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DTC: A Dynamic Transaction Chopping
Technique for Geo-Replicated Storage Services

Ning Huang, Lihui Wu, Weigang Wu™', Member, IEEE, and Sajal K. Das "™, Fellow, IEEE

Abstract—Replicating data across geo-distributed datacenters is usually necessary for large scale cloud services to achieve high
locality, durability and availability. One of the major challenges in such geo-replicated data services lies in consistency maintenance,
which usually suffers from long latency due to costly coordination across datacenters. Among others, transaction chopping is an
effective and efficient approach to address this challenge. However, existing chopping is conducted statically during programming,
which is stubborn and complex for developers. In this article, we propose Dynamic Transaction Chopping (DTC), a novel technique that
does transaction chopping and determines piecewise execution in a dynamic and automatic way. DTC mainly consists of two parts: a
dynamic chopper to dynamically divide transactions into pieces according to the data partition scheme, and a conflict detection
algorithm to check the safety of the dynamic chopping. Compared with existing techniques, DTC has several advantages: transparency
to programmers, flexibility in conflict analysis, high degree of piecewise execution, and adaptability to data partition schemes. A
prototype of DTC is implemented to verify the correctness of DTC and evaluate its performance. The experiment results show that our
DTC technique can achieve much better performance than similar work.

Index Terms—Cloud service, cloud storage, data replication, transaction processing, datacenter
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1 INTRODUCTION Dynamo [9] provide only eventual consistency, while Eiger

ARGE-SCALE Internet applications, such as eBay and Gmail,
Lusually rely on storage services provisioned by geo-repli-
cated storage systems to support online transaction process-
ing (OLTP) services. Such geo-replicated storage services are
usually deployed across a number of datacenters located in
different places, and each datacenter consists of a large num-
ber of database servers in charge of handling data access
requests [1]. To achieve high availability, high locality and
high reliability, data tables in a database may be horizontally
partitioned into multiple shards [6], according to key ranges,
and each shard may be replicated at multiple datacenters.

Since the coordination among multiple datacenters is costly,
OLTP in geo-replicated systems usually suffers from long
latency. On the other hand, many Internet applications are sen-
sitive to latency due to the significant effect on user experience.
It has been shown that, a response time of more than 200ms
may significantly drive users away [23]. Therefore, how to
reduce latency of geo-replicated systems is a critical issue.

One popular way to achieve low latency is to sacrifice
consistency levels [3]. For example, Cassandra [12] and
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[15] assumes causal consistency.

However, weakening consistency level may not be accept-
able for consistency sensitive applications, like Amazon and
eBay, which essentially require strong consistency. Since trans-
action management, especially concurrency control, is quite
complex and costly, strong consistency in geo-replicated sys-
tems is really a challenging task.

Recently, quite a number of solutions have been proposed
to reduce the latency caused by transaction management
in geo-replicated storage systems. Among them, transaction
chain in Lynx is a very effective technique [29], which adopts
the approach of transaction chopping [24] to divide transac-
tion operations into smaller pieces according to data partition
scheme. Such piecewise executions can reduce latency signifi-
cantly, though the total execution time of a transaction is not
reduced.

Although transaction chopping is an effective approach
for geo-replicated storage services, existing solutions, like
transaction chain of Lynx, have several constraints. Firstly,
transactions are chopped by additional annotations during
programming, which increases the workload of programmers
and prevents its deployment for legacy application. Secondly,
Lynx adopts static and prior conflict analysis, which does not
reflect the runtime situation and reduce the possibility of
piecewise execution. Lastly, Lynx assumes static data parti-
tion scheme, which is not adaptive to storage changes.

To address these constraints and realize more general and
dynamic transaction chopping, we propose a novel transac-
tion chopping technique for geo-replicated storage systems,
called Dynamic Transaction Chopping (DTC). DTC consists
of two major parts: a dynamic chopper and a conflict analyzer.
The chopper is used to divide a transaction into smaller pieces
according to a dynamic data partition service. The analyzer is
used to check conflict relationship among transaction pieces,
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and try to solve these conflicts by merging some of these
pieces. Choppable transactions will be executed in piecewise,
and thus data access latency can be reduced.

The key issue of DTC lies in automatically checking of
chopping safety, i.e, whether consistency can be guaranteed
even if a transaction is returned after the first piece. In Lynx,
this checking is done by the programmer via annotations in
application source code. DTC, however, conducts such safety
checking dynamically in a runtime way. Since the view of run-
ning transactions changes from time to time, it is not trivial to
dynamically check the conflicts among transaction pieces and
determine chopping safety.

To conduct dynamic safety checking, we propose a new
conflict graph that represents the relationship among transac-
tion pieces, and design a novel algorithm to search possible
conflict cycle in the graphs. The search algorithm can also con-
duct transaction piece merging so as to reduce conflicts.
Besides, we also design associated mechanisms and modules
to realize dynamic chopping, dynamic conflict detection and
piecewise execution. To verify the feasibility and evaluate the
performance of DTC, we implement a prototype system and
carry out experimental study.

Compared with static transaction chopping based geo-rep-
lication systems like Lynx, DTC can achieve much higher
piecewise execution ratio and consequently reduce latency sig-
nificantly. Moreover, DTC releases programmers from manual
chopping and conflict detection, and it allows dynamic data
partition schemes, which makes transaction chopping much
easier to be applied.

The rest of the paper is organized as follows. Existing
works on geo-replicated storage systems are reviewed in Sec-
tion 2. We introduce Lynx, the transaction chain system based
on static transaction chopping, and discuss its problems in
Section 3. Section 4 presents the design of our proposed DTC
technique, including system architecture, detailed operations,
correctness proof. The dynamic conflict detection algorithm
and piece merging mechanism are described in Section 5, and
the dynamic partition service is described in Section 6. We
present an implementation of DTC together with performance
evaluation in Section 7. Finally, Section 8 concludes the paper
and discusses possible extensions.

2 RELATED WORK

Most of existing works on geo-replicated storage systems/
services attempt to improve system performance, e.g., low
latency, by sacrificing consistency levels, since a weaker con-
sistency level needs simpler concurrency controls and reduces
transaction management latency. Eventual consistency is
adopted in Cassandra [12] and Dynamo [9], which in fact does
not guarantee the time that an update should be conducted at
all replication nodes [3]. Per-record timeline consistency, as
provided by PNUTS [7], is slightly stronger than eventual con-
sistency. Causal consistency is between eventual consistency
and strong consistency and widely used in geo-replicated
environments [4], [15]. Post-execution based approaches have
been also studied. For example, snapshot isolation [5] detects
conflicts by exchanging write-sets before committing [14], [25].

On the other hand, strong consistency is definitely neces-
sary for many large scale distributed applications. How-
ever, traditional transaction management protocols for strong
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consistency, like Two-phase Locking (2PL), are no longer suit-
able for geo-replicated environments. Existing works on
strong consistency for geo-replicated systems adopt two dif-
ferent strategies: optimistic and conservative.

Optimistic solutions, like H-store [10], Percolator [21],
ROCOCO [18] and Janus [19], attempt to monitor conflicts
and verify the consistency among datacenters while execut-
ing transactions, rather than control the execution order.
TAPIR [28] allows inconsistent operations that do not affect
correctness among replicated systems. It requires that, oper-
ations at a majority of the replicas are successful, although
replicas may execute them in different orders. The approach
in TAPIR has been used in many transactional systems [11],
[171, [18], [19], [20], [22].

Homeostasis [22] allows datacenters to operate indepen-
dently without communication and the inconsistency between
datacenters is governed in addition. Helios [20] actively lets
datacenters exchange transaction logs so as to decide whether
a transaction between datacenters can commit or not.

Conservative solutions employ specific mechanism to con-
trol the order of operations so as to guarantee consistency
among datacenters. MDCC [11] orders transaction requests
via the Paxos agreement protocol before executing them. The
uniform order can guarantee consistency across datacenters.
Spanner [8], Google’s globally-distributed database, enables
2PL across datacenters by a global clock facility to enable
consistency. Replicated commit [16] optimizes the cross-site
communication in Spanner. Callas [27] proposes to divide
transactions into groups and ensure serializability inside each
group respectively. The isolation property across groups is
guaranteed by a special mechanism called nexus lock.

Calvin [26] is a conservative solution. It conducts pre-
execution analysis on read/write set and improves system
performance by scheduling transactions with unrelated
read /write sets on partitioned database system.

Lynx [29] is also a conservative solution. It adopts the tech-
nique of transaction chopping [24]. Lynx divides a transaction
into small pieces according to the data shards to access. More
precisely, each datacenter is assigned the transaction piece that
will access the data stored inside the datacenter. All the pieces
of one transaction compose a transaction chain. If no conflicts,
a transaction chain can return to the client after committing
its first piece, i.e, the transaction is executed in piecewise
way. Then, in the view of clients, latency can be significantly
reduced.

Conflict detection among transaction chains is at the core
of Lynx, and it is conducted by programmers by annotating
source code.

Similar to Lynx, our work is also based on transaction
chopping. However, Lynx relies on application programmers
to conduct conflict analysis and make annotations in source
code. We propose to conduct conflict checking in a dynamic
and automatic way. We also propose a piece merging mecha-
nism to solve the conflict among transaction chain to further
improve system performance.

3 TRANSACTION CHAIN AND ITS PROBLEMS

3.1 Geo-replicated Storage System

Large Internet applications and cloud services, such as Web e-

mail and social networking, usually rely on geo-distributed
8
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Fig. 1. Simple example of transaction chain.

Update Items[b.item-id] ]

if b.price is higher

datacenters to achieve high availability, locality and system
throughput, and each datacenter usually consists of different
types of servers, e.g, application servers and database servers.

In a distributed database system like BigTable [6], data
tables are usually horizontally partitioned into shards accord-
ing to key ranges, and each shard can be geo-replicated among
datacenters. We assume a primary based replication manage-
ment approach. One replica server is assigned to be the pri-
mary node and the others are secondary. The data access
requests are sent to the primary replica, which will forward
the requests to secondary replicas.

3.2 Transaction Chain in Lynx

Transaction chopping [24] is originally proposed to improve
system throughput for traditional database systems. It divides
a transaction into small pieces according to the data items
accessed so as to realize concurrency control in small granu-
larity. Transaction chain in Lynx [29] applies transaction
chopping into geo-replicated systems. With Lynx, a program-
mer chops transactions into pieces by adding annotations in
application, according to data partition scheme. More pre-
cisely, operations accessing shards at the same datacenter will
be grouped into one piece, and all the piece of one transaction
constitute a transaction chain. Each piece is executed as
one hop of its transaction chain. With transaction chain, a
transaction can be executed hop by hop. Fig. 1 shows example
data tables and a transaction chain of an auction system,
as used in [29].

Only the first piece is included in the concurrency control
protocols like 2PL. A chopped transaction can return to the
corresponding client immediately after the first hop com-
mits rather than the commitment of the whole transaction.
Therefore, the response time is significantly reduced.

Obviously, not all the transactions can be chopped
because two transactions may have overlapped data item
sets, i.e, there are conflicts between transaction chains.

In Lynx, programmers need to chop transactions into
pieces and check whether a transaction can be executed in
piecewise in the coding stage. The checking is done based
on the SC-graph [24] and the chopping theory below:

Definition 1 (S-edge). the edge that connects sibling pieces of
the same transaction. Obuviously, such an edge represents the
predecessor-successor relationship between neighboring hops in
a transaction chain.

Definition 2 (C-edge). the edge that connects two pieces from
different transactions and it reflects the conﬂicti;zg relationship
T
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between the two pieces. That is, the two pieces need to operate
at the same data shard and at least one operation is writing.

Definition 3 (SC-graph). an undirected graph that represents
the relationship among all transaction pieces in the system, via
S-edges and C-edges.

Definition 4 (SC-cycle). a cycle in SC-graph, which contains
both S-edges and C-edges.

Theorem 1 (Chopping theory). If there is no SC-cycle in the
SC-graph after transactions are chopped, we say that the chop-
ping is safe (or correct). Correspondingly, all the chopped trans-
actions in the SC-graph are called choppable.

A chopping is safe if a transaction return (reply) to the
client (e.g, the corresponding application server that issues
the request) after the first hop of the transaction is commit-
ted, i.e, this transaction can be executed hop by hop.
Accordingly, we say that this transaction is choppable. Oth-
erwise, we say that the transaction is unchoppable. An
unchoppable transaction needs to be executed in the tradi-
tional way, i.e, all the operations in the transaction need to
be included in the concurrency control protocol, e.g, 2PL.

3.3 Problems of Transaction Chain

Lynx relies on programmers to do conflict analysis and
determine whether a transaction can be executed in a piece-
wise way. Such a design has several shortcomings.

Firstly, it brings additional workload to programmers.
The application programmer need to master the SC-graph
analysis and also know well about the database partition
scheme, which are not trivial and easy for most pro-
grammers. This may prevent developers from adopting the
transaction chain technique.

Secondly, it is not flexible and too conservative. Lynx
assume conflict analysis is the programming stage. To guar-
antee safety, the SC-graph must include all possible transac-
tions that may be executed concurrently. However, in the
execution stage, instances of two conflicting transactions
may appear in totally different time slots, so their conflict
relationship will not affect consistency and can be executed
in piecewise way. If conflict analysis is conducted during
execution, only transactions with overlapping duration
need to be included in conflict analysis and the percentage
of piecewise execution will be increased.

Lastly, Lynx assumes a static and predefined data partition
scheme. Transaction hops are determined by data shards to
access, while the shards are determined by data table partition
scheme. In Lynx, the chopping of transactions is determined
by data partition scheme and conducted by programmers.
Therefore, the partition scheme should be known by applica-
tion developers. Such requirements on predefined data parti-
tion scheme will obviously constraint the deployment of
transaction chain, especially for large Internet applications,
which usually face fast changing users and environments.

The problems of Lynx motivated us to design a dynamic
transaction chopping and analysis technique.

4 DYNAMIC TRANSACTION CHOPPING

DTC realizes dynamic and transparent conflict detection for
dynamic transaction chopping and execution. It consists of a
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Fig. 2. Architecture of a Geo-replicated system with DTC.

dynamic chopper, dynamic conflict analyzer and associated
mechanisms for dynamic piecewise transaction execution.

In the following, we describe the details of DTC, correct-
ness proof, as well as advantages and limitations. Since the
dynamic conflict detection algorithm in the analyzer is quite
compley, it is described in the next section.

4.1 System Architecture and Overview

Same as in Lynx, DTC is also designed for a geo-replicated
storage system, which is deployed across several datacenter
in different locations. A partition scheme is used to divides
data tables into shards and replicate them at different data-
centers. Fig. 2 shows an illustration of the overall architec-
ture of such a system. Each datacenter contains various
server nodes, including application servers, data storage
nodes and database management servers. Transaction con-
currency control protocols and mechanisms are deployed at
database management servers, while data tables are physi-
cally stored in data storage nodes.

Application servers execute application software devel-
oped by application programmers. The operations in an
application may include different transactions of data access
and processing. During execution, the requests of data proc-
essing transactions are submitted to database management
servers to get access of data tables.

The modules of DTC are also deployed at data manage-
ment servers as shown in Fig. 2. For concurrency control
management, there is no special requirements, and tradi-
tional protocols, like 2PL, can be used.

DTC mainly contains two modules. The dynamic chop-
per is in charge of dividing transactions into smaller pieces,
according to the data partitioning scheme provided by the
partition service. The other major part is the Dynamic Con-
flict Analyzer (DCA for short), which is in charge of detect-
ing conflicts among transaction chains and check the safety
of piecewise execution. DTC works in an online manner
during application execution and allows dynamic data por-
tioning scheme.

The dynamic chopper chops the transaction into pieces
based on the partition scheme maintained by an indepen-
dent module, partition service. The chopping of transaction
is driven by the partition scheme of data so the partition ser-
vice is a supplemental part in our DTC technique. The

partition scheme is a customized data structure to store the
mapping relationship of data (shards) and the correspond-
ing storing positions (servers). Similar to [29], DTC requires
that the shards accessed at each hop are known before the
chain starts executing. This will limit the application of
transaction chain, i.e, DTC is not a universal technique for
all application scenarios of data process transactions. The
restrictions are discussed in Section 6.3.

DTC adopts an altogether different partition scheme,
compared with that in transaction chain of Lynx. Each hop
in Lynx consists of all data accessing operations in a data-
center and there may be several sequential hops from the
same transaction in a single datacenter. Since our new sys-
tem model introduces a smaller granularity of transaction
hops, the analysis becomes more flexible, and the whole sys-
tem can achieve higher concurrency among operations.

The procedure of piecewise execution is similar to that in
Lynx. There are a coordinator and hop executors for each
transaction. The coordinator invokes and monitors the exe-
cution status of transaction hops. For each hop, there is an
executor to really execute the operations of a transaction
piece.

4.2 DTC and Dynamic Piecewise Transaction
Execution

Here, we describe the procedure of piecewise transaction exe-

cution by DTC. Fig. 3 gives an illustration of such executions.

The data partition scheme, which defines how to parti-
tion data tables into shards, is provided by a particular par-
tition service module. Due to the increase of data volume or
change of storage nodes, the data partition scheme may
change accordingly, although such changes should not occur
frequently. The partition service module is in charge of main-
taining data partition scheme, and it is deployed as an inde-
pendent module, like the configuration service in [2].

By locality, the transaction request issued by a user should
be directed to the local datacenter, and then this datacenter is
assigned as the first hop of the corresponding transaction and
also the coordinator role of the transaction chain.

Inside a datacenter, transaction requests, directly from
local application servers or directed from remote applica-
tion servers, will be delivered to the dynamic chopper,
which will firstly chop the transactions into small pieces
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simply according to the partition scheme. Each piece con-
sists of the operations that need to access the data shards
stored at one datacenter.

Then, these transaction pieces are sent to DCA, and DCA
will construct SC-graph and check the conflicts among
transaction pieces, so as to determine whether the chopping
of the transaction is safe. Only if the chopping is safe, the
transaction can be executed in piecewise. Safety checking is
in fact done by the dynamic conflict detection (DCD) algo-
rithm. DCD is at the core of DCA and it dynamically checks
conflicts by searching the SC-graph. For ease of understand-
ing, the details of DCD are described in the next section.

After the conflict detection at DCA, choppable transactions
will be executed in the piecewise way. As aforementioned,
the first hop will be executed at the datacenter that chops the
transaction. The corresponding data management server will
really execute the transaction piece and also acts as the coordi-
nator of the transaction. After the coordinator executes and
commits the first hop, it can report the state information to
DTC, and consequently to the client (e.g, application server)
that generated the transaction request. The other hops will be
executed by the datacenters storing the corresponding data
shards, which are called hop executors.

The coordinator also needs to contact the corresponding
data management servers that will execute the other hops to
invoke their executions. The coordinator needs to monitor
the execution of all hops of a transaction. If any of them
fails, the coordinator needs to re-invoke it until the execu-
tion succeeds.

When the last hop of a transaction committed, the execu-
tion of a transaction is really completed. The coordinator
needs to inform the DCA module about the completion of a
transaction, so that DCA can update its view of transactions
being executed in the system.

During the piecewise execution, if some hop needs to
modify data rather than only reads them, the corresponding
server needs to spawn a sub-chain to update the derived
tables of replicas so as to keep the replication consistent.
Such a sub-chain is coordinated by the corresponding hop
server and executed like a common transaction chain. As
shown in Lynx, with the origin ordering mechanism, such
sub-chains will be correctly completed and returned to the
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hop server. This part of the procedure is almost the same as
that of Lynx and omitted here.

If the chopping done by the dynamic chopper is unsafe,
the transaction needs to be executed in the traditional way.
That is, all the operations need to be included in concur-
rency control protocol. The client can get response only after
the commitment of the whole transaction.

To improve the percentage of piecewise execution, we
propose to partially merge pieces chopped by dynamic
chopper rather than execute the transaction as a whole
piece. In such way, one hop of a transaction may contain
operations executed at more than one datacenter, but the
whole transaction is still divided into multiple hops. The
details of such a mechanism is presented in 5.2.3.

4.3 Correctness of DTC

The correctness of DTC is examined against the classical prop-
erties required by databases, i.e, ACID (Atomicity, Consis-
tency, Isolation and Durability). Here, we show that, ACID is
guaranteed with the piecewise execution provided by DTC.
Since our work focuses on transaction management crossing
datacenters, we do not consider physical machines and/or
system software failures.

Roughly each hop of a transaction is executed and com-
mitted as an integrated part. If there are sub-chains inside a
hop, the ACID properties of the hop is guaranteed trivially
by the hop coordinator mechanism.

Then, in the following, we consider only that, whether
ACID properties are guaranteed crossing hops of a transaction.

Atomicity and Durability. The properties of atomicity and
durability can be provided by recovery techniques. Popular
recovery techniques include checkpointing and logging. In
DTC, we let each hop to log its execution state in permanent
storage. If some hop does not execute successfully, the coordi-
nator in charge of the transaction will re-invoke the hop, as
described in Section 4.2. With such logging and re-invoking,
once the first hop is committed, each following hop will be
eventually completed and committed even if there are fail-
ures'. Atomicity holds. In geo-replicated environments, all
data are stored in stable storage of datacenters. Once a hop of
transaction is completed, the data updates and modifications
should have been stored by the datacenter. That is, in the view
of transaction hops, durability is naturally guaranteed.

Consistency and Isolation. In traditional transaction execu-
tion without chopping, concurrency control protocols like
2PL can guarantee the properties of consistency and isola-
tion because they can guarantee serializability, of concur-
rent transaction executions.

DTC also needs such concurrency control protocols to
manage the execution of the first hops of choppable transac-
tions and all operations of unchoppable transactions. Then,
let consider how chopping affects consistency and isolation.

As in Lynx, we check the safety of transaction pieces via
SC-graph. Static chopping based piecewise execution can
provide consistency and isolation as in Lynx. Our DTC

1. Of course, if the system crashes due to serious software or hard-
ware problems, the second or later hop may not be automatically com-
pleted by only re-invoke mechanism. Such extreme situations must be
handled by administrators so that the system can be recovered
correctly.
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extends the static chopping and static checking in Lynx to
dynamic chopping and dynamic checking during applica-
tion execution. The consistency is guaranteed by the correct-
ness of the DCD algorithm described in Section 5.

Please note that, to ensure correctness, we assume that
only independent transactions in DTC. In data storage sys-
tems, transaction can be classified into two categories. 1)
Independent transaction is composed of several, and all
these hops which know their input and involved server for
execution before the whole transaction begins. 2) Depen-
dent transaction may contain some hops with unknown
input or unknown execution node. DTC assumes indepen-
dent transaction only. Dependent transactions can be
supported by adopting some transform technique from
application level, e.g., rewriting the transaction with special
formula [19]. That is, all dependent transactions can be
transformed to be independent ones and DTC can be used
correctly.

4.4 Advantages and Overhead
As the first dynamic chopping and executing technique,
DTC has the following advantages:

a) DTC is transparent to applications. Since transac-
tion chopping and conflict checking are conducted
by DTC, applications can be developed as usual
and the programmers do not need to consider
how to do piecewise execution. This advantage
releases programmers from chopping annotations
and also makes DTC applicable to common
applications.

b) DTC is more accurate. Since conflict analysis is con-
ducted during transaction execution, only really
existing transactions are considered and the conflict
relationship is more accurate and flexible. The per-
centage of piecewise execution is increased.

c¢) DTC is more flexible. In Lynx, data partition scheme
is predefined during programming and the change
of partition scheme will result in failure of transac-
tion piecewise execution. The dynamic chopping of
DTC allows changing partition schemes, which will
largely facilitate the deployment of data storage
systems.

About the overhead of DTC compared with Lynx, we

have the following points.

a) Both DTC and Lynx detect conflicts via transaction
graph traversal, so they have the same order of space
and time complexity if only one run of conflict detec-
tion is considered. Using DFS against adjacent
matrix, the time complexity should be O(n®), where
n is the number of vertexes, i.e, transaction pieces in
the graph.

b) Since DTC conducts conflict detect in runtime, it
invokes more times of detections than Lynx. How-
ever, the graph of DTC should be much smaller than
that of Lynx since only running transactions are
included, which will save searching cost.

c¢) Considering the advantages of DTC, especially
allowing more piecewise executions, its overhead is
negligible, or at least acceptable.
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5 THE DYNAMIC CONFLICT DETECTION
ALGORITHM

The DCD algorithm designed to dynamically detect possi-
ble conflicts among transaction pieces that produced by the
dynamic chopper, so as to determine whether a transaction
is choppable. Such a detection and determination is con-
ducted according to the chopping theory [24], [29].

In static analysis, an SC-graph representing relationship
among transaction chains is firstly constructed. Then, an
algorithm is executed to detect whether there is an SC cycle
in the graph. If an SC cycle exists, there is conflict and the
transactions must be executed in traditional way. Other-
wise, piecewise execution is allowed.

In our work, we consider dynamic conflict analysis, i.e,
the analysis is conducted at the running time and the view
of transactions changes from time to time. The conflict
graph is generated according to the view of the transactions
being executed and being queued to be executed (see Sec-
tion 5.2.1 for the generation of conflict graph). Then, the SC-
cycle based conflict detection is not enough.

In DCD, we propose two new notions: CC-graph and
Simple-C-graph, which are constructed based on the SC-
graph. Based on the chopping results, DCD firstly con-
structs an SC-graph. Then, CC-graph is constructed based
on SC-graph, and Simple-C-graph is constructed based on
the CC-graph. DCD detects conflicts by searching cycles in
the CC-graph and Simple-C-graph.

In the following, we firstly introduce notions and defini-
tions related and then describe the DCD algorithm. Finally,
we prove the correctness of DCD.

5.1 Notions and Definitions

DCD is based on the chopping theory proposed in [24] and
transaction chain defined in [29]. We firstly present the
notions defined in [24] and [29], and then define new
notions.

All the following definitions of edges and graphs are pre-
sented against a given set of transactions and their corre-
sponding chopped pieces. The transactions are chopped
according to predefined criterion by the partition service in
Section 6.

Based on the definitions of SC-graph proposed in [24]
and [29] as presented in Section 3.2, we propose new ones
to realize dynamic conflict detection.

Definition 4-a (SC-cycle-A). an SC-cycle that contains two or
more C-edges connecting the same pair of transactions. This
means that, there are at least two pair of conflicting operations
between the same pair of transactions.

Definition 4-b (SC-cycle-B). an SC-cycle that is not of the
type of SC-cycle A. That is, between each pair of transactions,
there is at most one C-edge.

Definition 5 (CC-graph). a weighted and directed graph that
represents the relationship among transactions in the system,
with transactions as vertexes. The edges in a CC-graph, called
CC-edges, are defined as below.

Definition 6 (CC-edge). a directed and weighted edge connect-
ing two transactions (not transaction pieces), whose direction
and weight is determined as follows:
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1)  For a transaction T; in an SC-graph, if there is one or
more C-edges connecting another transaction T; we
draw a CC-edge e;; with the direction from T; to T;.

2) If T; contains only one piece connecting one or more
pieces of T; in the SC-graph, the weight of the CC-edge
e;j is set to be the id of that piece of T; (a number starts
from 1); otherwise the weight of e;; is set to be -1.

Based on the definition of CC-edge and CC-graph, we
can get two straightforward conclusions:

i)  CC-edges are pairwise. That is, if there is an edge e;;,
then there must exist the edge ej;, since the conflic-
tion among transactions is mutual.

ii) CC-edge pairs are not symmetric. That is, the weight
of e;; may not be equal to that of e;;.

Definition 7 (Simple/Negative connection). if the CC-
edges connecting two vertexes in a CC-graph are both with pos-
itive weight, we call that the two vertexes are simply connected
and they have a simple connection relationship. Correspond-
ingly, if two vertexes are connected with at least one negative
CC-edge, we call that the two vertexes are with a negative con-
nection relationship.

Definition 8 (Simple-C-graph). an undirected graph derived
from a CC-graph: each edge represents a simple connection rela-
tionship in the CC-graph.

Definition 9 (Complex-CC-cycle). a cycle in a CC-graph
that contains at least one vertex with differently weighted out-
going edges.

Fig. 4 shows examples of graphs and edges defined above.
Please note that, CC-graph is the transformation of the corre-
sponding SC-graph. Although there is no new information
generated compared to the original SC-graph, such transfor-
mation is necessary and valuable, because CC-graph facili-
tates our design of dynamic conflict detect algorithm.

More precisely, the underlying idea of these definitions is
to represent the conflict relationship as numerical values so
as to enable the conflict detection via algorithm. Here
“negative connection” and “complex-cc-cycle” correspond
to the two conflict scenarios to be detected and can be easily
handled by detecting algorithm as shown in Section 5.2. The
definitions of “SC-cycle-A” and “SC-cycle-B” are in fact
intermediate notions connecting the SC cycle and CC-graph.

Proposition 1. For an SC-graph and its derived CC-graph, if
there exists a cycle of SC-cycle-A, then there must exist a corre-
sponding negative connection relationship, and vice versa.

Proof. By the Definition 4-A and Definition 7, the proposi-
tion obviously holds. ]

Proposition 2. For an SC-graph and its derived CC-graph, if
there exists a cycle of SC-cycle-B, then there must exist a corre-
sponding Complex-CC-cycle, and vice versa.

Proof. By the Definition 4-B, Definition 7 and Definition 9,
the proposition obviously holds. ]

Theorem 2 (Extended chopping theory). After transactions
are chopped, if its CC-graph contains neither negative connec-
tions nor Complex-CC-cycles, we say that the chopping is safe
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(or correct). Correspondingly, all the chopped transactions in
the SC-graph are called choppable.

Proof. By Propositions 1 and Proposition 2, if the CC-graph
of chopped transactions contains neither negative connec-
tions nor Complex-CC-cycles, there must exist no SC-
cycle-A and no SC-cycle-B in the corresponding SC-graph.
Then, there is no SC-cycle in the SC-graph. By Theorem 1,
the chopping is safe (or correct). The theorem holds. 0

For simplicity of presentation, if a hopping is unsafe due
to the existence of negative connection relationship as described
in Proposition 1, we say that the corresponding transactions
are negatively unchoppable; if the chopping is unsafe due to
the existence of Complex-CC-cycle as described in Proposi-
tion 2, we say that the corresponding transactions are simply
unchoppable.

5.2 The Overall Framework

Algorithm 1 shows the overall framework of the DCD algo-
rithm and also the execution procedure of transactions. The
transactions are chopped by the dynamic chopper based on
the partition service (described in Section 6). Based on the
transaction pieces chopped, DCD firstly constructs the cor-
responding SC-graph, and then derives the CC-graph con-
taining all transactions being executed and to be executed.
The major operations are presented as the function update_-
graph() in Algorithm 1, and the details are described in Sec-
tion 5.2.1. (Please note that, DCD can be executed upon
transaction batches so as to reduce the cost of dynamic CC-
graph update and conflict detection. Of course the size of a
batch should be set upon the application requirements and
system configurations.)

Then, we need to detect conflicts and unchoppable trans-
actions. By Theorem 2, unchoppable transactions can be
found by detecting negative connections and complex-CC-
cycles, which correspond to negative unchoppable transac-
tions and simple unchoppable transactions.

Negatively unchoppable transactions can be detected dur-
ing the update of CC-graph, but the detection of simply
unchoppable transactions is much more complex. Detection
of simply unchoppable transactions is realized by searching
complex-CC-cycle and the major operations are listed as
the function detect _conflict() in Algorithm 2. The detailed
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operations of simple unchoppable transactions are described
in Section 5.2.2.

Algorithm 1. Overall Framework of DCD

Input: existing CC_graph, new transaction T;
1. Begin
2. invoke update_graph(T); //update the CC-graph;
3. invoke detect_conflict(-1, T, CC_graph); //Algorithm 2
4 invoke execute_txn(T);
5. return output from execute_txn();
6
7
8

. End

. function update_graph(T){//at DCA
9. foreach c-edge (T, T'}:
10. //hand h’ are the adjacent hop in T and T’
11. if CC_graph[T][T’] is assigned:

11. CC_graph[T][T'] =-1;

13. T.confilct_hop.append(CC_graph[TI[T’], p);
14. else:

15. CC_graph[T][T'] = h;

16. CC_graph[T’][T] = h’;

17.}

18.  function execute_txn(T){//at Coordinator
19.  merge all hops in T.confilct_hop;

20. output = sync_execute_piece(T first_piece);
21.  parallel for p;in T:

22. async_execute_piece(py);
23.  return output
24. }

After conflict detection, the execution of the new transac-
tion T (or the batch) will be invoked at the corresponding
coordinator (the function execute txn()), as described in
Section 4.2. In this phase, DCD attempts to solve the conflict
by merging transaction pieces, so as to transfer an unsafe
chopping to safe one while keep piecewise execution as
much as possible, as described in Section 5.2.3.

In the rest of this section, we present detailed operations
of our DCD algorithm. Since the correctness of DCD can be
easily proved base on Theorem 2, we omit the proof.

5.2.1 Constructing CC-graph and Detecting Negatively

Unchoppable Transactions

To detect unchoppable transaction, DCD constructs the SC-
graph, and construct CC-graph based the SC-graph CC-
graph. The CC-graph is stored by an adjacency matrix G,
with each element G[i][j] = CC_graphl[i]lj] representing the
weight of edge e; in CC-graph. As an example, the CC-
graph in Fig. 4b has the adjacency matrix in Fig. 4d.

The CC-graph is constructed in an incremental way.
Upon a new transaction or a new batch, new edges connect-
ing the new transactions are added (the function update_-
graph(T) in Algorithm 1). The negatively unchoppable
transactions are detected during the construction of the
edges of CC-graph, and the conflict relationship between
transaction pieces is recorded accordingly (Lines 11-13).

Please note that, the vertexes in the graphs in our design
are different from those in static chopping analysis in Lynx,
because each instance (corresponding to a request) of the
same transaction is denoted as a vertex.
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5.2.2 Detecting Simply Unchoppable Transactions

The operations to detect simply unchoppable transactions
are shown in Algorithm 2. Based on the CC-graph, DCD
derives the corresponding simple-C-graph by removing
negative connection edges, i.e, removing the negative val-
ues in the data structure of CC_graph. Then, DCD traverses
the simple-C-graph following the DFS paradigm to detect
possible cycles (Line 11, Line 15).

Algorithm 2. DFS of the DCD

Input pre: = the previously visited transaction
t: = the currently visited transaction

1. function detect_conflict(pre, T, CC_graph){
2 label T as visited;
3 T.in-piece = CC_graph[T][pre];
4. T.ts =T.low = timestamp;
5. timestamp +-+;
6
7
8

for each trans. T with CC_graph[T][T’] > 0:
T.out-piece = CC_graph[TI[T’];
if T is not visited:

9. detect_conflict (T, T", CC_graph);
10. T.low = min(T.low, T".low);
11. elseif T".ts < T.tsand T’ ! = pre then //a cycle
12. T.low = min(T.low, T’ .ts);
13. if T".out-piece ! = CC_graph[T’][T]:
14. T’.confilet _hop.append(T’.out-piece, CC_graph
[T'I[TD
15. if Tlow < T.ts and T.in-piece ! = T.out-piece:
16. T.confilct _hop.append(T.in-piece, T.out-piece);
17. }

The cycle in Simple-C-graph can be checked based on the
following well known conditions:

A vertex u in a graph is in a cycle if and only if low[u] < ts
[u] or u is incident with a back edge.

The ts[u] represents the timestamp that u is visited and
low[u] refers to the least timestamp u’s ancestors that u or its
descendants connects via a back edge in the DFS tree.

Based on the cycle detection, unchoppable transactions can
be determined. If a transaction provides one or more S-edges
for a cycle, DCD will analyze the weights of CC-edges corre-
sponding to the cycle edges in Simple-C-graph. Based on
the conditions in Proposition 2, DCD can finally determine
whether the involved transactions are choppable. The safety
checking procedure also records the conflict hops that provid-
ing S-edge for the subsequent execution (Line 14 and Line 16).

5.2.3 Piece Merging and Conflict Solving

After the detection of negatively and simply unchoppable
relation, the conflict hops that result in S-edges in an SC-
cycle are all recorded (Line 13 in Algorithm 1, Line 14 and
Line 16 in Algorithm 2).

To preserve the serializability of transaction executions,
the conflicts in SC-cycle should be eliminated. The straight-
forward way is to merge all the hops of a conflicting transac-
tion and execute it as a whole.

The execution of such a transaction should be executed
under distributed concurrency control and atomic commit
protocol, like 2PL + 2PC or other similar protocols. The con-
currency control can preserve the serializability of merged hop
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and original hop of other transaction. Of course, such concur-
rency control will introduce time and message cost. This is not
caused by our design. It is in fact necessary for all transaction
management systems.

However, not all the S-edges are involved in an SC-cycle,
as shown in Fig. 5. Then, a transaction can be partially
merged, and a conflicting transaction can still be executed
in pieces. More precisely, for an SC-cycle detected, the S-
edges directly constituting the SC-cycle should be merged,
but others should be kept.

We can find a simple example in Fig. 5. The chains of T;
and T’; constitute an SC-cycle. To solve conflicts, we claim
T11—T12 and T’y ;—T’1 2 should be merged. However, for T,
and T’,, the chopping of T1—T,, and T';1—T’,, can be
kept, and only T;,—T,3 and T’;,—T’, 5 need to be merged
to solve the conflicts of SC-cycle between T, and T',.

6 PARTITION SERVICE

The partition service is an independent module for determin-
ing and maintaining the partition scheme of transactions. Par-
tition service involves two key issues: partition strategy
design and partition scheme update. The restrictions of the
partition service are discussed in the end of this section.

6.1 Partition Strategy

The partition scheme is determined by its partition strategy, i.
e, the criterion used to calculate a new scheme. Partition strat-
egy should be defined by the upper layer applications or users
according to specific requirements. With the modular design,
different strategies can be easily installed to DTC.

1) Using existing data shard strategies in distributed stor-
age systems, e.g., user locality based strategy and hotspot
based strategy.

With the user locality based strategy, data tables are parti-
tioned according to the location of clients. That is, a data shard
should be placed at datacenters or data nodes near the clients.

Algorithm 3. Partition Scheme Synchronization

1. function init new_scheme (scm){

2. / /for leader datacenter

3. construct the new scheme scm;

4. scmstate = changing;

5. block new requests from clients;

6. send new(scm) to each other datacenter;

7. }

8.  function update_scheme(){

9. / /for each datacenter, including the leader
10. / /upon receiving new(scm)
11. if scmstate = changing: //in updating
12. block execution of new hops from sender;
13. if all other datacenters have been blocked and no

hops using old scheme runing;

15. scmstate = done;
16. resume execution of hops;
17.  else: //not in updating yet
18. scmstate = changing;
19. block execution of new hops from sender;
20. send new(scm) to each other datacenter;
21.  }
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With hotspot based strategy, data shards are determined
according to the data access frequency. Such a strategy is
popularly used in data replication management.

2) Using special designed strategy for DTC. It is more
interesting to design special transaction chopping aware
partition strategy. That is, how to partition data is deter-
mined by conflict relationship among corresponding trans-
action pieces. Pieces causing conflicts should be merged
and correspondingly the data shards should be merged.
Please note that, here we mean to change the chopping
strategy for future instances of a specific transaction, rather
than the one that has started or completed.

6.2 Partition Scheme Update

All the datacenters in a geo-replicated system should use
consistent partition scheme to ensure the transaction execu-
tion algorithms can work correctly.

The scheme can be constructed and maintained in two
modes, i.e., static or dynamic. In static partition service, the
partition scheme is predefined and will not be changed dur-
ing execution, or can only be manually changed.

On the other hand, a better way is to dynamically change
partition schemes in runtime, which is more flexible. How-
ever, how to synchronously update the partition scheme at
multiple datacenters is a challenging issue.

A straightforward method is that, globally blocking new
transaction requests at each datacenter, completing running
ones, and then replicating new scheme among datacenters.
Such a method is simple but obviously inefficient since the
storage service is suspended during update.

To realize efficient partition scheme update, we propose
a synchronization algorithm (i.e, Algorithm 3), which is
inspired by the concept of distributed snapshot.

We assume that a leader datacenter is assigned to moni-
tor the workload and generate new partition scheme. After
a new scheme is generated, the leader switches to
“changing” state: it will stop processing new transaction
requests from clients and send scheme update messages to
other datacenters (Line 4-Line 6).

Upon receiving an update message, the receiver datacen-
ter will enter “changing” state and propagate the message
to other datacenters. If it is already in “changing” state, it
just blocks new hop execution requests from the sender.
When update message has been received from each data-
center, the update can be terminated and transaction execu-
tion can be resumed using the new scheme.

Due to page limit, we do not include algorithm details,
such as election of leader, loss of message. we also omit the
proof of the correctness of Algorithm 3.
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6.3 Restrictions and Typical Usage

The partition service relies on the knowledge of data shards
to be accessed by transactions. Similar to [29], there are
some restrictions on the usage of piecewise execution.

First, a transaction must be chopped into a chain such
that (a) only its first hop contains a user-initiated abort, and
(b) the shards it accesses at each hop are known before the
chain starts executing. In other words, the transactions must
have known read and write sets. As suggested in [29], a gen-
eral transaction can be transformed into one with known
read/write sets by applying the ideas of [35].

Second, to achieve low latency, the programmers must
design the transactions so that, most of the time, the applica-
tion can proceed after the chains complete their first hop (or
first few hops). This is because, returning after the first hop
may result in the loss of external consistency and, if mis-
used, can generate user-perceived anomalies.

Due to the above restrictions, DTC is not a universal tech-
nique. It is suitable for large scale Web applications rather
than traditional enterprise systems. Such usage scenario has
been discussed in [29].

7 PERFORMANCE EVALUATION

To show the feasibility of our design and evaluate its perfor-
mance, we implement DTC and conduct experiments in a
testbed.

7.1 Experimental Setup
A virtualized cluster system using VMware is constructed
to deploy a prototype of DTC and run our experiments.

Each node has a virtualized single-core 3.1 GHz Intel Core
and 1 GB of RAM.

7.1.1  Implementation

DTC is implemented by extending the source code of Lynx
[29]. The software stack of the prototype is shown in Fig. 6.
Corresponding to the architecture in Fig. 2, the DTC module
implemented mainly consists of the DCD algorithm and the
dynamic chopper, and the server module is copied from
Lynx. The client module is responsible for generating trans-
action requests. We deploy the implemented system at a
cluster of VMs, and each VM simulates a datacenter.

There are two types of communications across different
VM nodes. The transaction invocation between DTC and
Server is realized via a customized RPC library [32] as in typi-
cal datacenter systems. We use ZeroMQ [34], a popular mes-
sage queue library, to direct transaction requests between
different DTCs for a local first hop and monitor the state of
transaction executions. To monitor the execution statement, a
notification message will be sent to the DTC module after the
last piece of a transaction is completed and committed. The
average execution time of a piece in a single node is set to be
less than 10ms, while the communication delay among differ-
ent nodes is set to be larger than 100 ms.

User data to be processed by transactions are stored in an
in-memory database, and the database integrally offers read-
write operations in rational tables and uses 2PL for concur-
rency control. The storage scheme is implemented according
to the description in Sections 3.1 and 4.1.
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Fig. 6. Modules of implementation.

Moreover, in the prototype system, a global and central-
ized partition service is implemented to maintain the consis-
tent partition scheme. For simplicity, the partition service
offers a static partition scheme determined by the SC-graph.

For comparison purpose, we use Lynx as the baseline since
our design is based Lynx. For fairness of comparison, we set
the same partition scheme for both Lynx and DTC. The differ-
ence is that, conflicts in Lynx are detected manually against
the SC-graph of all transactions of the application, while DTC
detects conflicts using our dynamic detection algorithm and
determines piecewise execution during running.

7.1.2 Applications

We evaluate the performance of DTC using several applica-
tions, including a social network service Retwis [30], a typi-
cal OLTP benchmark TPC-C [33], and two customized and
complex applications.

Retwis is an open-source clone of Twitter. It mainly pro-
vides functions for Put and Get operations on Redis [31]. Asin
[28], each function implemented as a transaction. The work-
load distribution among different transaction are shown in
Table 1.

The static relationship among the transactions in Retwis
is represented by the SC-graph in Fig. 5a. The transactions
are numbered according to the Table 1. Please note that, in
our experiments, Lynx chops transactions statically accord-
ing to the static SC-graphs in Fig. 5. For Retwis, two instan-
ces for each non-read-only transaction are included. There
are SC-cycles constituted by T; and T, i.e, the Follow/
Unfollow transaction and the Post Tweet transaction. There-
fore, static conflict analysis by Lynx will determine that
such transactions are unchoppable.

The application TPC-C [18] is a typical OLTP benchmark.
TPC-C consists of three highly-contending read-write trans-
actions and two read-only transactions. The SC-graph of
TPC-C are illustrated in Fig. 5b. The workload distribution
of TPC-C transactions is shown in Table 2.

Besides these two applications, we also consider two
complex scenarios as shown in Fig. 7. The corresponding
SC-graphs are randomly generated and quite complex.
These two customized applications can show the advantage
of DTC in complex and large applications.

Furthermore, we conduct additional evaluation about
partition service and improved DCD algorithm based on
these two customized applications.

7.1.3 Workload and Measurement

The transaction requests are handled in batch. To simulate dif-
ferent workload levels, we set different time intervals between
batches, varying from 100ms to 800ms. The batch interval
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TABLE 1
Transaction Workload in Retwis
No. Transaction Type Workload
0 Add User Read-write 5%
1 Follow /Unfollow Read-write 15%
2 Post Tweet Read-write 30%
3 Load Timeline Read-only 50%
TABLE 2
Transaction Workload in TPC-C
No. Transaction Type Workload
0 New Order Read-write 44.97%
1 Delivery Read-write 4.00%
2 Payment Read-write 43.00%
3 Order Status Read-only 4.03%
4 Stock Level Read-only 4.00%

determines the degree of concurrency since a larger interval
results in less concurrent transactions and vice versa.

The performance of all the applications are measured
using two metrics. The piecewise ratio is defined to be the
percentage of transactions (instances) that are executed in
piecewise over all the transactions (instances) that are exe-
cuted in the system. Piecewise ratio directly indicates the
effectiveness of chopping techniques.

The other metric is the average execution time of a batch.
This metric shows the benefit of chopping in the point of
the view of users.

For the implementation of DTC, we include two versions,
i.e, the original DTC without conflict solving mechanism
and the improved version with conflict solving mechanism.
For comparison purpose, we also tested the transaction
chain technique in Lynx system [29].

In the following, we present and discuss experiment
results according to the applications. In the figures plotting
results, the X axis represents the batch interval.

7.2 The Results of Retwis

The results of Retwis are shown in Fig. 8. Under different
workload levels (i.e, batch intervals), the piecewise ratio of
Lynx keeps to be about 55 percent, while the piecewise ratio of
DTC changes from 60 to 90 percent. Lynx detects conflicts
using the static SC-graph of all possible transactions, and
whether a transaction can be executed in piecewise is deter-
mined during programming and not affected by batch interval.
On the contrary, DTC detects conflicts in runtime and allows
larger percentage of piecewise executions under larger batch

(a) E-commerce

(b) Social network

Fig. 7. SC-graphs for two complex applications.
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Fig. 8. Performance of Retwis.

intervals (fewer conflicts may occur). Such difference shows
effectiveness of the dynamic conflict detection of DTC.

Moreover, the improved DTC can achieve a larger piece-
wise ratio than original DTC under different workload lev-
els, and the difference is about 5 percent, which is a quite
obvious improvement.

Fig. 8b shows the average execution time of one Retwis
batch. The execution time of a batch is definitely affected by
piecewise ratio. When the piecewise ratio is higher, more
transactions that can execute piecewise and the average exe-
cution time of batches will be lower accordingly. Since the
piecewise ratio of Lynx is not affected much by batch inter-
val, its execution time also keep stable.

7.3 The Results of TPC-C
The performance results of TPC-C are plotted in Fig. 9.
Roughly, the piecewise ratio of TPC-C is obviously lower
than that of Retwis. This is because the read-write transac-
tions, which may lead to SC-cycle, account as high as 92 per-
cent of the workload in TPC-C. Moreover, transactions in
TPC-C are larger than those in Retwis in terms of number of
operations, as shown in Fig. 6, so more conflicts may occur
and less percentage of piecewise executions are allowed.
Similar to that in Fig. 8, Lynx is almost not affected by
workload level, while DTC can achieve larger piecewise
ratio and lower execution time with the increase of batch
level. DTC, with or without the conflict solving mechanism,
can always achieve a higher piecewise ratio than Lynx.

7.4 The Results of Two Complex Applications

In this subsection, we simulate two more applications as
shown in Fig. 7. The two comPlex applications are from
C fro

m E Xplore. Restrictions apply.
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E-commerce and social networking scenarios and they

are much more complex than Retwis and TPC-C. This means that, dynamic conflict detection is especially
The evaluation results are shown in Figs. 10 and 11, for = gyitable for large and complex transactions.

piecewise ratio and the average execution time, respec-

tively. From the results, we can observe that, under each 7.5 The Results of Dynamic Partition Scheme

workload level, DTC can achieve higher piecewise ratioand  [n this part, we conduct experiments with dynamic partition

lower execution time. scheme described in Section 6 to evaluate its effectiveness
Comparing the results in Figs. 10 and 11 with those in

Figs. 9 and 8, we can find that, the advantage of DTC in 100%
complex transactions is larger than that in Retwis/TPC-C. Estatic ®dynamic
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Fig. 10. Performance of E-commerce. Fig. 12. Piecewise ratio.
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and efficiency, and compare it with static partition scheme.
More precisely, we initiate the partition using small shards
of data item level, and then dynamically update the parti-
tion by merging shards according to the piecewise ratio
obtained via historical log.

Therefore, we have two versions of DTC. The “static” refers
to the DTC version with static partition scheme while
“dynamic” refers to the DTC version with dynamic partition
scheme. We still use the two complex applications in Sec-
tion 7.4. The results are shown in Figs. 12 and 13.

The results show that, the implemented dynamic partition
service can further improve piecewise ratio and reduces exe-
cution time, although the dynamic partition strategy is simple.
This indicates that, partitioning data according to transaction
execution status is effective and should be considered in real
deployment.

8 CONCLUSION

In this paper, we propose DTC, a technique to achieve low
latency and strong consistency in geo-replicated storage
systems. The key novelty of our work lies in dynamic trans-
action chopping and runtime conflict analysis to realized
safe and efficient piecewise transaction execution. DTC
mainly consists of chopping mechanism to divides a trans-
action into pieces dynamically according to data partition
scheme, and a conflict detection algorithm for determining
the safety of piecewise execution. DTC is more effective and
efficient than existing transaction chopping based geo-repli-
cation techniques, because DTC needs not change applica-
tions and allows more piecewise executions.

Transaction chopping is an interesting approach for geo-
replicated datacenters and should be further explored.
Many possible extensions and improvements can be consid-
ered, including distributed conflict detection and analysis
mechanisms, better design of data partitioning and transac-
tion chopping, and so on.
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