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HOCHSCHILD HOMOLOGY OF MOD-p MOTIVIC COHOMOLOGY OVER
ALGEBRAICALLY CLOSED FIELDS
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ABSTRACT. We perform Hochschild homology calculations in the algebro-geometric
setting of motives over algebraically closed fields. The homotopy ring of motivic
Hochschild homology contains torsion classes that arise from the mod-p motivic Steen-
rod algebra and generating functions defined on the natural numbers with finite non-
empty support. Under Betti realization, we recover Bokstedt’s calculation of the topo-
logical Hochschild homology of finite prime fields.

1. INTRODUCTION

Hochschild (aka derived Hochschild or Shukla) homology is in a precise sense the
homology theory of associative algebras [38, Section 3], and so plays an important role
from a purely ring-theoretic perspective, classifying extensions and so on. However,
Hochschild homology rose in prominence in the 1980s via its cyclic structure as ex-
plored by Connes and Tsygan and its subsequent connection to (rational) algebraic
K-theory. To include torsion phenomena (and wider applications), Goodwillie and
Waldhausen conjectured that the differential of algebraic K-theory should correspond
to some form of Hochschild homology of algebras over the sphere spectrum (ring spec-
tra). When Bokstedt succeeded in extending the definition of Hochschild homology to
cover algebras over the sphere spectrum (“topological Hochschild homology™), he also
managed to calculate its values at the prime fields, revealing the striking periodicity
which has been fundamental to much of the subsequent development. Later, the first
author and McCarthy confirmed Goodwillie and Waldhausen’s conjecture, leading to
further advances and, ultimately, many calculations of algebraic K-theory.

In this paper, we try to emulate Bokstedt: we define Hochschild homology for alge-
bras over the motivic sphere spectrum and calculate its values at prime fields. This is
interesting for many reasons. Firstly, the motivic version over Spec(C) sheds light on
the topological one, giving “reasons” for some of the relations from the classical case.
Secondly, if we are to investigate the “number theory” of rings over the motivic sphere
spectrum, we should access invariants of a K-theoretic nature with an ambitious goal
of repeating the success in (equivariant) stable homotopy theory. We hope that this
paper is a tiny step in the right direction. Our definition follows the interpretation of
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Hochschild homology as the homology of associative algebras in the spirit of Quillen.
There are different options, but we do not pursue them in this paper.

Hochschild homology is a fundamental derived invariant for algebras and rings [11].
For a smooth algebra A over a field k of characteristic zero, such as the coordinate ring
of a smooth affine variety, the Hochschild-Kostant-Rosenberg theorem identifies the
Hochschild homology groups HH,,(A/k) with the Kéhler differentials Q} , of deriva-
tions. Using Hochschild homology, HH, one constructs many other derived invari-
ants such as Connes’ cyclic homology HC. We refer to [31] for background. Bokstedt-
Hsiang-Madsen [9] pioneered the refined theory of topological Hochschild homology
THH and topological cyclic homology TC; their trace methods remain of significant
interest in algebraic K-theory, see [13], [20], and the modern viewpoint adapted to co-
categories in [36].

Motivic homotopy theory is an Al-invariant homotopy theory for algebraic varieties,
originally developed by Morel and Voevodsky in the 1990s [35], and motivated by the
spectacular work of Voevodsky and Rost resolving the Milnor and Bloch-Kato conjec-
tures relating Milnor K-theory with Galois cohomology [52], [54], and quadratic forms
[37], [45]. Since then, this framework has shown itself to be a valuable setting for study-
ing algebro-geometric cohomology theories, with applications to algebraic geometry,
number theory, and algebraic topology. See [27] and [30] for recent surveys.

In this paper, we study Hochschild homology in the motivic setting. Let Z# be a
motivic ring spectrum such as algebraic cobordism, homotopy algebraic K-theory, or
motivic cohomology [49]. Working in the stable motivic homotopy category SH(F) of
a field F, we define the motivic Hochschild homology MHH(%) of # as the derived
tensor product

(1) % A'@Agop %

The primary purpose of this paper is to calculate the homotopy ring MHH, (Fp,)
of motivic Hochschild homology of MFF, over algebraically closed fields—the Suslin-
Voevodsky motivic cohomology ring spectrum for p any prime number. When the base
field admits an embedding into the complex numbers C, the Betti realization func-
tor allows us to compare our MHH calculations with Bokstedt’s pioneering work in
[8] on topological Hochschild homology of the corresponding topological Eilenberg-
MacLane spectrum HF,. Additively, THH(F,) splits as sum of HF,’s in the stable
homotopy category. However, this is not the case for MHH(F,) and MF,,. The source
of this extra layer of complexity is the abundance of z-torsion elements in the homo-
topy ring. Here 7 is a canonical class in the mod-p motivic cohomology of F, which
maps to the unit element in singular cohomology under Betti realization.

We express the homotopy ring MHH,, () in terms of algebra generators 7, u;, Xg, r
arising from the mod-p motivic Steenrod algebra [23], [53], and generating endofunc-
tions f : N O with finite non-empty support containing some subset S C N. It is the
T-power in the equation /,t? = tP~1y;,, that gives rise to the infinity of z-torsion classes
xs,s not witnessed topologically in THH, (F,).

Theorem 1.1. Over an algebraically closed field of exponential characteristic # p, there
is an algebra isomorphism

(2) MHH*(Fp) = [Fp[fuuir XS,f]ieN,(Scsuppf,f: N(j))/j
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with the ideal of relations

i = P s
g = ™% 1 ‘
Xs,f " XT,g = )y €u " XSUTU{u},f+8
uesupp(f+g)—SuT
Herethe support of f is a finite non-empty subset of the natural numbers and S C suppf C
N does not contain the minimal element of suppf. The coefficient €, € [, is given ex-
plicitly in Definition 2.12. The algebra generators have bidegrees given by |t| = (0,—1),

luil = 2p', p' = 1), and

Xs.sl =S|+ D(-Lp=D+p > [P, p -1
Jjesuppf
Since the homotopy of MHH([F,) is not a free module over the homotopy of M[F,,
we deduce a non-splitting of the motivic Hochschild homology in MF,-modules.

Corollary 1.2. The motivic Hochschild homology of I/, does not split as a wedge of sus-
pensions of MF,

This gives a surprising obstruction to classical results about topological Hochschild
homology and Thom spectra. Mahowald showed that the Eilenberg-MacLane spec-
trum HF, is a Thom spectrum of a double loop map with source Q2S> [32]. Behrens-
Wilson showed that an analogous result is true C,-equivariantly, with the base now
Q21531 [6]. Blumberg-Cohen-Schlichtkrull showed that the topological Hochschild
homology of Thom spectra are Thom spectra, and when the topological # vanishes,
these split as smash products of the original Thom spectrum and a space related to the
classifying space of the base [7]. Equivariantly, classically and C,-equivariantly, this
splits as a wedge of smash powers of spheres. Putting this all together, we cannot have
that all of these results hold in the motivic setting.

As a guide to this paper, we outline the proof of Theorem 1.1 and explain how the
algebra generators arise in our context. The key idea in proving our results is to study
the r-inversion and mod-7P~! reduction of MHH(F,), and then analyze how their ho-
motopy classes conspire to describe the integral homotopy ring. We review some back-
ground and set our notation in Section 2. Remark 2.5 gives a Lefschetz Principle for the
homotopy ring of MHH(F,), which reduces our computation to the case of complex
numbers. In Section 3, we divide the proof of Theorem 1.1 into the following steps.

Step 1 The dual motivic Steenrod algebra of our ground field F at p, see (9), contains
classes 7; for i > 0. Theorem 3.3 calculates the z-inverted or étale motivic
Hochschild homology

(3)
MHH*([Fp)[T_l] = [Fp[fil’/"i]izo/(:u? - Tp_l/"i+1) = [Fp[,u’ Til] = THH*(ﬂ:p)[Ti—l]-

Here the generator u has bidegree (2,0). The “homology suspension” classes
i = 0T, see Section 2.2, generate the non-z-torsion part of MHH,, (F,) subject
to the relation ub = 7P~ 1y, ;.
Step 2 Theorem 3.6 calculates the mod-7?~! motivic Hochschild homology
“4)
MHH, (F,)/tP~! == 7, (MHH(F,)/7P) = (Q) Ty, () ® Ar, (T141)) ® Fplr]/zP 1.

i>0
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The bidegrees of the generators are |1;| = 2p' — 1, p' — 1), |&;| = (2p%, p' = 1).
The divided powers algebra generator f; is the image of x; € MHH, (F,). It
turns out that (4) coincides with the E? page of the Tor spectral sequence for
MHH(F,)/ tP~1, In fact, the said Tor spectral sequence collapses at E? with no
multiplicative extensions.

Lemma 3.9 shows that the P~!-Bockstein of y ;1; equals ;.17 j_pf;. First, we
establish the case j = p, and the rest follows by shuffle products in the bar
construction of MHH,, (F,,)/7P~!. Here, the 7°~!-Bockstein on MHH, (F),) is
the composite of the canonical boundary and quotient maps in

- 4, 0 q _
d: MHH,, ,(F,)/7?"' = MHH, ,,,_(F,) > MHH, ., (F,)/7?"".

In Corollary 3.10, we conclude the Bockstein homology of MHH,, (F,)/ P~ 1lis
isomorphic to the graded commutative Fp, +=[F, 7] /TP~ Lalgebra ®i>OA”:p (@)

Step4 Lemma 3.13 shows that the z-torsion classes in MHH,(F,) inject into

Step 5

MHH, (F,)/tP~! with image that of the 7?~!-Bockstein J (degrees are made
explicit through generating functions). Moreover, the reduction map q sends
the image of the boundary 8 isomorphically to the image of the Bockstein d.
If f: N O has finite support and S C suppf, we set

XS, f = (H /Tm+17pf(m)—p:am> (H 7pf(n)ﬂn> € MHH*([Fp)/Tp_I-
nés

meS

We define the 7-torsion algebra generators in Theorem 1.1 by
XS,f = a}(S,f (S MHH*([FP)

In particular, xg0 = 1, Xy pis, = Ypi+1An a0d Ximys,, = Ams1- Here 5,1 N O
is zero except for §,(n) = 1. Applying the Bockstein operation d to g s yields
XS,f = Qinesupp(f)—s XSuinl,f SINCE OYnfli = Aip1Yn—pfli» 04; = 0, and dis a
derivation. Since the classes f;, xs,r, and the d cycles 1;,, = 9y,f1; generate
MHH*([FP)/TP_I, the classes f1; and xg ; generate the boundary.

Step 6 By combining the r-inverted and mod-zP~! calculations we finally deduce The-

The

orem 1.1. The power operations in the dual motivic Steenrod algebra give rise
to the relation ,u? = "~ 1y;,,. The Bockstein calculation xg, f = 0xs,s implies
the vanishing 77~ !xg ¢ = 0. Corollary 2.15 shows the multiplicative relation
between the xg ¢ classes follows from a similar formula for the yg r classes. We
refer to Definition 2.12 for the entity €,,.

For example, at the prime p = 2, we obtain the relations

X50+51X52 + X51+52X50 + X52+50X51 = O’

X50+51 X51 +8; = X251 X50+52 .

orem 1.1 admits a succinct reformulation in terms of naturally induced pull-

back squares of commutative Fp[7]-algebras given in Section 3.3.1 and Section 3.4. For
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example, when p = 2, we note the pullback square of commutative F,[7]-algebras

MHH, (F,) —— H:Z[T’Mi]/(luiz — THi+1)

| J

Falfti,xs, 19— Falmil/(a7)

where the ideal of relations is given by (see Section 2.5 for the definition of ¢5., 5)

J= (ﬂ?,xS,f X7, — Cu- X5uTu{u},f+g>-

t prg#uesupp(f+g)—SuT

Our calculation shows the left vertical map in the pullback is an isomorphism on z-
torsion classes. Furthermore, the upper horizontal map is an injection on non-z-torsion
classes. An analogous result holds for all odd primes.

1.1. Notation. This paper uses the following notation.
p,F prime number, base field of exponential characteristic e(F) # p
SH(F) stable motivic homotopy category of F
CAlg(F) | commutative motivic ring spectra of F
74 motivic ring spectrum
H*,h* | (bigraded) integral, mod-p motivic cohomology groups of F
KM kM | (graded) integral, mod-p Milnor K-groups of F

M, mod-p motivic homology ring of F

Ay dual motivic Steenrod algebra of F at p
Fpzr shorthand for F,[]/zP~!

A divided power and exterior algebras

2. MoTIviC HOCHSCHILD HOMOLOGY

Definition 2.1. Let % be a motivic ring spectrum. The motivic Hochschild homology
of an #Z-bimodule .# is the derived smash product

(6) MHH(%, %) =M NI X
in SH(F).

When # = .#, the derived tensor product (6) specializes to MHH(Z) in (1). If
% — 2 is a map of motivic ring spectra and .# is a 2-% bimodule, then reassociating
the smash factors implies the equivalence

(7) MHH(%, ﬂ) ~ M A 9nzpop 2.

In the following, we assume that Z is a cofibrant commutative motivic ring spectrum
in any of the model categorical approaches to SH(F) as in [14], [21], [24], [28] (this
assumption is superfluous in the co-category of motivic spectra [41]). Commutative
motivic ring spectra are cotensored over motivic spaces via the free-forgetful adjunction
F - U between SH(F) and commutative motivic ring spectra CAlg(F): if 2 is a
motivic space, then 2~ ® Z is the coequalizer of

F(Z, ANUR) = F(X, NUTUR).
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Here we use the canonical maps UFUZ — URZ, X AN UF(UZ) - UF (X, A UZR),
and FUF — F. We will only need the special case of simplicial sets or topological
spaces. The case of finite simplicial sets is particularly transparent since it derives from
therelation{l,...,n}Q% = #"*. The assignment 2" — 2 ®% from motivic spaces to
motivic ring spectra has several useful properties which generalize from the topological
setting and which we will use freely.

« 2 2 ®Z is Al-homotopy invariant and preserves coproducts (and so, in
particular, sends pushouts to smashes).

c x QA =X, S° QK ~ # AZ and (since S! is the derived pushout of * «
SO - %)

MHH(Z; /) ~ M Ny (S* @ Z).

+ The product on 2" ® Z is induced by the fold 2" [[ 2" - Z.

» Choosing a point + — 2 makes 2" ® # an augmented commutative %-
algebra.

» Theinclusion{-1,1} C {-1,0,1} = {0, —1}Vv{0, 1} induces the comultiplication
BNR —> BNRNRE = (FNRE) Az (Z AZ) and the nontrivial automorphism
{=1,1} -» {-1, 1} gives the anti-involution of the “dual Steenrod %Z-Hopf alge-
broid” S° ® # = # A % (algebroid since the maps involved are not pointed,
and so there is no guarantee that the units corresponding to the two choices of
base points will coincide). The suspensions of these maps give the pinch map

St=[-1,1] J] = [-1.1] J] ==stvs!
{-1,1} {-1,0,1}
and the flip map S' — S!, both of which are pointed maps, inducing the %-
Hopf algebroid structure

P:S'QZ — (S'VSHQRZ=(S'QRA) N (S'QRF), x:S'QZ2S'Q%

on the “motivic Hochschild homology”—to implement this using finite sim-
plicial models of the circle, one subdivides as in [1].
Hence, if MHH, (Z) is flat over %, , which will turn out not to be true for
% = MFFp, we get an %, -Hopf algebra structure on MHH, (%).
+ The tensor with spaces in the category of motivic spectrais 2" — 2 | AZ and
the universal property defines a unique map of motivic spectra

ot TNZ > X QX

If X is a set considered as a motivic space, the inclusion of the points {x} C X
induces the desired map X, A Z = \/{x}ex{x} RZ — X QZ%. If X is already
pointed, the basepoint in X makes X ® % an #Z-algebra, giving rise to the free
extension to an Z%-linear map

®) o AAXNT T aaxen 2L x @ 2.

« If A is a commutative %-algebra, then the internal hom 2~ — A% =
homg (%, A %, A) is a cotensor (does not depend on &). The unit of the
adjunction

a” A - (% % A)”
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is a map of commutative #-algebras. (Here 2° ®” A is the tensor in the cat-
egory of commutative %-algebras of the motivic space 2" with A.) In the cat-
egory of Z-modules, the adjoint of a” takes the form

R
07 (X AR Mg A 22 (s AR Ny (27 @% AT (7 @7 A),

where ev is the evaluation. Composition gives an %#-algebra map v: Z% A4
(2 ®"A) — (2 & A)”.

Assume that 2" = X is a finite cell complex and that 77, (X, AZ) is a finitely
generated free 7, %Z-module with basis B. Then v is an equivalence, and the
composite (we identify 7, (%X A4 (X @7 A)) with the given target)

R —1
vila? : A S 1, (X@7AY 2o homy (7, (X4 AR), 7, %) @, T4 (X T A)

satisfies
viaa) =) X' ®cZ(x®a).
xeB

Here xV is the basis element dual to x and x ® a € 7, (X3 AZ) Qr, 5 Ty A =
T, (Xy AZ) Agp A). We will use this formula in Lemma 2.3 to get a relation
in MHH(F,) (in the topological case, see [1, §5] for X = S! using the circle
action).

In the category of commutative Z%-algebras, note that 2° % (#Z A %)
% N2 @ R)is the tensor of 2” with S @ Z = % A X with its left #-algebra
structure, and there is a commutative diagram

(X ANB) Ngg (B NB) s 7 % (% A )

~ 3

1nct

RBANLNR—"2 S RN QZ,

where the vertical isomorphisms are the associators.

2.1. Comparison of simplicial models. It will be convenient to make explicit some
of the simplicial models and how they interact (see [1] for a homological version in
the topological setting). In this subsection, let I = A[1] be the simplicial interval with
boundary S = dA[1] and let S* =T 1o * be the simplicial circle. The subdivision
of the circle relevant to the comultiplication is dS* = (I T]1) [] I1s0 S with weak

equivalence dS' — S! given by sending the first interval to the base point. The pinch
map V : dS! — S' v S! identifies the endpoints. It is sometimes convenient to write
dS" as # [T oI x S°) I 1o *. Under the canonical isomorphism % = % ® Z we get an
identification S! ® Z = (I ®”% %) Asog Z Wwhich is a concrete model for the derived
smash #Z AL, , % and

dS'®@ %7 = (U [ D ® %) Aso 11509087 S° ® Z = & Agpa I ® (B NR) Ajgnze %

Let # — A be a cofibration of cofibrant commutative motivic ring spectra. Let
X ®” A be the tensor in the category of commutative Z-algebras of the space X (all
smashes involved are over %). If .# and .4 are A-modules, then the derived smash
M /\fz, A is conveniently modeled as .#Z A4 (I R A) Ayq N, often referred to as the
“two-sided bar construction over %”. Note that this does not depend on %, in the sense
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that the map .# Ay I Q A) Ay N — M Ay (I®% A) Ay N is an equivalence. In the
special case A = S° @ Z = # AN # we get an identification between the tensor with
the subdivided circle and the bar construction S' ® Z ~ % A, (I ®”% A) Ay # and
dS' @ # = % Ay (I ® A) Ay Z. If one wishes to write the comultiplication

V:S'@% CdS' @ F — (S'VS) @ Z = (S'® B) Ay (S @ )

in terms of the bar construction, a concrete way is to use the equivalence I ® A — A
and the augmentation I ® A — Z as in the diagram

RBAAQ A)N R BATQ AN, T Q AN, (I Q ANy R
(RN Q AIWNSR) Apg (BN, Q A)Ny ) — BALIQ AINJRBN,(T QR A)YNY .
This formula only uses the augmentation A — % and not specifically that A = ZAZ%.

One may replace the ® by ®” if convenient.

2.2. Some classes coming from the dual motivic Steenrod algebra. Let A, =
7, (MF, A MF,) be the dual motivic Steenrod algebra of our ground field F at p,

_ M*[§i,fi]izo/(fi2 —p(Tiz1 — t6iv1) — Tiy1) P =2
M, [§iliso ®m, Awm, (T)iso p#2

(where M, is the mod-p motivic homology ring of F; 7 and p are discussed below),
whose Hopf algebroid structure is given in [23, §5.1], [40, §5], [53, §12]. Our notation
indicates that 7; is an exterior class when p # 2. By convention we set {, = 1. The
bidegrees of the generators in (9) are given by

&l =@p'-2,p' -1, |ul=@p'-1p'-D.

The coproducts of the generators are defined by

©) Ay

(10) e =D e Pm=ue1+ 3¢ 8
j=0

Jj=0
The left unit is the canonical inclusion. When p = 2, the right unit is determined by

nr(P) = p, nr(1) = T+ p7

for the canonical classes T € My _; = u,(F) and p € M_; _; = F*/(F*)%. The mod 2
Bockstein on 7 equals p. While 7 is always nontrivial—being the class of —1 € p,(F)—
we have p = 0ify/—1 € F. The graded mod-2 Milnor K-theory ring k¥ C M, of
the base field F is comprised of primitive elements. The element 7 is not primitive in
general. If F contains a primitive pth root of unity so that My _; = Z/p{r}, then M, =
kM[7] by the norm residue isomorphism [52], [54]. We shall also use the antipodal
generators

i—1 X i—1 .
an) o)== D e, &) =—Ei— D & (&)

Jj=0 Jj=1
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detailed in [23, §5]. For legibility, we will abuse notation by implicitly using the antipo-
dal classes (11) in our computations. Voevodsky defines in [51, §3.1] the mod-p rigid
motivic Steenrod algebra

(12) AE = Q) Sr, (Gi1) ® A, (12).
i>0
The equation (10) gives the coproducts of the generators. For p # 2, this is the dual
topological Steenrod algebra at p.

Remark 2.2. Suppose F is an algebraically closed field of positive characteristic # p. Its
ring of Witt vectors W(F) is a Henselian local ring with residue field F. Let K denote
an algebraic closure of the quotient field K of W(F). We note that K has characteristic
zero. The natural maps
K< WFE)>F

induce isomorphisms on M, and A, according to [55, §4,5,6]. These algebra isomor-
phisms preserve the classes 7; and &;. Moreover, M, and A, are invariant under ex-
tensions of algebraically closed fields of characteristic zero.

The structure of the dual Steenrod algebra has some direct consequences for motivic
Hochschild homology. Recall from (8) the suspension operation
(13) o: MF, A SL AMF, — MF, A MHH(F,) Eu—li MHH(F,).
We note the isomorphisms
7T (MF, A S4 AMF,) = 7, (MF, A S}) Ame, (MF, A MF,))
= H*(S}H M) O, Ax
= H,(S%;Fp) ® A,

If s, € Hy(S} ;IFp) is the standard generator and { € A, we let “0{” denote the
“homology suspension” of {, namely the image of s; ® { in MHH, ,,(F,,) under the
composite in (13) and also in 754 ,(MF, A MHH([F,)) under the first map in (13).

We now show two relations useful in the forthcoming spectral sequence calcula-
tions. Remark 2.7 generalizes our second formula to all base fields when p = 2.

Lemma 2.3. In the motivic Hochschild homology MHH,, (F,) of an algebraically closed
field of exponential characteristic # p, we have the relations

1oty = (o1y)P, 106, =0
foralli>o.
Proof. Suppose that % is a commutative M[F,-algebraandleta : S>% — % representa
class in 7y ,,%. We write EZ, for the nerve of the translation category of the symmetric

group %, on p letters.
The “power operation”

P(a) : 7, (MF, A ((EZ,)4 As, (SSWYP)) - 7, #
is the homotopy of the M[F,-module map MF, A ((EZp) Az, (S5W)'P) - Z adjoint to

the composite

ES Ay (S50 % b s e P oy MU
p NEp p NEp P :
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Precomposing with the map
H,(BZ,;Fp) @ m(MF, A S¥Y) — 1, (MFp A ((EZp) 4 Ag, (S¥)P))

defined on the chain level (via the monoidal Quillen equivalence between MF,-
modules and motives with mod-p coefficients, see [16], [23], [42], [43]) as the diag-
onal for the Suslin-Voevodsky motivic complex [33], [50]

C*(Ezpa [Fp)/zp ® Z/P(w)[s] - C*(Ezpa le) ®2p Z/P(w)[s]®p

and evaluation at the classical choice of generator of H;(BCy;F,) C H;(%p, Fp) gives us
the (topological) Dyer-Lashof operation Q;() € 7 ps pw# on a. We do the usual shift
to upper indexing with Q" (x) = Q2r—s)(p—1)(@) (for p odd; Q"(a) = Q,_y(a) for p = 2)
so that Q%(a) = a and Q*(a) = a” when 2r = s (for p odd; r = s for p = 2). We refer to
[29, §1.5] for a survey of Dyer-Lashof operations.

In Section 2.1 we set # = MF, and A = #Z A # and let X be any space with
finite basis {x} for the homology H,.(X;F,). Recall that a”: A — (X ®” A)X and
v: BX Ny (X®7 A) - X®7 A are maps of commutative %Z-algebras. For appropriate
r and s, we obtain

Qvilal =vilaf QS
and so
2 2 QXYM (x®a) =) x" ® ¥ (x ® Q%a).
X a+b=s X

When X = S! the Dyer-Lashof operations Q%(x") are trivial for a # 0 and so we get
Qc”(x ® a) = 0”(x ® Q*a).

Restricting to the generator x = s; € H,(S%; Fp) and multiplying down to homotopy,
we get the crucial formula

Q’c =0Q°: 7, (MF, AMF,) > MHH,, 1 55p-1),pw(Fp)
for p odd, and
Q’c = 0Q%: 75, (MFy; AMF,) - MHH, | 55 ,(F).

By construction, the power operations are preserved under base change. Over any
algebraically closed field, we claim there is a relation (due to Steinberger [10, I11.2] in
the topological setting)

(14) Tp_l‘L'i+1 = QpiTi S 7T2pi+1_1,pi+1_p(M[Fp A M[Fp).

By Remark 2.2 and rigidity, it suffices to know that the relation holds over the complex
numbers, which follows by Betti realization to the topological situation (the motivic
correction factor 7P~! ensures the weights agree). Thus, for the antipodal classes (11),
we obtain the first formula

(15) ™ lor = oQP'1; = QP o1, = (o7;)P.

We use this result to prove the vanishing of (1 A o+),(s; ® tP~1&;,,) for the map
1A0T: MF, A St A MF, — MF, A MHH(F,). This relation will be shown in
homology from which the homotopy versions follow by the MIF,-algebra structure

mult : MF, A MHH(F,) — MHH(F,) (splitting the inclusion of homotopy in ho-
mology). Let B : MF, — S A MF, be the p-Bockstein, i.e., the M[Fp-linear boundary
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map in the fiber sequence of Eilenberg-MacLane spectra associated with the short ex-
act sequence pZ/p* C Z/p? — Z/p. For any commutative ring spectrum %, the map
(BAD, : T (MF, AZ) — m,(S' AMF, A %) is a derivation (since pZ/p* C Z/p?* is
a square zero ideal) and as usual we allow ourselves the shorthand g for (8 A 1),. By
construction of the motivic Steenrod algebra, see [23, §5], [53, §9], the generators in
the dual motivic Steenrod algebra A, = 7,(MF, A MF,) are connected via

§iv1 = BTitr-

The diagram

1 +
MF, A S} AMF, —>— MF, A MHH(F,)

J{,@/\l J{ﬁ/\l

1 1 1nct 1
S' A MF, A S} A MF, —-7 5! A MF, A MHH(F,)

commutes, and since the power operations commute with cM"» = 1 A o+ we get for p
odd (where 7 = 0) that

MF MF
0 =multflo, °(s; ® 7;)]P = multBo, °(s; ® P~ '1;41)
= 0ftP 1y = otP T = P 10g .

For p = 2, we will see that the last formula follows directly from the d'-differentials
in the Tor-spectral sequence, but we may also use the Bockstein and compute (o = 0
since the base field is algebraically closed)

0 = multfla} *(s; ® 7p)]* = multBoy” *(s; ® 7711
= 0(B(t7i41)) = 0(B(D)Ti41 + TA(Ti41)) = 0(pTiy1 + T6ix1) = 06141
This finishes the proof. O

2.3. Tor spectral sequence for motivic Hochschild homology. A motivic spec-
trum is cellular if it belongs to the smallest full subcategory of the stable motivic ho-
motopy category which is closed under homotopy colimits and contains the motivic
spheres SP4 for all p,q € Z, see [12, §2.8]. The cellularity assumption is central in
motivic homotopy theory, see, e.g., [46, §2.3]. It is, moreover, needed for running the
motivic Tor spectral sequence (we refer to [18] for the topological setting).

We begin by relating the integral Tor spectral sequence to the bar construction. Our
setup is a map of motivic ring spectra Z — 2 and an 2-% bimodule .#. We assume
that # is a commutative motivic ring spectrum and A = ZAZ is a cofibrant Z-algebra.
If A is commutative and the modules .# and 2 are commutative .A-algebras, then the
homotopy colimit of the simplicial object {[s] — .# Ay A"% Ay 2} is isomorphic
to (A Ay 2) @, (S* ® A) in the category of commutative %-algebras. Moreover, the
derived smash product .#Z A, 2 in (7) is the homotopy colimit of the diagram over the
opposite simplex category A°P given by

[S] /A N AAS@ N 2.

The skeletal filtration yields the E! page of the Tor spectral sequence, which—if 7, A
is flat over 7, Z—takes the form

Esl,* = By(my M, 7T A, T3 2) = Ty M Qr, 5 77*-’4@”*% ®r, % TxL2.
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It is conventional to denote the generators of the bar complex by [mg|ay] ... |as|ns41]-
When .# = 2 = % we abbreviate [1]|a;]...|as|1] to [a;] ... |as]. The homology of E; ,
computes the E? page of the Tor spectral sequence (16). We recall the d* differential is
given by the alternating sum of the face maps

[mg - a1lay| ... |as|ng4] i=0
dilmolay|... |as|ns41] = {[molay| ... |a; - @] ... |as|ng] 0 <i<s
[molay|... |as—1las - Nsy1] i=s.

The isomorphim . Ay (2 AZY % Ay 2 = (M Ny 2) A 2™ given by multiplication
relates our description of the derived smash product to the Hochschild homology style
description

[s] = (A Ay 2) N 275,

Proposition 2.4. Let # — 2 be a map of cellular motivic ring spectra, where Z is com-
mutativeand A = 2 AZ is a cofibrant %-algebra, and let ./ be an 2-% bimodule. Then
the skeletal filtration on the simplicial circle gives rise to a strongly convergent trigraded
Tor spectral sequence

(16) B2, = Tor(n, M, 7w, ) = MHHy, , ,(%; ).

h,t,w
Here, h is the homological grading on the torsion product and (t, w) is the internal grad-
ing for the bigraded motivic homotopy groups in topological degree t and weight w. The
differentials are of the form

r. gr r
d . E*,*,* - E*—r,*+r—1,>:<'

If #Z is commutative and 2 and ./ are commutative Z-algebras, then the Tor spectral
sequence is a spectral sequence of % -algebras with the multiplicative structure on the E*
page given by the shuffle product introduced by Eilenberg-MacLane [15]. The pinch map
on the circle induces the Hopf-algebra structure on the torsion groups on the E* page. If
E2,...,E" are all flat over %, for 2 < r, then the E" page inherits an %, -Hopf algebra
structure; in particular, the r-th differential d" . E" — E" satisfies the “co-Leibniz” rule
in the sense that it commutes with the coproduct ) : E" — E" Q E".

Proof. This follows from (7), [1, §4], [12, Proposition 7.7], [39, §2]. |

The suspension map 0 : Z A S' A% — S' @ % has a simple interpretation under
the isomorphism

SR % = {[s] = (Z Ay %) N(R NR) %5},
It is the map from S A(ZAZ) = {[s] —~ V{l,. . .)S}(%/\%)} sending the ith summand to
the inclusion on the ith factor (and units elsewhere). In particular, if x € 7 ,(Z A %),
then 0, X € 7g41,,(S' ® ) is the class represented by [x] € Ej 4 ,,.-
The Hopkins-Morel equivalence shown by Hoyois [22, Proposition 8.1] implies the
cellularity assumption in Proposition 2.4 holds for .# = # = ./ = MF,, since the base

scheme F is a field of exponential characteristic e(F) # p. In this case, we have the Tor
spectral sequence

(17) E}, ., = Tory: ,(M,,M,) = MHH,,, ,(MF,).

Remark 2.5. By Remark 2.2 and (17) it follows that, for algebraically closed fields,
MHH, (MF,) is independent of the exponential characteristic # p.
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2.4. Torsion products. We shall repeatedly make use of some torsion product com-
putations, see [39, §6], and Section 1.1 for our notation.

Lemma 2.6.

(i) For the polynomial algebra F,[x] on a generator x in even degree d, there is an
Fp-bialgebra isomorphism

Tor.” [x]([Fp, Fp) = Ag, (0%).

Here, ox in degree (1, d) is a coalgebra primitive represented in the bar complex
by [x].

(ii) For the exterior algebra A[Fp (x) on a generator x in odd degree d, there is an Fp-
bialgebra isomorphism

App (%)

Tor. (Fp, Fp) = Iy, (o).

Here, y jox in degree (j,d ) is represented in the bar complex by [x|x| ... |x] and
has coproduct
Yox) = D ¥iox ®¥jox.
i+j=k
Remark 2.7. Asan example, let us give a direct proof of the relation 7o, ; = pot;;; €
MHH, (F,) shown for algebraically closed fields in Lemma 2.3. Consider the E! page

[V [V
Esl,* =A, " =M, ®M* A" ®M* M,

of the spectral sequence for MHH([F,), where A, = 7, (MF, AMFF,) is the dual Steen-
rod algebra. Then
d'[zi|7;] = [77] = 7[&41] + plria] + plTo& ]
and d'[zo|€i41] = [To&isa], 50 that [£i41] + plrisa] is a boundary. Hence oy, =
POTiq1-
With the notation y jot; = [7y]...|7;] € EJ1 , and ox = [x] the shuffle product yields
an explicit formula for the d! differentials

j-1
d17j+2UTi = Z[Til PN
a=1

= [Tiz] [zl -7l
= (t[&§iza] + plTiza] + pltoiva ) - [Tl ... |7i]
= (108141 + P0Ti41 + Po(708141)) - 70T

When the ground field contains a square root of —1, so that p = 0, we get the formula

dl)’j+2°'Ti =10§i41 - VjoTi.
Conversely, for odd primes p, we can use Lemma 2.3 to deduce differentials by a simple
weight count—simplifying the corresponding topological argument. Lemma 2.6 tells
us that
Ef,* =M, ®Fp ® A[Fp (U§i+1) ® F[Fp(aTi)'
i>0

We know that 7P~1¢¢;, ; has to be hit by a differential. When the ground field is alge-
braically closed, M, = Fp[7] with 7 € M, _;. In this case the source of the differential
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hitting 77~ 1o&; ., must come from linear combinations of monomials in ;s and y 0TS
of total degree 2p'*! and weight at least pi*! — p. A quick count shows that the only
monomial with sufficient weight is y,07;, and so we have the relation (described up to
aunitin )

dP~ly,ot; = P~ 1g&,, .

2.5. A Bockstein type complex. We end the section by doing an entirely algebraic
exercise that will be needed later. Let p be any prime and consider the commutative
differential graded Fp-algebra (C,0), where

C=QT,@) ® Ar,(Ais1)
i>0
and 8: C — C is the derivation generated by d(yjpft;) = Aiy17jf and 0(di11) = 0.
Set B9 = imd, Z° = ker d and H? = Z9/B%—this subsection aims to calculate these. In
our application C will be the mod-zP~! motivic Hochschild homology of Fp (the reader

may recognize it as Torfilg([Fp, Fp)) and 0 will be derived from a Bockstein.

We first fix some notation. For each non-empty finite set of natural numbers S C N,
we choose an element tg € S with the property that tg,r € {ts, t7}. The minimum,
ts = min S, is a good choice, but many others exist. Down the road, such a choice
amounts to a particular choice of basis, and there is no reason to prefer one over the
other, except that in concrete examples, some can be more convenient. If the function
S+ N O has finite non-empty support, suppf = {n € N| f(n) # 0}, we write t; =
tsuppf- Forevery j € N, let §;: N O be the function with supp §; = {j} and 6;(j) = 1.

Definition 2.8. Let J denote the set of pairs (S, f), where the function f: N © has
finite support and S C suppf. The subset K C J consists of the pairs (S, f), where the
support of f is non-empty and S does not contain .

Definition 2.9. For (S, f) € J, we set

(18) XS.f = (H Zm+17pf(m)—p:am) (H fo(n):an> ecC.

mes nés

In particular, yg0 =1, Xy pis, = Ypi+1An a0d X(ny,5,, = Am+1- We note that

Oxs,f = 2 Xsuinf
nesupp(f)-S

since 9y, [; = iiﬂyn_p,ai. Next, we construct sub-complexes of (C, 9).
Definition 2.10. If f : N O hasfinite support, the associated f-cube is the sub-complex
(Cf,8) = ( P Folxssh a) c (c,9).
Scsupp f

If f = 0, then cf = Fp - Furthermore, let Zf = kerd n ¢/, Bf = imd n ¢ and
HI =Z7f/B/.

Note that if f = 0, then Z/ = Hf = Fp. Recall the number ¢ € suppf chosen once
and for all (whenever suppf is non-empty) just before Definition 2.8.
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Lemma 2.11. If f : N O has finite non-empty support, then (C/,d) is contractible so
that H' = 0. Furthermore, Bf = Z/ is generated by the Oxs,f withty & S C suppf.

Proof. For N = |suppf|and k = O,...,N, let C{: C C/ be the span of the Xs,f With
k = |S|. From the formula dys s = >, esupp(f)—s XSuin},f We see that the differential
restricts to a chain complex

3 E E 3
(cf,9) = {c{ cf cl_, cf}.
Here the [F-vector space C,{ is of dimension (
k. Note that the set

N

k) with basis elements yg ¢, where |S| =

Oxs,r 1 k=1S.tr & S}
is linearly independent because only 0 x, r has a nontrivial yj, 7S, r-coefficient. Hence

the rank of 3: CJ — C[,, isatleast (N 1), and we deduce that

dim Hy(C7,8) = dimker{d: [ — ¢],,} —dimim{a: ¢/ , - ¢}

()07

and so B/ = Z/ is generated by the dys ; with t; & S C suppf, as claimed. The
calculation works when k = 0 or k = N (but not for N = 0 since then we cannot
choose t). O

We analyze the multiplicative structure.

Definition 2.12. For functions f,g: N O with finite support and non-empty finite
sets S, T C N define Kg 1 ¢ , € [, by

e () =1+ g(5) fO) +g0) —1 £©) + ()
Ks’”’g‘<H< f8) -1 ))(H( 0 ))(Qx £©) ))

seS

if (S, f),(T,g) € Jand SN T = @, and set K 1,r,¢ = 0 otherwise. Moreover, we define
€us,T,f.g = Ksup, ruit o). f+g T Ksuit 0}, Tutul, f+g-

Note that when (S, f),(T,g) € Jand SN T = @, each factor in the formula Kg | f.g
is 1 unless the index is in supp f N suppg = supp(f - g), and so we can restrict to
these factors to simplify the calculation. We will need ¢, 5 7 ¢ Only in the case when
uesupp(f +g),uttrgandu g SUT.

Lemma 2.13, a consequence of the defining relations among divided power genera-
tors of C, explains the relevance of these numbers.

Lemma 2.13. For (S, f),(T,g) € J we have

Xs,fXT.g = Ks.7.7,6 - XsuT,f+g
and if (S, ), (T, g) € K, then

OXs,f " OXT,g = > €y " OXSuTu(u),f+g-
tf+g#uesupp(f+g)—SUT
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Lemma 2.14. The multiplication gives an extra grading indexed by the generators of the
commutative differential graded sub-algebra @f c¢f ¢ C. Inparticular, if f,g: N O
there is a commutative diagram

cf@C¢ —C®C

|

cfte — 5 (.

Here the rows are given by the evident inclusion and the columns by multiplication. The
resulting algebra inclusions
cfcc
f:NO
and
Fplal/ay € ©
induce isomorphisms of graded commutative [y-algebras
B =@ (AF,,@-H) e® [F,,[y,,jm«y,,,-;zi)p)
f:NO i>0 j>0
and
ce{@@ﬁMWﬁ)@(eBCﬂ-
i>0 f:NO

Proof. The multiplicative structure follows from Lemma 2.13, and the last two isomor-
phisms follow from the fact that a monomial in C does not have any fi;-factors of the
form yg ;. O

Corollary 2.15. Asan Fp-algebra,
H = Q) Fyliil/i
i>0

and Z° is the subalgebra of C generated by the @; with i > 0 and the Oxs,fwithty & S C
suppf. More explicitly, and writing xg y = dxs, ¢, the relation expressed in Lemma 2.13
gives an isomorphism

AR [Fp[/zi’XS,f]ieN,(S,f)eK/(:a?’XS,f “XT,g — Z €4 XSUTUu), f+g)-
u
Here, u € supp(f +g) —SUT andu # t,q.

3. MoTIviC HOCHSCHILD HOMOLOGY OVER ALGEBRAICALLY CLOSED FIELDS

In this section, we work over an algebraically closed field F of exponential charac-
teristic e(F) # p. Then p = 0 since every unit is a square, and

(19) M, = kM[7] = Fpy[7]
by [48, Corollary 4.3, p.254], where |7] = (0, —1). From (9) and (19) we deduce

Fol7, &1, Tiliso/ (77 — T€i41) P =2

20 A, =
G0 %[Fp[f, §it1lizo ® Ar,(T)izo P # 2.
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If p = 2 and we invert 7 in A, then §; is no longer needed as a generator because
§ian = e

Folr*h, Tiliso p=2
Fple*! &i1lizo ® Ar, (T)izo P # 2.

Likewise, since A, is free as an F,[r]-module, taking the quotient by 77~ (for any
prime p) gives an isomorphism of Hopf algebras

(22) ”*((MFp A MD:p)/Tp_l) = A, [P = (® [Fp[gi+1] ® A[Fp () ® Fpz

i>0

(1) 7 (MF, AMF[t7!]) = A, [t7!] =

Here [, ; is shorthand for [Fp[r]/rp‘l. In Section 3.2, we use (22) to compute the coef-
ficients of the mod 7P~ reduction of MHH(F,).

3.1. Etale motivic Hochschild homology. We refer to [3], [17] for z-self maps and
applications towards étale hyperdescent for motivic spectra. Suppose Z/p is a motivic
E_, ring spectrum defined over an algebraically closed field. Then the canonical map

(23) RZlp — Z/p[t™!]

exhibits the t-periodization as a motivic E, ring spectrum under %/p; see [4, §12],
[17, §8] for recent expositions. If % happens to be cellular, then so is Z/p[t~!]. Owing
to [3, Theorem 1.2], (23) is an étale localization (the p-completion in [3] is obsolete
over algebraically closed fields, and for p # 2 the étale localization involves only the
“+”-part of Z/p). We note that (23) induces an isomorphism on z-inverted homotopy
groups.

At all primes, the 7-periodic mod-p motivic Steenrod algebra agrees with the tensor
product of the topological mod-p Steenrod algebra with the Laurent polynomial ring
ﬂ:p[fil]. This observation implies that after p-completion the z-periodic motivic sta-
ble homotopy groups are isomorphic to the classical stable homotopy groups with 7*!
adjoined [25], [27, §4]. In this section, we prove a similar statement for motivic and
topological Hochschild homology.

We calculate MHH*([FP)[T_I] ~ ﬂ*(MHH(U:p)[T_l]) directly by the Tor spectral
sequence, using the relations and differentials from Lemma 2.3 and Remark 2.7 and
by appealing to (21) and the naturally induced equivalence of motivic spectra
(24)

MHH(F,)[t7!] = (MF, AMF,AMF, MF,)[t7'] — M[Fp[f_l]/\(M[FpAM[Fp)[r—l] MF,[t71].

Our calculation uses the classes
Wi =0Ty, Ay = 0§

Lemma 3.1. The Tor spectral sequence of MHH([FP)[T_l] collapses at the EP page and
E® = (Q) Fpluil/uD)[r*!].

i>0
For p odd the only nonzero differentials d” for r > 1 are generated by
(25) dP= Yy ju) = TP 1Y j—phti
foralli >0, j> p.
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Proof. Lemma 2.6, Equation (21), and Equation (24) yield the E? page. When p = 2,
we have

(26) E2 = (Q) Ar, )1,

i>0

Since all the u;s have filtration degree 1, there are no nontrivial differentials, and we
conclude that E*® = E2. When p is odd, the E? page takes the form

27) B2 = (Q) T, (1) ® Ap, ()]

i>0

The Tor spectral sequence starts as an augmented unital M, [t~!]-Hopf algebra since
(27)isflatover M, [t!]. Arguingasin[1, §4], [2, §5], [20, §1.2], [34], [39], we'll see that
the nontrivial differentials are as claimed. More precisely, since the shortest differential
in the lowest total degree must go from an algebra generator (these lie in filtration
powers of p) to a coalgebra primitive (these lie in filtration 1), the differentials d” for 1 <
r < p — 1 are all zero. Recall from Remark 2.7 that we established the said differential

for j = p integrally: dP~!(y;u;) = °~'4;;, and we move from there by induction on
J = p and the coalgebra structure in Lemma 2.6; this is, for k > 0, the calculation

PP Yprhti)) — (TP A1V ibt)
= (@1 ®1+1® dP (ki)
— P Qi1 ® 1+ 1 ® A1) (Zasb=kVakti ® Vpiti)
= ([@P7' @ DWpsihti ® D+ (1 @ dP7(1 ® Vpkcii)
+7P71 T (i Yazphi @ Yok + Yaki @ i1V b—phti)

a+b=p+k;a,b>0

— P71 Y (AisaVaki ® Vol + Yalti ® Aip1Y pii)
a+b=k

= (@' @ DWpaitti ® D+ (1 ® AP~ ® Vpkiti)
shows the difference dp‘l(yp+ kMi) — TP71 ;417 kM is a coalgebra primitive; however, 0

is the only such element in the given degree. The remaining algebra generators on the
EP page are in filtration degree < 1, and hence E® = EP. O

Remark 3.2. Alternatively, an appeal to rigidity for extensions of algebraically closed
fields as in Remark 2.2 or [44] (in characteristic zero) reduces to considering complex
numbers. Over C, the differential (25) is forced by Bokstedt’s differential dP~!(y i) =
Ai+17 j—pH; in the Tor spectral sequence for THH, (Fp,). In the motivic case, the correc-
tion term 7P~! ensures agreement of the weights.

Theorem 3.3. There are isomorphisms

MHH, (F,)[t '] = F,[t*}, wiliso/ (W — 1P~ pi11)
= Fplu, 7]
=~ THH, (F,)[7*].

The generator u has bidegree (2,0).
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FIGURE 1. The étale motivic Hochschild homology of F,. The verti-
cal lines indicate r-multiplication, while the horizontal and diagonal
lines depict powers of ;,i = 0,1, 2, 3.

Proof. (24) shows the E* page for MHH([Fp)[r‘l] is the Laurent polynomials in 7 of the
E® page for THH(F,). The result now follows from Lemma 3.1 and the multiplicative
extension

(28) =P i
of Lemma 2.3. O

Hence all the classes u; € MHH([F,) are nontrivial and we may identify the z-free
part in MHH, (F,) with

(29) Fplt, i lizo/ (U — TP is1)-
This is depicted graphically for p = 2 and p = 3 in Figure 1 and Figure 2, respectively.

3.2. Reduced motivic Hochschild homology. To proceed to the next step in our
strategy for calculating MHH(F,,) over an algebraically closed field F with e(F) # p,
we form the cofiber of " (for our calculations, it suffices to consider n = p — 1)

n
(30) TOMMF, & MF, — MF,/z".

We thank Markus Spitzweck for informing us that M, /7" is a motivic E, ring spec-
trum for all n > 1. His argument goes as follows: MZ is strongly periodizable and thus
the mod-p homology ring M, is the homology of an E, ring spectrum C, [, in graded
complexes of [Fp-vector spaces, see [47, Appendix C, Corollary C.3] for details. As noted
below, C,[F, is formal, i.e., equivalent as an E,, ring spectrum in graded complexes of
[Fp-vector spaces to the (bigraded) homology M, equipped with trivial differentials,
C,[Fp/t" is E,, over M, forall n > 1. This implies the corresponding claim for M[F,/z".
To show formality, consider the free E, algebra & in graded complexes of F,-vector
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FIGURE 2. The étale motivic Hochschild homology of 5 depicted in
the same graphical style as Figure 1.

spaces on a generator 7 in bidegree (0, 1). Its O-truncation, with respect to the natu-
ral ¢-structure on the derived category of graded abelian groups, is the formal model
Fplz]. Thus C,F, and Fp[7] are equivalent since the natural map & — C,[F,, is the 0-
truncation. When n = 1, we also refer to Gheorghe [19] for the fact that MF, — MF,/t
is a map of motivic E,, ring spectra.

Inserting MF,/7" into (1) yields the derived smash product

(31) MHH([FP)/Tn >~ M[Fp/fn /\(M[Fp/\M[Fp)/Tn M[Fp/fn.
Owing to (30) and cellularity of MF,, see Section 2.3, it follows that M,/ 7" is cellular.

Thus (31) gives rise to the Tor spectral sequence

n
(32) E2, = Torn ;s (M, /t" M, /") = MHHy,, ¢ ,(F,)/"

Recall that [, ; is shorthand for Fp[7]/ 7P~1, Lemma 2.6 and (22) imply the Tor spectral
sequence (16) for MHH,, (F,)/7P~! takes the form

(33) B2, ~ (@ I, (07) ® A[Fp(o§i+1)> ® Fpr = MHH, (F,)/PL.
i>0

This is a first quadrant spectral sequence; the horizontal direction is the “filtration”,

the vertical direction is the “degree”, and every term is graded by “weight.” Recall that

if x has filtration f,, degree d, and weight w,, we write |x| = (f, dy; wy) so that the

differentials take the form

ar: E},d;w - E)};—r,d+r—1;w‘
In (33), we set @; := ot; and 4;,; := o&;,1. The bar signifies that the generators are

mod-7P~! classes and should not be confused with the conjugate classes. For these
classes, we note the degrees

@) Wil = @,2p" =2 p* = 1),
(2) il = (p’,2p* = pls p'*7 = p/).
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Thus for x = 4;,; and x = Ypift; we have the congruence w, = 0 mod p — 1. Hence
ifx € Ef,* in (33) has weight w, = —n+ (p — 1)m, 0 < n < p — 1, then n equals
x’s T-multiplicity. Another helpful bookkeeping device for our calculation is the Chow
degree of x, see [5, Definition 3.1] and [26, Definition 2.1.10] for related terminology,
defined by

c(x) = fi + 2w, — dy.
In particular, we have
D) c(dip) =1+2(p"" -1 = (2p*' -2) =1
() cypim) = p/ +2(p* = p/) - 2p'*/ = p)=0.
Every homogeneous class x € EZ, in (33) is a monomial in the generators 1;,; and

Ypifti- The Chow degree c(x) records the number of 4;, classes in x, and the equality
0 < c¢(x) < f, follows from the definition.

Lemma 3.4. The Tor spectral sequence (33) for MHH, (Fp)/ tP~1 collapses at its E? page.

Proof. Forr > 2 and x € E[, we note the equality of weights w, = wgry. If x = 7,
then d"r = 0 since (33) is an [F,[]-algebra spectral sequence. If x = AigpOrx = Ypi Fis
the congruence wgyr, = 0 mod p — 1 shows the monomials in d"x are not r-divisible.
Hence, d"x = 0, and we are done, or ¢(d"x) > 0. It remains to note that ¢(d"x) =
c(x)—2r+1<0. O

Lemma 3.5. There are no multiplicative extensions in the mod-tP~! Tor spectral se-
quence (33).

Proof. The Chow degree of x equals c(x) = 2f, + 2w, — (d, + f;). To find a hidden
extension for g = (y,jf1;)P = 0, we search among the x’s that satisfy

() dx + fr =dg + fo = 2p"H,

(2) wy=wg = p(pl.ﬂ -p'),

(3) 0< fi < fg=p"*"
This rules out the existence of multiplicative extensions, since for the Chow degree, we
have

c(x) = 2f; + 2wy — (dy + f) = 2f¢ +2p(p™ — pl) —2p/+*1 = 2(f, — p/*1) <.
Likewise, a hidden extension for 27, ; = 0 would be a class x with |x| = (1,4(p'*! —
1),2 p“’1 — 2); by inspection, no such class exists since all possible x of filtration 1 have
weight p/ — 1, j > 0. O

Theorem 3.6. There is an isomorphism of graded commutative [, ;-algebras

MHH, (F,)/P ™! = (Q) Ty, (@) ® A, (1141)) ® Fpz-

i>0
The bidegrees of the generators are |;] = (2p!, p' —1) and |1;,1| = 2p'*' =1, pi*1 —1).
Remark 3.7. The reader may recognize the answer as MHH, (F,)/7?™" = CQ F,;

rig
where C = Torf,’; (F,, F,) appeared in Section 2.5.
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3.3. Integral motivic Hochschild homology. We now turn to the integral case of
the Tor spectral sequence

(4 E;;,t,w = MHHh+t,w(M[Fp)-

There is a natural comparison map q: E%., — E%., to the mod-tP~! Tor spectral
sequence analyzed in Section 3.2. Due to Theorem 3.6 we have the following nontrivial
mod-7P~! classes and their representatives in the bar complex:

1) A4 € MHH,(([FP)/‘L'I"1 is the class of the permanent cycle
[Eir1] € Eizpm_z;pm_l,
(2 vja; € MHH,(([Fp)/z'P‘1 is the class of the permanent cycle

- - =1
(73l - 17i] € B japirysjpi-ny

As before, to aid the bookkeeping, we also set
Ai+l = [§i+l] € Ell,zpi+1_2;pi+1_1
and
— 1
ViHi = [Ti| |Ti] € Ej,j(Zpi—l);j(pi—l)’
even though the y;u;s turn out to be permanent cycles for j < p only.
As already noted, when p is an odd prime E? = F,[7] ® R0 A1) @ T(wy).
Lemma 3.8. Let p be a prime.
(1) For0 < r < p the étale localization
L E' - E'[t7!]
is an injection.

(2) For1 <r < p—1, the differentialsd” : E" — E" are all zero.
(3) Forallp

APy jyptti = TP Ay i
fori, j > 0and for odd p, this generates the dP~-differential multiplicatively.

Proof. Since the dual Steenrod algebra has no z-torsion, we have that L}, is an injection,
and from the Tor-calculations we get that for odd primes p also LZ, is an injection.
Assume that for given 0 < r < p L, is injective. For 1 < r < p—1, we have established
that the differential on E"[t~!] is trivial, and so the differential on E" is trivial too.
Hence L4 is injective, showing that (for odd primes p) E? = E3 = --- = EP~L,
Finally, since for all primes p we now have L[é)t_ lisan injection, the formula

dP7ly i phi = P Y M
follows from the same formula in EP~![z71]. O

The case for odd and even primes p takes slightly different paths from here on. The
case p = 2 is in many ways the simplest one but requires more care in that it turns
out to be neither practical nor necessary to muddle through with the integral spectral
sequence calculation: everything emanates from the torsion and r-inverted MHHs to-
gether with minimal information about the integral E'-page and an analysis of the
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Bockstein homology (called “a Bockstein type complex” in Section 2.5 since it also ap-
pears in the odd primary case in a slightly different guise) giving the answer—with all
multiplicative extensions—without more ado.

3.3.1. The even case. Let p = 2. Since 7 is a non-zero divisor in A, , multiplication by
7 gives the short exact sequence

1 T 9. =1
0— Ef gwi1 — Efgw — Ef g — 0.

We recall that the mod-7 spectral sequence collapses at E? and has no multiplicative
extensions: MHH, (F,)/t =~ E%. Moving on to the abutment, the 7-Bockstein on
MHH, (F,) is the composite

= e} q
(35) J: MHH, , ,(F,)/t - MHH, . ,,(F,) - MHH, . ,,(F,)/z.

Since (35) is a derivation, we only need to know its value on the generators. These are
obtained from the integral d!-differentials analyzed in Remark 2.7 as follows. Since
i1 is hit by the d'-boundary A;y; = [£i41] € E} is_,im_, We get 04,4 = 0, and
since y 4o ishitby yjuopti = [t . |11 € Ej jgia_yyjaiyy @0 1Y juapti = Ty st
we deduce Lemma 3.9.

Lemma 3.9. The nontrivial t-Bocksteins on MHH,, (F,) are generated by
OY jalli = Aip17 i

foralli, j >0, ie, MHH,(F,)/t,0) = (C,0), where (C,d) is the commutative differen-
tial graded algebra of Section 2.5.

Combined with Corollary 2.15, and using that the 7-free element y; € MHH, (F,)
maps to g; € MHH, (F,)/7, we deduce the following result.

Corollary 3.10. The Bockstein homology of MHH,, (F,)/7 is isomorphic to the graded
commutative F,-algebra B, , A(#;)-

Corollary 3.10 lets us conclude that the r-torsion classes in MHH (F,) are not 7-
divisible. The r-torsion in MHH  (F,) agrees with the image of 0 : MHH, (F,)/t —
MHH, (F,) and maps injectively via q : MHH (F,) -~ MHH (F,)/z.

There is a naturally induced commutative diagram with exact rows

0 — (r—torsion) ——— MHH, (F,) —— F,[7, ug, 41, - .- [/(UF — Tij41) — 0
Elq Jq
0 imd &is0 T ® Ais1)-

More elegantly, using Corollary 2.15, we have a pullback diagram of commutative
F,[r]-algebras

MHH, (F,) —— F,[7, w1/ — T2

| J

U:Z[T,ﬂi, XS,f]/j EE— ﬂ:z[‘[ﬁlai]/(laiz’ T)
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with indexation i € N, (S, f) € K (see Definition 2.8), and

J=(z, lalz’ Xs,f *XT.g — Z €u- XSUTU{u},f+g)-
t prg#uesupp(f+g)—SuT
Here y; maps to #; and xg, ; maps to zero. When we finish the odd case, we’ll see that
by replacing 2 with p, we have the general formula.

3.3.2. Theodd case. Let p be an odd prime. The first task uses our knowledge of dP~!
to calculate EP. Consider the short exact sequence

p—1 1 4 ape1
0 — Efgwip-1 — Efaw — Eraw —0
and the injection
p—-1, -p-1 p—1 —
Li : Ef gy = Bf glt7']
Definition 3.11. For p < r, let P(r) be the conjunction of the propositions P(r);, P(r),,
and P(r); defined as follows:
Pl q -
P(N1: Ef gpyp-1 — Ef g — Ef gy IS €Xact,
P(r);: in Ef 4., we have ker L = ker P~ and
P(r);: for p < j < rthe jth differential d/ is trivial (so that EP = E").

To simplify notation, consider the Fj-algebra C = ®i>0 I, (@) ® Ag, (Aiz1) (with
the above isomorphism E" =~ C[r]/tP~! for r > 2) and the derivation 8: C — C
generated by 8(y ;4 pii) = 417 i Let B® = imd, Z° = kerd and H° = Z9/B°.

Lemma 3.12. The proposition P(p) is true. Hence, EP is isomorphic to Z°[7]/tP~'B|]
and under this isomorphism EP/ ker LE, is isomorphic to H°[z].

Furthermore, themap q : EP — EP =~ C[t]/tP~! factors over Z°[z]/P~! C C[7]/7P~!
and the map

ker{rP~!: EP — EP} C EP — EP ~ C[r]/P~!

is an injection factoring as an isomorphism ker{rP~! : EP — EP} =~ B%[r]/tP~! followed
by the injection B?[t]/tP~! C C[t]/tP~L. Summing up, the resulting diagram of commu-
tative Fp[7]-algebras

B — L HO[{]

| |

Z9[t)/P~Y —— HO[1]/7P~!
is a pullback.

Proof. Forodd p, the first thing to notice is that EP~! is a free F,,[z”~']-module and that
the differential factors dP~! = tP~10 where 0 (aka the Bockstein) is homogeneous with
respect to the P~!-grading on EP~! and 2 = 0. Let Q be the degree zero part of EP~!
(sothat EP~! = Q[zP~!]and Q C EP~! — EP~1/7P~1 ~ EP~! = EP isan isomorphism).
If 2% = ker{3: Q —» Q}, then ker dP~! = Za_[rp_‘l], whereas if B® = im{d: Q — Q},
then imdP~! = tP=1B°[tP~!], and if H® = Z°/B, then (as an F,[7P~!]-module)

EP = 70 @ tP1HO [P,
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and q: EP — EP may be identified with the composite
79 @ Tp—lHa[.L.p—l] — 79 cQ
of the projection to the degree zero part, followed by the inclusion. Hence
kerq = P~ HO[tP~1] = im{cP~! : EP — EP},

ker{r?~!: EP — EP} = B® = kerL%,,
and
EP/kertP~1 = HO[zP~1] C HO[r*(P-D] = EP[r1].
Since P(r); is vacuous in this case, we have proven P(p).
The formulation with the pullback follows when writing the above out as F,[7]-
algebras, so that kerd?~! = ZP[r] and imdP~! = tP~!BP[r] and remembering that
EP~1 >~ C[r]/zP~ 1. O

Lemma 3.13. Forallr > p, the proposition P(r) is true. Hence,
(1) E*® = EP.
(2) The algebra map from the Fy[tP~"]-free part to the TP~ '-localization

Ley: [MHH,(Fp)]/ker 7P~! - MHH, (Fy)[t!] = F,[t*!, i lino/ (1] — TP~ 141)

is injective so that [MHH, (F,)] / ker P~ = F,[7, uiliso/ (b — TP pi11).
(3) The algebra map induced by q: MHH(F,) — MHH(F,)/ Pl

q: [MHH,(F,)]/im P! - MHH, (F,)/7*"! = (Q) T, (i) ® Ar,(1i1) ® Fp 7
i>0
is injective.

(4) The composite ker P~ € MHH,, (F,) - [MHH, (F,)] /im 7P~ is injective.
Proof. By Lemma 3.12 we have P(p) so we only need to show that P(r) implies P(r + 1)
for all r > p. Note that if P(r) and P(r + 1) are true, then P(r + 1) is true. Recall from
Lemma 3.1 and Lemma 3.4 that the rth differentials in both the localized and reduced
Tor-spectral sequences are trivial.

Assume P(r) and consider x € Ef ;,,. From the fact thatd": E" — E" is trivial so
that 0 = d"qx = qd"x we get that thereisay € E}_, 4., 1.4, SO that P(r); implies
that d"x = tP~1y. Since d": E'[t7!] — E"[t™!] is trivial we get that 0 = d"L,x =
L d"x = LE,tP~'y = tP~!LL ysothat0 = L}y and P(r), implies that0 = 7P~'y = d"x.

The other points then follow directly, where in the last point we have used that
ker 7P~ = ker L gives that ker 7P~! nim tP~! = 0. O

Summing up in the language of Lemma 3.12, we have achieved a pullback of com-
mutative Fp[7]-algebras

(36) E® —  HO1]

| |

Z9[t)/P~Y —— HO[1]/7P~L.

Moreover, the pullback survives to the abutment in the sense that the maps out of E®
are the associated graded versions of maps induced from maps of commutative ring
spectra.
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We now set out to analyze Z° and H°.

3.4. Multiplicative extensions. From Lemma 3.13 we deduced the pullback (36) of
commutative [Fp[f]-algebras, which, given the information of Corollary 2.15, takes the
form

B Fplr, i)/

| |

[Fp[’f,ﬂiaxs,f]/3 — [Fp[f,lli]/(lflf’ 1)
with indexation i € N, (S, f) € K, and

J= (Tp_l’:a?’ Xs.f *XT,g — Z €u XSUTU{u},f+g)-
tpyg#uesupp(f+g)—SuT
Here y; maps to g; and xg y maps to zero. Moreover, the pullback survives to the abut-
ment in the sense that the maps out of E* are the associated graded versions of maps
induced from maps of commutative ring spectra.

In the abutment, we know that ,uf = tP~1y;.,, but can there be further extensions?
Since y; maps to fi;, such an extension must be witnessed when passing from the as-
sociated graded F,[7, &;, xg, f]/i to MHH,, (F,)/7P~!, but this we have seen in the mod
P~1_calculation is not the case. In conclusion, we have shown the following result.

Theorem 3.14. There is an isomorphism of graded commutative Fp[7]-algebras

MHH, (F,) = F,[7, 1, Xs, f liencs, pex /T
where the indexing set K is given in Definition 2.8 and J is the ideal generated by
o U =P g,
« 7 Ixg s, and
© Xs.f  XTg = D, wEwS,T.f.g * XSuTufu},f+g Where the sum runs over all elements
u g SUTsothat (f +8 SUTU{u}) €K, and the coefficient €, 5 1 1 ¢ € Fp is
given in Definition 2.12.
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