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Abstract

The rapid shift from internal combustion engine vehicles to battery-
powered electric vehicles (EVs) presents considerable challenges,
such as limited charging points (CPs), unpredictable wait times for
charging, and difficulty in selecting appropriate CPs for EVs. To ad-
dress these challenges, we propose a novel end-to-end framework,
called Stable Matching based EV Charging Assignment (SMEVCA)
that efficiently assigns charge-seeking EVs to CPs with the assis-
tance of roadside units (RSUs). The proposed framework operates
within a subscription-based model, ensuring that the subscribed EVs
complete their charging within a predefined time limit enforced by
a service level agreement (SLA). The framework SMEVCA employs
a stable, fast, and efficient EV-CP assignment formulated as a one-
to-many matching game with preferences. The matching process
identifies the preferred coalition (a subset of EVs assigned to the
CPs) using two strategies: (1) Preferred Coalition Greedy (PCG) that
offers an efficient, locally optimal heuristic solution; and (2) Pre-
ferred Coalition Dynamic (PCD) that is more computation-intensive
but delivers a globally optimal coalition. Extensive simulations re-
veal that PCG and PCD achieve a gain of 14.6% and 20.8% over
random elimination for in-network charge transferred with only
3% and 0.1% EVs unserved within the RSUs vicinity.
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1 Introduction

In recent years, the adoption of Electric Vehicles (EVs) has surged,
driven by their use of onboard batteries that store electrical energy
to power the vehicle’s engine. Unlike traditional internal combus-
tion engine (ICE) vehicles, EVs provide a cleaner energy alternative,
reduce dependence on fossil fuels, and, most importantly, produce
zero greenhouse gas emissions, paving the way for a more sustain-
able future [24]. Many countries have made significant progress
in this transition, viewing EVs as the future of transportation. For
example, Canada and the UK have set policies to completely phase
out ICE vehicles by 2040, while China halted ICE production invest-
ments in 2019 to promote EV sales. Additionally, about 10 states in
the U.S. have mandated the use of zero-emission vehicles, with Cal-
ifornia aiming for 5 million EVs on the road by 2030 [16]. Further,
it is expected that by 2030, the number of EVs on-road worldwide
will exceed 250 million [16].

With the anticipated rise in EVs on the road, the demand for
charging these vehicles will significantly challenge the current
infrastructure. Battery swapping — replacing discharged batteries
with fully charged ones — was initially proposed to reduce the
charging times. However, this approach required heavy forklift
equipment for battery replacement, leading to wear and tear on
the vehicle’s battery compartment [12, 13]. Moreover, proprietary
rights and ownership issues limited its commercial viability. As
a result, plug-in EVs, which recharge by connecting to charging
points (CPs), have gained popularity; the market share for fully
electric and plug-in hybrid vehicles increased from 4% in 2020 to 18%
in 2023 [6, 11]. Despite this growth, the 2019 Global EV Outlook and
the Electric Vehicle Initiative (EVI) [16] reported that in 2018, there
were approximately 5.1 million EVs on the road worldwide, but only
539, 000 public charging stations (CSs) !, with China accounting for
50% of these stations. In the U.S., a 2024 report from the Department
of Energy indicates there are currently 65,733 public CSs with
179,173 CPs and 3, 641 private CSs with 14,350 CPs [20]. These
statistics reveal a significant disparity between the growth rates of
EVs and CSs, with EVs growing at a rate of 62.4% while CSs lag at
22.7%. To put this in perspective, the EVI recommends a sustainable

!Note that a charging station can have multiple charging points
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EV-to-CS ratio of 10 : 1. However, in places like California, this ratio
is far from being achieved, standing at 25 : 1. Moreover, as more
EVs hit the road, such ratio has worsened by 25% in recent years,
indicating that the charging infrastructure is struggling to keep pace
with the rising number of EVs. A major reason is higher installation
costs in the CSs, consequently leading to sparse availability and
immature deployments [21]. This motivates our work in this paper.

1.1 Research Challenges

The inadequate charging infrastructure presents significant re-
search challenges as discussed below.

1) Range anxiety is a critical issue that requires urgent attention [8].
It describes the fear that EV owners experience, worrying that their
vehicles may run out of charge before reaching the destination. This
anxiety is particularly pronounced on highways and rural areas,
where CSs are scarce. Running out of battery in such locations
leaves the EV owners at risk of being stranded, potentially requiring
atow truck. The issue is further exacerbated as EV adoption expands
into mixed utility vehicles until a sustainable highway and rural
charging infrastructure is established. Range anxiety also affects
urban areas, where crowded CSs result in longer wait times [22].

2) Unlike the ICE vehicles, where refueling time is predictable, lim-
ited availability of CSs and unpredictable nature of charging needs
can lead to unbounded wait times, causing user dissatisfaction.

3) The charging ecosystem involves EV vendors installing CSs at
rented sites, such as Walmart, Costco, and Target, or at standalone
CSs. This setup incurs one-time capital expenditures and ongoing
operational expenditures, with electricity costs being the primary
contributor to the latter [20]. Therefore, making appropriate charg-
ing decisions is crucial to ensuring the economic sustainability of
the charging infrastructure for EV vendors.

4) Given the stochastic nature of wait times and charging prefer-
ences (e.g., minimal detour, fast charging options, and competitive
pricing), finding an appropriate CP for an EV is a complex decision
to be made in real-time, presenting a significant challenge [16].

1.2 Our Contributions

To address the above challenges, we propose a novel framework
called Stable Matching based EV Charging Assignment (SMEVCA).

The major contributions are as follows.
o We propose an end-to-end CP assignment framework, wherein

charge-seeking EVs submit their charging requests to a nearby
roadside unit (RSU) and are promptly assigned to CPs.

e We propose a novel service level agreement (SLA)-driven sub-
scription model that guarantees EV recharging within a pre-
defined time based on the subscribed plan.

o We model the assignment of EVs to CPs as a one-to-many
matching game and devise a stable, fast, and effective so-
lution. The matching procedure is based on selecting the
preferred coalition at the CPs. Specifically, we propose two
preferred coalition selection strategies, called PCG and PCD,
based on the greedy and dynamic programming algorithms.
The former is an efficient, locally optimal heuristic, while
the latter is computation-intensive but globally optimal.

o To evaluate the proposed SMEVCA framework, we compare
the performance of the PCD and PCG algorithms with ran-
dom coalition formation. Extensive simulations confirm the
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performance improvements of the proposed scheme over
in-network charge transfer, SLA misses, and execution times.

The remainder of the paper is organized as follows. Section 2
summarizes the related literature on EV assignment to CPs or CSs.
Section 3 outlines the system model and assumptions while Section
4 formulates the EV-CP assignment problem. The solution approach
is detailed in Section 5, followed by the simulation results in Section
6. Section 7 discusses the features and limitations of SMEVCA, and
conclusions are drawn in Section 8.

2 Related Work

Research on EV charging encompasses several critical challenges,
including (1) infrastructure establishment and management, (2)
scheduling of EVs to CPs, and (3) pricing and subscription models
for payment management. We focus on developing an effective
scheduling algorithm for assigning EVs to CPs, and we primarily
review the literature with this objective in mind.

The allocation of EVs to CSs involves optimizing charge usage
while ensuring timely and cost-effective charging with minimal
resource expenditure. Algafri et al. [1] addressed this by combining
the Analytic Hierarchy Process (AHP) with goal programming to
minimize costs, reduce battery degradation, and lower time over-
heads for EV owners. However, their approach does not account
for the complexities of extended trips requiring visits to multiple
CSs, which Sassi and Oulamara address [14]. They proposed sched-
uling EVs to visit multiple CSs to maximize travel distance while
minimizing costs, but this model overlooks real-time constraints
related to CS availability.

Similarly, in car-sharing services requiring long-distance travel,
0 — 1 mixed integer linear programming (0-1 MILP) can assign cars
to CSs based on reservation time slots, as suggested in [7]. How-
ever, this approach is constrained to scenarios with predetermined
schedules and does not accommodate unpredictable demand or
on-demand car-sharing allocations. Conversely, the EV assignment
method in [18] uses crowd detection and generalized bender de-
composition (GBD) for optimized assignments, considering M/M/D
queueing at fast CSs and a distributed biased min consensus al-
gorithm for navigation. While this method offers advancements,
it may introduce implementation complexities and high computa-
tional overhead. On the other hand, Elghitani and El-Saadany [5]
proposed a strategy to reduce the total service time across the EVs
using Lyapunov optimization, dynamically reassigning EVs based
on travel delays. However, this approach might lead to user dis-
satisfaction due to frequent reassignments, potentially disrupting
travel plans and increasing anxiety.

Though the existing models primarily focus on reducing charg-
ing costs for EV owners, they frequently neglect the financial im-
plications for EV vendors. The model presented in [19] is one of
the first to address vendor profit maximization by assigning EVs to
CSs based on available solar energy, aiming to serve the maximum
number of vehicles while minimizing operational costs (OPEX).
However, this approach introduces a drawback by charging users
post-admission based on their remaining valuation, which could
result in unfair pricing and diminished user satisfaction.
Research Gaps: The reviewed literature indicates that most stud-
ies on CP assignments [5, 18] are computationally intensive and
time-consuming. In contrast, [14] overlooks real-time constraints
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related to CS availability, waiting time limits, and charging type. Ad-
ditionally, many studies neglect the financial impact on EV vendors,
which is crucial for the sustainability of the charging infrastructure.

SMEVCA is designed to tackle these challenges by implement-
ing a subscription-based SLA regulating waiting time limits to
ensure appropriate CP assignments. A scalable, time-efficient, and
matching-based procedure maximizes EV assignments in-network,
effectively reducing economic overhead.

3 System Model and Assumptions

A Roadside Unit (RSU) governs a circular region encompassing
multiple CSs, as illustrated in Fig. 1. Subscribed EVs enter the RSU’s
coverage area within a given time frame, each requiring a charge.
These EVs are assumed to be part of a vendor-specific plan tied to
the established charging infrastructure in the region. The vendor
usually offers two charging options, represented by a variable 6 €
{0, 1}: (1) Level 3, or fast charging, denoted as 6 = 1, and (2) Level
2, or regular charging, denoted as 6 = 0. Fast charging (Level 3)
is faster but comes at a higher cost compared to regular charging
(Level 2) [20]. The vendor-based subscription framework aims to
provide a seamless charging experience for EV owners by bounding
the waiting time and eliminating the need for payment at each
recharge. In this work, we do not delve into the pricing specifics
of the subscription plan; instead, we focus on efficiently assigning
CPs to EVs based on their subscribed plans.
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Figure 1: The Overall Architecture of SMEVCA.

3.1 Subscription Model

A subscription is a contractual agreement wherein an EV owner
(subscriber) pays a recurring fee to receive charging services from a
vendor over a specified subscription period. For a set of subscribed
EVs represented as S = {s; | 1 < i < |S|}, the subscription plan has
the following features.

o Fast Charging Limit: Each subscribed EV s; € S has an avail-
able fast charging capacity f; (in kWh) for the subscription period.
This limit applies within the vendor’s network and extends to
partner networks (see Section 3.2).

o Regular Charging Limit: A subscriber s; is entitled to unlimited
regular charging throughout the subscription period.

o Service Level Agreement (SLA): The agreement bounds the
maximum wait time per charging session for subscriber s; at any
assigned CP, irrespective of its association. This maximum time,
denoted as y;, includes the wait time before the actual charging
begins due to any existing queue at the assigned CP.
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3.2 Charging Infrastructure and Cost Model

Offering charging services involves two primary types of expen-
ditures from the vendor’s perspective: (1) Capital Expenditure
(CAPEX), which includes the costs of installing charging points
and acquiring or leasing charging sites, and (2) Operational Expen-
diture (OPEX), covering electricity costs, network services, bank
transaction fees, and more [20]. In the prevalent pre-pay model,
EV owners pay for each recharge session individually, with prices
varying based on location, time of day, and anticipated traffic at the
charging points. In contrast, the subscription-based model explored
in this work allows an EV owner to make a one-time payment to
the car vendor (e.g., Tesla, Rivian) for a charging plan that covers a
specific subscription period (typically days).

The RSU assigns EVs to vendor-owned CPs on a need-to-need
basis. Furthermore, vendors can establish partnerships with other
vendors to extend service coverage. From the vendor’s perspective,
charging infrastructure is classified into two types:

e In-Network CPs: In SMEVCA, CPs (installed and maintained)
by a vendor at owned or rented sites such as Target, Costco,
and Walmart are considered as in-network CPs, and the set is
denoted as %",

o Partner Network CPs: During peak loads, a vendor may allow
EVs to charge at CPs from other vendors, referred to as partner
network CPs. This network of partner CPs is denoted as C%P%"
helps extend service coverage.

Additionally, we assume that within the RSU coverage, a vendor
has four options for charging an EV s;: (1) in-network fast, (2) in-
network regular, (3) partner-network fast, and (4) partner-network
regular. While fast charging is more expensive than regular charg-
ing, partner networks generally impose facilitation fees, making
fast and regular charging more costly than in-network options.
Therefore, it is reasonable to conclude that, for a vendor to boost
its long-term revenue, it must service most EVs in-network.

3.3 Assumptions

SMEVCA operates under the following assumptions: All EVs have
identical battery capacities, denoted as By, and the vendor’s ap-
plication/software on the EV knows details about its designated
path and charge requirements. When charging is needed, the EV
requests a nearby RSU. The RSU’s coverage radius is assumed to
be 1.5 miles, with routes confined to this area [17]. This framework
focuses exclusively on public CSs owned by vendors or installed at
rented sites, excluding home or vehicle-to-vehicle (V2V) charging
[23]. We assume a subscribed EV with an available fast charging
quota prefers fast charging over regular charging. Charging re-
quests are collected and processed in batches at the RSU, simplify-
ing the model by not accounting for EVs dynamically entering or
leaving the network during the processing period. Future work will
address this dynamic aspect. The RSU manages charging requests
from vendor applications and assigns EVs to suitable CPs, with
subscribers adhering to the assignment recommendations.

4 Problem Formulation

An EV requiring charge requests information on available CPs from
the nearby RSU, which responds with the precise locations of CPs.
The EV then generates preferences based on the detour distance
from its current route. Once the preferences are generated, the
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assignment algorithm, executing at the RSU, performs allocation
considering factors such as (1) requested charge, (2) CP availability,
(3) charging limit specified in the subscription, and (4) maximum
wait time as per the SLA. Note that the RSU’s assignment follows
the vendor’s interests and targets: (1) minimizing the charging cost
of EVs and (2) SLA adherence. This can be achieved by serving
maximum charge-seeking EVs in-network, as it is a cheaper option.
While this approach is cost-effective, assignments in-network could
elevate the waiting times, potentially violating SLAs.

4.1 SLA-Compliant EV-CP Assignment

We consider a distributed model for preference generation wherein
the subscribed EVs independently compute their preferences for
CPs. Let us consider a subscribed EV s;, with a residual battery
capacity of B? (kWh), average velocity v; (miles/second), and aver-
age mileage of m; (miles/ kWh) places a charging request with the
RSU. The estimated time duration (‘7;(;) and charge expended (8; ;)

in traversing to a CP c]e’” € C located at distance d; j (miles) can

be derived as per Egs. (1) and (2), where cJQ’" € C is the CP under
consideration. Note that 8 € {0, 1} represents the type of charging,
either fast or regular, while n € {in, par} denotes the subscribed
network, either in-network or partner network.

o dij di
7= —=[seconds] (1) B;j=—=[kWh] (2)
> vj mj

Assuming the charging rate at cf’” be rj (kWh/seconds), and EV
si’s reception rate as 7; (kWh/seconds), the effective charge transfer
rate is bounded by min(rj, ;). Let s; desires to reach ; (0 < a; < 1)
fraction of the full charge By, hence the actual charge (i)
needed for s; at CP ce’”

is derived as per Eq. (3), where ¢; is assumed to be predetermined
by the EV owner.

Vij = ai - Bruy — (8] — Bij) [kWh] (3)
Next, the amount of time expended (7;,;) by s; at cf."q to receive

a recharge of ¢/; j is computed as Eq. (4).
Vi)

min(rj, 7;)

Tij = [seconds] 4)
ACP c?’” may not always be free for immediate charging. As-

suming it becomes available after a duration of ’ij "¢ from the
current instance. However, we consider that the SLA y; is triggered
once s; arrives at cf’” and encompasses the waiting time before the
start of charging. If s; is to be charged with y/; ;, then the effective

duration to SLA-compliant charging (5; j) is derived as Eq. (5).

8ij=Tij+vi if 77 =0
=Tij+Yi— (7}free
=0

~T0) o< T < TS vy

L,

Otherwise

(5)

Additionally, we consider d; ; € {0, 1} to be an indicator variable
that equals 1 if subscriber s; € S is assigned to CP cf."q €C,0
otherwise. Assuming 7, is the current time instance, let s; complete

its charging at cf."q at time 7; j. The objective of SMEVCA can then
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be formally defined as follows?:

max Z 19,',1' . lﬁi,j (6)
Si€S (01 ¢ co,in
J
such that

Z 8i;<1 Vs;€S8 7)

c?’” eC
D oij<q)" veec ®)

si€S
0,

9 j(rij — (e +7;3.)) <8 Vsi€S, Ve Tec (9

Eq. (6) captures the overall objective of SMEVCA and is dedicated
to maximizing the in-network charging. Eq. (7) captures the as-
signment constraint, which implies that an EV can be assigned to
at most one CP. On the other hand, Eq. (8) bounds the number of

EVs assigned at a CP c?’” € C, wherein q?’” reflects its maximum

capacity>. Any EV-CP assignment within the in-network or partner
network must be SLA-compliant, as captured in Eq. (9).

THEOREM 1. SLA-compliant EV-CP assignment is NP -Hard.

Proor. The SLA-compliant EV-CP assignment problem can be
reduced in polynomial time to the 0/1 knapsack problem by setting
the number of in-network charging points CjG’m to 1, the CP’s ca-

0,in

pacity q;
wait time for each subscribed EV to ypqax. If all EVs request charg-
ing simultaneously and the CP is available, the last assigned EV
can wait up to ymax without breaching its SLA. Therefore, all but
the previous EV assigned to the CP should complete their charging
in Ymax time. In this scenario, the problem becomes a 0/1 knapsack
problem where each EV is an item, the recharge time is the item’s
weight, the charge requirement is the item’s value, and y,qy is the
knapsack’s capacity. Since the 0/1 knapsack problem is proven to
be N'P-Hard [10], this specific case of the SLA-compliant charging
problem is also N'P-Hard. The general problem, involving multiple
CPs with varying capacities and subscribers with different wait
times y;, represents a more generalized and complex version of this
case. Given the special case is NP-Hard, we can conclude that the
general variant of the problem is at least equally hard. O

to the number of subscribed EVs | S|, and the maximum

5 Solution Approach

This section highlights the transformation of the SLA-compliant
EV-CP assignment as a one-to-many matching game and intro-
duces some crucial terminologies (Section 5.1). The solution to the
matching game is elaborated in Section 5.2.

5.1 EV to CP Assignment as a Matching Game

The assignment of CPs to EVs can be modeled as a matching game
between sets S = {s; |1 <i < |S|}and C = {cf"] [1<j<]|C|}[2]
In this one-to-many matching game, each CP c?’” has a available
quota qje.’”, initialized to its capacity. Although only one EV can

be charged at any time, we consider q?’n scheduling multiple EVs

%In the paper, time instants are captured by 7, and time duration’s (intervals) are
denoted by 7.
3The term Capacity/Quota/Queue Size are used interchangeably in this paper.
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assigned to c}e’” to account for the varied charge requirements and
non-overlapping charging duration. Formally, the matching game
can be defined as follows.

DEFINITION 1. (Scheduling Game): Given the sets S and C, a
one-to-many matching y1 is an assignment, such that yp: SUC —
2SUC, satisfying the following conditions.

ConbpITION 1.1. Vs; € S, |p(si)| < 1, u(si) € C,

CONDITION 1.2. ch.)’” eC, Ip(c?’”)l < qje.’”, p(cje.’”) cs,

CONDITION 1.3. s; € /,t(cf’”) — cf’” € u(s;).

Note that Condition (1.1) states that s; can be assigned to at
most one CP. On the other hand, Condition (1.2) states that cje.’” can

accommodate at most q?’n EVs. Finally, Condition (1.3) enforces

that s; is assigned to cje."] iff they are matched to each other.

Note that in the context of matching theory, each agenta € SUC
assigns preferences over agents in the opposite set [4]. These pref-
erence relations are binary, anti-symmetric, and complete relations.
For example, a subscribed EV s; € S, can have a preference in

the form of cf’n >

; cje,’”. This implies that s; prefers assignment
with cf’” over ce,’ " Moreover, such a preference relationship where
an agent is indifferent between any two agents of the other set is
called strict. The accumulation of all such preferences of an agent
{>si}tie[1,) 8] is termed as its preference profile [15].

DEFINITION 2. (Individual Rationality) A matching p is indi-
vidually rational, iff u(s;) >s; 0 and p(cf’”) = G)j(,u(cje.’”)), where
©;(.) returns the most preferred coalition, i.e., subset of S as per the

0
preference ofcj .

The property of individual rationality is essential to maintain,
as it ensures that the matching assignment is voluntary and that
no agent in a € S U C prefers to be assigned to y’(a) C u(a), ie.,
1’ (a) >4 p(a). If such scenarios arise, agent a will not prefer to be
assigned to agents in p(a) \ ¢’ (a) [9].

DEFINITION 3. (Pairwise Block) A matching i is pairwise blocked
by an EV-CP pair (s;, cjﬁ.’”) iff the following conditions are satisfied:

CONDITION 3.1. s; ¢ p(cjg.’”) and cJQ’" & u(si)
CONDITION 3.2. c?’” >s; 1(si)

CONDITION 3.3. s; € G)j(p(cf’”) U {si})

Condition (3.1) states that s; and cf’” are not assigned to each

other. Conditions (3.2) and (3.3) enforce that s; and c?’q are not
satisfied with their current assignments and have incentives to
deviate and be matched to each other.

DEFINITION 4. (Stability) A matching i is said to be stable iff it
is individually rational and is not pairwise blocked by any two agents.

5.2 Working of the Matching Algorithm

The overall working of the matching algorithm encompasses two
steps: (1) preference generation (refer to section 5.2.1) and (2) as-
signment of EVs to CPs (refer to Section 5.2.2). Next, we delve into
the details of the preference generation of subscribed EVs [25].

50

ICDCN 2025, January 04-07, 2025, Hyderabad, India

Algorithm 1: Preference_Generator_EV

Input: S, C

Output: P(s;),Vs; € S
1 Initialize: P(s;) < 0,Vs; € S
2 fors; € Sdo

// Null Initialization

/* In-network: More Preferred */
/* In-Network Fast Charging Points */
3 Pil’i" «— PreferenceHelper(C"", s;)
4 Append Pil’i" to P(s;)
/* In-Network Regular Charging Points */
5 P?’i" «— PreferenceHelper(C%", s;)
6 Append P?’i" to P(s;)
/* Partner network: Less Preferred */
/* Partner Network Fast Charging Points */
7 P;’Par «— PreferenceHelper(C1P%", s;)
8 Append Pil’par to P(s;)
/* Partner Network Regular Charging Points */
9 P?’P 4"« PreferenceHelper(C%?%", s;)
10 | Append P?’par to P(s;)

5.2.1 Preferences of EVs. Algorithm 1 takes the set of S and C as in-
put. It generates the preferences profiles P(s;),Vs; € S considering
the set of feasible CPs cje.’” eC.

For a subscribed vehicle s;, the preferences over the CPs are or-
dered depending on ownership, i.e., whether in-network or partner
network. Note that in-network CPs are given higher priority in
this work. The rationale is to service maximum EVs in-network,
thereby minimizing costs for the vendor, which is the primary goal
of this paper.

Algorithm 1 proceeds as follows. For every subscribed EV, the
CPs are processed in the order: (1) In-network fast (C>*), (2) In-
network regular (C%™™), (3) Partner network fast (C*%"), and (4)
Partner network regular (C%”9") (Lines 2-10 of Algorithm 1).

For each category, individual CPs are ranked using Algorithm 2,
wherein each CP c?"’ € CO is tested for its reachability given the
current state of charge of s;. If reachable, the procedure tests the
available limit for fast or regular charging per the subscribed plan
(Lines 1 - 5 of Algorithm 2). The ordering within each sub-category
is performed concerning the detour distances {d; j,d; j} € D; for

CPs c]e’” and cf,’”. Note that 9; is the vector containing detour

distances of s;, ch’” € C9 within the RSU region.
Therefore, for any two CPs in the same category, the preference
relationship can be represented as:

o.n o.n
j >S,' C.

C
J

= d;jj <d;j

5.2.2  Matching Algorithm. The overall assignment procedure exe-
cutes as per Algorithm 3. It takes as input C, S, and the preferences
of agents P(s;), Vs; € S. The initialization encompasses (1) setting
the initial matching of agents in S U C to 0, (2) setting the wait-
ing (W?’”) and current proposer (]P’?’”) lists for each cf’” € Cto
0. The proposer and waiting lists are updated at every iteration of



ICDCN 2025, January 04-07, 2025, Hyderabad, India

Algorithm 2: PreferenceHelper
Input: con, si, Di
Output: Pig’”

1 Initialize: P?’” —0

2 for ¢ € Cc% do

3 if (8?—3[)]') > 0 then

4 Lif@:OORﬁ>¢,~Jthen

5

0, 0, 0,
| PP PP UL
6 P (s?’”) « Increasing_Order_Sort (P?"], Dj)

7 return P?’”

// Null Initialization

the matching. The former tracks the proposals received at a spe-
cific round, whereas the latter records the accepted proposals (the
preferred coalition) till this round.

Algorithm 3 proceeds in two phases. In the first phase, i.e., pro-
posal phase, every unassigned s; € S’, with a non-empty preference,
identifies its most preferred charging option (say c]g.’”) using Ex-
tract(.), and sends a proposal to the same (Algorithm 3 Lines 5-9).
After sending the proposal, the same is evicted from the preference

(P(s;)) and is added to the current proposal list (IP’?’”) of cjg."].

Algorithm 3: Matching

Input: C, S,P(s;), Vsi € S

Output: 1 : SUC — 25Y€
1 Initialize: y(s;) «— 0,V S; € S,y(cf"') 0, va”’ eC

Current Proposer List: ]P’f’” — 0, ch’” €C

Waiting List: " « 0,vc?" € C
2 while True do
3 S’ — {si|p(si) =0 && P(s;) # 0}
4 if S’ # 0 then

5 for eachs; € S’ do

6 cf"’ «— Extract (P(s;)) // Most Preferred Choice

7 Send Proposal to cf’”

8 Remove cf’” from P(s;)

0, 0,

9 g]P’j”<—Pj"U{si}

10 for each cf"] € C such that IP’?"] + 0 do

1 y(cf"’) — PreferredCoalition(Wf"’, P?"’)

// Select the preferred coalition from
0.n  , poin
B(Wj U ]Sj )

12 Wj’” — y(cj’”)

13 ]P?"’ «— 0 // Other applicants are rejected
14 else

15 for cf’” € Cdo

16 L y(cf’”) — W?’”

17 fors; € S do

L o.n o.n
18 pu(si) « ¢; such that s; € Wj
19 return p

Once the EVs send their proposals, the accept/reject phase of the
algorithm is triggered. In this phase, the procedure first identifies
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the CPs that have received at least one proposal. For such cf’n, the
preferred coalition is computed using Algorithm 4, which computes
the most feasible coalition from the set L% using two different
procedures (1) preferred coalition dynamic (PCD) and (2) preferred
coalition greedy (PCG). Note that ]L,?”7 includes the subscribers from
W
the non-SLA-complaint proposing subscribers are evicted and are
not considered in the coalition formation (Lines 3-5 of Algorithm
4). Finally, the waiting list in the final iteration is the preferred
coalition (Lines 15-18 Algorithm 3).

andall s; € PJQ.’” such that §; j > 0. This pruning ensures that

Algorithm 4: PreferredCoalition

.o pon
Input: Wj ,GIP].
. .
Outeput.y(cj )
pe;) <0
0.n
2 ]Lj
fors; € ]P’]‘?"7 do
4 if 5,"]' > 0 then
L Lf"’ <—]L5"7 U {s;j}// update the candidate list

-

<—Wf"’// create a list of candidate EVs

()

=

/* Optimal preferred coalition search */
s p(cf’”) - PCD(IL?"’)
/* Greedy preferred coalition search */

7 ,u(cf’”) — PCG(L?"’)

oa

return p (cf‘” )

5.2.3  Working of PCD. Algorithm 5 first sorts the candidate EV list
Lo by their minimum permissible charging rate, defined as the ratio
of each vehicle’s charge requirement ¥; ; to its effective duration
to SLA-compliant charging &; ;, in non-increasing order, retained
in ]f‘,je.’” (Line 2 of Algorithm 5). Such a consideration facilitates the
selection of subscribers with higher charge requirements, increasing
the total charge transferred and prioritizing subscribers’ SLA.

From the sorted list Iﬁjg” the EVs that can be charged without
breaching the SLA are identified.

For memoization, two 2D matrices, D; and A;, with dimensions

(|Lje."7| + 1) rows and (5}”“3‘ + 1) columns, are considered. Here,

the k" row represents the first kK EVs from Iﬁ]e” and column [
represents the charging duration. Likewise, D;[k][[] denotes the
maximum charge transferable in I duration considering the first
k EVs, and Aj[k][I] is the corresponding ordered assignment to
achieve Dj[k][I]. The 0" row of D ; is initialized to zero, and the
0th row of A j is an empty list, reflecting that the maximum charge
transfer is zero with no EVs available. Similarly, column 0 indicates
that with a duration of 0, no EV can be charged (Line 6 -11 of
Algorithm 5).

The row k and column [ reflect a sub-problem involving the first

k EVs from Iﬁf” given a maximum allowed charge duration of I.

For the k" EV, identified as s; = ]L?’” [k].getID(), the procedure
has the option to either include or exclude it from being assigned to
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Algorithm 5: PCD

Algorithm 6: PCG

-

10

11

12

13

14

15

17

18

20

21

22
23

24

25

26

27

Input: ]L.f’”
Output: ,u(cf’”)
p(e;™) <0
Iﬁf’” « Sort Lf"] in descending order of ¥; j/6;
5;’“”‘ —max(;;:s; € L?’”)

Dj « [0
J [ ]\Lf"’\ﬂxdj’."“"ﬂ

Initialize empty 2-D matrix A; with (\Lf’”l +1) rows and
(679 +1) columns.

forl « 0 to 5}"‘” do

Dj[0][l] <0

| Aj[0][!] « empty list

for k — 0 0 |L%"| do

Dj[k][0] <0

L Aj[k][0] < empty list

/* Populate D

fork <« 1to |]I;]9”| do

forl « 1to 5;"”" do

*/

i<—]ﬁ?"’[k].get1D() // Get the subscriber ID
if 7;; < landl < §;j then
/* If s; is selected */
if ;; +Djlk —1][I - Ti;]1 = Dj[k — 1][I] and
Isi UA;[k = 1][1 = 7i;1] < " then
L D;[k1[1] & ] +D;lk = 1][1 - 73]
Aj[k][I] « Append s; to Aj[k - 1][I - T3 ;]
/* If s; is not selected */
else
L Dj[k][l] < Dj[k - 1][1]
Ajlk][I] « Ajlk - 1][1]
else
Dj[k][l] « Dj[k - 1][I]
L Akl « Ajlk —1][1]
/* Select the maximum value in the last row of Dj; */

I argmax; < <gmax (D; 1L 1(11)
p(edy — AL

return p( c?’” )

c?’”. If excluded, the charge transferred in that case is captured in

Dj[k—1][I] as the problem simplifies to determining the maximum
charge with the first (k — 1) EVs for a duration [.

On the other hand, an EV s; is included in the assignment iff the

following conditions ( Line 15 16 of Algorithm 5) are satisfied:

(1) If s; can be charged within duration ! without violating the
SLA (Line 15 of Algorithm 5);

(2) The inclusion of s; does not exceed the capacity at CP cje."];

(3) The aggregate charge transfer including s; is greater than
that of excluding s;. Specifically, ¥ ; + Dj [k — 1][I - 7; ;] >
Dj[k—1][1].

The total charge transfer, including s;, considers the charge re-

quirement of s; and the maximum charge that can be transferred
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Input: L?’U
Output: y(c?’q)
1 Initialize empty assignment sequence A;
2 p(c]") < 0
37¢«0
4 Sort L?’” in descending order of their minimum permissible

wi,j

61‘7]'
5 fors; € L}‘?"I do

charging rate

6 if |y(cf"7)| > q?’” then
7 L break
8 ifTe+7Zj§5i,j then
0, 0,
o || e e e s
10 Append s; to A;
1 T —T+T;;

12 ,u(c]e.’”) — Aj

13 return y(c?’q)

in the remaining time after charging s;. Whether s; is included or
excluded, A; is updated accordingly. After populating matrices D;
and Aj, the maximum SLA-compliant charge transfer is identified
by finding the highest value in the last row of D;. In case of multiple
maximum values, the corresponding entries in A; are examined,
and the one that charges the most EVs is selected to maximize both
the total charge transfer and the number of EVs charged.

5.2.4 Working of PCG. Like PCD, the greedy coalition selection
procedure is captured in Algorithm 6. The very first step in the
procedure sorts the EV list L% in non-increasing order considering
their minimum permissible charging rates. It then sequentially pro-
cesses LJQ.’” by sequentially adding it to the coalition subject to cj.)’n,
and SLA-adherence (Lines 5-11 of Algorithm 6). Such a processing
order prioritizes assignments of EVs seeking higher charges with
relatively short waiting times, offering a locally optimal solution.

THEOREM 2. The matching algorithm with PCD and PCG takes
o(|C|?|S|(log |Cl+67%)) and O(|C|?|S|log |C|) time respectively.

ProOF. In the worst case, a subscriber may send proposals to
all |C| CPs. With |S| subscribers in the system, the matching algo-
rithm can be iterated up to |C|- |S| times. During each iteration, the
preferred coalition algorithm is called for each CP. The preferred
coalition algorithm mainly contains a for loop iterating over a pro-
poser list of size |IP’?"7| (2 |C]) and a function call to PCD or PCG.
The PCD and PCG algorithms both first sort the list of candidate
EVs in O(|C|log|C]) time. The PCD algorithm then fills 2D matri-
cesDjand Ajin O(|C|5;.”“x) time, while PCG selects the first q?’”
candidates that satisfy the SLA conditions in O(|C|) time. Thus, the
matching algorithm with PCD takes O(|C|?|S|(log |C| + 5}’.”‘”‘))

time, and with PCG, it takes O(|C|?|S|log|C|) time. O
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The proposed methodology has been implemented in Python 3.8.3,
with EVs and charging points modeled as separate classes and pa-
rameter specifications in Table 1. We simulate an RSU region as
a 16 X 16 Chicago-style 2-D grid where each block is a square re-
gion bordered by four edges, symbolizing road segments. Within
this RSU region, the coordinates of EVs needing charging are uni-
formly generated at random. Algorithms 1 and 2 are implemented
as methods within the EV class, while Algorithms 3 through 6 are
implemented as methods within the RSU. Our implementation is
publicly available at [3].

6.2 Results & Analysis

Figs. 2 and 3 capture the behavior of the different schemes for
varying EVs. Fig. 2a captures the EVs successfully charged for fixed
capacity at fast and regular CPs within the vendor’s in-network
and partner network. It shows that the in-network CPs become
exhausted as the number of EVs increases, forcing them to charge
at partner networks in both approaches. Moreover, the fast CPs are
exhausted earlier due to pre-defined preference ordering (refer to
Section 3.1). In this case, PCD outperforms the PCG in assigning
more EVs, as it eliminates the least preferred EVs using exhaustive
search rather than locally optimal decisions made in the latter.
Fig. 2b captures the total charge transferred as the number of
EVs increases in the RSU region. It can be inferred from the fig-
ure that PCD satisfies the goal of achieving higher in-network
charge transfer. The inferior performance of PCG is attributed to
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the heuristic-based selection criterion, wherein the EVs are pro-
cessed in decreasing order of the minimum permissible charging
rate. This result demonstrates that in-network CPs prioritize EVs
with more significant charge requirements and lower SLAs. Thus, it
favors increased charge-consuming and swift customer base for the
vendor as per the goal of our work. Other sluggish EVs with meager
charging needs are pushed to partner network to meet their SLAs.
This can be affirmed in Fig. 2b, as we observe more EVs assigned to
partner network charging stations due to the bounded capacity of
the in-network charging, leading to SLA violations.

Fig. 2c captures the total in-network charge transferred for PCG,
PCD, and a random elimination technique considering the CP ca-
pacity without SLA. As discussed earlier, the in-network charge
transfer in PCD is higher than in PCG due to its exhaustive search-
based eviction policy. An exciting pattern of more significant in-
network charge transfer via random_elimination is observed for
some test cases. This occurs as it fills the CPs to their maximum
capacity, leading to the undesirable situation of a higher number
of EVs missing their SLAs, as observed in Fig. 3b. As expected, the
execution overhead in Fig. 3a shows that PCD executes longer than
random_elimination and PCG due to exhaustive searches.

On the other hand, Figs. 4 and 5 capture the performance of
the different schemes for varying CP capacity, bounded by the
total EVs within the RSU region as 45. Increased CP capacity ac-
commodates more EVs as expected in Fig. 4a. As with the case of
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Figure 4: Performance based on Varying Queue Size.

varying number of EVs in Figs. 2a and 2b, varying the CP capac-
ity also supports high in-network charge transfer with PCD and
PCG along with more EVs being assigned, as depicted in Figs. 2a
and 2b. Note that when the queue size is 1, all the in- and partner
charging points operate at maximum capacity. As the queue size
increases, the in-network charging options are utilized more due
to enforced preference ordering. Alternatively, Fig. 4c captures the
comparative behavior of the in-network charge transferred consid-
ering PCG, PCD, and random_elimination procedures. We observe
an exciting behavior wherein the PCG and PCD have consistent
in-network charges transferred irrespective of CP capacity (> 2).
This is because, at this point, no more vehicles can be queued up at
in-network charging points without missing their respective SLAs
and, hence, are pushed to partner networks. The behavior and the
reasoning for random_elimination follow the discussion provided
for Fig. 2c. Figs. 5a and 5b illustrate the execution times and SLA
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Figure 5: Performance based on Varying Queue Size.
misses. The execution time of PCD is higher than that of PCG and
random elimination due to the exhaustive PCD search procedure.
However, we observe a decreasing trend with increasing queue
size for all the approaches. This is because for a fixed number of
vehicles, as the queue size increases, the number of times PCD and
PCG are invoked is reduced owing to faster assignments, as the
EVs have more options. On the other hand, the number of SLA
misses is observed to be a sharp decline for PCD and PCG as the
queue size increases to 2, as the EVs can be queued up at charging
points. Moreover, both approaches experience 100% SLA adherence
(> 2). Finally, Figs 6a and 6b respectively highlight the number of
EVs assigned and the charge distributed across different charging
points. The assignments follow the preference order, wherein the
in-network charging points are filled first, followed by the partner
network. The higher assignments in the figure indicate that the fast
charging points are preferred within the in and partner network.
Results Summary: It is observed that 64.5% and 70.6% of the
average charge transfers are in-network with PCG and PCD for
increasing EVs, respectively. Also, 58.7% and 65% of the average
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charge transfers are in-network with PCG and PCD for varying
CP capacity, respectively. The average execution time of PCD is
higher by 5.64% and 5.85X, the average execution time of PCG and
random elimination, respectively. For in-network charging, PCG
and PCD give a corresponding gain of 14.6% and 20.8% over random
elimination. PCG achieves 89% of the optimal coalition produced
by PCD. On average, random elimination has a massive 37.7% of
unserved EVs within RSU due to being unassigned to a CP or missed
SLA, while PCG and PCD abandon 3% and 0.1% of EVs, respectively.

7 Features and Limitations

SMEVCA offers several key features. Firstly, it assumes that EVs are
subscribed to a vendor plan with predefined SLAs that limit the
maximum wait time before charging, with higher-tier plans provid-
ing shorter wait times. The plan currently sets a maximum quota for
fast charging but does not restrict regular charging. Secondly, con-
sidering these SLAs, SMEVCA generates a stable, fast, and efficient
vendor-centric EV-CP assignment, prioritizing the in-network as-
signment of EVs with fast charging quotas to fast charging stations
first, followed by regular charging. Though the proposed scheme
shows promising performance, it has the following limitations.

e A Comprehensive Subscription Model: The current subscrip-
tion model is straightforward and offers lower wait times (SLA)
to EVs subscribed to higher-tier plans. However, determining
optimal pricing for different tiers is complex and influenced by
factors such as the location and type of CSs, where urban areas
and faster charging options typically cost more. Factors such
as time of use, energy source, subscription plans, local utility
rates, and additional taxes or fees contribute to the overall cost.
In SMEVCA, the fast charging limit is a fixed number. However,
determining this quota is non-trivial and depends on the fast
chargers available, electricity pricing, and other factors.

o Stochastic Arrival and Departures of Vehicles: Currently,
SMEVCA operates on a static snapshot of the system, processing
charging requests in batches and not accounting for dynamic
arrivals or departures, which presents a more complex scenario.

o Traffic Considerations en-route: Once the RSU assigns a charg-
ing point, the time taken by the EV to reach the location can be
significantly affected by traffic conditions, leading to chaotic situ-
ations if the EVs arrive either earlier or much later than expected.

e Consideration of User-Preferred Charging Time Slots: The
current proposal does not consider the preferred time slots for EV
charging. A more realistic approach would involve incorporating
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Figure 6: Distribution across the charging points. | S| = 45, qf’” =4.

user preferences for specific charging time slots, which would
add complexity to the scheduling problem.

8 Conclusions

This work introduced the SMEVCA framework to create an EV-CP
assignment plan accommodating fast and regular charging options.
The challenge is inherently complex due to the rapid growth of
EV adoption, the slow expansion of charging infrastructure, and
the unpredictable nature of charging demands. The contributions
of this work are two-fold: (1) an SLA-driven subscription model
that limits the maximum waiting time for an EV at an assigned
charging point and (2) a matching-theoretic solution that is stable,
scalable, and effective in promptly assigning charge-seeking EVs
to charging points. The matching procedure determines the pre-
ferred coalition using two strategies: (1) a greedy, heuristic-driven
approach that is time-efficient and locally optimal, and (2) a dy-
namic programming approach that, while time-consuming, yields
an optimal coalition. Comparative studies confirm that SMEVCA
achieves performance improvements regarding in-network charge
transferred, SLA compliance, and execution times.
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