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Calibrated geometricdeep learning
improves kinase-drug binding predictions
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Published online: 6 November 2023 Protein kinases regulate various cellular functions and hold significant
pharmacological promise in cancer and other diseases. Although

kinase inhibitors are one of the largest groups of approved drugs,

much of the human kinome remains unexplored but potentially
druggable. Computational approaches, such as machine learning, offer
efficient solutions for exploring kinase-compound interactions and
uncovering novel binding activities. Despite the increasing availability

of three-dimensional (3D) protein and compound structures, existing
methods predominantly focus on exploiting local features from
one-dimensional protein sequences and two-dimensional molecular
graphs to predict binding affinities, overlooking the 3D nature of the
binding process. Here we present KDBNet, a deep learning algorithm
thatincorporates 3D protein and molecule structure data to predict
binding affinities. KDBNet uses graph neural networks to learn structure
representations of protein binding pockets and drug molecules, capturing
the geometric and spatial characteristics of binding activity. In addition,
we introduce an algorithm to quantify and calibrate the uncertainties of
KDBNet’s predictions, enhancing its utility in model-guided discovery

in chemical or protein space. Experiments demonstrated that KDBNet
outperforms existing deep learning models in predicting kinase-drug
binding affinities. The uncertainties estimated by KDBNet are informative
and well-calibrated with respect to prediction errors. Whenintegrated
with a Bayesian optimization framework, KDBNet enables data-efficient
active learning and accelerates the exploration and exploitation of diverse
high-binding kinase-drug pairs.

% Check for updates

Proteins are vital drug targets for therapeutic purposes, but at present  inhibitors bind to conserved adenosine triphosphate (ATP)-binding
only11% of human proteome canbe targeted by drugs or smallmolecules,  pockets of kinases, leading to extensive target promiscuity*. Chemical
leavingalarge proportion to be explored for therapeuticopportunities’.  compounds that inhibit a single kinase are still rare despite significant
Agroupof proteins called kinaseis of particularinterestasdrug targets  research efforts devoted to target-based drug discovery’. Itis therefore
because of their tractability indrug development and diverse pharmaco-  crucialtomap out target binding profiles of kinase inhibitors to uncover
logical implications in various diseases>’. Protein kinases present high  new therapeutic effects and better predictand manage possible adverse
evolutionary conservationinsequence andstructure. Most of thekinase  effects. Unfortunately, even with automated high-throughput profiling
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Fig.1| Overview of KDBNet. KDBNet is a neural network that integrates protein
3D structure and compound 3D structure to predict compound-protein binding
affinity. KDBNet derives a set of features, including sequence (seq), evolutionary
representations and 3D-invariant geometric features, on the basis of the input 3D
structure and uses a GNN to learn structure-aware representations of a protein.

For theinput compound, KDBNet uses a 3D-equivariant GNN to directly learn
structure representations from the compound’s coordinates in the 3D space.
The representations of the input protein and are then used to predict the binding
affinity as well as the uncertainty of the prediction.

assays, it is still infeasible to exhaustively measure compound-target
binding activities because of the vast chemical space.

Machine learning (ML) methods have emerged as alternative
solutions to efficiently map compound-proteininteraction profiles®.
Early studies included bipartite graph-based methods that framed
the prediction problem as a recommendation system-like task’™".
These methods computed the similarity between compounds or
proteins on the basis of simple features like molecule fingerprints or
sequence-alignment scores, enabling the prediction of new protein-
drug interactions on the basis of known, similar proteins and drugs.
With recent advancements in deep learning, a series of studies'> ¢
leveraged deep neural networks to automatically learn features from
raw compounds and protein representations in a fully data-driven
way, also known as end-to-end learning. Commonly used data rep-
resentations include one-dimensional (1D) features such as protein
sequences and molecule simplified molecular-input line-entry system
(SMILES) strings'>". Recent approaches indicated that incorporating
two-dimensional (2D) features, including molecular graphs and pro-
tein contact maps, enhanced prediction accuracy™ . Although the
compound-proteinbinding s, in essence, aphysicochemical process
inthe three-dimensional (3D) space, there remains a paucity of studies
that incorporate 3D structure information to enhance protein-drug
binding prediction, in part because of the scarcity of protein structure
data and the absence of predictive models that effectively use 3D
structure data. Fortunately, for kinases, the data bottleneck is less
pronounced owing to their biological significance. Kinases are one of
the best-represented protein families in the Protein Data Bank (PDB)
database’®, with a rapidly growing number of solved kinase struc-
tures'>?°. In parallel, recent progress in graph deep learning offers
promising avenues for effectively modelling 3D protein structures™ >,
Jointly, there are great opportunities and pressing needs to develop
new methods that integrate 3D structure information to improve
predictions of kinase-drug binding affinity.

The primaryimportance of ML approaches for compound-protein
binding prediction is to accelerate the discovery of compounds or
targets. With an accurate ML predictive model, virtual screening can
be performed by applying the model to generate hypotheses about
binding activities, allowing the selection of candidates with the
highest predicted activities for further validation. However, these
data-driven methods are susceptible to inherent noise and bias in the

training data, rendering them vulnerable to failures when applied to
out-of-distribution scenarios. To mitigate thisissue, one solutionis to
quantify the uncertainty of model predictions, providing a confidence
assessment to support human decision-making, as higher novelty
often comes with a higher risk of failure. Although the importance
of uncertainty estimation in ML algorithms has been recognized* ¢,
most existing methods of compound-protein binding prediction
only provide point-estimate predictions without quantifying uncer-
tainty'>'°. In the context of compound or target discovery, relying solely
on point-estimate predictions to select top candidates for validation
may resultinfalse positives. Ref. 17 introduced uncertainty estimation
using Gaussian processes (GPs) to prioritize strong-binding com-
pound-protein pairs, but quantifying uncertainty withmore expressive
deep neural networks has not been explored for kinase-drug binding
prediction.

Here, we develop the kinase-drugbinding prediction neural net-
work (KDBNet), adeep learning algorithm thatintegrates 3D structure
information to predict the binding affinity of kinase-drug binding
while also estimating prediction uncertainties. KDBNet represents the
3D protein and molecule structure dataas graphs and uses graph neu-
ral networks (GNNs) to learn structure representations from binding
pocket structures of proteins and atom coordinates of molecules. We
built KDBNet as an ensemble model of several replicates of individual
neural networks, which not only improves prediction accuracy and
robustness but also allows us to estimate the uncertainty of model
predictions. We further applied an uncertainty recalibration tech-
nique torefine the uncertainty estimates, enhancing KDBNet’s utility
inthe ML-guided discovery of proteins and targets. Benchmarking on
public datasets of kinase-drug binding-affinity measurements, we
found that KDBNet achieved more accurate predictions than exist-
ing models that used only 1D or 2D representations of proteins and
drugs. Our experiments also indicated that KDBNet’s uncertainty
estimates were largely consistent with respect to prediction errors,
meaning predictions with lower uncertainty are often more accu-
rate. Furthermore, we found the uncertainty estimates were also
well-calibrated, providing interpretable confidence intervals for indi-
vidual predictions. Finally, we extended KDBNet into a Bayesian opti-
mization (BO) framework, showcasing its capability for data-efficient
active learning and accelerated exploration of strong-binding
kinase-drug pairs.

Nature Machine Intelligence | Volume 5 | December 2023 | 1390-1401

1391


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-023-00751-0

Results

Overview of KDBNet

KDBNetisadeep learning modelthatintegrates 3D structuresto predict
binding affinities between kinases and small-molecule compounds
(Fig.1). KDBNet receives 3D structures of proteins and compounds and
represents them as two graphs: the graphs’ nodes are protein residues
or molecule atoms, and the edges encode residue contacts or atom
distance. A set of features, which collectively describe the structural,
evolutionary, biophysical and chemical properties of protein residues
or chemicalatoms, are also derived for each node and edge in the pro-
teinand molecule graphs. Next, KDBNet uses GNNs to learn structure
representations of theinput kinase and compound, reflecting the spa-
tial organization and topological neighbourhood of the 3D protein and
moleculestructures. Thelearned representations are then combined to
predict the binding affinity through another fully connected (FC) neural
network. In addition to the binding-affinity prediction, KDBNet also
associates each of its predictions with an uncertainty estimate, quan-
tifying its confidence about the prediction. KDBNets achieves this by
training an ensemble of models and estimating the uncertainty using
the variance of individual models’ predictions.

Accurate prediction of kinase-drug binding affinity

We first assessed KDBNet’s performance in predicting kinase-drug
binding affinity using two public datasets of experimental measure-
ments of kinase-compound binding affinity, Davis” and KIBA*®, which
were widely used to benchmark previous methods'*'>""", We created
three evaluation settings to simulate out-of-distribution scenarios
in which the training and test sets do not share any drugs or proteins
(Fig. 2a and Supplementary Notes 1.1 and 1.2). We compared KDBNet
with several state-of-the-art methods for predicting kinase-drug
binding affinity, including three deep-learning-based methods'>"**¢,
a GP-based method" and a kernel-based method®. These baseline
methodsrely solely on1D and 2D representations or pairwise similari-
ties of compounds and proteins, withoutincorporating 3D structural
information (Supplementary Note 1.3).

The evaluation results (Fig. 2and Supplementary Fig.1) indicated
that KDBNet consistently outperformed other methods across several
metrics, including Pearson correlation, Spearman correlation and
meansquared error (MSE; one-sided rank test P<107%). These improve-
ments held across various split settings. The enhancements achieved by
KDBNet also underscored the efficacy of end-to-end feature learningin
comparison to methods (for example, GP) that rely on precomputed,
fixed feature embeddings. Similar observations were made whenapply-
ingKDBNet to the larger KIBA dataset, where it surpassed the baseline
methods and even outperformed two recently developed methods that
used protein language model embeddings® or contrastive learning
strategies® (Extended Data Fig.1).

Theimprovements of KDBNet primarily stem fromits direct mod-
elling of 3D structures of proteins and molecules in the neural network.
This was confirmed by our ablation study, in which 3D structure data of
either the input protein or drug were dropped (Fig. 2c). Compared to
baselines that consider only 1D or 2D representations of proteins and
compounds, the 3D structure data and structure-derived geometric
features in KDBNet (Supplementary Fig. 2) provided more explicit
information related to the binding activity, which better respects the
3D physical symmetries of binding activities that might not be fully
reflected by the 1D or 2D features. Even compared to recent methods
thatuse the 3D protein-compoundbinding complex structure asinput
(CNN3D***, GNN3D** and SIGN*) on the PDBbind database**, KDBNet
achieved performance comparable to these complex-based baselines
(Fig.2d and Supplementary Fig. 3) and substantially higher than base-
lines that used non-3D input (DeepDTA and GraphDTA; one-sided
rank test P<107). It is noteworthy that complex-based methods had
an advantage in this comparison, as they can capture the interaction
features from the complex structure. Although slightly superior in

prediction performance, those complex-based methods* *** are

constrained by the availability of binding complex structures. In con-
trast, KDBNet achieved comparable prediction performance using
separate 3D structures, which are more readily accessible, making it
suitable for numerous tasks such as virtual drug screening for which
complex structures between novel targets and compounds are rarely
available.

Overall, these results demonstrated that by incorporating 3D
structure dataand leveraging geometry-aware deep learning, KDBNet
made clear performance improvementsin kinase-drug binding predic-
tion compared to several existing methods and was able to generalize
to predictions for unseen proteins, unseen drugs or both.

Informative and calibrated uncertainty estimation

One immediate application of an accurate ML model for protein-
compound binding-affinity prediction is using it to generate new
hypotheses, such as prioritizing promising compounds, to assist drug
discoveryand drug repurposing. Froma practical perspective, in addi-
tion to predicting affinity, it is also desirable that the model can pro-
vide associated uncertainty estimates, allowing researchers to assess
thelikelihood of hypothesis success and allocate experimental efforts
more effectively. Unlike many previous deep learning methods that only
predicta point estimate of binding affinity while overlooking uncertain-
tiesinthe dataor model?"*'¢, KDBNet goes a step further by providing
an uncertainty estimate for each affinity prediction (Methods).

First we aimed to investigate whether KDBNet’s uncertainty esti-
mate is indicative of prediction accuracy. Ideally, the model’s uncer-
tainty would be correlated with its prediction error, and predictions
withlower uncertainty would have lower prediction errors. We assessed
KDBNet'’s uncertainty quantification on the Davis dataset. We ranked
all of KDBNet’s predictions by their associated uncertainty estimates
(Supplementary Note 1.4) and observed that there was a consistent
trend for KDBNet'’s predictions with lower uncertainty to exhibit lower
prediction errors across various split settings (Fig. 3a; average Spear-
man’s correlation p = 0.98). Compared to the two GP-based methods,
GP and GP-multilayer perceptron (GP-MLP)”, KDBNet achieved much
lower mean absolute errors (MAEs) across different uncertainty per-
centiles (Fig. 3a) and higher correlations between the estimated uncer-
tainty and prediction errors (Fig. 3b and Supplementary Fig. 4a). These
indicated that KDBNet’s uncertainty estimates were correctly ranked
withrespectto predictionerrors, andits predictions were highly accu-
rate whenit had alow level of uncertainty.

The previous evaluation confirmed that KDBNet’s uncertainty
estimates provided indicative ranking. We now examined whether the
magnitude of these uncertainty estimates was statistically meaningful.
Models that are over-confident or under-confident usually produce
uncertainty estimates that are either too small or large, rendering them
challengingtointerpretas credible intervals with statistical meaning.
This issue is known as miscalibration in uncertainty quantification*~.
Ideally, we desire well-calibrated uncertainty estimation from the
model, meaning, for instance, that if the model predicts a 95% confi-
denceinterval, we anticipate the true values to fall within the interval
95% of the time. We computed the miscalibration area®**>** to quantify
the degree of uncertainty calibration, which is defined as the area
between the model’s calibration curve (Supplementary Note 1.5) and
the diagonal line representing a perfectly calibrated model (Fig. 3c).
A lower miscalibration area signifies superior calibration. We noted
that KDBNet's calibration curves closely resembled the ideal diagonal
curve (Fig. 3d), resulting in substantially lower miscalibration areas
thanthose observed with GP-based methods (Fig.3e and Supplemen-
tary Fig. 4b). Additionally, KDBNet’s recalibration algorithm (Meth-
ods) effectively pushed the calibration curves closer to the diagonal
and reduced the miscalibration area (Fig. 3d,e and Supplementary
Fig.4b; one-sided rank test P<107%). These resultsindicated that KDB-
Net’s uncertainty estimates were calibrated and scaled with errors.
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Fig.2|KDBNet achieves accurate prediction of kinase-drug binding affinity.
a, Four train-test split evaluation settings in which the model is evaluated on
dataof unseen drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or
both (‘both-new split’) and unseen proteins with low (<50%) sequence identity
(‘seq-id split’). b, Comparison of KDBNet prediction performance with KronRLS,
DeepDTA, GraphDTA, DGraphDTA and GP on the four train-test split settings.

¢, Comparisons between KDBNet variants that use or do not use 3D structure
dataon the both-new split. When 3D drug structure is not used, the 2D molecule
graph parsed from a SMILES string is used as the representation of the input
drug, and no 3D geometric features are used in the molecule GNN. When 3D
proteinstructure is not used, the sequence is used as the representation of
theinput protein, and the protein GNN is replaced by a convolutional neural
networ. The fullmodel use both 3D drug and protein structures. d, Comparisons

between KDBNet and three baseline methods that receive 3D binding complex
structure asinput (GNN3D, CNN3D and SIGN) on the PDBbind dataset. KDBNet
differs fromthemin that it only uses separate 3D drug and protein structures
asinput: the baseline methods thus have an advantage as they are aware of the
protein-compound docking structure through the input complex. Results of
methods that receive non-3D input (GraphDTA and DeepDTA) are also shown
for comparison. Asterisks indicate the statistical significance (one-sided Mann-
Whitney U rank test P=0.00397 for both GraphDTA and DeepDTA) that KDNBet’s
performance is higher than the baseline’s performance over n = 5random train/
test splits. Bar plots in b-d represent the mean + s.d. of the evaluation results on
five random train/test splits. Pearson correlation and MSE were computed using
the predicted and true p, values.

Together, these two sets of experiments demonstrated that the
uncertainty estimates of KDBNet were both accurate with respect to
prediction errors and well-calibrated. The accurate quantification
of uncertainty holds important implications for iterative ML-guided
experiment design for which the uncertainty estimates can guide
data acquisition and candidate prioritization, as we illustrate in the
nextsection.

Uncertainty-guided, data-efficient active learning
Having validated that KDBNet provides informative and calibrated
uncertainty estimation, we set out to assess the utility of uncertainty

in ML-guided discovery. The first application is active learning, for
whichtheobjectiveistostrategically select training samples to achieve
improved prediction performance with fewer training data. Analogous
tohuman experts who rely onintuitive confidence to acquire and test
newsamples, KDBNet used its estimated uncertainty for iterative train-
ingandselection (Fig. 4a). Weinitiated the training of KDBNet using a
random 1% subset of the KIBA training data. Ineach subsequent round,
KDBNet predicted binding affinities and uncertainties for the remaining
training data and then ranked these samples (drug-protein pairs) on
the basis of the predicted uncertainty from highest to lowest (referred
toasthe‘explorative’ strategy). Two other ranking strategies (Methods)
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Fig. 3| KDBNet provides accurate and calibrated uncertainty estimation.

a, Prediction errors of KDBNet, GP and GP-MLP, measured as MAE, at different
cutoffs of uncertainty percentiles. The x axis represents the sorted uncertainty
such that the 100% percentile is the lowest uncertainty (highest confidence).

b, Spearman correlation between the estimated uncertainty and the prediction
error measured in MAE on the both-new test set. ¢, Calibration curve. For a
confidence interval of confidence level e (0 < e<1), the curve shows the expected
fraction and observed fraction of test points that fall within that interval. The
diagonal line corresponds to the calibration curve of a perfectly calibrated
model. The miscalibration area, defined as the area between a curve and the

diagonalline, is used to quantify the uncertainty calibration, and lower values
indicate better calibration.d, Calibration curves of KDBNet, KDBNet without
recalibration, GP and GP-MLP on test sets. e, Miscalibration area of KDBNet, GP
and GP-MLP on the new-protein test set. Solid lines in curve plots represent the
mean value of five independent trials, and error bands indicate the s.d. MAE
values were measured in pK, values. Bar plotsin b and e represent the mean + s.d.
ofthe evaluation results on five random train/test splits. Error bands in aand
cdepict mean +s.d. calculated over five random train/test splits. Recalib.,
recalibration.

were considered for comparison: (1) ‘greedy’, which prioritizes samples
with higher predicted affinity, and (2) ‘random’, which ranks all samples
uniformly at random.

We found that KDBNet achieved efficient active learning by using
its estimated uncertainty to acquire new training samples, reaching
performance on par with full data training by using only 50% of the data
(Fig. 4b). Noticeably, KDBNet’s performance was improved by alarge
margin in the initial rounds compared to the random strategy, high-
lighting the efficiency of uncertainty-based active learning compared
tobrute-forcerandomsearches. Furthermore, incontrast to the greedy
strategy that continually seeks samples with the highest affinities, KDB-
Net’s explorative strategy focused on samples that could diversify the
training set and best address the model’s uncertainties, thereby exhib-
iting faster rates of performance improvement and higher efficiency
gains (performance improvement over random selection) across all
active learning stages (Fig. 4b,c). These indicated that KDBNet, ena-
bled by uncertainty quantification, achieved sample-efficient active
learning for dataacquisition and model training, a valuable capability
in model-guided experimental design where an exhaustive search is
costly or infeasible.

Bayesian optimization for rapid exploration and exploitation

As another application of uncertainty estimation, we integrated KDB-
Net with BO for the exploration and exploitation of strong-binding
kinase-drug pairs. Although the previous active learning experi-
ments acquired new samples solely on the basis of uncertainty for
diversifying the training set, BO provides a principled framework to

combine both predicted values and estimated uncertainties to guide
dataacquisition more effectively, enabling us to prioritize candidates
inhigh-confidence, high-desirability regions (‘exploitation’) or probe
potentially high-desirability regions, although with less confidence
(‘exploration’), asillustrated in Fig. 4d. InBO,acommonway to combine
predicted scores and uncertainties is through an acquisition func-
tion called the upper confidence bound (UCB) with the form UCB(x) =
score(x) + 8 x uncertainty(x), where x represents akinase-compound
pair and constant 8 controls the trade-off between exploitation and
exploration.

High-recall exploration. We first evaluated KDBNet’s exploration
capability using the Davis dataset. The objective was to identify kinase—
compound pairs with the strongest binding affinity by observing the
ground-truth binding affinities of only a small subset of pairs. We
started the data acquisition by training KDBNet on 1% of the kinase—
compound pairs (100 pairs). Subsequent steps followed the active
learning framework but incorporated UCB as the score function,
defined as UCB(x) = u(x) + fo(x), where =1, and u(x) and o(x) are the
binding affinity and associated uncertainty predicted by KDBNet,
respectively (Methods). Intuitively, this score function promotes sam-
ples with high binding affinity and high uncertainties. Because our goal
was toidentify strong-binding pairs as comprehensively as possible, we
aimedto explore ‘good’ regions that had some variability (uncertainty),
as this increased the chances of discovering even better samples. We
observed that KDBNet yielded clear improvements compared to the
random exploration and GP baselines, as quantified by the recall of

Nature Machine Intelligence | Volume 5 | December 2023 | 1390-1401

1394


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-023-00751-0

Data samples Predict affinity and uncertainty

Acquire samples

Evaluation

Label samples Retrain model

® [ J
[ J [
= L] ° L °
> = > > >
-
[ J [ J
. [ J [ J
KDBNet X L L KDBNet
1 Model update |
b [+ d Exploration Exploitation

Active learning

Efficiency gain over random sampling

high prediction, high prediction,

high uncertainty low uncertainty

0.48 4 £ 10.0 A K >
| = B —e— Explorative / / 3
S 0.46 — 9 g . 7\, —o— Greedy ]
= /’/ g : \ —e— Random e,
T 0.44 - ;/ — 3c N 51
£ 2 ~ a3 504 g \_ = 5
S 0.42 /7 Es \. ~— = 3
g V / o8& .| ~. ; g,
£ 0.0 1 8 —e— Explorative 4 Sy —_—— 3
o / —e— Greedy S o 3 §
0384 ¢ —e— Random s 1°¢ 3
T T T T T T a T T T T T T X
] 0.2 0.4 0.6 0.8 1.0 0o 0.2 0.4 0.6 0.8 1.0 = Prediction Uncertainty ® Observation
Training data ratio Training data ratio
e Bayesian optimization search trajectory Top 10 acquired Top 10 acquired Top 10 acquired
» (both-new split) (new-drug split) (new-protein split)
‘5 50 { —e— KDBNet 3
3 -
S GP-MLP ~
g 401 -—e-cP ./
5.8 30 4 —e— Random ./ 2 |
“— 3
6 0 J
22 20 ./ = o
£ — = 1 2
S 104 o — R Q
(8] ® o
a_) ‘ =/.’ — —
o o-°
T T T T T 0 -
200 400 600 800 1,000

I GraphDTA

Number of pairs explored
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exploitation. a, Schematic visualization of the active learning process, which
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evaluation. b, Active learning performance in Pearson correlation on the KIBA
both-new test set at different rounds. The explorative sampling is compared

to the greedy and random sampling strategies. ¢, Efficiency gain of the
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relative improvement in Pearson correlation. d, Schematicillustration of data
acquisition on the basis of KDBNet’s prediction and uncertainty. One can exploit
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high-desirability regions with less model confidence. e, Exploration using
KDBNet and UCB acquisition function with a BO framework. Curves represent
the performance trajectory, measured by the percentage of top-500 binding
affinities found as a function of the number of kinase-compound pairs explored
inthe Davis dataset. f, Exploitation using KDBNet and LCB acquisition function
with BO. True K, values of the top 10 kinase-drug pairs prioritized by each model
areshown. Alower K, value means a stronger binding affinity. Curve plotsinb,
cand e depict the mean values over five independent trials in solid lines with
s.d.inerror bands. Bar plots in frepresent mean + s.d. of the results for five
independent trials of top-10 acquisition (n = 50).

top-500 (about the top 1%) kinase-compound pairs as a function of
the number of pairs explored. Specifically, KDBNet retrieved 50% of
the top-500 pairs from the pool of 10,000 pairs after exploring only
1,000 pairs (Fig. 4e). This experiment highlighted KDBNet’s effective-
ness in accelerating the exploration and discovery of strong-binding
kinase-compound pairs in the BO framework.

High-confidence exploitation. Next we performed an analysis to
evaluate KDBNet’s exploitation capability: thatis, how effectively it pri-
oritized top kinase-compound pairs with strong binding affinities. This
mirrored real-world biological discovery processesin whichresearch-
erstypically focus ononly a handful of top compounds or proteins for
further validation instead of testing the entire unexplored space. We
simulated an experiment on the Davis dataset where the model was
tasked with prioritizing kinase-compound pairs with the strongest
binding affinity from the test data. For KDBNet, we defined the score
function as the lower confidence bound (LCB): LCB(x) = u(x) — fo(x)

with f=1. Compared to UCB, LCB introduces a negation sign before
the uncertainty term, prompting KDBNet to prioritize pairs with strong
binding affinity and low uncertainty. Figure 4f presents the binding
affinities, measured in K (dissociation constant) values, of the top 10
kinase-drug pairsacquired by different methods, where lower K, values
indicate stronger binding affinities. We found that, on average, KDBNet
retrieved pairs with stronger binding affinity, outperforming other
baseline methods across all three split settings. KDBNet successfully
prioritized kinase-drug pairs with a mean K, value lower than 0.5 pM
for both the new-protein and new-drug split settings and a mean K, of
3.5 uM for the most challenging both-new split setting. For reference,
akK,valuelowerthan3 uMwas considered a very strong binding by the
original study of this dataset”. As the binding-affinity datasets often
contain inherent noise or technical errors, ML models can be greatly
affected and generate uncertain predictions. Consequently, top predic-
tions from uncertainty-agnostic models ofteninclude false positives. In
contrast, KDBNet’s estimated uncertainty offers afurther dimension of
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information, complementing mean-affinity predictions and facilitating
the prioritization of lead candidates with high confidence.

Discussion

We have presented KDBNet, a geometric deep learning algorithm
for predicting kinase-drug binding affinity. KDBNet integrates the
3D structure data of both kinases and drugs and models them using
structure-aware GNNs to predict binding affinity. Although we focused
on the binding activities of kinases in this work primarily because of
theirimportant pharmacological implications***, KDBNet’s principles
canbeextended to other proteins as well. Our experiments have dem-
onstrated that KDBNet outperformed several existing deep learning
methodsin predicting kinase-drug binding affinity. Additionally, KDB-
Net provides well-calibrated uncertainties that scale with prediction
errors, offering statistically indicative confidence intervals. We further
showcased KDBNet'’s practical utility in both active learning and BO
frameworks for prioritizing kinase-drug pairs with strong binding
affinities. Infuture work, KDBNet’s performance for binding prediction
and uncertainty quantification canbe enhanced by integrating recent
techniques such as contrastive learning on low-coverage data® (Supple-
mentary Note 1.6), computation-efficient uncertainty-quantification
algorithms?®® (for example, conformal predictions**®) and new calibra-
tion techniques*>*478,

We note that the availability of kinase and compound structures
is not a critical limitation of KDBNet, as the compound structures
are largely available in PubChem*, the number of kinase structures
is increasing in PDB***°, and high-quality predicted structures from
AlphaFold? can be used as reasonable proxies for understudied
kinases with no solved structures (Supplementary Note 1.7). We
also found that replacing the PDB structures input to KDBNet with
AlphaFold-predicted structures resulted in comparable prediction
accuracy (Supplementary Fig. 5). Another line of recent studies exam-
ined binding-affinity prediction onthe basis of 3D protein-compound
binding complex®>*"*, The problem setup considered in this work,
whichwas also used inseveral concurrent studies®*, is less restricted
by data availability than those works, as KDBNet only requires separate
structures as input rather than the binding complex.

KDBNet’s integration of uncertainty estimation is particularly
valuable for biological discovery processes when data are limited
and uncertainty is prevalent. ML-guided discovery can be affected by
biases in the ML model stemming from data noise, small sample size
and the model’s intrinsic uncertainty. KDBNet’s uncertainty quantifi-
cation and recalibration serve as crucial safeguards against biased or
over-confident model predictions, which are particularly useful for
guiding both exploitation and exploration in virtual drug screening,
allowing the prioritization of lead predictions for further validation
and proposing datasamples to explore previously uncharted regions
or address model uncertainties. KDBNet creates an interactive cycle
between computation and experiment toimprove the ML model’s sam-
ple efficiency and success rate in drug screening™. We anticipate that
KDBNet can facilitate the reliable and robust deployment of ML-guided
drugdiscovery and lead to the identification of promising therapeutic
candidates with higher precision and efficiency.

Methods

Structure and sequence data

Most protein kinases share a common structural fold with two lobes
connected by aflexibleregion that forms the adenosine triphosphate
and substrate bindingsite. The activation loop in this region, typically
in a length of 20-30 residues, is crucial for binding activity. We use
the pocket structure, rather than the entire structure of the kinase, as
the structure input of a kinase to KDBNet because (1) residues in the
pocket directly interact with the drug molecule, largely determining
the binding activity; and (2) structure elements outside the pocket—
that is, the N- and C-terminal lobes—are relatively conserved across

different kinases and may not directly coordinate the binding as they
are relatively far from the binding sites. Several structure conforma-
tions may exist for the same protein kinase in the RCSB PDB database**
because the loop can fold into catalytically active and inactive states;
we thus first selected the representative PDB structure for a kinase
following a recently developed nomenclature for the active and inac-
tive states of protein kinases***. To extract the binding pocket, we
used the KLIFS database” that defines a pocket formed by 85 resi-
dues that cover the binding sites in a wide range of kinase inhibitors
by analysing around 1,200 kinase-ligand binding crystal structures
(Supplementary Note 1.1). In total, we obtained the pocket structure of
283 kinases.

The sequence of amino acids (AAs) of the 85residuesin the binding
pocket of a kinase was obtained from its reference protein sequence
in UniProt*. We did not use the associated sequence in the PDB file
because it may contain missing or inaccurate residues. To do this, we
mapped the PDB pocket sequence to the full UniProt sequence using
pairwise local alignment (score matrix: BLOSUM®62, gap open penalty:
10, gap extend penalty: 0.5). We successfully mapped 281 of 283 struc-
tures to UniProt sequences.

The 3D structure datain the structure-data format (SDF) of com-
pounds in the kinase-drug binding datasets (described below) were
downloaded from the PubChem database®”.

Kinase-drugbinding datasets

For evaluation, we used two public datasets of experimental measure-
ments of binding affinity, Davis*” and KIBA*® (Supplementary Note 1.2),
which were widely used to benchmark previous methods'*>*>"7, The
Davis study contains binding-affinity measurements of kinase-com-
pound pairs, represented by K, values ranging from 0.1t0 10,000 nM,
where alower K, value indicates stronger binding affinity. The KIBA
dataset derived ascore tointegrate three bioactivity values: K; (inhibi-
tory constant), Kyand IC,, (half maximalinhibitory concentration). We
removed fromboth datasets compounds and kinases that do not have
3D structures in the PDB and PubChem databases. We successfully
retrieved the 3D structures for nearly all compounds and 50%-70%
of proteins in Davis and KIBA (Supplementary Tables 1,2). We expect
the availability of kinase structure data will keep increasing (see
discussions in Supplementary Note 1.7). Raw K, values in the Davis
dataset were transformed to pKj (binding affinity) values, defined as
pKq = —log,,(K4/10%), to facilitate numerical stability during model
training'>*'. We created four train-test split settings (Supplementary
Note 1.2) to evaluate prediction performance on data of unseen drugs
(‘new-drug split’), unseen proteins (‘new-protein split’) or both
(‘both-new split’) and unseen proteins with low (<50%) sequence iden-
tity (‘seq-id split’). To compare KDBNet with baseline methods that
predict binding affinity from binding complex data, we additionally
created another benchmark task using the PDBBind dataset®. Further
detailsabout the creation of benchmark datasets are provided in Sup-
plementary Note 1.2.

Representation of protein structure

The 3D PDB structure of a protein is given as 3D coordinates of the
backbone ¢ = {¢; € R3}?’:I, where Nis the number of residues, ¢;is the
coordinate of the C, atom of the ith residue, and R is the set of real
numbers. We represent the protein structure as a graph g, = (%,,&,,),
where nodes v, areresidues and edges &, indicate residue contacts. In
thiswork, we define apair of residues asbeingin contactifthe Euclidean
distance between their C, atomsis within 8 A (ref. 58).

To make the structure graph representation more informative,
we associate every node or edge in the graph with a feature vector.
Intuitively, we want our node and edge features to be (1) invariant
to rotation and translation so the features not depend on the place-
ment, orientation and centring of the PDB structure inputs; and (2)
informative about the local structure, as unique structural motifs
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may lead to distinct binding affinities. Here, we derive a set of invari-
ant spatial features following a previous study*’. We further extend
their approach to include other features that encode sequence and
evolutionary properties of residues. The constructions of node and
edge features are described below.

Node features: For everyresidue, we build three types of features:
(1) sequencefeature, (2) geometric feature and (3) evolutionary feature.
The sequence feature is a one-hot representation to indicate
the AA type (of the total 20 possible AAs) of the residue. For
geometric features, we compute the three dihedral angles (¢;, ¥;, w;)
on the basis of the backbone coordinates of residue i. These
angles are encoded as a vector of cosine and sine values:
v; = (sin ¢, sin ;, sin w;, cos ¢;, cos ;, cos w;) . Lastly, for evolutionary
features, we ran ESM®, arecent protein language model trained on 250
million sequences, to generate the embedding for each residue. The
ESM embeddings have been shown to encode structural, functional
and evolutionary properties of the protein and can improve a wide
range of protein-related prediction tasks, such as function and struc-
ture prediction®®®". Those three features are concatenated together as
the node feature for aresidue.

Edge features: To characterize the local structure surrounding
residue i, we create edge features that describe the spatial relation-
shipsbetweenresidueiandits neighbours (residues;’s). In particular,
we compute an orientation matrix O, that defines the local coordinate
frame for residue i*’:

C;i—Ci_
0; =[b;,n;,b; xn;], where u;= ”c’ c‘ ‘”,
i~ i1
(1
= -y = U; XUy
T lmwal” T uxuggll”

where ¢; € R?is the coordinates of residue i. For an edge (i, ), we con-
sideranedge representation that reflects the local distance, direction,
orientation and relative positions™:

or 9=C

e,,-=(RBF<|| G-l O re—ey a0/0), Epos<c,»—ci)), @

The edge feature e; has four components: (1) The first part,
RBF(||c;— ¢ll), is the distance encoding embedded into radial basis
functions (RBFs). We use 16 RBFs with centres evenly spaced between
0 and 8 A. (2) The second term is the direction encoding that corre-
sponds to the relative direction of ¢;in the local frame of residue i. (3)
Thethird termisthe orientation encoding of the quaternion represen-
tation q(-) of the spatial rotation matrix 070;. (4) The last term,
E,s(c;— ¢;), encodes the relative distance and direction between resi-
dues i and;. We used the relative positional encoding®, an extension
of the positional encodingintroduced in the Transformer model®*. The
relative positional embedding represents the vector pointing to ¢;from
c;throughasinusoidal function. We keep the sign of the distance vector
¢;—¢; because protein sequence structures are generally
asymmetric.

Representation of molecule structure

KDBNet also incorporates the 3D molecular structure of compounds
to predict binding affinities. Similarly, given the 3D coordinates of
atomsinthe molecule, we represent the molecule structureasagraph
G4 = (W, Eg) Where nodes 17 are atoms of the molecule and edges £4are
defined forapair of atoms if their distanceisless than 4.5 A, following
ref.34. Asmolecules do not have anatural backbone asin proteins, we
do not derive the angle, orientation and direction features for atoms
aswe did in the protein graph. Instead, we directly use the 3D coordi-
nates of atoms or edge vectors as node features and edge features,
allowing the GNNin KDBNet to learn meaningful geometric representa-
tions of the moleculein a data-driven way. The node and edge features
of the molecule structure are detailed below.

Node features: For every atom, weinclude a vector-valued feature
and ascalar-valued feature as its node feature. The vector featureis the
atom coordinates c; € R3. The scalar feature is a list of 66 descriptors
of chemical properties''**, including the atom type, bond degree,
number of hydrogen bonds, number of implicit hydrogen bonds and
whether the atomis aromatic (Supplementary Table 3).

Edge features: For an edge between atomsiandj, we also create a
vector feature and a scalar feature. The vector feature is the unit vec-
torinthedirection of ¢;— ¢; and the scalar feature RBF(||c;— ¢;||) is the
pairwise distance embedded into 16 Gaussian RBFs with centres evenly
spaced between0and 4.5 A.

KDBNet model architecture

The primary components of KDBNet are two GNNSs to learn structure
representations from the input protein and compound, respectively.
The representations produced by the two GNNs are then passed to a
FC neural network to predict the binding affinity between the input
proteinand compound.

Protein GNN. For the protein GNN, we use Graph Transformer®*, an
effective GNN architecture adapted from the vanilla Transformer
model for text data®®, to model the kinase structure. Given the protein
structuregraph G, = {13, &,},a Graph Transformer model builds L graph
convolutionlayers. The ith layeris anon-linear transformation function
that maps node i's embedding h~" e R4 to h'” € R% for i e [N],
¢ e[L], whered,istheembedding’s dimensionat layer ¢, Nis the number
ofnodesin g,andListhe totalnumber of layersin the GNN. In particu-
lar, when £ = 0, the embedding h!” € R% is just the node feature of
residuei.Inaddition, we have edge features of each edge (i, /) denoted
as e; € R%, where d, in the dimension of input edge features.

Formally, inthe ¢-th Graph Transformer layer of the GNN, the hid-
den representation hf,") is updated by performing a message passing
between nodeiandits neighbours

@) _ WwORE-D (O)pe-1D (©)
h = Wh +A;(A)a(,‘,j(w2 W+ we;), 3)
JEN(

where N (i) is the set of neighbour nodes of node i in the graph,
W g Rde-xd, WS e pée-xde and W € Ré%*< arelearnable parameters
ofthe GNN, and a,;is the attention weight used to aggregate messages.
The weights a;;are computed using self-attention:

.
a;; = softmax ([(Wfphff)_l)) (Wff’ hj(.e_n + Wg‘))eij)]/ d, ) 4)

where W € r%-1xdcand W\” € Ré-< are learnable parameters and
d,is the length of vector h'”.

Wesstack three Graph Transformer layers and use the Leaky ReLU
activation function® between two adjacent layers. After the final layer,
we use the global add pooling operation as the readout function to
aggregate all node representations into a summary representation
h? € R of the input protein: h® = ADD(th”Ji = 1, ..., N}).

Molecule graph neural network. Given the molecule structure graph
G4 = Vi, €4}, we also use a GNNto learn the representation for theinput
molecule. Recall that in graph g4, we associate each node and edge
with both geometric vector features (for example, 3D coordinates)
and scalar features (for example, descriptors of chemical properties).
We thus use a specialized layer, geometric vector perceptrons (GVPs)*,
to build the molecule GNN. The key advantage of GVP is that it has
special consideration for 3D datain design (Supplementary Note 1.8)
and allows KDBNet to learn structure representations directly from
the raw atom coordinates in R* without requiring the construction of
featuresinvariantto rotations and translation, such as relative direc-
tion embeddings. In the GNN, the GVP layer can be used as a drop-in
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replacement for MLPs, such as W', W{”, w{” in the protein GNN
(equation (3)).

Formally, we use the tuple v; = (v/,v}) to denote the node feature
of atom i (the superscripts v and s stand for vector and scalar, respec-
tively), where v/ e R is alist of vector features in R*and v; e RV is a
list of scalar features (z and v are the number of vector features and
scalar features, respectively). The edge feature e; = (e}, ejj)ofedge @i.))
has similar meaning. The molecule GNN transforms the node and edge
features through L graph convolution layers to obtain the representa-
tion of the input molecule. Specifically, in the ith layer, each node
aggregates ‘messages’ (embeddings) from neighbouring nodes and
edges and then updatesits own representations:

_ - 1
h? =h 4 g(h 4 m |, ®)
i i 4 i |.7\f(1)\ je;f:(i) Ji

whereg(-) isasequence of three GVP layers, N (i)isthe set of neighbour
nodes of nodeiin g4, hg") is the embedding of node i in layer € (in par-
ticular, h{” = v;is the node feature), and m is the ‘message’ passed
fromnodejtonode i, computed using another sequence of GVP layers:
m;f) = g(concat(h}g‘l), e;;)), where concat(.) is the concatenation opera-
tion of two embeddings. Similar to the protein GNN, after the final layer
of the molecule GNN, we also apply the global add pooling operation
to aggregate all node representations into a scalar representation
hd € R of the input drug.

Inadditionto the molecule GNN, the GVP layers canalso be used to
build the protein GNN. As introduced above, the default architecture
of the protein GNN was on the basis of the Graph Transformer layers
as we found in our local tests that GVP- and Transformer-based pro-
tein GNNs lead to comparable prediction accuracy (Supplementary
Fig. 5), but the latter took 50% less training time and GPU memory
use. We thus chose Transformer layers as the default building blocks
for the protein GNN. Nevertheless, for larger training sets that cover
diverse protein families rather than only kinases, we expect GVP lay-
ers to be more effective for learning structure representations, as
they are able to learn many other implicit geometric features that
go beyond the manually defined features used in the Transformer-
based GNN.

Prediction module, hyperparameter tuning and model training. We
tuned the hyperparameters of KDBNet by performing asmall-scale grid
search using the training data, such that seven-eighths of the training
datawere used to trainamodel with a specific set of hyperparameters,
and the remaining one-eighth of the data were used as the validation set
toselectthe hyperparameters. The test split was not used for hyperpa-
rameter selection. We tested combinations of GNN layer dimensions
from {64,128, 256, 512,1,024}, combinations of FC layer dimensions
from {64,128, 256, 512,1,024}, the number of FC layers in {1, 2, 3} and
thedropoutratein{0.1, 0.25, 0.5}.

By performing nested cross-validation on the training data, we
decided to use three layers with sizes 128, 256 and 256 for the protein
GNN and three layers with uniform size 128 for the molecule GNN,
which were robust across different settingsin our experiments. The two
representations of protein and drug structures generated by the GNNs,
hP and h¢, are then projected to dimension 128 using two FC layers
with sizes 1,024 and 128 and a dropout rate of 0.25. The two projected
embeddings are then concatenated and passed to atwo-layer FC neural
network with sizes 1,024 and 512 and a dropout rate of 0.25, followed
byasingle scalar output as the predicted binding affinity between the
input proteinand drug.

The training objective of KDBNet is to minimize the MSE between
the predicted binding affinity and the true affinity value. The model s
trained using the Adam optimizer with a learning rate of 0.0005. We
trained all models for 500 epochs.

Uncertainty quantification

We equipped KDBNet with an uncertainty-quantification module. This
was achieved by training an ensemble of M independent model repli-
cates*, which has been widely demonstrated as an effective way to
estimate uncertainty®. The M model replicates had the same neural
network architectures and hyperparameters, but the learnable param-
eters were initialized with different random seeds. We set M = 8 in this
work unless otherwise specified. Specifically, let y,(x;) beaprediction
givenby the kthindividual model, where x;represents the input kinase—
drug pair. KDBNet’s final prediction of binding affinity u(x;) and its
estimated uncertainty o(x;) are given by the mean and standard devia-
tion (s.d.) of the individual model’s predictions:

M M
HOO) = 25 00, 00 = 1) (00 — ), ©
k=1 k=1

The uncertainty o(x) estimated by KDBNet above is known as epis-
temic uncertainty. Intheliterature, uncertainties are often categorized
into aleatoric uncertainty (data uncertainty due to inherent noise in
observations) and epistemic uncertainty (model uncertainty due to
uncertainty in parameters or predictions; Supplementary Note 1.9).
In this work, we focus on estimating epistemic uncertainty, as many
recent studies have demonstrated the utility of epistemic uncertainty
for discovery in various domains, including biology", chemistry®’
and healthcare®®, Nevertheless, KDBNet can be extended to estimate
aleatoric uncertainty by modifying the objective function froman MSE
minimization to amaximum likelihood estimation®**’.

Active learning

We started training KDBNet on a random 1% subset of KIBA training
data. At each subsequent round, KDBNet predicted binding affinities
and uncertainties for the remainder of the training data and then
ranked them on the basis of the score function s(x) = o (x), where g (x)
isthe predicted uncertainty for sample x (hereinafter referred to as the
‘explorative’ strategy) and where asample xrepresents an input kinase-
drug pair. Wethenadded the top Tsamples with the greatest uncertain-
ties to the training set and retrained KDBNet from scratch with the
expanded training set. In our experiments, we performed seven rounds
of activelearning. The number of samples to acquire (7) for each round
was determined such that 10%, 20%, 30%, 40%, 50%, 75% and 100% of
the training samples were used to retrain the modelin each of the seven
rounds, respectively. Two other types of score function s(x) were con-
sidered for comparison: (1) ‘greedy’, where samples with higher pre-
dicted affinity receive higher scores, s(x) = u(x); and (2) ‘random’, where
samples receive random scores, s(x) ~ 4(0,1), that is, the continuous
uniform distribution between zero and one. The performance was
evaluated on the ‘both-new’ test set.

Uncertainty recalibration

There are two widely used definitions of regression calibration in the
literature: confidence-interval-based calibration** and error-based
calibration*’. Under confidence-based calibration, a model is said to
be well-calibrated if €% of its predictions fall in the e% predicted con-
fidence interval (0 < e <1)*}, whereas error-based calibration defines
a well-calibrated model as one for which the uncertainty estimate of
a prediction, in expectation, equals the prediction errors*. Several
approaches have been proposed to recalibrate regression models*>**5,
Thegeneralideaistolearnaposthoc transformation function, which
receives the model’s predicted uncertainties as input and outputs the
transformed uncertainty estimates that would be better calibrated. In
ourmethod, we use asimple yet effective scaling approach*””° to recali-
brate the uncertainty estimates. Specifically, we transform the model’s
output (u(x,), o(x;) to (u(xy), ro(x;)), where ris the scaling factor to be
learned. Note that the model’s prediction of binding affinity z (x;) does
notchange. Tolearn the scaling factor r, we introduce an optimization
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problemin which the objective is to minimize the miscalibration area
(Supplementary Note 1.5). The recalibration is a post hoc process,
meaning the model’s predicted uncertainties are fixed and only ris
optimized. As indicated previously*?, the recalibration is performed
onaheld-out validation set that has not been used for model training.
We use Brent’s method” implemented in the SciPy package’ to solve
this single-variable optimization.

Data availability

The two kinase-drug binding-affinity datasets, Davis”” and KIBA*, were
curated by and available in the Therapeutics Data Commons bench-
mark’®. The PDBbind dataset (v.2020) was downloaded from http://
www.pdbbind.org.cn/.The PDB codes of representative structures of
kinases were obtained from the Kincore database*® (http://dunbrack.
fcce.edu/kincore/home). The binding pocket structure of each kinase
was downloaded from the KLIFS database® (https://klifs.net/). Full
AA sequences of kinases were obtained from UniProt*® (https:/www.
uniprot.org/). The 3D molecular structures were downloaded from
PubChem®’ (https://pubchem.ncbi.nlm.nih.gov/). Our processed ver-
sion of the binding-affinity datasets and the identifier list of kinases
and drugs are available on our GitHub repository (https://github.com/
luoyunan/KDBNet).

Code availability

The source code of KDBNet is available at https://github.com/Iuo-
yunan/KDBNet and has been deposited to Zenodo™ at https://doi.
org/10.5281/zenodo.7959829. KDBNet was developed using Python
v.3.9, PyTorch v.1.16, PyTorch Geometric v.2.2, RDKit (v.2022.03.2),
NumPy v.1.23.4 and SciPy v.1.9.3.
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