBNet and three baseline methods that receive 3D binding complex 
structure as input (GNN3D, CNN3D and SIGN) on the PDBbind dataset. KDBNet 
differs from them in that it only uses separate 3D drug and protein structures 
as input: the baseline methods thus have an advantage as they are aware of the 
protein–compound docking structure through the input complex. Results of 
methods that receive non-3D input (GraphDTA and DeepDTA) are also shown 
for comparison. Asterisks indicate the statistical significance (one-sided Mann–
Whitney U rank test P = 0.00397 for both GraphDTA and DeepDTA) that KDNBet’s 
performance is higher than the baseline’s performance over n = 5 random train/
test splits. Bar plots in b–d represent the mean ± s.d. of the evaluation results on 
five random train/test splits. Pearson correlation and MSE were computed using 
the predicted and true pd values.
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were considered for comparison: (1) ‘greedy’, which prioritizes samples 
with higher predicted affinity, and (2) ‘random’, which ranks all samples 
uniformly at random.

We found that KDBNet achieved efficient active learning by using 
its estimated uncertainty to acquire new training samples, reaching 
performance on par with full data training by using only 50% of the data 
(Fig. 4b). Noticeably, KDBNet’s performance was improved by a large 
margin in the initial rounds compared to the random strategy, high-
lighting the efficiency of uncertainty-based active learning compared 
to brute-force random searches. Furthermore, in contrast to the greedy 
strategy that continually seeks samples with the highest affinities, KDB-
Net’s explorative strategy focused on samples that could diversify the 
training set and best address the model’s uncertainties, thereby exhib-
iting faster rates of performance improvement and higher efficiency 
gains (performance improvement over random selection) across all 
active learning stages (Fig. 4b,c). These indicated that KDBNet, ena-
bled by uncertainty quantification, achieved sample-efficient active 
learning for data acquisition and model training, a valuable capability 
in model-guided experimental design where an exhaustive search is 
costly or infeasible.

Bayesian optimization for rapid exploration and exploitation
As another application of uncertainty estimation, we integrated KDB-
Net with BO for the exploration and exploitation of strong-binding 
kinase–drug pairs. Although the previous active learning experi-
ments acquired new samples solely on the basis of uncertainty for 
diversifying the training set, BO provides a principled framework to 

combine both predicted values and estimated uncertainties to guide 
data acquisition more effectively, enabling us to prioritize candidates 
in high-confidence, high-desirability regions (‘exploitation’) or probe 
potentially high-desirability regions, although with less confidence 
(‘exploration’), as illustrated in Fig. 4d. In BO, a common way to combine 
predicted scores and uncertainties is through an acquisition func-
tion called the upper confidence bound (UCB) with the form UCB(x) =  
score(x) + β × uncertainty(x), where x represents a kinase–compound 
pair and constant β controls the trade-off between exploitation and 
exploration.

High-recall exploration. We first evaluated KDBNet’s exploration 
capability using the Davis dataset. The objective was to identify kinase–
compound pairs with the strongest binding affinity by observing the 
ground-truth binding affinities of only a small subset of pairs. We 
started the data acquisition by training KDBNet on 1% of the kinase–
compound pairs (~100 pairs). Subsequent steps followed the active 
learning framework but incorporated UCB as the score function, 
defined as UCB(x) = μ(x) + βσ(x), where β = 1, and μ(x) and σ(x) are the 
binding affinity and associated uncertainty predicted by KDBNet, 
respectively (Methods). Intuitively, this score function promotes sam-
ples with high binding affinity and high uncertainties. Because our goal 
was to identify strong-binding pairs as comprehensively as possible, we 
aimed to explore ‘good’ regions that had some variability (uncertainty), 
as this increased the chances of discovering even better samples. We 
observed that KDBNet yielded clear improvements compared to the 
random exploration and GP baselines, as quantified by the recall of 
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Fig. 3 | KDBNet provides accurate and calibrated uncertainty estimation. 
a, Prediction errors of KDBNet, GP and GP-MLP, measured as MAE, at different 
cutoffs of uncertainty percentiles. The x axis represents the sorted uncertainty 
such that the 100% percentile is the lowest uncertainty (highest confidence).  
b, Spearman correlation between the estimated uncertainty and the prediction 
error measured in MAE on the both-new test set. c, Calibration curve. For a 
confidence interval of confidence level e (0 ≤ e ≤ 1), the curve shows the expected 
fraction and observed fraction of test points that fall within that interval. The 
diagonal line corresponds to the calibration curve of a perfectly calibrated 
model. The miscalibration area, defined as the area between a curve and the 

diagonal line, is used to quantify the uncertainty calibration, and lower values 
indicate better calibration. d, Calibration curves of KDBNet, KDBNet without 
recalibration, GP and GP-MLP on test sets. e, Miscalibration area of KDBNet, GP 
and GP-MLP on the new-protein test set. Solid lines in curve plots represent the 
mean value of five independent trials, and error bands indicate the s.d. MAE 
values were measured in pKd values. Bar plots in b and e represent the mean ± s.d. 
of the evaluation results on five random train/test splits. Error bands in a and 
c depict mean ± s.d. calculated over five random train/test splits. Recalib., 
recalibration.
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top-500 (about the top 1%) kinase–compound pairs as a function of 
the number of pairs explored. Specifically, KDBNet retrieved 50% of 
the top-500 pairs from the pool of 10,000 pairs after exploring only 
1,000 pairs (Fig. 4e). This experiment highlighted KDBNet’s effective-
ness in accelerating the exploration and discovery of strong-binding 
kinase–compound pairs in the BO framework.

High-confidence exploitation. Next we performed an analysis to 
evaluate KDBNet’s exploitation capability: that is, how effectively it pri-
oritized top kinase–compound pairs with strong binding affinities. This 
mirrored real-world biological discovery processes in which research-
ers typically focus on only a handful of top compounds or proteins for 
further validation instead of testing the entire unexplored space. We 
simulated an experiment on the Davis dataset where the model was 
tasked with prioritizing kinase–compound pairs with the strongest 
binding affinity from the test data. For KDBNet, we defined the score 
function as the lower confidence bound (LCB): LCB(x) = μ(x) − βσ(x) 

with β = 1. Compared to UCB, LCB introduces a negation sign before 
the uncertainty term, prompting KDBNet to prioritize pairs with strong 
binding affinity and low uncertainty. Figure 4f presents the binding 
affinities, measured in Kd (dissociation constant) values, of the top 10 
kinase–drug pairs acquired by different methods, where lower Kd values 
indicate stronger binding affinities. We found that, on average, KDBNet 
retrieved pairs with stronger binding affinity, outperforming other 
baseline methods across all three split settings. KDBNet successfully 
prioritized kinase–drug pairs with a mean Kd value lower than 0.5 μM 
for both the new-protein and new-drug split settings and a mean Kd of 
3.5 μM for the most challenging both-new split setting. For reference, 
a Kd value lower than 3 μM was considered a very strong binding by the 
original study of this dataset27. As the binding-affinity datasets often 
contain inherent noise or technical errors, ML models can be greatly 
affected and generate uncertain predictions. Consequently, top predic-
tions from uncertainty-agnostic models often include false positives. In 
contrast, KDBNet’s estimated uncertainty offers a further dimension of 
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Fig. 4 | Leveraging uncertainty for active learning, exploration and 
exploitation. a, Schematic visualization of the active learning process, which 
consists of several rounds of model training, data acquisition and model 
evaluation. b, Active learning performance in Pearson correlation on the KIBA 
both-new test set at different rounds. The explorative sampling is compared 
to the greedy and random sampling strategies. c, Efficiency gain of the 
explorative and greedy samplings over the random sampling, defined as the 
relative improvement in Pearson correlation. d, Schematic illustration of data 
acquisition on the basis of KDBNet’s prediction and uncertainty. One can exploit 
regions with high-confidence, high-desirability samples or explore potentially 

high-desirability regions with less model confidence. e, Exploration using 
KDBNet and UCB acquisition function with a BO framework. Curves represent 
the performance trajectory, measured by the percentage of top-500 binding 
affinities found as a function of the number of kinase–compound pairs explored 
in the Davis dataset. f, Exploitation using KDBNet and LCB acquisition function 
with BO. True Kd values of the top 10 kinase–drug pairs prioritized by each model 
are shown. A lower Kd value means a stronger binding affinity. Curve plots in b, 
c and e depict the mean values over five independent trials in solid lines with 
s.d. in error bands. Bar plots in f represent mean ± s.d. of the results for five 
independent trials of top-10 acquisition (n = 50).
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information, complementing mean-affinity predictions and facilitating 
the prioritization of lead candidates with high confidence.

Discussion
We have presented KDBNet, a geometric deep learning algorithm 
for predicting kinase–drug binding affinity. KDBNet integrates the 
3D structure data of both kinases and drugs and models them using 
structure-aware GNNs to predict binding affinity. Although we focused 
on the binding activities of kinases in this work primarily because of 
their important pharmacological implications1,44, KDBNet’s principles 
can be extended to other proteins as well. Our experiments have dem-
onstrated that KDBNet outperformed several existing deep learning 
methods in predicting kinase–drug binding affinity. Additionally, KDB-
Net provides well-calibrated uncertainties that scale with prediction 
errors, offering statistically indicative confidence intervals. We further 
showcased KDBNet’s practical utility in both active learning and BO 
frameworks for prioritizing kinase–drug pairs with strong binding 
affinities. In future work, KDBNet’s performance for binding prediction 
and uncertainty quantification can be enhanced by integrating recent 
techniques such as contrastive learning on low-coverage data31 (Supple-
mentary Note 1.6), computation-efficient uncertainty-quantification 
algorithms26 (for example, conformal predictions45,46) and new calibra-
tion techniques42,45,47,48.

We note that the availability of kinase and compound structures 
is not a critical limitation of KDBNet, as the compound structures 
are largely available in PubChem49, the number of kinase structures 
is increasing in PDB20,50, and high-quality predicted structures from 
AlphaFold21 can be used as reasonable proxies for understudied 
kinases with no solved structures (Supplementary Note 1.7). We 
also found that replacing the PDB structures input to KDBNet with 
AlphaFold-predicted structures resulted in comparable prediction 
accuracy (Supplementary Fig. 5). Another line of recent studies exam-
ined binding-affinity prediction on the basis of 3D protein–compound 
binding complex32–35,37–41. The problem setup considered in this work, 
which was also used in several concurrent studies51,52, is less restricted 
by data availability than those works, as KDBNet only requires separate 
structures as input rather than the binding complex.

KDBNet’s integration of uncertainty estimation is particularly 
valuable for biological discovery processes when data are limited 
and uncertainty is prevalent. ML-guided discovery can be affected by 
biases in the ML model stemming from data noise, small sample size 
and the model’s intrinsic uncertainty. KDBNet’s uncertainty quantifi-
cation and recalibration serve as crucial safeguards against biased or 
over-confident model predictions, which are particularly useful for 
guiding both exploitation and exploration in virtual drug screening, 
allowing the prioritization of lead predictions for further validation 
and proposing data samples to explore previously uncharted regions 
or address model uncertainties. KDBNet creates an interactive cycle 
between computation and experiment to improve the ML model’s sam-
ple efficiency and success rate in drug screening53. We anticipate that 
KDBNet can facilitate the reliable and robust deployment of ML-guided 
drug discovery and lead to the identification of promising therapeutic 
candidates with higher precision and efficiency.

Methods
Structure and sequence data
Most protein kinases share a common structural fold with two lobes 
connected by a flexible region that forms the adenosine triphosphate 
and substrate binding site. The activation loop in this region, typically 
in a length of 20–30 residues, is crucial for binding activity. We use 
the pocket structure, rather than the entire structure of the kinase, as 
the structure input of a kinase to KDBNet because (1) residues in the 
pocket directly interact with the drug molecule, largely determining 
the binding activity; and (2) structure elements outside the pocket—
that is, the N- and C-terminal lobes—are relatively conserved across 

different kinases and may not directly coordinate the binding as they 
are relatively far from the binding sites. Several structure conforma-
tions may exist for the same protein kinase in the RCSB PDB database54 
because the loop can fold into catalytically active and inactive states; 
we thus first selected the representative PDB structure for a kinase 
following a recently developed nomenclature for the active and inac-
tive states of protein kinases50,55. To extract the binding pocket, we 
used the KLIFS database20 that defines a pocket formed by 85 resi-
dues that cover the binding sites in a wide range of kinase inhibitors 
by analysing around 1,200 kinase-ligand binding crystal structures 
(Supplementary Note 1.1). In total, we obtained the pocket structure of  
283 kinases.

The sequence of amino acids (AAs) of the 85 residues in the binding 
pocket of a kinase was obtained from its reference protein sequence 
in UniProt56. We did not use the associated sequence in the PDB file 
because it may contain missing or inaccurate residues. To do this, we 
mapped the PDB pocket sequence to the full UniProt sequence using 
pairwise local alignment (score matrix: BLOSUM62, gap open penalty: 
10, gap extend penalty: 0.5). We successfully mapped 281 of 283 struc-
tures to UniProt sequences.

The 3D structure data in the structure-data format (SDF) of com-
pounds in the kinase–drug binding datasets (described below) were 
downloaded from the PubChem database57.

Kinase–drug binding datasets
For evaluation, we used two public datasets of experimental measure-
ments of binding affinity, Davis27 and KIBA28 (Supplementary Note 1.2), 
which were widely used to benchmark previous methods10,12,15–17. The 
Davis study contains binding-affinity measurements of kinase–com-
pound pairs, represented by Kd values ranging from 0.1 to 10,000 nM, 
where a lower Kd value indicates stronger binding affinity. The KIBA 
dataset derived a score to integrate three bioactivity values: Ki (inhibi-
tory constant), Kd and IC50 (half maximal inhibitory concentration). We 
removed from both datasets compounds and kinases that do not have 
3D structures in the PDB and PubChem databases. We successfully 
retrieved the 3D structures for nearly all compounds and 50%–70%  
of proteins in Davis and KIBA (Supplementary Tables 1,2). We expect 
the availability of kinase structure data will keep increasing (see  
discussions in Supplementary Note 1.7). Raw Kd values in the Davis 
dataset were transformed to pKd (binding affinity) values, defined as 
pKd = −log10(Kd/109) , to facilitate numerical stability during model 
training12,41. We created four train–test split settings (Supplementary 
Note 1.2) to evaluate prediction performance on data of unseen drugs 
(‘new-drug split’), unseen proteins (‘new-protein split’) or both 
(‘both-new split’) and unseen proteins with low (<50%) sequence iden-
tity (‘seq-id split’). To compare KDBNet with baseline methods that 
predict binding affinity from binding complex data, we additionally 
created another benchmark task using the PDBBind dataset36. Further 
details about the creation of benchmark datasets are provided in Sup-
plementary Note 1.2.

Representation of protein structure
The 3D PDB structure of a protein is given as 3D coordinates of the 
backbone 𝒞𝒞 = 𝒞ci ∈ ℝ3}Ni=1, where N is the number of residues, ci is the 
coordinate of the Cα atom of the ith residue, and ℝ is the set of real 
numbers. We represent the protein structure as a graph 𝒢𝒢p = (𝒱𝒱p, ℰp), 
where nodes 𝒱𝒱p are residues and edges ℰp indicate residue contacts. In 
this work, we define a pair of residues as being in contact if the Euclidean 
distance between their Cα atoms is within 8 Å (ref. 58).

To make the structure graph representation more informative, 
we associate every node or edge in the graph with a feature vector. 
Intuitively, we want our node and edge features to be (1) invariant 
to rotation and translation so the features not depend on the place-
ment, orientation and centring of the PDB structure inputs; and (2) 
informative about the local structure, as unique structural motifs 
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may lead to distinct binding affinities. Here, we derive a set of invari-
ant spatial features following a previous study59. We further extend 
their approach to include other features that encode sequence and 
evolutionary properties of residues. The constructions of node and 
edge features are described below.

Node features: For every residue, we build three types of features: 
(1) sequence feature, (2) geometric feature and (3) evolutionary feature. 
The sequence feature is a one-hot representation to indicate  
the AA type (of the total 20 possible AAs) of the residue. For  
geometric features, we compute the three dihedral angles (ϕi, ψi, ωi) 
on the basis of the backbone coordinates of residue i. These  
angles are encoded as a vector of cosine and sine values: 
vi = (sinϕi, sinψi, sinωi, cosϕi, cosψi, cosωi) . Lastly, for evolutionary 
features, we ran ESM60, a recent protein language model trained on 250 
million sequences, to generate the embedding for each residue. The 
ESM embeddings have been shown to encode structural, functional 
and evolutionary properties of the protein and can improve a wide 
range of protein-related prediction tasks, such as function and struc-
ture prediction60,61. Those three features are concatenated together as 
the node feature for a residue.

Edge features: To characterize the local structure surrounding 
residue i, we create edge features that describe the spatial relation-
ships between residue i and its neighbours (residues j’s). In particular, 
we compute an orientation matrix Oi that defines the local coordinate 
frame for residue i59:

Oi = [bi,ni,bi × ni], where uuui =
ccci−ci−1
∥ci−ci−1∥

,

bi =
ui−ui+1

∥ui−ui+1∥
, ni =

ui×ui+1

∥ui×ui+1∥
,

(1)

where ci ∈ ℝ3 is the coordinates of residue i. For an edge (i, j), we con-
sider an edge representation that reflects the local distance, direction, 
orientation and relative positions59:

eij = (RBF(∥ cj − ci ∥), OT
i

cj − ci
∥ cj − ci ∥

, q(OT
i
Oj), Epos(cj − ci)) , (2)

The edge feature eij has four components: (1) The first part, 
RBF(∥cj − ci∥), is the distance encoding embedded into radial basis 
functions (RBFs). We use 16 RBFs with centres evenly spaced between 
0 and 8 Å. (2) The second term is the direction encoding that corre-
sponds to the relative direction of cj in the local frame of residue i. (3) 
The third term is the orientation encoding of the quaternion represen-
tation q(⋅) of the spatial rotation matrix OT

i
Oj . (4) The last term, 

Epos(cj − ci), encodes the relative distance and direction between resi-
dues i and j. We used the relative positional encoding62, an extension 
of the positional encoding introduced in the Transformer model63. The 
relative positional embedding represents the vector pointing to cj from 
ci through a sinusoidal function. We keep the sign of the distance vector 
c j − c i because protein sequence structures are generally 
asymmetric.

Representation of molecule structure
KDBNet also incorporates the 3D molecular structure of compounds 
to predict binding affinities. Similarly, given the 3D coordinates of 
atoms in the molecule, we represent the molecule structure as a graph 
𝒢𝒢d = (𝒱𝒱d, ℰd) where nodes 𝒱𝒱d are atoms of the molecule and edges ℰd are 
defined for a pair of atoms if their distance is less than 4.5 Å, following 
ref. 34. As molecules do not have a natural backbone as in proteins, we 
do not derive the angle, orientation and direction features for atoms 
as we did in the protein graph. Instead, we directly use the 3D coordi-
nates of atoms or edge vectors as node features and edge features, 
allowing the GNN in KDBNet to learn meaningful geometric representa-
tions of the molecule in a data-driven way. The node and edge features 
of the molecule structure are detailed below.

Node features: For every atom, we include a vector-valued feature 
and a scalar-valued feature as its node feature. The vector feature is the 
atom coordinates ci ∈ ℝ3. The scalar feature is a list of 66 descriptors 
of chemical properties15,16,41, including the atom type, bond degree, 
number of hydrogen bonds, number of implicit hydrogen bonds and 
whether the atom is aromatic (Supplementary Table 3).

Edge features: For an edge between atoms i and j, we also create a 
vector feature and a scalar feature. The vector feature is the unit vec-
tor in the direction of cj − ci, and the scalar feature RBF(∥cj − ci∥) is the 
pairwise distance embedded into 16 Gaussian RBFs with centres evenly 
spaced between 0 and 4.5 Å.

KDBNet model architecture
The primary components of KDBNet are two GNNs to learn structure 
representations from the input protein and compound, respectively. 
The representations produced by the two GNNs are then passed to a 
FC neural network to predict the binding affinity between the input 
protein and compound.

Protein GNN. For the protein GNN, we use Graph Transformer64, an 
effective GNN architecture adapted from the vanilla Transformer 
model for text data63, to model the kinase structure. Given the protein 
structure graph 𝒢𝒢p = 𝒞𝒱𝒱p, ℰp}, a Graph Transformer model builds L graph 
convolution layers. The ith layer is a non-linear transformation function 
that maps node i’s embedding h(ℓ−1)

i
∈ ℝdℓ−1  to h(ℓ)

i
∈ ℝdℓ  for i ∈ [N], 

ℓ ∈ [L], where dℓ is the embedding’s dimension at layer ℓ, N is the number 
of nodes in 𝒢𝒢p and L is the total number of layers in the GNN. In particu-
lar, when ℓ = 0, the embedding h(0)

i
∈ ℝd0  is just the node feature of 

residue i. In addition, we have edge features of each edge (i, j) denoted 
as eij ∈ ℝde, where de in the dimension of input edge features.

Formally, in the ℓ-th Graph Transformer layer of the GNN, the hid-
den representation h(ℓ)

i
 is updated by performing a message passing 

between node i and its neighbours

h(ℓ)
i

= W(ℓ)
1 h(ℓ−1)

i
+ ∑

j∈𝒩𝒩𝒩i)
αi, j (W(ℓ)

2 h(ℓ−1)
j

+W(ℓ)
3 eij) , (3)

where 𝒩𝒩(i) is the set of neighbour nodes of node i in the graph, 
W(ℓ)
1 ∈ ℝdℓ−1×dℓ, W(ℓ)

2 ∈ ℝdℓ−1×dℓ  and W(ℓ)
3 ∈ ℝde×dℓ  are learnable parameters 

of the GNN, and αi,j is the attention weight used to aggregate messages. 
The weights αi,j are computed using self-attention:

αi,j = softmax ([(W(ℓ)
4 h(ℓ−1)

i
)
⊤
(W(ℓ)

5 h(ℓ−1)
j

+W(ℓ)
3 eij)] /√dℓ ) , (4)

where W(ℓ)
4 ∈ ℝdℓ−1×dℓ and W(ℓ)

5 ∈ ℝdℓ−1×dℓ are learnable parameters and 
dℓ is the length of vector h(ℓ)

i
.

We stack three Graph Transformer layers and use the Leaky ReLU 
activation function65 between two adjacent layers. After the final layer, 
we use the global add pooling operation as the readout function to 
aggregate all node representations into a summary representation 
hp ∈ ℝ256 of the input protein: hp = ADD(𝒞h(L)

i
|i = 1,… ,N }).

Molecule graph neural network. Given the molecule structure graph 
𝒢𝒢d = 𝒞𝒱𝒱d, ℰd}, we also use a GNN to learn the representation for the input 
molecule. Recall that in graph 𝒢𝒢d, we associate each node and edge 
with both geometric vector features (for example, 3D coordinates) 
and scalar features (for example, descriptors of chemical properties). 
We thus use a specialized layer, geometric vector perceptrons (GVPs)22, 
to build the molecule GNN. The key advantage of GVP is that it has 
special consideration for 3D data in design (Supplementary Note 1.8) 
and allows KDBNet to learn structure representations directly from 
the raw atom coordinates in ℝ3 without requiring the construction of 
features invariant to rotations and translation, such as relative direc-
tion embeddings. In the GNN, the GVP layer can be used as a drop-in 
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replacement for MLPs, such as W(ℓ)
1 ,W(ℓ)

2 ,W(ℓ)
3  in the protein GNN  

(equation (3)).
Formally, we use the tuple vi = (vv

i
,vs

i
) to denote the node feature 

of atom i (the superscripts v and s stand for vector and scalar, respec-
tively), where vv

i
∈ ℝμ×3 is a list of vector features in ℝ3 and vs

i
∈ ℝν is a 

list of scalar features (μ and ν are the number of vector features and 
scalar features, respectively). The edge feature eij = (ev

ij
, es

ij
) of edge (i, j) 

has similar meaning. The molecule GNN transforms the node and edge 
features through L graph convolution layers to obtain the representa-
tion of the input molecule. Specifically, in the ith layer, each node 
aggregates ‘messages’ (embeddings) from neighbouring nodes and 
edges and then updates its own representations:

h(ℓ)
i

= h(ℓ−1)
i

+ g(h(ℓ−1)
i

+ 1
|𝒩𝒩(i)| ∑

j∈𝒩𝒩𝒩i)
m(ℓ)

ji
) , (5)

where g(⋅) is a sequence of three GVP layers, 𝒩𝒩(i) is the set of neighbour 
nodes of node i in 𝒢𝒢d, h(ℓ)

i
 is the embedding of node i in layer ℓ (in par-

ticular, h(0)
i

= vi is the node feature), and m(ℓ)
ji

 is the ‘message’ passed 
from node j to node i, computed using another sequence of GVP layers: 
m(ℓ)

ji
= g(concat(h(ℓ−1)

j
, eji)), where concat(⋅) is the concatenation opera-

tion of two embeddings. Similar to the protein GNN, after the final layer 
of the molecule GNN, we also apply the global add pooling operation 
to aggregate all node representations into a scalar representation 
hd ∈ ℝ128 of the input drug.

In addition to the molecule GNN, the GVP layers can also be used to 
build the protein GNN. As introduced above, the default architecture 
of the protein GNN was on the basis of the Graph Transformer layers 
as we found in our local tests that GVP- and Transformer-based pro-
tein GNNs lead to comparable prediction accuracy (Supplementary 
Fig. 5), but the latter took 50% less training time and GPU memory 
use. We thus chose Transformer layers as the default building blocks 
for the protein GNN. Nevertheless, for larger training sets that cover 
diverse protein families rather than only kinases, we expect GVP lay-
ers to be more effective for learning structure representations, as 
they are able to learn many other implicit geometric features that 
go beyond the manually defined features used in the Transformer- 
based GNN.

Prediction module, hyperparameter tuning and model training. We 
tuned the hyperparameters of KDBNet by performing a small-scale grid 
search using the training data, such that seven-eighths of the training 
data were used to train a model with a specific set of hyperparameters, 
and the remaining one-eighth of the data were used as the validation set 
to select the hyperparameters. The test split was not used for hyperpa-
rameter selection. We tested combinations of GNN layer dimensions 
from {64, 128, 256, 512, 1,024}, combinations of FC layer dimensions 
from {64, 128, 256, 512, 1,024}, the number of FC layers in {1, 2, 3} and 
the dropout rate in {0.1, 0.25, 0.5}.

By performing nested cross-validation on the training data, we 
decided to use three layers with sizes 128, 256 and 256 for the protein 
GNN and three layers with uniform size 128 for the molecule GNN, 
which were robust across different settings in our experiments. The two 
representations of protein and drug structures generated by the GNNs, 
hp and hd, are then projected to dimension 128 using two FC layers 
with sizes 1,024 and 128 and a dropout rate of 0.25. The two projected 
embeddings are then concatenated and passed to a two-layer FC neural 
network with sizes 1,024 and 512 and a dropout rate of 0.25, followed 
by a single scalar output as the predicted binding affinity between the 
input protein and drug.

The training objective of KDBNet is to minimize the MSE between 
the predicted binding affinity and the true affinity value. The model is 
trained using the Adam optimizer with a learning rate of 0.0005. We 
trained all models for 500 epochs.

Uncertainty quantification
We equipped KDBNet with an uncertainty-quantification module. This 
was achieved by training an ensemble of M independent model repli-
cates24, which has been widely demonstrated as an effective way to 
estimate uncertainty66. The M model replicates had the same neural 
network architectures and hyperparameters, but the learnable param-
eters were initialized with different random seeds. We set M = 8 in this 
work unless otherwise specified. Specifically, let ̂yk(xi) be a prediction 
given by the kth individual model, where xi represents the input kinase–
drug pair. KDBNet’s final prediction of binding affinity μ(xi) and its 
estimated uncertainty σ(xi) are given by the mean and standard devia-
tion (s.d.) of the individual model’s predictions:

μ(xi) =
1
M

M

∑
k=1

̂yk(xi), σ (xi)
2 = 1

M

M

∑
k=1

( ̂yk(xi) − μ(xi))
2 (6)

The uncertainty σ(x) estimated by KDBNet above is known as epis-
temic uncertainty. In the literature, uncertainties are often categorized 
into aleatoric uncertainty (data uncertainty due to inherent noise in 
observations) and epistemic uncertainty (model uncertainty due to 
uncertainty in parameters or predictions; Supplementary Note 1.9). 
In this work, we focus on estimating epistemic uncertainty, as many 
recent studies have demonstrated the utility of epistemic uncertainty 
for discovery in various domains, including biology17, chemistry67 
and healthcare68. Nevertheless, KDBNet can be extended to estimate 
aleatoric uncertainty by modifying the objective function from an MSE 
minimization to a maximum likelihood estimation24,69.

Active learning
We started training KDBNet on a random 1% subset of KIBA training 
data. At each subsequent round, KDBNet predicted binding affinities 
and uncertainties for the remainder of the training data and then 
ranked them on the basis of the score function s(x) = σ (x), where σ (x) 
is the predicted uncertainty for sample x (hereinafter referred to as the 
‘explorative’ strategy) and where a sample x represents an input kinase–
drug pair. We then added the top T samples with the greatest uncertain-
ties to the training set and retrained KDBNet from scratch with the 
expanded training set. In our experiments, we performed seven rounds 
of active learning. The number of samples to acquire (T) for each round 
was determined such that 10%, 20%, 30%, 40%, 50%, 75% and 100% of 
the training samples were used to retrain the model in each of the seven 
rounds, respectively. Two other types of score function s(x) were con-
sidered for comparison: (1) ‘greedy’, where samples with higher pre-
dicted affinity receive higher scores, s(x) = μ(x); and (2) ‘random’, where 
samples receive random scores, s(x) ≈ 𝒰𝒰𝒰0, 1), that is, the continuous 
uniform distribution between zero and one. The performance was 
evaluated on the ‘both-new’ test set.

Uncertainty recalibration
There are two widely used definitions of regression calibration in the 
literature: confidence-interval-based calibration42 and error-based 
calibration47. Under confidence-based calibration, a model is said to 
be well-calibrated if e% of its predictions fall in the e% predicted con-
fidence interval (0 ≤ e ≤ 1)42, whereas error-based calibration defines 
a well-calibrated model as one for which the uncertainty estimate of 
a prediction, in expectation, equals the prediction errors47. Several 
approaches have been proposed to recalibrate regression models42,47,48. 
The general idea is to learn a post hoc transformation function, which 
receives the model’s predicted uncertainties as input and outputs the 
transformed uncertainty estimates that would be better calibrated. In 
our method, we use a simple yet effective scaling approach47,70 to recali-
brate the uncertainty estimates. Specifically, we transform the model’s 
output (μ(xi), σ(xi)) to (μ(xi), rσ(xi)), where r is the scaling factor to be 
learned. Note that the model’s prediction of binding affinity μ (xi) does 
not change. To learn the scaling factor r, we introduce an optimization 
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problem in which the objective is to minimize the miscalibration area 
(Supplementary Note 1.5). The recalibration is a post hoc process, 
meaning the model’s predicted uncertainties are fixed and only r is 
optimized. As indicated previously42, the recalibration is performed 
on a held-out validation set that has not been used for model training. 
We use Brent’s method71 implemented in the SciPy package72 to solve 
this single-variable optimization.

Data availability
The two kinase–drug binding-affinity datasets, Davis27 and KIBA28, were 
curated by and available in the Therapeutics Data Commons bench-
mark73. The PDBbind dataset (v.2020) was downloaded from http://
www.pdbbind.org.cn/. The PDB codes of representative structures of 
kinases were obtained from the Kincore database50 (http://dunbrack.
fccc.edu/kincore/home). The binding pocket structure of each kinase 
was downloaded from the KLIFS database20 (https://klifs.net/). Full 
AA sequences of kinases were obtained from UniProt56 (https://www.
uniprot.org/). The 3D molecular structures were downloaded from 
PubChem57 (https://pubchem.ncbi.nlm.nih.gov/). Our processed ver-
sion of the binding-affinity datasets and the identifier list of kinases 
and drugs are available on our GitHub repository (https://github.com/
luoyunan/KDBNet).

Code availability
The source code of KDBNet is available at https://github.com/luo-
yunan/KDBNet and has been deposited to Zenodo74 at https://doi.
org/10.5281/zenodo.7959829. KDBNet was developed using Python 
v.3.9, PyTorch v.1.16, PyTorch Geometric v.2.2, RDKit (v.2022.03.2), 
NumPy v.1.23.4 and SciPy v.1.9.3.
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Extended Data Fig. 1 | Prediction performance evaluation on KIBA dataset. 
(a) Four train-test split settings of evaluation, where the model is evaluated on 
data of unseen drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or 
both (‘both-new split’), and unseen proteins with low (<50%) sequence identity 
(‘seq-id split’). (b) Comparisons of prediction performance of KDBNet with 
KronRLS, DeepDTA, GraphDTA, DGraphDTA, EnzPred, and ConPLex on the KIBA 
dataset using four train-test split settings. The performances of GP were not 

shown as it was not evaluated in the original study17 and it is computationally 
costly to run GP at the scale of KIBA dataset because of the high memory 
footprint of kernel computation. Performances were evaluated using three 
metrics, including Pearson correlation, Spearman correlation, and mean 
squared error (MSE) between predicted and true KIBA scores28. All bar plots 
represented the mean ± SD of evaluation results on five random train/test splits. 
Abbreviations: seq. id.: sequence identity.
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