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Abstract. Recently there have been notable advancements in encoder-
decoder models for parsing the visual appearance of mathematical for-
mulas. These approaches transform input formula images or handwritten
stroke sequences into output strings (e.g., B'TEX) representing recognized
symbols and their spatial arrangement on writing lines (i.e., a Symbol
Layout Tree (SLT)). These sequential encoder-decoder models produce
state-of-the-art results but suffer from a lack of interpretability: there
is no direct mapping between image regions or handwritten strokes and
detected symbols and relationships. In this paper, we present the Line-of-
sight with Graph Attention Parser (LGAP), a visual parsing model that
treats recognizing formula appearance as a graph search problem. LGAP
produces an output SLT from a Maximum Spanning Tree (MST) over
input primitives (e.g., connected components in images, or handwritten
strokes). LGAP improves the earlier QD-GGA MST-based parser by rep-
resenting punctuation relationships more consistently in ground truth,
using additional context from line-of-sight graph neighbors in visual fea-
tures, and pooling convolutional features using spatial pyramidal pooling
rather than single-region average pooling. These changes improve accu-
racy while preserving the interpretibility of MST-based visual parsing.

Keywords: math formula recognition - attention masks - spatial
pyramidal pooling - line-of-sight neighbors - graph search

1 Introduction

Mathematical notations are widely used in technical documents to represent
complex relationships and concepts concisely. However, most retrieval systems
only accept text queries, and cannot handle structures like mathematical for-
mulas. To aid in the development of search engines that can process queries
containing mathematical notation [3,8,22,25,42, 45|, recognition of mathemat-
ical expressions is needed for indexing formulas in documents, and to support
handwritten input of formulas in queries [21,23,28,50]. These documents include
both born-digital PDF documents (e.g., where symbols in a formula may be avail-
able, but not formula locations [5,29]), and scanned documents, for which OCR
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Fig. 1. Formula structure at the level of symbols (¢) and input strokes and connected
components (d) for a formula both online handwritten (a) and rendered using LaTeX
(b). Numeric identifiers for strokes (a) and their corresponding connected components
(b) are shown in blue. Note that the ‘i’ comprised of strokes/CCs {3,4} is shown in
one node in (c), but two nodes in (d). (Color figure online)

results for formulas can be unreliable. We focus here on the task of parsing the
visual structure of formulas from images and handwritten strokes after formu-
las have been detected/isolated, and parsing isolated formulas from connected
components in binary images in particular (see Fig. 1).

Parsing mathematical formulas belongs to a broader class of graphical struc-
ture recognition tasks that includes visual scene understanding, road type classi-
fication, molecular analysis, and others. The Line-of-Sight with Graph Attention
Parser (LGAP) presented in this paper is a refinement of the earlier Query-
Driven Global Graph Attention formula parser (QD-GGA [20]). Both systems
produce Symbol Layout Trees (SLTs [43], see Fig.1c) representing the hierar-
chical arrangement of symbols on writing lines, and the nesting of writing lines
around symbols (e.g., for superscripts and subscripts).

In recent years, there have been several approaches to math formula recogni-
tion, including pixel-based encoder-decoder methods that produce state-of-the-
art results, but are slow and lack interpretability; syntax-based methods that
use grammar-based rules, which are less robust and computationally expensive;
and graph search methods such as QD-GGA that are fast and interpretable, but
have so far been unable to match the accuracy of encoder-decoder models, in
part due to the limited use of context and attention.

In this paper, we describe the LGAP system, which improves the visual
features and use of context in QD-GGA. This is achieved by incorporating line-
of-sight (LOS) neighbors to capture additional local context [13,14], reducing
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the loss of spatial information through pyramidal pooling [11], and modifying
the representation of punctuation relationships to avoid requiring edges that are
missing in many LOS graphs. Our main research questions are:

1. Can recognition accuracy of the parser be increased by modifying the punc-
tuation representation in ground truth?

2. Will increasing use of context in image features by adding LOS graph neigh-
bors for primitives (nodes) and primitive pairs (edges) increase accuracy?

3. Will spatial pyramidal pooling of (SPP) convolutional features improve accu-
racy over the single window average pooling used in QD-GGA?

2 Related Work

For parsing of mathematical expressions, syntactic (grammar-based) approaches,
encoder-decoder approaches converting pixel or strokes to strings, and graph
search (tree-based) approaches are commonly used. Chan et al. [6], Zanibbi et
al. [43], Zhelezniakov et al. [49], and Sakshi et al. [27] have surveyed a wide range
of math recognition systems over the past few decades. The recognition of math
expressions dates back to 1967 when Anderson introduced a syntax-directed app-
roach for recognition of two-dimensional handwritten formulas including arith-
metic expressions and matrices, using a 2D top-down parsing algorithm employ-
ing an attribute grammar [4]. Many systems followed the syntactic approach
using a context-free grammar (CFG) of some form, including Stochastic CFGs
[2] and a parser to output the parse tree and a KTEX string [2,5,24,33]. However,
there are challenges with syntactic approaches, in that the formula symbols and
structures often need to be redefined [41] and it is difficult to design a univer-
sal grammar for all notation variants [48], making the syntactic approaches less
robust.

In this section, we discuss the contributions and limitations of encoder-
decoder models, graph-search based models, and models using graph attention
and context, and briefly describe the similarities and differences in our models.

Encoder-decoder models are deep neural network architectures in which
an encoder produces a feature embedding for input data in a lower-dimensional
space, while the decoder converts the embedded input representation back into
the original input, or into another representation. Generally, a Convolution Neu-
ral Network (CNN) is used for encoding pixel-level image features, and Recurrent
Neural Networks (RNNs) are used as decoders to produce a string representation
of a formula (e.g., in WTEX) with some form of attention mechanism. Encoder-
decoder models are used in other sequence prediction problems such as image
caption generation [39], speech recognition, and scene text recognition [40], and
have produced state-of-the-art results for these problems as well as math formula
recognition [32,36,46,47]. The end-to-end Track, Attend and Parse (TAP) sys-
tem [46] is a popular example. TAP obtained state-of-the-art results for many
years, mostly because of the intelligent use of ensemble models that combine
online and offline features, as well as different types of attention mechanisms.
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Wu at al. [36] aim to improve generalization and interpretability in sequence-
based encoder-decoder models by utilizing a tree-based decoder with attention,
removing the need for the spatial relationships to be in strict order. A few
other variations include a counting aware network [18] using symbol counting
as a global symbol-level position information to improve attention, and a stroke
constrained network [35] which use strokes as input primitives for their encoder-
decoder, to improve the alignment between strokes and symbols.

A limitation of encoder-decoder models is the interpretibility of their results.
Error diagnosis in these models is challenging due to the lack of a direct cor-
respondence between the input (image regions or strokes) and the symbols
and relationships produced in an output ETEX string or SLT: the exact cor-
respondence between input primitives (pixels, CCs, or strokes) and the output
is unknown. Hence, there is no way to identify errors at the input primitive level.
They also tend to be computationally expensive: the encoder-decoder parsers use
an RNN decoder with attention-based mechanisms, which requires sequential
processing and greater memory usage due to maintaining hidden states across
the entire input sequence.

Graph-Based Methods and MST-Based Parsing. Representing mathe-
matical formulas as trees is more natural than images or one-dimensional strings.
For example, IHTEX expresses formulas as a type of SLT with font annotations.
Mathematical expression recognition can alternatively be posed as filtering a
graph to produce a maximum score or minimum cost spanning tree (MST) rep-
resenting symbols and their associated spatial relationships. Eto et al. [10] were
the first to take this approach, creating a graph with symbol nodes containing
alternative labels, and candidate spatial relationships on edges with associated
costs. Formula structure was obtained from extracting a minimum spanning tree
amongst the relationship edges, along with minimizing a second measure of cost
for the global formula structure.

For graph-based parsing, an input graph defined by a complete graph con-
necting all primitives is natural. However, this leads to lots of computation, and
makes statistical learning tasks challenging due to input spaces with high vari-
ance in features: this motivates reducing variance through strategic pruning of
input graph edges. Line-of-sight (LOS) graphs select edges where strokes in a
handwritten formula or connected components in an image are mutually visible
[14,19]. Systems such as Hu et al. [13], LPGA [19], and QD-GGA [20] use this
LOS input graph constraint, and select the final interpretation as a directed Max-
imum Spanning Tree (MST). QD-GGA [20] extracts formula structure using an
MST over detected symbols, extending previous approaches [19,30] by adding a
multi-task learning (MTL) framework, and graph-based attention used to define
visible primitives in images used to generate visual features for classification.
QD-GGA uses Edmond’s arborescence algorithm [9] to obtain a directed Max-
imum Spanning Tree (MST) between detected symbols, maximizing the sum
of spatial relationship classification probabilities obtained from an end-to-end
CNN network with attention. Using directed MSTs allows many invalid inter-
pretations to be pruned, as the output graph is a rooted directed tree (as SLTs
are).
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Graph-based parsing is more natural for mathematical expressions. Unlike
encoder-decoder models, the mapping between the input and the output can be
obtained from labels assigned in the output to the nodes (strokes or connected
components) and edges provided in the input [44]. Error metrics at the symbol
and primitive levels for segmentation, symbol classification, and relation clas-
sification can be computed directly from the labeled output graphs. Also, like
encoder-decoder models, these techniques do not require expression grammars,
requiring only a vocabulary of symbol and relationship types. However, these
models, although fast with easier interpretability, have not been able to match
the accuracy of encoder-decoder models. Possible reasons may include a lack of
global context, attention, and spatial information in the current models.

The use of graph neural networks with attention has been seeing more use in
math parsing to capture context between primitives using graph edges directly.
For instance, Peng et al. [26] use a gated graph neural network (GGNN) in the
encoder stage as a message passing model to encode CNN features with visual
relationships in the LOS graph. Wu et al. [37] use GNN-GNN encoder-decoder
(modified Graph Attention Network [34] encoder, modified Graph Convolution
Network [16] decoder) to utilize graph context. Tang et al. [32] aims to learn
structural relationships by aggregating node and edge features using a Graph
Attention Network to produce SLTs by simultaneous node and edge classifi-
cation, instead of the sequence representation used for encoder-decoder models.
They produce the output SLT by filtering ‘Background’ nodes and ‘No-Relation’
edges. Note the contrast with the use of Edmonds’ algorithm in QD-GGA and
LGAP, where all primitives are assumed to belong to a valid symbol, and an
MST algorithm selects directed edges between symbols obtained after merging
primitives predicted to belong to the same symbol to produce an SLT.

This Paper. LGAP is an MST-based parser for math formulas. In LGAP, we
focus specially on improving QD-GGA features by intelligent use of context and
improved attention mechanisms. In our approach, we employ LOS not only to
construct the input graph, but also to incorporate LOS neighbors of primitives
as supplementary local context for visual features. Additionally, we adopt spatial
pyramidal pooling [11] rather than the isolated average pooling used in QD-GGA
to mitigate a loss of spatial information. Likewise, we deal with issues in the LOS
graph representation for punctuation. Punctuation was being represented by
special ‘PUNC’ edges between a symbol and its adjacent ‘. or ;" when present,
but often a symbol blocks the line-of-sight between the parent symbol at left
and a punctuation symbol at right.

3 Recognition Task: Punctuation Representation
and Metrics for Symbols, Relationships, and Formulas

In this paper we explore improvements in MST-based parsing, focusing on type-
set formulas for our initial investigation. Typeset formulas are more visually
consistent than handwritten formulas, with lower variance in visual features,
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and we chose to examine whether our modifications are effective in this simpler
setting first. We will consider handwritten formulas at a later time.

In this Section, we define our formula recognition task in terms of inputs (iso-
lated formula CCs), outputs (SLT's), and the evaluation metrics used to quantify
performance. In particular, we have modified our task by changing the repre-
sentation of spatial relationships for punctuation symbols: appearance-wise the
position of punctuation relative to its associated symbol at left is more similar to
a subscript than horizontal adjacency (e.g., A1 vs. AB). The use of LOS graphs
in LGAP poses some additional challenges, which we address below.

Dataset. We use InftyMCCDB-2!, a modified version of InftyCDB-2 [31]. The
dataset contains binary images for isolated formulas from scanned articles, with
formulas containing matrices and grids removed. The training set has 12,551 for-
mulas, and the test set contains 6830 formulas. The dataset includes 213 symbol
classes, which may be reduced to 207 by merging visually similar classes (e.g.,
ldots and cdots, minus and fractional line), and 9 relationship classes: Horizon-
tal, Rsub (right subscript), Rsup (right superscript), Lsub (left subscript), Lsup
(left superscript), Upper, Under, PUNC (for punctuation), and NoRelation (see
Figs. 1d and 2). The training and test sets have approximately the same distri-
bution of symbol classes and relation classes.

Evalation Metrics. We report expression recognition rates for (1) Structure:
unlabeled SLT's with correct nodes (CC groups for symbols) and edges (for rela-
tionships), and (2) labeled SLTs where symbol classes and relationship types
must also be correct. For a finer-grained analysis, we also report detection and
classification F-scores for symbols and relationships using the LgEval library
originally developed for the CROHME handwritten formula recognition com-
petitions [23]. F-scores are the harmonic mean of recall and precision for the
detection of target symbols and relationships (2RP/(R+P)). We report both:
(1) detection f-scores: quantify properly detected/segmented CC groups for sym-
bols, and the presence of an edge (relationship) between two properly segmented
symbols, and (2) detection + classification f-scores: here a symbol or relation-
ship is correct if has been detected correctly and assigned the correct symbol or
relationship label.

Modified Punctuation Relationship in Ground Truth SLTs. Mahdavi
et al. [19] added a new spatial relationship called PUNC in the InftyMCCDB-
2 dataset for distinguishing horizontal relationships with punctuation symbols
from other horizontal relationships to make their visual features more consistent
and thereby identifiable. However, this modification can lead to missing ground
truth punctuation edges in the input LOS graph, often when a symbol has a
subscript and is followed by a punctuation symbol on its writing line. This hap-
pens since there is good chance that the line of sight between the parent symbol
and the punctuation is blocked by one or more primitives between them, usually
a large subscript. For the example in Fig. 2, the ground truth edge between the
symbols ‘z” and ‘COMMA’ is blocked by the primitives corresponding to ‘i’. Here

! https://www.cs.rit.edu/~dprl/data/InftyMCCDB-2.zip.
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Fig. 2. Modified puncutation (PUNC) ground truth representation. The old PUNC
edge is shown using red dashed arrows, and its corresponding new edge is shown with
solid orange arrows. The original PUNC edge between nodes ‘z’ and ‘COMMA’ is
missing in the LOS graph, as can be seen in Fig. la and 1b (Color figure online).

the PUNC relationship will be missed, due to the missing edge in the input LOS
graph representation. Additional heuristics in LPGA [19] modify the LOS graph
to add missing punctuation based on angles and relative sizes of symbols, which
are not very robust.

To address this issue, we modified the assigned parent node for PUNC' edges
as shown in Fig. 2. Instead of the original parent, which may be far left on the
writing line and/or blocked in the LOS graph, we assign the PUNC parent node
to the symbol immediately at left of the punctuation symbol. This modification
ensures all PUNC edges are included in input LOS graphs. This also improves
training/learning, as relationships between PUNC parent and child nodes using
more consistent visual features (see Sect.5).

4 Line-of-Sight with Graph Attention Parser (LGAP)

In this section we describe the MST-based LGAP parsing model inputs and
outputs, its multi-task end-to-end CNN classification model, and finally the steps
to select symbols and extract an MST to output a symbol layout tree. LGAP
was implemented in PyTorch with Python NetworkX library for representing
graphs and running Edmonds’ algorithm to obtain MSTs/SLTs.?

4.1 Inputs and Outputs

Query and LOS Context Attention Masks. For formula images, we extract
CC contours by first smoothing them and then sampling contours to produce
trace points. For handwritten formula images, trace points are already available.
These trace points are interpolated, normalized, and scaled to a height of 64
pixels while preserving the aspect ratio: this results in formula images with a
fixed height but varying width. The full normalized formula image is fed into
a CNN encoder backbone to compute the global visual features, and points on
sampled contours are used to construct the LOS input graph (described below).

2 LGAP open source implementation: https://gitlab.com/dprl/qdgga-parser.
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Fig. 3. Binary attention masks in LGAP. The input primitive query mask (represented
here by the base of the letter ‘i’) and its corresponding LOS masks are used to generate
the attention masks by performing element-wise multiplication with the global feature
map. The two attention masks are concatenated to get the node feature vector that is
utilized for symbol classification. Note that the same process is applied to the primitive
pair binary masks and LOS mask to generate the primitive pair feature vector for
classifying directed edges.

Input regions are processed to produce binary attention masks created for
input queries corresponding to individual primitives (nodes) or primitive pairs
sharing an edge in the LOS graph. Binary masks for directed edges between prim-
itive pairs are concatenated with the binary mask for the parent primitive, to
increase identifiability and thus classification accuracy [20]. Query binary masks
filter the CNN global feature map, providing focus on image regions pertinent
for three classification tasks: (1) masking individual CC/strokes for symbol clas-
sification (for nodes), and masking CC/stroke pairs for (2) segmentation and (3)
spatial relationship classification (for directed edges).

In LGAP, we introduce an additional binary LOS mask, which consists of a
binary sum (OR) of the query mask with the binary mask of all neighboring
primitives in the LOS graph (see Fig.3). These additional LOS binary masks
serves to provide visual spatial context information from the neighbors in the
LOS graph. As for primitive and primitive pair binary masks, LOS masks are
downsampled and weight the global feature map produced by the encoder in
order to focus on the relevant parts of the input image for the three classification
tasks (symbols, segments, relationships).

Primitive LOS Graph. Our parser uses as input either a set of online hand-
written strokes, or a set of connected components (CCs) from a typeset formula
image (see Fig. 1la, 1b). A handwritten stroke is represented by a list of 2D (x,y)
coordinates obtained from sampled positions of a pen, trackpad, or other touch
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device. When parsing online handwritten formulas, our input is a graph over
strokes images: strokes are individually rendered using their stroke coordinates.
To parse typeset formulas, we construct a graph over connected components.
For both handwritten and typeset formulas, we assume that primitives (stroke
images or CCs) belong to exactly one symbol.

Initially, the input is a complete graph with an edge between every pair of
primitives (CCs or strokes). As seen in Fig. 4, we then select edges in the Line
of Sight (LOS) graph [7] as suggested by Hu et al. [14]. In the LOS graph, edges
exist only for primitive pairs where an unobstructed line can be drawn from
the center of one primitive to a point on the convex hull of the contour for the
other [19]. This reduces the space of output graphs and number of classifications
needed, with few deletions of pertinent edges [14]. In Fig. 4, all edges between
the ‘2" and other CCs other than the fraction line are pruned.

Output: Symbol Layout Tree. Formula appearance is commonly represented
as a tree of symbols on writing lines known as a Symbol Layout Tree (SLT,
see Fig. 1c [43]). SLTs have popular encodings such as BTEX and Presentation
MathML that include additional formatting information such as fonts, font styles
(e.g., italic), and spacing. Because they describe spatial arrangements of com-
plete symbols, SLTs are identical for formulas in handwritten strokes and typeset
images. However, the number and arrangement of strokes or CCs may differ for
a single formula. For the example in Fig. 1, the primitive label graphs for the
image and handwritten version are identical so that CCs and strokes have an
exact correspondence. This is not always the case, for example when an ‘x’ drawn
with two handwritten strokes appears as a single CC in a typeset image.

In LGAP we produce an SLT over symbols from our directed LOS input
graph over strokes or CCs. Figure 4 shows how a complete graph over primitives
is constrained and annotated with classification probabilities in stages, producing
an SLT as output. [44]. An example of a labeled LOS graph representing an SLT
is shown in Fig.1d for both handwritten strokes and image CCs. There are
bidirectional edges between strokes or CCs belonging to the same symbol, with
the edge label matching the symbol class. Spatial relationships are represented
by directed labeled with their spatial relationship type. Relation types include
Horizontal, Rsub (right subscript), Rsup (right superscript), Upper, Under, and
PUNC (for punctuation).

4.2 Multi-task CNN for Classifying Primitives and Primitive Pairs

Image features for primitives and edges in the LOS graph are passed through a
CNN architecture to obtain class probability distributions for three tasks: symbol
detection (segmentation), symbol classification, and spatial relationship classi-
fication. LGAP’s CNN architecture is based on QD-GGA [20], an end-to-end
trainable multi-task learning model. CNN features are used to estimate proba-
bility distributions for each task. These distributions are stored in the cells of
three adjacency matrices defined over the input LOS graph. Symbol classifica-
tion probabilities for primitives are represented along the LOS adjacency matrix
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Fig. 4. LGAP formula parsing example. A complete graph over input primitives (here,
CCs) is pruned, sub-images corresponding to CCs and CC LOS edges are given symbol,
merge/split, and spatial relationship class distributions. Based on merge/split proba-
bilities primitives are merged into symbols (here, for the ‘1’), and finally an SLT is
produced from remaining spatial relationship edge by extracting a directed MST
(arrows omitted for legibility). Symbol and relationship class probabilities are aver-
aged when merging primitives into symbols.

diagonal, and merge/split and spatial relationship probabilities are represented
for directed LOS edges in off-diagonal entries, as seen at top-right in Fig. 4.

The CNN contains an SE-ResNext backbone [12,38] used to compute a global
feature map from the input formula image along with attention modules to pro-
duce attention relevance maps from the binary masks described in the previous
Section. The SE-ResNext backbone and the attention modules are trained con-
currently using a combined cross entropy loss function for all three classification
tasks. Attention modules are used to produce 2D relevance maps from the 2D
binary masks for nodes, edges and LOS neighbors separately by convolving them
through 3 convolutional blocks, trained for each task, where each block has 3
kernels of size 7 x 7,5 x 5, and 5 x 5 [20].

Modification: For this work, we modified the QD-GGA SE-ResNext encoder by
reducing the number of output channels from 512 to 256, to reduce the number
of parameters requiring training. This results in a 256-dimensional feature vector
for symbol classification, and two 512-dimensional feature vectors for segmenta-
tion and relation classification, respectively.

Spatial Pyramidal Pooling and 1-D Context Module. Average pooling
uses a single average activation value to represent the convolutional response
in a region [1]. Without the use of windowing within an input image, a large
amount of important spatial information is lost during average pooling. Jose et
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al. [15] use a pyramidal pooling method, which integrates spatial information
into the feature vectors, producing more compact and location invariant feature
vectors. He et al. [11] introduced the spatial pyramid pooling (SPP) strategy
for deep CNNs by adopting the widely used spatial pyramid matching (SPM)
strategy [17]. SPP captures spatial information by pooling features within equal-
sized regions of the feature map for increasing numbers of sub-regions, forming
a pyramid of overlapping sub-regions (e.g., whole image, left-right, top-down, 3
horizontal regions, etc.).

In LGAP and QD-GGA, weighted feature maps are pooled to produce fea-
ture vectors. A ‘1D context’ module then performs a 1-by-3 convolution along
the sequence of query feature vectors used as classification input [20]. The convo-
lution aggregates features from the previous (i — 1) and next (i +1)** query in
input order for the i** query. In the input, queries are spatially sorted top-down,
left-right by the top-left coordinate of a query’s bounding box. Feature vectors
are passed to one of three fully-connected output layers for three classification
tasks: segmentation and relationships (edges), and symbol classification (nodes).

Modification: For LGAP, Spatial Pyramidal Pooling is used to capture spatial
information across multiple horizontal and vertical regions, providing more spa-
tial information and lower variance in features. We use 5 levels with 11 regions
in pooling outputs: this includes 1 full feature map, 2 vertical bins, 3 vertical
bins, 2 horizontal bins, and 3 horizontal bins. To reduce the growth in parame-
ters due to increasing pooling regions from 1 to 11, we also reduce the number
of output channels in the SE-ResNext encoder from 512 to 64 (a factor of 8).
The resulting node and edge feature vectors have lengths of 704 (i.e., 64 x 11)
and 1408 (i.e., 128 x 11), respectively. With the new LOS attention masks, the
feature lengths are 1408 (i.e., 704 x 2) and 2816 (i.e., 1408 x 2) respectively. The
edge features have an additional factor of 2 due to the concatenation of parent
primitive attention masks, as mentioned earlier. We also examine removing the
1-by-3 convolutional context module, since its notion of neighbor is not based
directly on spatial proximity as discussed earlier (see Sect.5).

Multi-task Cross Entropy Loss Function and Training. We use the same
cross entropy loss (CE) with a softmax activation used in QD-GGA [20], which
combines the segmentation, symbol classification and relation classification losses
as shown in Eq.1. In the equation, & denotes the total loss, N is the set of
primitive nodes (strokes or CCs), E is the set of LOS edges in the input graph,
D is the set of segmentation ground truth edge labels, R is the set of relationship
ground truth edge labels, and S is the set of primitive ground truth symbol labels.

|E| IN|
§(N,E) = (CE(e,D)+ CE(e,R)) + Y _CE(n,5) (1)

For backpropagation, LGAP uses an Adam optimizer with learning rate 0.0005
and momentum 0.9, with a weight decay (L2 norm) of 0.1 for regularization.
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Table 1. Effect of modifying PUNC' relationship representation for InftyMCCDB-2.
F1 and expression rate metrics are defined in Sect. 3

Symbol (F1) Relation (F1) Expression Rate

Detect | +Class | Detect | +Class | Structure | 4Class
Original relationships | 98.23 | 95.21 94.63 94.28 89.21 81.77
Modified PUNC 98.22 95.23 | 94.93 94.56 | 90.45 83.00

4.3 Parsing: Transforming LOS Graphs into SLTs

After LOS nodes and edges have class distributions assigned to them using the
multi-task CNN model, we select all LOS segmentation edges with a higher prob-
ability for ‘merge’ than ‘split,” and then merge all connected components over
primitives in the resulting segmentation graph into symbols. For the example in
Fig. 4, primitives corresponding to the symbol ‘i’ are merged into a single symbol
node, along with their corresponding relationship edges.

For merged primitives, we average the symbol and merged edge relationship
class probability distributions. We then apply Edmond’s arborescence algorithm
[9] to obtain a directed Maximum Spanning Tree, which forms the Symbol Layout
Tree (SLT). The MST maximizes the sum of relationship probabilities in selected
directed edges, where the maximum probability relationship is used for each
edge. However, this selection may result in duplicate edges of same relationship
type between one parent symbol and two or more child symbols. To address
this we apply an additional constraint, where a parent symbol may not have
more than one edge of each spatial relationship type associated with it (e.g., to
prevent having two horizontal relationships from one symbol to two symbols at
right). We replace edges that duplicate a relationship by removing the lower-
probability edge, and replacing the lower probability edge’s label with its next-
highest relationship class probability, and then rebuild the MST, repeating until
this unique relationship constraint is satisfied.

5 Experiments

In this Section we report some experiments testing the effects of our modifica-
tions to the representation of punctuation relationships in ground truth, and
changes in the CNN model and visual feature representation. Experiments were
run on two servers and two desktop machines, all with hard drives (HDD):

1. 2 x GTX 1080 Ti GPUs (12 GB), 8-core i7-9700KF (3.6 GHz), 32 GB RAM

2. 2 x GTX 1080 Ti GPUs (12 GB), 12-core i7-8700K (3.7 GHz), 32 GB RAM

3. 4x RTX 2080 Ti (12 GB), 32-core Xeon E5-2667 v4 (3.2 GHz), 512 GB RAM
4. A40 (48 GB), 64-core Xeon Gold 6326 (2.9 GHz), 256 GB RAM

5.1 Effect of Modifying PUNC Relationship in Ground Truth

We saw a 1.23% improvement in formula recognition rate (Structure + Classifica-
tion) as seen in Table 1 after applying the modification to ground truth described
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Table 2. Effect of LGAP Spatial Pyramidal Pooling (SPP) and 1D context module.
Feature vector sizes given as (node-size, edge-size). Modified PUNC representation used

Feature Vectors Symbol (F1) Relation (F1) | Expression Rate
PooL SIZES 1D-coNTEXT | Detect | +Class | Detect | +Class | Structure | +Class
Avg 64,128 | True 96.99 |90.24 91.18 |90.62 85.58 66.41
SPP-Avg | 704,1408 | True 98.30 | 95.25 | 94.50 | 94.09 | 88.64 80.78
Avg 64,128 | False 89.84 | 34.68 67.68 | 65.23 64.32 17.57
SPP-Avg | 704,1408 | False 95.64 | 87.55 86.16 | 84.49 77.76 68.80

Table 3. Effect of Adding LOS Neighborhood Masks to LGAP SPP-Avg Model. Orig-
inal ground truth used (without PUNC modification)

Feature Vectors Symbol (F1) Relation (F1) | Expression Rate
LOS | Sizes 1D-CONTEXT | Detect | +Class | Detect | +Class | Structure | +Class
False | 704,1408 | True 97.96 | 94.48 94.36 | 93.89 88.70 78.90
True | 1408,2816 | True 98.32 | 95.66 | 94.85 | 94.35 89.27 83.27
False | 256,512 True 98.23 | 95.21 94.63 | 94.28 89.21 81.77
True | 512,1024 | True 98.39 | 95.49 94.85 | 94.46 | 89.36 81.89
False | 256,512 False 95.16 | 83.78 86.48 | 85.22 79.72 65.26
True | 512,1024 | False 95.40 | 85.97 86.27 | 85.07 80.23 70.09

in Sect. 3. Outputs were produced using a reduced encoder architecture with 256
channels and a context module as described in Sect. 4.2. Observing errors for the
two conditions using the confHist tool in LgEval showed the new representation
correctly identified more punctuation relationships that were previously missing
or incorrectly labeled.

5.2 Improving Visual Features: SPP and Increased LOS Context

We next check whether our proposed changes in visual features described in
Sect. 4 improve accuracy.

Spatial Pyramidal Pooling. Table 2 shows that when the 1D context module
is used, the formula recognition rate improves 14.37% after replacing average
pooling by spatial pyramidal pooling (first two rows in Table 2). This difference
in expression rate increases dramatically to 51.23% when the context module is
removed (last two rows in Table 2). These results suggest that spatial pyramidal
pooling greatly improves visual features, allowing us to obtain recognition rates
close to the QD-GGA model with 256 encoder channels using only 64 encoder
channels. However, removing the 1-D context module reduces the expression rate
using the new SPP features by 13.17%, and the original single-region average
pooling features reduces dramatically (48.83%). This demonstrates that the new
SPP features are beneficial, and the importance of context.

Adding LOS Context through Neighborhood Embeddings. Next we evalu-
ate the impact of including additional LOS neighbors in selecting image regions
for queries in the attention modules, as outlined in Sect.4.1. We hypothesized
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Table 4. Benchmarking MST-based Parsing Models on InftyMCCDB-2

MST Model Symbols Relationships Formulas

Detect. | +Class | Detect. | +Class | Structure | 4+Class
LGAP (this paper) | 98.32 95.66 | 94.85 94.35 | 89.27 83.27
QD-GGA 98.50 94.54 | 94.43 93.96 | 87.77 76.72
LPGARFr 99.34 98.51 97.83 97.56 93.81 90.06
LPGAcNN 99.35 |98.95 |97.97 |97.74 | 93.37 90.89

that incorporating the context from LOS neighbors would reduce ambiguity for
visually similar symbols/relationships. Experiments were performed using both
the 64-channel encoder output with spatial pyramidal pooling (using 11 bins,
resulting a feature vector of lengths 1408 and 2816 (when LOS context is used),
as well as the original 256-channel output with average pooling and the orig-
inal representation. We also investigated the effect of using LOS masks when
the context module was removed. The results in Table 3 show improvements in
recognition rates at the symbol, relation, and formula levels when LOS neighbor-
hood masks are used. Further, the expression rate accuracy is increased 2.49%
over the best SPP model in Table 2.

Error Analysis. An error analysis using the confHist tool in LgEval on our
best performing model (LOS context, spatial pyramidal pooling, and 1D context;
second row in Table 3) reveals the majority of symbol classification errors occur
between visually similar symbols, such as (i, 7), (m,n), (l,1), (a,a), and (Left-
Paranthesis, Vertical), in decreasing order of frequency. This highlights needed
improvements in local visual features for symbols. For relationships, the most
frequent errors are missing relationship edges in wide formulas containing a large
number of symbols. This type of error can be attributed to the preprocessing step
used for inputs: with the height of all formulas fixed at 64 pixels and the aspect
ratio preserved, image resolution is noticeably reduced for wide formulas. This
leads to features extracted from low-resolution input images being used to locate
spatial relationships between connected components for very wide formulas.
We also note that expression rates are influenced by small changes in sym-
bol and relationship recognition accuracy, which may amplify expression rates
differences between conditions. For example, if a formula has just one symbol or
relationship wrong, it is not counted as correct in the expression rate.

5.3 Benchmarking MST-Based Parsers

As seen in the previous experiments, the LGAP model that obtained the highest
expression rate used a combination of Spatial Pyramidal Pooling, line-of-sight
attention masks, and a modified punctuation representation in ground truth.
We next benchmark this best LGAP model against previous MST-based visual
parsers applied to Infty MCCDB-2. Results are presented in Table 4. Performance
for LGAP relative to the QD-GGA model it extends is better in every met-
ric, aside from a very small decrease in symbol detection F1 (—0.18%). The
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expression rate has increased 6.55% over QD-GGA. Unfortunately, performance
is weaker than the LPGA models, with an expression rate that is 7.62% lower.

Despite LGAP’s slightly weaker performance than LPGA [19], the LGAP
offers substantial benefits in speed and efficiency. The encoder and attention
modules are trained end-to-end on a joint loss for multiple tasks in a single
feed-forward pass, making the training and execution process much faster than
LPGA. Running on a desktop system with two GTX 1080 Ti GPUs (12 GB), an
8-core 17-9700KF processor (3.6 GHz) and 32 GB RAM, LGAP requires 25 min
per epoch to train on 12,551 training images and 11min, 12s to process the
6,830 test formula images (98.4ms per formula).

Opportunities for further improvements include improving context usage
through graph neural networks, as well as more sophisticated graph-based atten-
tion models to replace the current 1D context module from QD-GGA.

6 Conclusion

We have introduced the Line-of-sight with Graph Attention Parser (LGAP) that
enhances the visual feature representations employed in the MST-based QD-
GGA parser through thoughtful use of Line-of-sight neighborhoods and spatial
pyramidal pooling, and modified the ground truth representation of spatial rela-
tionship edges connecting punctuation with parent symbols in Symbol Layout
Trees (SLTs). These modifications have added contextual information, prevented
the loss of spatial information than using single region average pooling in QD-
GGA produced, and avoided pruning valid punctuation relationships.

In the future, we aim to improve the use of context. Currently context is
introduced using a sequential (1D) module that aggregates the two immediate
neighbors in the input order. This sometimes misses neighbor relationships and
introduces spurious ones because a spatial sorting order rather than actual prox-
imity defines neighbors. We expect that using Graph Neural Networks (GNNs)
will avoid these problems, and incorporate actual proximity in aggregation and
use the underlying graph structure directly. Additionally, we plan to replace
LGAP’s attention maps using more sophisticated methods than simple convolu-
tional blocks. We will also assess our model’s performance on online handwritten
data, such as CROHME. LGAP is available as open source (see Sect. 4).
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