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HOCHSCHILD HOMOLOGY OF MOD-ý MOTIVIC COHOMOLOGY OVER
ALGEBRAICALLY CLOSED FIELDS

BJØRN IAN DUNDAS, MICHAEL A. HILL, KYLE ORMSBY, AND PAUL ARNE ØSTVÆR

Abstract. We perform Hochschild homology calculations in the algebro-geometric
setting of motives over algebraically closed 昀椀elds. The homotopy ring of motivic
Hochschild homology contains torsion classes that arise from themod-ýmotivic Steen-
rod algebra and generating functions de昀椀ned on the natural numbers with 昀椀nite non-
empty support. Under Betti realization, we recover Bökstedt’s calculation of the topo-
logical Hochschild homology of 昀椀nite prime 昀椀elds.

1. Introduction

Hochschild (aka derived Hochschild or Shukla) homology is in a precise sense the
homology theory of associative algebras [38, Section 3], and so plays an important role
from a purely ring-theoretic perspective, classifying extensions and so on. However,
Hochschild homology rose in prominence in the 1980s via its cyclic structure as ex-
plored by Connes and Tsygan and its subsequent connection to (rational) algebraicĂ-theory. To include torsion phenomena (and wider applications), Goodwillie and
Waldhausen conjectured that the di昀昀erential of algebraic Ă-theory should correspond
to some form of Hochschild homology of algebras over the sphere spectrum (ring spec-
tra). When Bökstedt succeeded in extending the de昀椀nition of Hochschild homology to
cover algebras over the sphere spectrum (“topological Hochschild homology”), he also
managed to calculate its values at the prime 昀椀elds, revealing the striking periodicity
which has been fundamental to much of the subsequent development. Later, the 昀椀rst
author and McCarthy con昀椀rmed Goodwillie and Waldhausen’s conjecture, leading to
further advances and, ultimately, many calculations of algebraic Ă-theory.
In this paper, we try to emulate Bökstedt: we de昀椀ne Hochschild homology for alge-

bras over the motivic sphere spectrum and calculate its values at prime 昀椀elds. This is
interesting for many reasons. Firstly, the motivic version over Spec(ℂ) sheds light on
the topological one, giving “reasons” for some of the relations from the classical case.
Secondly, if we are to investigate the “number theory” of rings over the motivic sphere
spectrum, we should access invariants of a Ă-theoretic nature with an ambitious goal
of repeating the success in (equivariant) stable homotopy theory. We hope that this
paper is a tiny step in the right direction. Our de昀椀nition follows the interpretation of
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Hochschild homology as the homology of associative algebras in the spirit of Quillen.
There are di昀昀erent options, but we do not pursue them in this paper.
Hochschild homology is a fundamental derived invariant for algebras and rings [11].

For a smooth algebra ý over a 昀椀eld ý of characteristic zero, such as the coordinate ring
of a smooth a昀케ne variety, the Hochschild-Kostant-Rosenberg theorem identi昀椀es the
Hochschild homology groups ���(ý/ý) with the Kähler di昀昀erentials Ω��/� of deriva-
tions. Using Hochschild homology, ��, one constructs many other derived invari-
ants such as Connes’ cyclic homology��. We refer to [31] for background. Bökstedt-
Hsiang-Madsen [9] pioneered the re昀椀ned theory of topological Hochschild homology��� and topological cyclic homology ��; their trace methods remain of signi昀椀cant
interest in algebraic Ă-theory, see [13], [20], and the modern viewpoint adapted to∞-
categories in [36].
Motivic homotopy theory is an�1-invariant homotopy theory for algebraic varieties,

originally developed by Morel and Voevodsky in the 1990s [35], and motivated by the
spectacular work of Voevodsky and Rost resolving the Milnor and Bloch-Kato conjec-
tures relatingMilnor Ă-theory with Galois cohomology [52], [54], and quadratic forms
[37], [45]. Since then, this framework has shown itself to be a valuable setting for study-
ing algebro-geometric cohomology theories, with applications to algebraic geometry,
number theory, and algebraic topology. See [27] and [30] for recent surveys.
In this paper, we study Hochschild homology in the motivic setting. Let R be a

motivic ring spectrum such as algebraic cobordism, homotopy algebraic Ă-theory, or
motivic cohomology [49]. Working in the stable motivic homotopy category ��(�) of
a 昀椀eld �, we de昀椀ne the motivic Hochschild homology���(R) of R as the derived
tensor product

(1) R 'R'Rop R.
The primary purpose of this paper is to calculate the homotopy ring ���⋆(�ý)

of motivic Hochschild homology of��ý over algebraically closed 昀椀elds—the Suslin-
Voevodskymotivic cohomology ring spectrum for ý any prime number. When the base
昀椀eld admits an embedding into the complex numbers ℂ, the Betti realization func-
tor allows us to compare our ��� calculations with Bökstedt’s pioneering work in
[8] on topological Hochschild homology of the corresponding topological Eilenberg-
MacLane spectrum ��ý. Additively, ���(�ý) splits as sum of ��ý’s in the stable
homotopy category. However, this is not the case for���(�ý) and��ý. The source
of this extra layer of complexity is the abundance of �-torsion elements in the homo-
topy ring. Here � is a canonical class in the mod-ý motivic cohomology of �, which
maps to the unit element in singular cohomology under Betti realization.
We express the homotopy ring���⋆(�ý) in terms of algebra generators �, Ā�, �þ,�

arising from the mod-ýmotivic Steenrod algebra [23], [53], and generating endofunc-
tions �∶ ℕ ⟲ with 昀椀nite non-empty support containing some subset � ⊂ ℕ. It is the�-power in the equation Āý� = �ý−1Ā�+1 that gives rise to the in昀椀nity of �-torsion classes�þ,� not witnessed topologically in ���⋆(�ý).
Theorem 1.1. Over an algebraically closed 昀椀eld of exponential characteristic ≠ ý, there
is an algebra isomorphism

(2) ���⋆(�ý) ≅ �ý[�, Ā�, �þ,�]�∈ℕ, (þ⊂supp�,�∶ ℕ⟲)/ℐ
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with the ideal of relations

ℐ = »¼¼½
Āý� − �ý−1Ā�+1,�ý−1�þ,�,�þ,� ⋅ �ÿ,� − ∑ᵆ∈supp(�+�)−þ∪ÿ�ᵆ ⋅ �þ∪ÿ∪{ᵆ},�+�

¾⎟⎟⎠ .
Here the support of� is a 昀椀nite non-empty subset of the natural numbers and� ⊂ supp� ⊂ℕ does not contain the minimal element of supp�. The coe昀케cient �ᵆ ∈ �ý is given ex-
plicitly in De昀椀nition 2.12. The algebra generators have bidegrees given by |�| = (0, −1),|Ā�| = (2ý�, ý� − 1), and|�þ,�| = (|�| + 1)(−1, ý − 1) + ý ∑�∈supp� �(�)(2ý� , ý� − 1).
Since the homotopy of���(�ý) is not a free module over the homotopy of��ý,

we deduce a non-splitting of the motivic Hochschild homology in��ý-modules.
Corollary 1.2. The motivic Hochschild homology of �ý does not split as a wedge of sus-
pensions of��ý.
This gives a surprising obstruction to classical results about topological Hochschild

homology and Thom spectra. Mahowald showed that the Eilenberg–MacLane spec-
trum��2 is a Thom spectrum of a double loop map with source Ω2�3 [32]. Behrens–
Wilson showed that an analogous result is true ÿ2-equivariantly, with the base nowΩ2,1�3,1 [6]. Blumberg–Cohen–Schlichtkrull showed that the topological Hochschild
homology of Thom spectra are Thom spectra, and when the topological � vanishes,
these split as smash products of the original Thom spectrum and a space related to the
classifying space of the base [7]. Equivariantly, classically and ÿ2-equivariantly, this
splits as a wedge of smash powers of spheres. Putting this all together, we cannot have
that all of these results hold in the motivic setting.
As a guide to this paper, we outline the proof of Theorem 1.1 and explain how the

algebra generators arise in our context. The key idea in proving our results is to study
the �-inversion and mod-�ý−1 reduction of���(�ý), and then analyze how their ho-
motopy classes conspire to describe the integral homotopy ring. We review some back-
ground and set our notation in Section 2. Remark 2.5 gives a Lefschetz Principle for the
homotopy ring of���(�ý), which reduces our computation to the case of complex
numbers. In Section 3, we divide the proof of Theorem 1.1 into the following steps.
Step 1 The dual motivic Steenrod algebra of our ground 昀椀eld � at ý, see (9), contains

classes �� for � ≥ 0. Theorem 3.3 calculates the �-inverted or étale motivic
Hochschild homology

(3)���⋆(�ý)[�−1] ≅ �ý[�±1, Ā�]�≥0/(Āý� − �ý−1Ā�+1) ≅ �ý[Ā, �±1] ≅ ���∗(�ý)[�±1].
Here the generator Ā has bidegree (2, 0). The “homology suspension” classesĀ� ≔ ���, see Section 2.2, generate the non-�-torsion part of���⋆(�ý) subject
to the relation Āý� = �ý−1Ā�+1.

Step 2 Theorem 3.6 calculates the mod-�ý−1 motivic Hochschild homology
(4)���⋆(�ý)/�ý−1 ≔ �⋆(���(�ý)/�ý−1) ≅ (⨂�≥0 Γ��(Ā̄�) ⊗ Λ��( ̄ÿ�+1)) ⊗ �ý[�]/�ý−1.
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The bidegrees of the generators are | ̄ÿ�| = (2ý� − 1, ý� − 1), |Ā̄�| = (2ý�, ý� − 1).
The divided powers algebra generator Ā̄� is the image of Ā� ∈ ���⋆(�ý). It
turns out that (4) coincides with the �2 page of the Tor spectral sequence for���(�ý)/�ý−1. In fact, the said Tor spectral sequence collapses at �2 with no
multiplicative extensions.

Step 3 Lemma 3.9 shows that the �ý−1-Bockstein of ā�Ā̄� equals ̄ÿ�+1ā�−ýĀ̄�. First, we
establish the case � = ý, and the rest follows by shu昀툀e products in the bar
construction of���⋆(�ý)/�ý−1. Here, the �ý−1-Bockstein on���⋆(�ý) is
the composite of the canonical boundary and quotient maps in

(5) ̄� ∶ ���∗+1,∗(�ý)/�ý−1 �−→ ���∗,∗+ý−1(�ý) þ−→ ���∗,∗+ý−1(�ý)/�ý−1.
In Corollary 3.10, we conclude the Bockstein homology of���⋆(�ý)/�ý−1 is
isomorphic to the graded commutative�ý,�≔�ý[�]/�ý−1-algebra⨁�≥0Λ��,�(Ā̄�).

Step 4 Lemma 3.13 shows that the �-torsion classes in ���⋆(�ý) inject into���⋆(�ý)/�ý−1 with image that of the �ý−1-Bockstein ̄� (degrees are made
explicit through generating functions). Moreover, the reduction map þ sends
the image of the boundary � isomorphically to the image of the Bockstein ̄�.

Step 5 If �∶ ℕ ⟲ has 昀椀nite support and � ⊆ supp�, we set
�þ,� = (∏�∈þ ̄ÿ�+1āý�(�)−ýĀ̄�) (∏�∉þ āý�(�)Ā̄�) ∈ ���⋆(�ý)/�ý−1.
We de昀椀ne the �-torsion algebra generators in Theorem 1.1 by�þ,� = ��þ,� ∈ ���⋆(�ý).
In particular, �∅,0 = 1, �∅,ý��� = āý�+1 Ā̄� and �{�},�� = ÿ�+1. Here Ă� ∶ ℕ ⟲

is zero except for Ă�(Ā) = 1. Applying the Bockstein operation � to �þ,� yields�þ,� = ∑�∈supp(�)−þ �þ∪{�},� since ̄�ā�Ā̄� = ̄ÿ�+1ā�−ýĀ̄�, ̄� ̄ÿ� = 0, and ̄� is a
derivation. Since the classes Ā̄�, �þ,�, and the ̄� cycles ÿ�+1 = ̄�āýĀ̄� generate���⋆(�ý)/�ý−1, the classes Ā̄� and �þ,� generate the boundary.

Step 6 By combining the �-inverted andmod-�ý−1 calculationswe 昀椀nally deduce The-
orem 1.1. The power operations in the dual motivic Steenrod algebra give rise
to the relation Āý� = �ý−1Ā�+1. The Bockstein calculation �þ,� = ��þ,� implies
the vanishing �ý−1�þ,� = 0. Corollary 2.15 shows the multiplicative relation
between the �þ,� classes follows from a similar formula for the�þ,� classes. We
refer to De昀椀nition 2.12 for the entity �ᵆ.
For example, at the prime ý = 2, we obtain the relations��0+�1��2 + ��1+�2��0 + ��2+�0��1 = 0,

��0+�1��1+�2 = �2�1��0+�2 .
Theorem 1.1 admits a succinct reformulation in terms of naturally induced pull-

back squares of commutative �ý[�]-algebras given in Section 3.3.1 and Section 3.4. For
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example, when ý = 2, we note the pullback square of commutative �2[�]-algebras���⋆(�2) / /

��

�2[�, Ā�]/(Ā2� − �Ā�+1)
���2[Ā̄�, �þ,�]/ℐ // �2[Ā̄�]/(Ā̄2� )

where the ideal of relations is given by (see Section 2.5 for the de昀椀nition of ā�+�)
ℐ = (Ā̄2� , �þ,� ⋅ �ÿ,� − ∑ā�+�≠ᵆ∈supp(�+�)−þ∪ÿ �ᵆ ⋅ �þ∪ÿ∪{ᵆ},�+�) .

Our calculation shows the left vertical map in the pullback is an isomorphism on �-
torsion classes. Furthermore, the upper horizontalmap is an injection onnon-�-torsion
classes. An analogous result holds for all odd primes.

1.1. Notation. This paper uses the following notation.ý, � prime number, base 昀椀eld of exponential characteristic �(�) ≠ ý��(�) stable motivic homotopy category of �����(�) commutative motivic ring spectra of �
R motivic ring spectrumÿ⋆, ℎ⋆ (bigraded) integral, mod-ýmotivic cohomology groups of �Ăā∗ , ýā∗ (graded) integral, mod-ýMilnor Ă-groups of ��⋆ mod-ýmotivic homology ring of ��⋆ dual motivic Steenrod algebra of � at ý�ý,� shorthand for �ý[�]/�ý−1Γ, Λ divided power and exterior algebras

2. Motivic Hochschild homology

De昀椀nition 2.1. Let R be a motivic ring spectrum. The motivic Hochschild homology
of an R-bimodule M is the derived smash product

(6) ���(R;M ) ≔ M 'R'Rop R

in ��(�).
When R = M , the derived tensor product (6) specializes to ���(R) in (1). If

R → Q is a map of motivic ring spectra andM is aQ-R bimodule, then reassociating
the smash factors implies the equivalence

(7) ���(R;M ) ≃ M 'Q'Rop Q.
In the following, we assume that R is a co昀椀brant commutative motivic ring spectrum
in any of the model categorical approaches to ��(�) as in [14], [21], [24], [28] (this
assumption is super昀氀uous in the ∞-category of motivic spectra [41]). Commutative
motivic ring spectra are cotensored overmotivic spaces via the free-forgetful adjunctionℱ ⊣ � between ��(�) and commutative motivic ring spectra ����(�): if X is a
motivic space, then X ⊗R is the coequalizer ofℱ(X+ ' �R) ⇇ ℱ(X+ ' �ℱ�R).
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Here we use the canonical maps �ℱ�R → �R, X+ ' �ℱ(�R) → �ℱ(X+ ' �R),
and ℱ�ℱ → ℱ. We will only need the special case of simplicial sets or topological
spaces. The case of 昀椀nite simplicial sets is particularly transparent since it derives from
the relation {1, . . . , Ā}⊗R = R'�. The assignmentX ↦ X ⊗R frommotivic spaces to
motivic ring spectra has several useful propertieswhich generalize from the topological
setting and which we will use freely.• X ↦ X ⊗R is �1-homotopy invariant and preserves coproducts (and so, in

particular, sends pushouts to smashes).• ∗ ⊗ R ≅ R, �0 ⊗ R ≅ R ' R and (since �1 is the derived pushout of ∗ ←�0 → ∗) ���(R;M ) ≃ M 'R (�1 ⊗R).• The product on X ⊗R is induced by the fold X ∐X → X .• Choosing a point ∗ → X makes X ⊗ R an augmented commutative R-
algebra.• The inclusion {−1, 1} ⊆ {−1, 0, 1} ≅ {0, −1}({0, 1} induces the comultiplication
R'R → R'R'R ≅ (R'R)'R (R'R) and the nontrivial automorphism{−1, 1} → {−1, 1} gives the anti-involution of the “dual Steenrod R-Hopf alge-
broid” �0 ⊗ R = R ' R (algebroid since the maps involved are not pointed,
and so there is no guarantee that the units corresponding to the two choices of
base points will coincide). The suspensions of these maps give the pinch map�1 ≅ [−1, 1] ∐{−1,1} ∗ → [−1, 1] ∐{−1,0,1} ∗ ≅ �1 ( �1
and the 昀氀ip map �1 → �1, both of which are pointed maps, inducing the R-
Hopf algebroid structure�∶ �1 ⊗R ⟶(�1 ( �1) ⊗R ≅ (�1 ⊗R) 'R (�1 ⊗R), �∶ �1 ⊗R ≅ �1 ⊗R

on the “motivic Hochschild homology”—to implement this using 昀椀nite sim-
plicial models of the circle, one subdivides as in [1].
Hence, if���⋆(R) is 昀氀at over R⋆, which will turn out not to be true for

R = ��ý, we get an R⋆-Hopf algebra structure on���⋆(R).• The tensor with spaces in the category of motivic spectra isX ↦ X +'R and
the universal property de昀椀nes a unique map of motivic spectra�+ ∶ X + 'R → X ⊗R.
If � is a set considered as a motivic space, the inclusion of the points {�} ⊆ �
induces the desired map �+ ' R ≅ ⋁{�}∈�{�} ⊗ R → � ⊗ R. If � is already
pointed, the basepoint in � makes � ⊗R anR-algebra, giving rise to the free
extension to an R-linear map

(8) �∶ R ' �+ 'R
1'�+−−−→ R ' � ⊗R

mult−−−→ � ⊗R.• If � is a commutative R-algebra, then the internal hom X ↦ �X =homR(X+ ' R, �) is a cotensor (does not depend on R). The unit of the
adjunction ÿR ∶ � → (X ⊗R �)X
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is a map of commutative R-algebras. (Here X ⊗R � is the tensor in the cat-
egory of commutative R-algebras of the motivic space X with �.) In the cat-
egory of R-modules, the adjoint of ÿR takes the form�R ∶ (X+ 'R) 'R � 1'�R−−−−→ (X+ 'R) 'R (X ⊗R �)X ev−→ (X ⊗R �),
where ev is the evaluation. Composition gives an R-algebra map ā∶ RX 'R(X ⊗R �) → (X ⊗R �)X .
Assume thatX = � is a 昀椀nite cell complex and that�⋆(�+'R) is a 昀椀nitely

generated free �⋆R-module with basis ℬ. Then ā is an equivalence, and the
composite (we identify �⋆(R� 'R (� ⊗R �)) with the given target)ā−1⋆ ÿR⋆ ∶ �⋆� �R−−→ �⋆(�⊗R�)� �−1⋆−−→ hom�⋆R(�⋆(�+'R), �⋆R)⊗�⋆R�⋆(�⊗R�)
satis昀椀es ā−1⋆ ÿ⋆(þ) = ∑�∈ℬ �( ⊗ �R⋆ (� ⊗ þ).
Here �( is the basis element dual to � and � ⊗ þ ∈ �⋆(�+ 'R) ⊗�⋆R �⋆� =�⋆((�+ ' R) 'R �). We will use this formula in Lemma 2.3 to get a relation
in ���(�ý) (in the topological case, see [1, §5] for � = �1 using the circle
action).
In the category of commutative R-algebras, note that X ⊗R (R ' R) ≅

R ' (X ⊗R) is the tensor ofX with �0⊗R = R 'R with its leftR-algebra
structure, and there is a commutative diagram(X+ 'R) 'R (R 'R) �R

//

≅
X ⊗R (R 'R)

≅
R 'X+ 'R

1'�+
// R 'X ⊗R,

where the vertical isomorphisms are the associators.

2.1. Comparison of simplicial models. It will be convenient to make explicit some
of the simplicial models and how they interact (see [1] for a homological version in
the topological setting). In this subsection, let Ā = Δ[1] be the simplicial interval with
boundary �0 = �Δ[1] and let �1 = Ā∐þ0 ∗ be the simplicial circle. The subdivision
of the circle relevant to the comultiplication is ��1 = (Ā∐Ā)∐þ0∐þ0 �0 with weak
equivalence ��1 → �1 given by sending the 昀椀rst interval to the base point. The pinch
map ∇∶ ��1 → �1 ( �1 identi昀椀es the endpoints. It is sometimes convenient to write��1 as ∗∐þ0(Ā × �0)∐þ0 ∗. Under the canonical isomorphismR = ∗⊗R we get an
identi昀椀cation �1⊗R = (Ā ⊗R R) 'þ0⊗R R which is a concrete model for the derived
smash R 'Ā

R'R
R and��1 ⊗R = ((Ā∐Ā) ⊗R) '(þ0∐þ0)⊗R �0 ⊗R ≅ R 'R'R Ā ⊗ (R 'R) 'R'R R.

Let R → � be a co昀椀bration of co昀椀brant commutative motivic ring spectra. Let� ⊗R � be the tensor in the category of commutative R-algebras of the space � (all
smashes involved are over R). If M and N are �-modules, then the derived smash
M 'Ā� N is conveniently modeled as M '� (Ā ⊗R �) '� N , often referred to as the
“two-sided bar construction overR”. Note that this does not depend onR, in the sense



HOCHSCHILD HOMOLOGY OF MOD-ý MOTIVIC COHOMOLOGY 585

that the mapM '� (Ā ⊗�) '� N → M '� (Ā ⊗R �) '� N is an equivalence. In the
special case � = �0 ⊗ R = R ' R we get an identi昀椀cation between the tensor with
the subdivided circle and the bar construction �1 ⊗ R ≅ R '� (Ā ⊗R �) '� R and��1 ⊗R ≅ R '� (Ā ⊗ �) '� R. If one wishes to write the comultiplication�∶ �1 ⊗R

∼←− ��1 ⊗R
∇⊗1−−−→ (�1 ( �1) ⊗R

≅−→ (�1 ⊗R) 'R (�1 ⊗R)
in terms of the bar construction, a concrete way is to use the equivalence Ā ⊗ � → �
and the augmentation Ā ⊗ � → R as in the diagram

R'� (Ā ⊗ �)'�R R'� (Ā ⊗ �)'� (Ā ⊗ �)'� (Ā ⊗ �)'�R
∼

oo

��(R'� (Ā ⊗ �)'�R) 'R (R'� (Ā ⊗ �)'�R) R'� (Ā ⊗ �)'�R'� (Ā ⊗ �)'�R.≅
oo

This formula only uses the augmentation� → R and not speci昀椀cally that� = R'R.
One may replace the⊗ by⊗R if convenient.

2.2. Some classes coming from the dual motivic Steenrod algebra. Let �⋆ =�⋆(��ý '��ý) be the dual motivic Steenrod algebra of our ground 昀椀eld � at ý,
(9) �⋆ = {�⋆[Ă�, ��]�≥0/(�2� − �(��+1 − �0Ă�+1) − �Ă�+1) ý = 2�⋆[Ă�]�≥0 ⊗�⋆ Λ�⋆(��)�≥0 ý ≠ 2
(where �⋆ is the mod-ý motivic homology ring of �; � and � are discussed below),
whose Hopf algebroid structure is given in [23, §5.1], [40, §5], [53, §12]. Our notation
indicates that �� is an exterior class when ý ≠ 2. By convention we set Ă0 = 1. The
bidegrees of the generators in (9) are given by|Ă�| = (2ý� − 2, ý� − 1), |��| = (2ý� − 1, ý� − 1).
The coproducts of the generators are de昀椀ned by

(10) �(Ă�) = �∑�=0 Ăý��−� ⊗ Ă� , �(��) = �� ⊗ 1 + �∑�=0 Ăý��−� ⊗ �� .
The left unit is the canonical inclusion. When ý = 2, the right unit is determined by�ý(�) = �, �ý(�) = � + ��0
for the canonical classes � ∈ �0,−1 ≅ Ā2(�) and � ∈ �−1,−1 ≅ �×/(�×)2. The mod 2
Bockstein on � equals �. While � is always nontrivial—being the class of−1 ∈ Ā2(�)—
we have � = 0 if √−1 ∈ �. The graded mod-2 Milnor Ă-theory ring ýā∗ ⊆ �⋆ of
the base 昀椀eld � is comprised of primitive elements. The element � is not primitive in
general. If � contains a primitive ýth root of unity so that�0,−1 ≅ ℤ/ý{�}, then�⋆ ≅ýā∗ [�] by the norm residue isomorphism [52], [54]. We shall also use the antipodal
generators

(11) �(��) = −�� − �−1∑�=0 Ăý��−��(��), �(Ă�) = −Ă� − �−1∑�=1 Ăý��−��(Ă�)
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detailed in [23, §5]. For legibility, we will abuse notation by implicitly using the antipo-
dal classes (11) in our computations. Voevodsky de昀椀nes in [51, §3.1] the mod-ý rigid
motivic Steenrod algebra

(12) �rig⋆ ≔⨂�≥0 S��(Ă�+1) ⊗ Λ��(��).
The equation (10) gives the coproducts of the generators. For ý ≠ 2, this is the dual

topological Steenrod algebra at ý.
Remark 2.2. Suppose � is an algebraically closed 昀椀eld of positive characteristic≠ ý. Its
ring of Witt vectors�(�) is a Henselian local ring with residue 昀椀eld �. Let Ă denote
an algebraic closure of the quotient 昀椀eld Ă of�(�). We note that Ă has characteristic
zero. The natural maps Ă ← �(�) → �
induce isomorphisms on �⋆ and �⋆ according to [55, §4,5,6]. These algebra isomor-
phisms preserve the classes �� and Ă�. Moreover, �⋆ and �⋆ are invariant under ex-
tensions of algebraically closed 昀椀elds of characteristic zero.

The structure of the dual Steenrod algebra has some direct consequences formotivic
Hochschild homology. Recall from (8) the suspension operation

(13) �∶ ��ý ' �1+ '��ý ⟶��ý '���(�ý) mult−−−→ ���(�ý).
We note the isomorphisms�⋆(��ý ' �1+ '��ý) ≅ �⋆((��ý ' �1+) '��� (��ý '��ý))≅ ÿ∗(�1+; �⋆) ⊗�⋆ �⋆≅ ÿ∗(�1+; �ý) ⊗ �⋆.
If Ā1 ∈ ÿ1(�1+; �ý) is the standard generator and � ∈ �Ā,�, we let “��” denote the

“homology suspension” of �, namely the image of Ā1 ⊗ � in���Ā+1,�(�ý) under the
composite in (13) and also in �Ā+1,�(��ý '���(�ý)) under the 昀椀rst map in (13).
We now show two relations useful in the forthcoming spectral sequence calcula-

tions. Remark 2.7 generalizes our second formula to all base 昀椀elds when ý = 2.
Lemma 2.3. In the motivic Hochschild homology���⋆(�ý) of an algebraically closed
昀椀eld of exponential characteristic ≠ ý, we have the relations�ý−1���+1 = (���)ý, �ý−1�Ă�+1 = 0
for all � ≥ 0.
Proof. Suppose thatR is a commutative��ý-algebra and let ÿ∶ �Ā,� → R represent a
class in �Ā,�R. We write �Σý for the nerve of the translation category of the symmetric
group Σý on ý letters.
The “power operation”�(ÿ)∶ �⋆(��ý ' ((�Σý)+ 'Σ� (�Ā,�)'ý)) → �⋆R

is the homotopy of the��ý-module map��ý ' ((�Σý)+ 'Σ� (�Ā,�)'ý) → R adjoint to
the composite�Σý 'Σ� (�Ā,�)'ý id'��−−−−→ �Σý 'Σ� R'ý �Σ�→∗−−−−−→ R'ý/Σý mult−−−→ R.
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Precomposing with the mapÿ∗(þΣý; �ý) ⊗ �⋆(��ý ' �Ā,�) → �⋆(��ý ' ((�Σý)+ 'Σ� (�Ā,�)'ý))
de昀椀ned on the chain level (via the monoidal Quillen equivalence between ��ý-
modules and motives with mod-ý coe昀케cients, see [16], [23], [42], [43]) as the diag-
onal for the Suslin-Voevodsky motivic complex [33], [50]ÿ∗(�Σý, �ý)/Σý ⊗ℤ/ý(�)[Ā] → ÿ∗(�Σý, �ý) ⊗Σ� ℤ/ý(�)[Ā]⊗ý
and evaluation at the classical choice of generator of ÿ�(þÿý; �ý) ⊆ ÿ�(Σý, �ý) gives us
the (topological) Dyer-Lashof operation��(ÿ) ∈ ��+ýĀ,ý�R on ÿ. We do the usual shift
to upper indexing with �ÿ(ÿ) ⋅= �(2ÿ−Ā)(ý−1)(ÿ) (for ý odd; �ÿ(ÿ) = �ÿ−Ā(ÿ) for ý = 2)
so that �0(ÿ) = ÿ and �Ā(ÿ) = ÿý when 2ÿ = Ā (for ý odd; ÿ = Ā for ý = 2). We refer to
[29, §1.5] for a survey of Dyer-Lashof operations.
In Section 2.1 we set R = ��ý and � = R ' R and let � be any space with

昀椀nite basis {�} for the homology ÿ∗(�; �ý). Recall that ÿR ∶ � → (� ⊗R �)� andā∶ R�'R (�⊗R�) → �⊗R� aremaps of commutativeR-algebras. For appropriateÿ and Ā, we obtain �ÿā−1⋆ ÿR⋆ = ā−1⋆ ÿR⋆ �Ā
and so ∑� ∑ÿ+Ā=Ā�ÿ�( ⊗�Ā�R(� ⊗ þ) = ∑� �( ⊗ �R(� ⊗ �Āþ).
When � = �1 the Dyer-Lashof operations �ÿ(�() are trivial for þ ≠ 0 and so we get�Ā�R(� ⊗ þ) = �R(� ⊗ �Āþ).
Restricting to the generator � = Ā1 ∈ ÿ1(�1; �ý) and multiplying down to homotopy,
we get the crucial formula�Ā� = ��Ā ∶ �Ā,�(��ý '��ý) → ���Ā+1+2Ā(ý−1),ý�(�ý)
for ý odd, and �Ā� = ��Ā ∶ �Ā,�(��2 '��2) → ���1+2Ā,2�(�2).
By construction, the power operations are preserved under base change. Over any

algebraically closed 昀椀eld, we claim there is a relation (due to Steinberger [10, III.2] in
the topological setting)

(14) �ý−1��+1 = �ý��� ∈ �2ý�+1−1,ý�+1−ý(��ý '��ý).
By Remark 2.2 and rigidity, it su昀케ces to know that the relation holds over the complex
numbers, which follows by Betti realization to the topological situation (the motivic
correction factor �ý−1 ensures the weights agree). Thus, for the antipodal classes (11),
we obtain the 昀椀rst formula

(15) �ý−1���+1 = ��ý��� = �ý���� = (���)ý.
We use this result to prove the vanishing of (1 ' �+)⋆(Ā1 ⊗ �ý−1Ă�+1) for the map1 ' �+ ∶ ��ý ' �1+ ' ��ý → ��ý ' ���(�ý). This relation will be shown in

homology from which the homotopy versions follow by the ��ý-algebra structuremult∶ ��ý ' ���(�ý) → ���(�ý) (splitting the inclusion of homotopy in ho-
mology). Let Ā∶ ��ý → �1 '��ý be the ý-Bockstein, i.e., the��ý-linear boundary
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map in the 昀椀ber sequence of Eilenberg-MacLane spectra associated with the short ex-
act sequence ýℤ/ý2 ⊆ ℤ/ý2 → ℤ/ý. For any commutative ring spectrum R, the map(Ā ' 1)⋆ ∶ �⋆(��ý 'R) → �⋆(�1 '��ý 'R) is a derivation (since ýℤ/ý2 ⊆ ℤ/ý2 is
a square zero ideal) and as usual we allow ourselves the shorthand Ā for (Ā ' 1)∗. By
construction of the motivic Steenrod algebra, see [23, §5], [53, §9], the generators in
the dual motivic Steenrod algebra�⋆ = �⋆(��ý '��ý) are connected viaĂ�+1 = Ā��+1.
The diagram ��ý ' �1+ '��ý 1'�+

//

�'1
��

��ý '���(�ý)�'1
���1 '��ý ' �1+ '��ý 1'�+

// �1 '��ý '���(�ý)
commutes, and since the power operations commute with ���� = 1 ' �+ we get for ý
odd (where Ā� = 0) that0 = multĀ[����⋆ (Ā1 ⊗ ��)]ý = multĀ����⋆ (Ā1 ⊗ �ý−1��+1)= �Ā�ý−1��+1 = ��ý−1Ă�+1 = �ý−1�Ă�+1.
For ý = 2, we will see that the last formula follows directly from the �1-di昀昀erentials
in the Tor-spectral sequence, but we may also use the Bockstein and compute (� = 0
since the base 昀椀eld is algebraically closed)0 = multĀ[���2⋆ (Ā1 ⊗ ��)]2 = multĀ���2⋆ (Ā1 ⊗ ���+1)= �(Ā(���+1)) = �(Ā(�)��+1 + �Ā(��+1)) = �(���+1 + �Ă�+1) = ��Ă�+1.
This 昀椀nishes the proof. □

2.3. Tor spectral sequence for motivic Hochschild homology. A motivic spec-
trum is cellular if it belongs to the smallest full subcategory of the stable motivic ho-
motopy category which is closed under homotopy colimits and contains the motivic
spheres �ý,þ for all ý, þ ∈ ℤ, see [12, §2.8]. The cellularity assumption is central in
motivic homotopy theory, see, e.g., [46, §2.3]. It is, moreover, needed for running the
motivic Tor spectral sequence (we refer to [18] for the topological setting).
We begin by relating the integral Tor spectral sequence to the bar construction. Our

setup is a map of motivic ring spectra R → Q and an Q-R bimodule M . We assume
thatR is a commutativemotivic ring spectrumand� = Q'R is a co昀椀brantR-algebra.
If� is commutative and the modulesM andQ are commutative�-algebras, then the
homotopy colimit of the simplicial object {[Ā] ↦ M 'R �'�

R 'R Q} is isomorphic
to (M 'R Q) ⊗� (�1 ⊗ �) in the category of commutative R-algebras. Moreover, the
derived smash productM '� Q in (7) is the homotopy colimit of the diagram over the
opposite simplex category Δop given by[Ā] ↦ M 'R �'�

R 'R Q.
The skeletal 昀椀ltration yields the�1 page of the Tor spectral sequence, which—if�⋆�

is 昀氀at over �⋆R—takes the form�1Ā,⋆ = þĀ(�⋆M , �⋆�,�⋆Q) = �⋆M ⊗�⋆R �⋆�⊗��⋆R ⊗�⋆R �⋆Q.
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It is conventional to denote the generators of the bar complex by [ÿ0|þ1| . . . |þĀ|ĀĀ+1].
When M = Q = R we abbreviate [1|þ1| . . . |þĀ|1] to [þ1| . . . |þĀ]. The homology of �1Ā,⋆
computes the �2 page of the Tor spectral sequence (16). We recall the �1 di昀昀erential is
given by the alternating sum of the face maps

��[ÿ0|þ1| . . . |þĀ|ĀĀ+1] = §̈
©
[ÿ0 ⋅ þ1|þ2| . . . |þĀ|ĀĀ+1] � = 0[ÿ0|þ1| . . . |þ� ⋅ þ�+1| . . . |þĀ|ĀĀ+1] 0 < � < Ā[ÿ0|þ1| . . . |þĀ−1|þĀ ⋅ ĀĀ+1] � = Ā.

The isomorphimM 'R (Q'R)'�R 'R Q ≅ (M 'R Q) 'Q'Ā given by multiplication
relates our description of the derived smash product to the Hochschild homology style
description [Ā] ↦ (M 'R Q) 'Q'Ā.
Proposition 2.4. LetR → Q be a map of cellular motivic ring spectra, whereR is com-
mutative and� = Q'R is a co昀椀brantR-algebra, and letM be anQ-R bimodule. Then
the skeletal 昀椀ltration on the simplicial circle gives rise to a strongly convergent trigraded
Tor spectral sequence

(16) �2ℎ,ā,� = ����⋆(�)ℎ,ā,� (�⋆M , �⋆S ) ⇒ ���ℎ+ā,�(R;M ).
Here, ℎ is the homological grading on the torsion product and (ā, �) is the internal grad-
ing for the bigraded motivic homotopy groups in topological degree ā and weight �. The
di昀昀erentials are of the form �ÿ ∶ �ÿ∗,∗,∗ → �ÿ∗−ÿ,∗+ÿ−1,∗.
If R is commutative and Q and M are commutative R-algebras, then the Tor spectral
sequence is a spectral sequence ofR⋆-algebras with the multiplicative structure on the �1
page given by the shu昀툀e product introduced by Eilenberg-MacLane [15]. The pinch map
on the circle induces the Hopf-algebra structure on the torsion groups on the �2 page. If�2, . . . , �ÿ are all 昀氀at over R⋆ for 2 ≤ ÿ, then the �ÿ page inherits an R⋆-Hopf algebra
structure; in particular, the ÿ-th di昀昀erential �ÿ ∶ �ÿ → �ÿ satis昀椀es the “co-Leibniz” rule
in the sense that it commutes with the coproduct �∶ �ÿ → �ÿ ⊗ �ÿ.
Proof. This follows from (7), [1, §4], [12, Proposition 7.7], [39, §2]. □

The suspension map �∶ R ' �1 ' R → �1 ⊗ R has a simple interpretation under
the isomorphism �1 ⊗R ≅ {[Ā] ↦ (R 'R R) ' (R 'R)'RĀ}.
It is themap from �1'(R'R) = {[Ā] ↦ ⋁{1,. . .,Ā}(R'R)} sending the �th summand to
the inclusion on the �th factor (and units elsewhere). In particular, if � ∈ �Ă,�(R'R),
then �⋆� ∈ �Ă+1,�(�1 ⊗R) is the class represented by [�] ∈ �11,Ă,�.
The Hopkins-Morel equivalence shown by Hoyois [22, Proposition 8.1] implies the

cellularity assumption in Proposition 2.4 holds forM = R = S = ��ý since the base
scheme � is a 昀椀eld of exponential characteristic �(�) ≠ ý. In this case, we have the Tor
spectral sequence
(17) �2ℎ,ā,� = ����⋆ℎ,ā,�(�⋆, �⋆) ⇒ ���ℎ+ā,�(��ý).
Remark 2.5. By Remark 2.2 and (17) it follows that, for algebraically closed 昀椀elds,���⋆(��ý) is independent of the exponential characteristic ≠ ý.
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2.4. Torsion products. We shall repeatedly make use of some torsion product com-
putations, see [39, §6], and Section 1.1 for our notation.

Lemma 2.6.
(i) For the polynomial algebra �ý[�] on a generator � in even degree �, there is an�ý-bialgebra isomorphism�����[�]∗ (�ý, �ý) ≅ Λ��(��).

Here, �� in degree (1, �) is a coalgebra primitive represented in the bar complex
by [�].

(ii) For the exterior algebra Λ��(�) on a generator � in odd degree �, there is an �ý-
bialgebra isomorphism���Λ�� (�)∗ (�ý, �ý) ≅ Γ��(��).
Here, ā��� in degree (�, ��) is represented in the bar complex by [�|�| . . . |�] and
has coproduct �(ā���) = ∑�+�=�ā��� ⊗ ā���.

Remark 2.7. As an example, let us give a direct proof of the relation ��Ă�+1 = ����+1 ∈���⋆(�2) shown for algebraically closed 昀椀elds in Lemma 2.3. Consider the �1 page�1Ā,⋆ = �⊗�⋆ Ā⋆ ≅ �⋆ ⊗�⋆ �⊗�⋆ Ā⋆ ⊗�⋆ �⋆
of the spectral sequence for���(�2), where�⋆ = �⋆(��2'��2) is the dual Steen-
rod algebra. Then �1[��|��] = [�2� ] = �[Ă�+1] + �[��+1] + �[�0Ă�+1]
and �1[�0|Ă�+1] = [�0Ă�+1], so that �[Ă�+1] + �[��+1] is a boundary. Hence ��Ă�+1 =����+1.
With the notation ā���� = [��| . . . |��] ∈ �1�,⋆ and �� = [�] the shu昀툀e product yields

an explicit formula for the �1 di昀昀erentials
�1ā�+2��� = �−1∑ÿ=1[��| . . . |�2� | . . . |��]= [�2� ] ⋅ [��| . . . |��]= (�[Ă�+1] + �[��+1] + �[�0Ă�+1]) ⋅ [��| . . . |��]= (��Ă�+1 + ����+1 + ��(�0Ă�+1)) ⋅ ā����.

When the ground 昀椀eld contains a square root of −1, so that � = 0, we get the formula�1ā�+2��� = ��Ă�+1 ⋅ ā����.
Conversely, for odd primes ý, we can use Lemma 2.3 to deduce di昀昀erentials by a simple
weight count—simplifying the corresponding topological argument. Lemma 2.6 tells
us that �2∗,⋆ = �⋆ ⊗�� ⨂�≥0 Λ��(�Ă�+1) ⊗ Γ��(���).
We know that �ý−1�Ă�+1 has to be hit by a di昀昀erential. When the ground 昀椀eld is alge-
braically closed,�⋆ = �ý[�] with � ∈ �0,−1. In this case the source of the di昀昀erential
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hitting �ý−1�Ă�+1must come from linear combinations ofmonomials in�Ă�s and ā����s
of total degree 2ý�+1 and weight at least ý�+1 − ý. A quick count shows that the only
monomial with su昀케cient weight is āý���, and so we have the relation (described up to
a unit in �ý) �ý−1āý��� ⋅= �ý−1�Ă�+1.
2.5. A Bockstein type complex. We end the section by doing an entirely algebraic
exercise that will be needed later. Let ý be any prime and consider the commutative
di昀昀erential graded �ý-algebra (ÿ, �), whereÿ =⨂�≥0 Γ��(Ā̄�) ⊗ Λ��( ̄ÿ�+1)
and �∶ ÿ → ÿ is the derivation generated by �(ā�+ýĀ̄�) = ̄ÿ�+1ā�Ā̄� and �( ̄ÿ�+1) = 0.
Set þ� = im�, ý� = ker � andÿ� = ý�/þ�—this subsection aims to calculate these. In
our application ÿ will be the mod-�ý−1motivic Hochschild homology of �ý (the reader
may recognize it as Tor�rig⋆∗ (�ý, �ý)) and � will be derived from a Bockstein.
We 昀椀rst 昀椀x some notation. For each non-empty 昀椀nite set of natural numbers � ⊆ ℕ,

we choose an element āþ ∈ � with the property that āþ∪ÿ ∈ {āþ , āÿ }. The minimum,āþ = min �, is a good choice, but many others exist. Down the road, such a choice
amounts to a particular choice of basis, and there is no reason to prefer one over the
other, except that in concrete examples, some can be more convenient. If the function�∶ ℕ ⟲ has 昀椀nite non-empty support, supp� = {Ā ∈ ℕ | �(Ā) ≠ 0}, we write ā� =āsupp�. For every � ∈ ℕ, let Ă� ∶ ℕ ⟲ be the function with supp Ă� = {�} and Ă�(�) = 1.
De昀椀nition 2.8. Let ā denote the set of pairs (�, �), where the function �∶ ℕ ⟲ has
昀椀nite support and � ⊆ supp�. The subset Ă ⊆ ā consists of the pairs (�, �), where the
support of � is non-empty and � does not contain ā�.
De昀椀nition 2.9. For (�, �) ∈ ā, we set
(18) �þ,� ≔ (∏�∈þ ̄ÿ�+1āý�(�)−ýĀ̄�) (∏�∉þ āý�(�)Ā̄�) ∈ ÿ.
In particular, �∅,0 = 1, �∅,ý��� = āý�+1 Ā̄� and �{�},�� = ÿ�+1. We note that��þ,� = ∑�∈supp(�)−þ�þ∪{�},�

since �ā�Ā̄� = ̄ÿ�+1ā�−ýĀ̄�. Next, we construct sub-complexes of (ÿ, �).
De昀椀nition 2.10. If�∶ ℕ ⟲has 昀椀nite support, the associated�-cube is the sub-complex

(ÿ�, �) ≔ ( ⨁þ⊆supp��ý{�þ,�}, �) ⊆ (ÿ, �).
If � = 0, then ÿ� = �ý . Furthermore, let ý� = ker � ) ÿ�, þ� = im� ) ÿ� andÿ� = ý�/þ�.
Note that if � = 0, then ý� = ÿ� = �ý. Recall the number ā� ∈ supp� chosen once

and for all (whenever supp� is non-empty) just before De昀椀nition 2.8.
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Lemma 2.11. If �∶ ℕ ⟲ has 昀椀nite non-empty support, then (ÿ�, �) is contractible so
thatÿ� = 0. Furthermore, þ� = ý� is generated by the ��þ,� with ā� ∉ � ⊆ supp�.
Proof. For � = |supp�| and ý = 0, . . . , �, let ÿ�� ⊆ ÿ� be the span of the �þ,� withý = |�|. From the formula ��þ,� = ∑�∈supp(�)−þ �þ∪{�},� we see that the di昀昀erential
restricts to a chain complex(ÿ�, �) = {ÿ�0 �−−−−→ ÿ�1 �−−−−→ .. . �−−−−→ ÿ�Ă−1 �−−−−→ ÿ�Ă} .
Here the �ý-vector space ÿ�� is of dimension (Ă�) with basis elements �þ,�, where |�| =ý. Note that the set {��þ,� ∣ ý = |�|, ā� ∉ �}
is linearly independent because only ��þ,� has a nontrivial�{ā�}∪þ,�-coe昀케cient. Hence
the rank of �∶ ÿ�� → ÿ��+1 is at least (Ă−1� ), and we deduce thatdimÿ�(ÿ�, �) = dimker{�∶ ÿ�� → ÿ��+1} − dim im{�∶ ÿ��−1 → ÿ�� }≤ (�ý) − (� − 1ý ) − (� − 1ý − 1) = 0
and so þ� = ý� is generated by the ��þ,� with ā� ∉ � ⊆ supp�, as claimed. The
calculation works when ý = 0 or ý = � (but not for � = 0 since then we cannot
choose ā�). □

We analyze the multiplicative structure.

De昀椀nition 2.12. For functions �, �∶ ℕ ⟲ with 昀椀nite support and non-empty 昀椀nite
sets �, � ⊆ ℕ de昀椀ne Ăþ,ÿ,�,� ∈ �ý byĂþ,ÿ,�,� = (∏Ā∈þ (�(Ā) − 1 + �(Ā)�(Ā) − 1 )) (∏ā∈ÿ (�(ā) + �(ā) − 1�(ā) )) ( ∏ā∉þ∪ÿ (�(�) + �(�)�(�) ))
if (�, �), (�, �) ∈ ā and � ) � = ∅, and set Ăþ,ÿ,�,� = 0 otherwise. Moreover, we de昀椀ne�ᵆ,þ,ÿ,�,� = Ăþ∪{ᵆ},ÿ∪{ā�+�},�+� + Ăþ∪{ā�+�},ÿ∪{ᵆ},�+�.
Note that when (�, �), (�, �) ∈ ā and � ) � = ∅, each factor in the formula Ăþ,ÿ,�,�

is 1 unless the index is in supp � ) supp � = supp(� ⋅ �), and so we can restrict to
these factors to simplify the calculation. We will need �ᵆ,þ,ÿ,�,� only in the case whenĂ ∈ supp(� + �), Ă ≠ ā�+� and Ă ∉ � ∪ �.
Lemma 2.13, a consequence of the de昀椀ning relations among divided power genera-

tors of ÿ, explains the relevance of these numbers.
Lemma 2.13. For (�, �), (�, �) ∈ ā we have�þ,��ÿ,� = Ăþ,ÿ,�,� ⋅ �þ∪ÿ,�+�
and if (�, �), (�, �) ∈ Ă, then��þ,� ⋅ ��ÿ,� = ∑ā�+�≠ᵆ∈supp(�+�)−þ∪ÿ �ᵆ ⋅ ��þ∪ÿ∪{ᵆ},�+�.

□
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Lemma 2.14. The multiplication gives an extra grading indexed by the generators of the
commutative di昀昀erential graded sub-algebra⨁� ÿ� ⊆ ÿ. In particular, if �, �∶ ℕ ⟲

there is a commutative diagram ÿ� ⊗ÿ� //

��

ÿ ⊗ ÿ
��ÿ�+� // ÿ.

Here the rows are given by the evident inclusion and the columns by multiplication. The
resulting algebra inclusions ⨁�∶ ℕ⟲ÿ� ⊆ ÿ
and �ý[Ā̄�]/Ā̄ý� ⊆ ÿ
induce isomorphisms of graded commutative �ý-algebras

⨁�∶ ℕ⟲ÿ� ≅⨂�≥0 (Λ��( ̄ÿ�+1) ⊗⨂�>0 �ý[āý� Ā̄�]/(āý� Ā̄�)ý)
and ÿ ≅ (⨂�≥0 �ý[Ā̄�]/Ā̄ý� ) ⊗ ( ⨁�∶ ℕ⟲ÿ�) .
Proof. Themultiplicative structure follows from Lemma 2.13, and the last two isomor-
phisms follow from the fact that a monomial in ÿ does not have any Ā̄�-factors of the
form �þ,�. □

Corollary 2.15. As an �ý-algebra,ÿ� ≅⨂�≥0 �ý[Ā̄�]/Ā̄ý�
and ý� is the subalgebra of ÿ generated by the Ā̄� with � ≥ 0 and the ��þ,� with ā� ∉ � ⊆supp�. More explicitly, and writing �þ,� = ��þ,�, the relation expressed in Lemma 2.13
gives an isomorphismý� ≅ �ý[Ā̄�, �þ,�]�∈ℕ,(þ,�)∈ÿ/(Ā̄ý� , �þ,� ⋅ �ÿ,� − ∑ᴂ �ᵆ ⋅ �þ∪ÿ∪{ᵆ},�+�).
Here, Ă ∈ supp(� + �) − � ∪ � and Ă ≠ ā�+�.

3. Motivic Hochschild homology over algebraically closed fields

In this section, we work over an algebraically closed 昀椀eld � of exponential charac-
teristic �(�) ≠ ý. Then � = 0 since every unit is a square, and
(19) �⋆ ≅ ýā∗ [�] ≅ �ý[�]
by [48, Corollary 4.3, p.254], where |�| = (0, −1). From (9) and (19) we deduce

(20) �⋆ = {�ý[�, Ă�+1, ��]�≥0/(�2� − �Ă�+1) ý = 2�ý[�, Ă�+1]�≥0 ⊗Λ��(��)�≥0 ý ≠ 2.
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If ý = 2 and we invert � in �⋆, then Ă� is no longer needed as a generator becauseĂ�+1 = �−1�2� :
(21) �⋆((��ý '��ý)[�−1]) ≅ �⋆[�−1] = {�ý[�±1, ��]�≥0 ý = 2�ý[�±1, Ă�+1]�≥0 ⊗Λ��(��)�≥0 ý ≠ 2.
Likewise, since �⋆ is free as an �ý[�]-module, taking the quotient by �ý−1 (for any
prime ý) gives an isomorphism of Hopf algebras

(22) �⋆((��ý '��ý)/�ý−1) ≅ �⋆/�ý−1 = (⨂�≥0 �ý[Ă�+1] ⊗ Λ��(��)) ⊗ �ý,�.
Here �ý,� is shorthand for �ý[�]/�ý−1. In Section 3.2, we use (22) to compute the coef-
昀椀cients of the mod �ý−1 reduction of���(�ý).
3.1. Étale motivic Hochschild homology. We refer to [3], [17] for �-self maps and
applications towards étale hyperdescent for motivic spectra. SupposeR/ý is a motivic�∞ ring spectrum de昀椀ned over an algebraically closed 昀椀eld. Then the canonical map

(23) R/ý → R/ý[�−1]
exhibits the �-periodization as a motivic �∞ ring spectrum under R/ý; see [4, §12],
[17, §8] for recent expositions. IfR happens to be cellular, then so isR/ý[�−1]. Owing
to [3, Theorem 1.2], (23) is an étale localization (the �-completion in [3] is obsolete
over algebraically closed 昀椀elds, and for ý ≠ 2 the étale localization involves only the
“+”-part of R/ý). We note that (23) induces an isomorphism on �-inverted homotopy
groups.
At all primes, the �-periodic mod-ýmotivic Steenrod algebra agrees with the tensor

product of the topological mod-ý Steenrod algebra with the Laurent polynomial ring�ý[�±1]. This observation implies that after ý-completion the �-periodic motivic sta-
ble homotopy groups are isomorphic to the classical stable homotopy groups with �±1
adjoined [25], [27, §4]. In this section, we prove a similar statement for motivic and
topological Hochschild homology.
We calculate ���⋆(�ý)[�−1] ≅ �⋆(���(�ý)[�−1]) directly by the Tor spectral

sequence, using the relations and di昀昀erentials from Lemma 2.3 and Remark 2.7 and
by appealing to (21) and the naturally induced equivalence of motivic spectra
(24)���(�ý)[�−1] = (��ý'���'�����ý)[�−1] ≃−→ ��ý[�−1]'(���'���)[�−1]��ý[�−1].
Our calculation uses the classesĀ� ≔ ���, ÿ� ≔ �Ă�.

Lemma 3.1. The Tor spectral sequence of���(�ý)[�−1] collapses at the �ý page and�∞ = (⨂�≥0 �ý[Ā�]/Āý� )[�±1].
For ý odd the only nonzero di昀昀erentials �ÿ for ÿ > 1 are generated by
(25) �ý−1(ā�Ā�) ⋅= �ý−1ÿ�+1ā�−ýĀ�
for all � ≥ 0, � ≥ ý.
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Proof. Lemma 2.6, Equation (21), and Equation (24) yield the �2 page. When ý = 2,
we have

(26) �2 = (⨂�≥0 Λ�2(Ā�))[�±1].
Since all the Ā�s have 昀椀ltration degree 1, there are no nontrivial di昀昀erentials, and we
conclude that �∞ = �2. When ý is odd, the �2 page takes the form
(27) �2 = (⨂�≥0 Γ��(Ā�) ⊗ Λ��(ÿ�+1))[�±1].
The Tor spectral sequence starts as an augmented unital �⋆[�−1]-Hopf algebra since
(27) is 昀氀at over�⋆[�−1]. Arguing as in [1, §4], [2, §5], [20, §1.2], [34], [39], we’ll see that
the nontrivial di昀昀erentials are as claimed. More precisely, since the shortest di昀昀erential
in the lowest total degree must go from an algebra generator (these lie in 昀椀ltration
powers ofý) to a coalgebra primitive (these lie in 昀椀ltration 1), the di昀昀erentials�ÿ for 1 <ÿ < ý − 1 are all zero. Recall from Remark 2.7 that we established the said di昀昀erential
for � = ý integrally: �ý−1(ā�Ā�) ⋅= �ý−1ÿ�+1 and we move from there by induction on� ≥ ý and the coalgebra structure in Lemma 2.6; this is, for ý ≥ 0, the calculation�(�ý−1(āý+�Ā�)) − �(�ý−1ÿ�+1ā�Ā�)= (�ý−1 ⊗ 1 + 1 ⊗ �ý−1)�(āý+�Ā�)− �ý−1(ÿ�+1 ⊗ 1 + 1 ⊗ ÿ�+1)(Σÿ+Ā=�āÿĀ� ⊗ āĀĀ�)= (�ý−1 ⊗ 1)(āý+�Ā� ⊗ 1) + (1 ⊗ �ý−1)(1 ⊗ āý+�Ā�)+ �ý−1 ∑ÿ+Ā=ý+�;ÿ,Ā>0(ÿ�+1āÿ−ýĀ� ⊗ āĀĀ� + āÿĀ� ⊗ ÿ�+1āĀ−ýĀ�)− �ý−1 ∑ÿ+Ā=�(ÿ�+1āÿĀ� ⊗ āĀĀ� + āÿĀ� ⊗ ÿ�+1āĀĀ�)= (�ý−1 ⊗ 1)(āý+�Ā� ⊗ 1) + (1 ⊗ �ý−1)(1 ⊗ āý+�Ā�)
shows the di昀昀erence �ý−1(āý+�Ā�) − �ý−1ÿ�+1ā�Ā� is a coalgebra primitive; however, 0
is the only such element in the given degree. The remaining algebra generators on the�ý page are in 昀椀ltration degree ≤ 1, and hence �∞ = �ý. □

Remark 3.2. Alternatively, an appeal to rigidity for extensions of algebraically closed
昀椀elds as in Remark 2.2 or [44] (in characteristic zero) reduces to considering complex
numbers. Over ℂ, the di昀昀erential (25) is forced by Bökstedt’s di昀昀erential �ý−1(ā�Ā�) =ÿ�+1ā�−ýĀ� in the Tor spectral sequence for ���∗(�ý). In the motivic case, the correc-
tion term �ý−1 ensures agreement of the weights.
Theorem 3.3. There are isomorphisms���⋆(�ý)[�−1] ≅ �ý[�±1, Ā�]�≥0/(Āý� − �ý−1Ā�+1)≅ �ý[Ā, �±1]≅ ���∗(�ý)[�±1].
The generator Ā has bidegree (2, 0).
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Figure 1. The étale motivic Hochschild homology of �2. The verti-
cal lines indicate �-multiplication, while the horizontal and diagonal
lines depict powers of Ā�, � = 0, 1, 2, 3.

Proof. (24) shows the�∞ page for���(�ý)[�−1] is the Laurent polynomials in � of the�∞ page for ���(�ý). The result now follows from Lemma 3.1 and the multiplicative
extension

(28) Āý� = �ý−1Ā�+1
of Lemma 2.3. □

Hence all the classes Ā� ∈ ���(�ý) are nontrivial and we may identify the �-free
part in���⋆(�ý) with
(29) �ý[�, Ā�]�≥0/(Āý� − �ý−1Ā�+1).
This is depicted graphically for ý = 2 and ý = 3 in Figure 1 and Figure 2, respectively.
3.2. Reduced motivic Hochschild homology. To proceed to the next step in our
strategy for calculating���(�ý) over an algebraically closed 昀椀eld � with �(�) ≠ ý,
we form the co昀椀ber of �� (for our calculations, it su昀케ces to consider Ā = ý − 1)
(30) Σ0,���ý ��→��ý →��ý/��.
We thankMarkus Spitzweck for informing us that��ý/�� is amotivic�∞ ring spec-

trum for all Ā ≥ 1. His argument goes as follows: �ℤ is strongly periodizable and thus
the mod-ý homology ring�⋆ is the homology of an �∞ ring spectrum ÿ⋆�ý in graded
complexes of �ý-vector spaces, see [47, Appendix C, Corollary C.3] for details. As noted
below, ÿ⋆�ý is formal, i.e., equivalent as an �∞ ring spectrum in graded complexes of�ý-vector spaces to the (bigraded) homology �⋆ equipped with trivial di昀昀erentials,ÿ⋆�ý/�� is �∞ over�⋆ for all Ā ≥ 1. This implies the corresponding claim for��ý/��.
To show formality, consider the free �∞ algebra ℰ in graded complexes of �ý-vector
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Figure 2. The étale motivic Hochschild homology of �3 depicted in
the same graphical style as Figure 1.

spaces on a generator � in bidegree (0, 1). Its 0-truncation, with respect to the natu-
ral ā-structure on the derived category of graded abelian groups, is the formal model�ý[�]. Thus ÿ⋆�ý and �ý[�] are equivalent since the natural map ℰ → ÿ⋆�ý is the 0-
truncation. When Ā = 1, we also refer to Gheorghe [19] for the fact that��2 →��2/�
is a map of motivic �∞ ring spectra.
Inserting��ý/�� into (1) yields the derived smash product

(31) ���(�ý)/�� ≃ ��ý/�� '(���'���)/�� ��ý/��.
Owing to (30) and cellularity of��ý, see Section 2.3, it follows that��ý/�� is cellular.
Thus (31) gives rise to the Tor spectral sequence

(32) �2ℎ,ā,� = ����⋆/��ℎ,ā,� (�⋆/��, �⋆/��) ⇒ ���ℎ+ā,�(�ý)/��.
Recall that �ý,� is shorthand for �ý[�]/�ý−1. Lemma 2.6 and (22) imply the Tor spectral
sequence (16) for���⋆(�ý)/�ý−1 takes the form
(33) ̄�2∗,⋆ ≅ (⨂�≥0 Γ��(���) ⊗ Λ��(�Ă�+1)) ⊗ �ý,� ⇒���⋆(�ý)/�ý−1.
This is a 昀椀rst quadrant spectral sequence; the horizontal direction is the “昀椀ltration”,
the vertical direction is the “degree”, and every term is graded by “weight.” Recall that
if � has 昀椀ltration ��, degree �� and weight ��, we write |�| = (��, ��; ��) so that the
di昀昀erentials take the form �ÿ ∶ ̄�ÿ�,Ă;� → ̄�ÿ�−ÿ,Ă+ÿ−1;�.
In (33), we set Ā̄� ≔ ��� and ̄ÿ�+1 ≔ �Ă�+1. The bar signi昀椀es that the generators are
mod-�ý−1 classes and should not be confused with the conjugate classes. For these
classes, we note the degrees

(1) | ̄ÿ�+1| = (1, 2ý�+1 − 2; ý�+1 − 1),
(2) |āý� Ā̄�| = (ý� , 2ý�+� − ý� ; ý�+� − ý�).
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Thus for � = ̄ÿ�+1 and � = āý� Ā̄� we have the congruence �� ≡ 0 mod ý − 1. Hence
if � ∈ ̄�2∗,⋆ in (33) has weight �� = −Ā + (ý − 1)ÿ, 0 ≤ Ā < ý − 1, then Ā equals�’s �-multiplicity. Another helpful bookkeeping device for our calculation is the Chow
degree of �, see [5, De昀椀nition 3.1] and [26, De昀椀nition 2.1.10] for related terminology,
de昀椀ned by �(�) = �� + 2�� − ��.
In particular, we have

(1) �( ̄ÿ�+1) = 1 + 2(ý�+1 − 1) − (2ý�+1 − 2) = 1
(2) �(āý� Ā̄�) = ý� + 2(ý�+� − ý�) − (2ý�+� − ý�) = 0.

Every homogeneous class � ∈ ̄�2∗,⋆ in (33) is a monomial in the generators ̄ÿ�+1 andāý� Ā̄�. The Chow degree �(�) records the number of ÿ�+1 classes in �, and the equality0 ≤ �(�) ≤ �� follows from the de昀椀nition.

Lemma 3.4. TheTor spectral sequence (33) for���⋆(�ý)/�ý−1 collapses at its�2 page.
Proof. For ÿ ≥ 2 and � ∈ �ÿ∗,⋆ we note the equality of weights �� = �Ă��. If � = �,
then �ÿ� = 0 since (33) is an �ý[�]-algebra spectral sequence. If � = ̄ÿ�+1 or � = āý� Ā̄�,
the congruence �Ă�� ≡ 0 mod ý − 1 shows the monomials in �ÿ� are not �-divisible.
Hence, �ÿ� = 0, and we are done, or �(�ÿ�) ≥ 0. It remains to note that �(�ÿ�) =�(�) − 2ÿ + 1 < 0. □

Lemma 3.5. There are no multiplicative extensions in the mod-�ý−1 Tor spectral se-
quence (33).

Proof. The Chow degree of � equals �(�) = 2�� + 2�� − (�� + ��). To 昀椀nd a hidden
extension for � = (āý� Ā̄�)ý = 0, we search among the �’s that satisfy

(1) �� + �� = �� + �� = 2ý�+�+1,
(2) �� = �� = ý(ý�+� − ý�),
(3) 0 < �� < �� = ý�+1.

This rules out the existence of multiplicative extensions, since for the Chow degree, we
have�(�) = 2�� + 2�� − (�� + ��) = 2�� + 2ý(ý�+� − ý�) − 2ý�+�+1 = 2(�� − ý�+1) < 0.
Likewise, a hidden extension for ̄ÿ2�+1 = 0 would be a class � with |�| = (1, 4(ý�+1 −1), 2ý�+1 −2); by inspection, no such class exists since all possible � of 昀椀ltration 1 have

weight ý� − 1, � ≥ 0. □

Theorem 3.6. There is an isomorphism of graded commutative �ý,�-algebras���⋆(�ý)/�ý−1 ≅ (⨂�≥0 Γ��(Ā̄�) ⊗ Λ��( ̄ÿ�+1)) ⊗ �ý,�.
The bidegrees of the generators are |Ā̄�| = (2ý�, ý� −1) and | ̄ÿ�+1| = (2ý�+1−1, ý�+1−1).
Remark 3.7. The reader may recognize the answer as ���⋆(�ý)/�ý−1 ≅ ÿ ⊗ �ý,�
where ÿ = ����rig⋆∗,⋆ (�ý, �ý) appeared in Section 2.5.
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3.3. Integral motivic Hochschild homology. We now turn to the integral case of
the Tor spectral sequence

(34) �ÿℎ,ā,� ⇒���ℎ+ā,�(��ý).
There is a natural comparison map þ∶ �ÿ⋆;∗ → ̄�ÿ⋆;∗ to the mod-�ý−1 Tor spectral

sequence analyzed in Section 3.2. Due to Theorem 3.6 we have the following nontrivial
mod-�ý−1 classes and their representatives in the bar complex:

(1) ̄ÿ�+1 ∈ ���⋆(�ý)/�ý−1 is the class of the permanent cycle[ ̄Ă�+1] ∈ ̄�11,2ý�+1−2;ý�+1−1,
(2) ā�Ā̄� ∈ ���⋆(�ý)/�ý−1 is the class of the permanent cycle[ ̄��| . . . | ̄��] ∈ ̄�1�,�(2ý�−1);�(ý�−1).

As before, to aid the bookkeeping, we also setÿ�+1 = [Ă�+1] ∈ �11,2ý�+1−2;ý�+1−1
and ā�Ā� = [��| . . . |��] ∈ �1�,�(2ý�−1);�(ý�−1),
even though the ā�Ā�s turn out to be permanent cycles for � < ý only.
As already noted, when ý is an odd prime �2 = �ý[�] ⊗⨂�≥0 Λ(ÿ�+1) ⊗ Γ(Ā�).

Lemma 3.8. Let ý be a prime.
(1) For 0 < ÿ < ý the étale localizationăÿét ∶ �ÿ → �ÿ[�−1]

is an injection.
(2) For 1 < ÿ < ý − 1, the di昀昀erentials �ÿ ∶ �ÿ → �ÿ are all zero.
(3) For all ý �ý−1ā�+ýĀ� ⋅= �ý−1ÿ�+1ā�Ā�

for �, � ≥ 0 and for odd ý, this generates the �ý−1-di昀昀erential multiplicatively.
Proof. Since the dual Steenrod algebra has no �-torsion, we have thată1ét is an injection,
and from the Tor-calculations we get that for odd primes ý also ă2́et is an injection.
Assume that for given 0 < ÿ < ý ăÿét is injective. For 1 < ÿ < ý−1, we have established
that the di昀昀erential on �ÿ[�−1] is trivial, and so the di昀昀erential on �ÿ is trivial too.
Hence ăÿ+1ét is injective, showing that (for odd primes ý) �2 = �3 = ⋯ = �ý−1.
Finally, since for all primes ý we now have ăý−1ét is an injection, the formula�ý−1ā�+ýĀ� ⋅= �ý−1ÿ�+1ā�Ā�

follows from the same formula in �ý−1[�−1]. □

The case for odd and even primes ý takes slightly di昀昀erent paths from here on. The
case ý = 2 is in many ways the simplest one but requires more care in that it turns
out to be neither practical nor necessary to muddle through with the integral spectral
sequence calculation: everything emanates from the torsion and �-inverted���s to-
gether with minimal information about the integral �1-page and an analysis of the
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Bockstein homology (called “a Bockstein type complex” in Section 2.5 since it also ap-
pears in the odd primary case in a slightly di昀昀erent guise) giving the answer—with all
multiplicative extensions—without more ado.

3.3.1. The even case. Let ý = 2. Since � is a non-zero divisor in �⋆, multiplication by� gives the short exact sequence0⟶ �1�,Ă;�+1 �−−→ �1�,Ă;� þ−−→ ̄�1�,Ă;� ⟶0.
We recall that the mod-� spectral sequence collapses at ̄�2 and has no multiplicative
extensions: ���⋆(�2)/� ≅ ̄�2. Moving on to the abutment, the �-Bockstein on���⋆(�2) is the composite
(35) ̄� ∶ ���∗+1,∗(�2)/� �−→ ���∗,∗+1(�2) þ−→ ���∗,∗+1(�2)/�.
Since (35) is a derivation, we only need to know its value on the generators. These are
obtained from the integral �1-di昀昀erentials analyzed in Remark 2.7 as follows. Sincēÿ�+1 is hit by the �1-boundary ÿ�+1 = [Ă�+1] ∈ �11,2�+2−2;2�+1−1 we get ̄� ̄ÿ�+1 = 0, and
since ā�+2Ā̄� is hit by ā�+2Ā� = [��| . . . |��] ∈ �1�,�(2�+1−1);�(2�−1) and �1ā�+2Ā� = �ÿ�+1ā�Ā�
we deduce Lemma 3.9.

Lemma 3.9. The nontrivial �-Bocksteins on���⋆(�2) are generated bȳ�ā�+2Ā̄� = ̄ÿ�+1ā�Ā̄�
for all �, � ≥ 0, i.e., (���⋆(�2)/�, ̄�) = (ÿ, �), where (ÿ, �) is the commutative di昀昀eren-
tial graded algebra of Section 2.5.

Combined with Corollary 2.15, and using that the �-free element Ā� ∈ ���⋆(�2)
maps to Ā̄� ∈ ���⋆(�2)/�, we deduce the following result.
Corollary 3.10. The Bockstein homology of���⋆(�2)/� is isomorphic to the graded
commutative �2-algebra⨁�≥0 Λ(Ā̄�).
Corollary 3.10 lets us conclude that the �-torsion classes in���⋆(�2) are not �-

divisible. The �-torsion in���⋆(�2) agrees with the image of �∶ ���⋆(�2)/� →���⋆(�2) and maps injectively via þ∶ ���⋆(�2) → ���⋆(�2)/�.
There is a naturally induced commutative diagram with exact rows0 // (�−torsion) //

þ≅
��

���⋆(�2) //

þ
��

�2[�, Ā0, Ā1, . . . ]/(Ā2� − �Ā�+1) // 0
0 // im ̄� // ⨂�≥0 Γ(Ā̄�) ⊗ Λ( ̄ÿ�+1).

More elegantly, using Corollary 2.15, we have a pullback diagram of commutative�2[�]-algebras ���⋆(�2) //

��

�2[�, Ā�]/Ā2� − �Ā�+1
���2[�, Ā̄�, �þ,�]/ℐ // �2[�, Ā̄�]/(Ā̄2� , �)
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with indexation � ∈ ℕ, (�, �) ∈ Ă (see De昀椀nition 2.8), andℐ = (�, Ā̄2� , �þ,� ⋅ �ÿ,� − ∑ā�+�≠ᵆ∈supp(�+�)−þ∪ÿ �ᵆ ⋅ �þ∪ÿ∪{ᵆ},�+�).
Here Ā� maps to Ā̄� and �þ,� maps to zero. When we 昀椀nish the odd case, we’ll see that
by replacing 2 with ý, we have the general formula.
3.3.2. The odd case. Let ý be an odd prime. The 昀椀rst task uses our knowledge of �ý−1
to calculate �ý. Consider the short exact sequence0⟶ �ý−1�,Ă;�+ý−1 ��−1−−−→ �ý−1�,Ă;� þ−−→ ̄�ý−1�,Ă;� ⟶0
and the injection ăý−1ét ∶ �ý−1�,Ă;� → �ý−1�,Ă;�[�−1].
De昀椀nition 3.11. For ý ≤ ÿ, let �(ÿ) be the conjunction of the propositions �(ÿ)1, �(ÿ)2,
and �(ÿ)3 de昀椀ned as follows:�(ÿ)1: �ÿ�,Ă;�+ý−1 ��−1−−−→ �ÿ�,Ă;� þ−−→ ̄�ÿ�,Ă;� is exact,�(ÿ)2: in �ÿ�,Ă;� we have ker ăÿét = ker �ý−1, and�(ÿ)3: for ý ≤ � < ÿ the �āℎ di昀昀erential �� is trivial (so that �ý = �ÿ).
To simplify notation, consider the �ý-algebra ÿ = ⨂�≥0 Γ��(Ā̄�) ⊗ Λ��( ̄ÿ�+1) (with

the above isomorphism ̄�ÿ ≅ ÿ[�]/�ý−1 for ÿ ≥ 2) and the derivation �∶ ÿ → ÿ
generated by �(ā�+ýĀ̄�) = ̄ÿ�+1ā�Ā̄�. Let þ� = im�, ý� = ker � and ÿ� = ý�/þ�.
Lemma 3.12. The proposition �(ý) is true. Hence, �ý is isomorphic to ý�[�]/�ý−1þ�[�]
and under this isomorphism �ý/ ker ăý́et is isomorphic toÿ�[�].
Furthermore, themap þ∶ �ý → ̄�ý ≅ ÿ[�]/�ý−1 factors over ý�[�]/�ý−1 ⊆ ÿ[�]/�ý−1

and the map ker{�ý−1 ∶ �ý → �ý} ⊆ �ý → ̄�ý ≅ ÿ[�]/�ý−1
is an injection factoring as an isomorphism ker{�ý−1 ∶ �ý → �ý} ≅ þ�[�]/�ý−1 followed
by the injection þ�[�]/�ý−1 ⊆ ÿ[�]/�ý−1. Summing up, the resulting diagram of commu-
tative �ý[�]-algebras �ý //

��

ÿ�[�]
��ý�[�]/�ý−1 // ÿ�[�]/�ý−1

is a pullback.

Proof. For odd ý, the 昀椀rst thing to notice is that�ý−1 is a free �ý[�ý−1]-module and that
the di昀昀erential factors �ý−1 = �ý−1 ̄�where ̄� (aka the Bockstein) is homogeneous with
respect to the �ý−1-grading on �ý−1 and ̄�2 = 0. Let � be the degree zero part of �ý−1
(so that �ý−1 = �[�ý−1] and� ⊆ �ý−1 → �ý−1/�ý−1 ≅ ̄�ý−1 = ̄�ý is an isomorphism).
If ý ̄� = ker{ ̄�∶ � → �}, then ker �ý−1 = ý ̄�[�ý−1], whereas if þ ̄� = im{ ̄�∶ � → �},
then im�ý−1 = �ý−1þ ̄�[�ý−1], and if ÿ ̄� = ý ̄�/þ ̄�, then (as an �ý[�ý−1]-module)�ý = ý ̄� ⊕ �ý−1ÿ ̄�[�ý−1],
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and þ∶ �ý → ̄�ý may be identi昀椀ed with the compositeý ̄� ⊕ �ý−1ÿ ̄�[�ý−1] → ý ̄� ⊆ �
of the projection to the degree zero part, followed by the inclusion. Henceker þ = �ý−1ÿ ̄�[�ý−1] = im{�ý−1 ∶ �ý → �ý},ker{�ý−1 ∶ �ý → �ý} = þ ̄� = ker ăý́et,
and �ý/ ker �ý−1 ≅ ÿ ̄�[�ý−1] ⊆ ÿ ̄�[�±(ý−1)] ≅ �ý[�−1].
Since �(ÿ)3 is vacuous in this case, we have proven �(ý).
The formulation with the pullback follows when writing the above out as �ý[�]-

algebras, so that ker �ý−1 = ý�[�] and im�ý−1 = �ý−1þ�[�] and remembering that̄�ý−1 ≅ ÿ[�]/�ý−1. □

Lemma 3.13. For all ÿ ≥ ý, the proposition �(ÿ) is true. Hence,
(1) �∞ = �ý.
(2) The algebra map from the �ý[�ý−1]-free part to the �ý−1-localizationăét ∶ [���⋆(�ý)] / ker �ý−1 →���⋆(�ý)[�−1] ≅ �ý[�±1, Ā�]�≥0/(Āý� − �ý−1Ā�+1)

is injective so that [���⋆(�ý)] / ker �ý−1 ≅ �ý[�, Ā�]�≥0/(Āý� − �ý−1Ā�+1).
(3) The algebra map induced by þ∶ ���(�ý) → ���(�ý)/�ý−1þ∶ [���⋆(�ý)] /im �ý−1 →���⋆(�ý)/�ý−1 ≅ (⨂�≥0 Γ��(Ā̄�) ⊗ Λ��( ̄ÿ�+1)) ⊗ �ý,�

is injective.
(4) The composite ker �ý−1 ⊆ ���⋆(�ý) → [���⋆(�ý)] /im �ý−1 is injective.

Proof. By Lemma 3.12 we have �(ý) so we only need to show that �(ÿ) implies �(ÿ+1)
for all ÿ ≥ ý. Note that if �(ÿ) and �(ÿ + 1)3 are true, then �(ÿ + 1) is true. Recall from
Lemma 3.1 and Lemma 3.4 that the ÿth di昀昀erentials in both the localized and reducedTor-spectral sequences are trivial.
Assume �(ÿ) and consider � ∈ �ÿ�,Ă;�. From the fact that �ÿ ∶ ̄�ÿ → ̄�ÿ is trivial so

that 0 = �ÿþ� = þ�ÿ� we get that there is a � ∈ �ÿ�−ÿ,Ă+ÿ−1;�+ý−1 so that �(ÿ)1 implies
that �ÿ� = �ý−1�. Since �ÿ ∶ �ÿ[�−1] → ̄�ÿ[�−1] is trivial we get that 0 = �ÿăÿét� =ăÿét�ÿ� = ăÿét�ý−1� = �ý−1ăÿét� so that 0 = ăÿét� and�(ÿ)2 implies that 0 = �ý−1� = �ÿ�.
The other points then follow directly, where in the last point we have used thatker �ý−1 = ker ăét gives that ker �ý−1 ) im�ý−1 = 0. □

Summing up in the language of Lemma 3.12, we have achieved a pullback of com-
mutative �ý[�]-algebras
(36) �∞ //

��

ÿ�[�]
��ý�[�]/�ý−1 // ÿ�[�]/�ý−1.

Moreover, the pullback survives to the abutment in the sense that the maps out of �∞
are the associated graded versions of maps induced from maps of commutative ring
spectra.
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We now set out to analyze ý� and ÿ�.
3.4. Multiplicative extensions. From Lemma 3.13 we deduced the pullback (36) of
commutative �ý[�]-algebras, which, given the information of Corollary 2.15, takes the
form �∞ //

��

�ý[�, Ā�]/Āý�
���ý[�, Ā̄�, �þ,�]/ℐ // �ý[�, Ā̄�]/(Ā̄ý� , �ý−1)

with indexation � ∈ ℕ, (�, �) ∈ Ă, andℐ = (�ý−1, Ā̄ý� , �þ,� ⋅ �ÿ,� − ∑ā�+�≠ᵆ∈supp(�+�)−þ∪ÿ �ᵆ ⋅ �þ∪ÿ∪{ᵆ},�+�).
Here Ā� maps to Ā̄� and �þ,� maps to zero. Moreover, the pullback survives to the abut-
ment in the sense that the maps out of �∞ are the associated graded versions of maps
induced from maps of commutative ring spectra.
In the abutment, we know that Āý� = �ý−1Ā�+1, but can there be further extensions?

Since Ā� maps to Ā̄�, such an extension must be witnessed when passing from the as-
sociated graded �ý[�, Ā̄�, �þ,�]/ℐ to���⋆(�ý)/�ý−1, but this we have seen in the mod�ý−1-calculation is not the case. In conclusion, we have shown the following result.
Theorem 3.14. There is an isomorphism of graded commutative �ý[�]-algebras���⋆(�ý) ≅ �ý[�, Ā�, �þ,�]�∈ℕ,(þ,�)∈ÿ/ℐ
where the indexing set Ă is given in De昀椀nition 2.8 and ℐ is the ideal generated by• Āý� − �ý−1Ā�+1,• �ý−1�þ,�, and• �þ,� ⋅ �ÿ,� − ∑ᵆ �ᵆ,þ,ÿ,�,� ⋅ �þ∪ÿ∪{ᵆ},�+� where the sum runs over all elementsĂ ∉ � ∪ � so that (� + �, � ∪ � ∪ {Ă}) ∈ Ă, and the coe昀케cient �ᵆ,þ,ÿ,�,� ∈ �ý is

given in De昀椀nition 2.12.
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