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Abstract 9 

Retro-biosynthetic approaches have made significant advances in predicting synthesis routes of target 10 

biofuel, bio-renewable or bio-active molecules. The use of only cataloged enzymatic activities limits the 11 

discovery of new production routes. Recent retro-biosynthetic algorithms increasingly use novel 12 

conversions that require altering the substrate or cofactor specificities of existing enzymes while 13 

connecting pathways leading to a target metabolite. However, identifying and re-engineering enzymes for 14 

desired novel conversions are currently the bottlenecks in implementing such designed pathways. Herein, 15 

we present EnzRank, a convolutional neural network (CNN) based approach, to rank-order existing 16 

enzymes in terms of their suitability to undergo successful protein engineering through directed evolution 17 

or de novo design towards a desired specific substrate activity. We train the CNN model on 11,800 known 18 

active enzyme-substrate pairs from the BRENDA database as positive samples and data generated by 19 

scrambling these pairs as negative samples using substrate dissimilarity between an enzyme’s native 20 

substrate and all other molecules present in the dataset using Tanimoto similarity score. EnzRank 21 

achieves an average recovery rate of 80.72% and 73.08% for positive and negative pairs on test data after 22 

using a 10-fold holdout method for training and cross-validation. We further developed a web-based user 23 
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interface (available at https://huggingface.co/spaces/vuu10/EnzRank) to predict enzyme-substrate activity 24 

using SMILES strings of substrates and enzyme sequence as input to allow convenient and easy-to-use 25 

access to EnzRank. In summary, this effort can aid de novo pathway design tools to prioritize starting 26 

enzyme re-engineering candidates for novel reactions as well as in predicting the potential secondary 27 

activity of enzymes in cell metabolism.  28 

1. Introduction 29 

Metabolic pathway design has enabled the synthesis of a wide range of (non-)natural chemical 30 

products, including specialty chemicals, pharmaceutical compounds, and other bio-renewables (Lin et al., 31 

2019; Rios et al., 2021; Wang et al., 2018). Metabolic pathway assembly and construction require 32 

consideration of a range of criteria, including encoding the relevant biochemistries, biophysical 33 

understanding of enzymatic activity and specificity, understanding the thermodynamic feasibility of 34 

individual enzymatic reactions, and subsequent host selection and metabolic engineering. Several 35 

computational pathway design tools such as Path Hunter Tool (Rahman et al., 2005), MetaRoute (Blum 36 

and Kohlbacher, 2008), and optStoic (Chowdhury and Maranas, 2015) have been put forth, which 37 

automate some of the required steps in assembling pathways from a substrate(s) towards a target 38 

metabolite by querying databases of known biochemical reactions. In contrast, de novo pathway design 39 

tools such as BNICE (Finley et al., 2009), XTMS (Carbonell et al., 2014b), RetroPath (Carbonell et al., 40 

2014a), Retropath2.0 (Delépine et al., 2018), and novoStoic (Kumar et al., 2018) encode reactions as 41 

molecule-agnostic rules to enable the design of pathways that include novel metabolite’s reaction steps. 42 

Pathway design tools follow either (i) a graph-based description of reactions and metabolites (Wang et al., 43 

2017), (ii) a stoichiometric matrix encoding of allowed chemistries (Kumar et al., 2018), or (iii) a 44 

retrosynthetic approach that applies generalizable reaction operators to capture possible biotransformation 45 

(Delépine et al., 2018). The advantage of retro-biosynthesis-based algorithms is that they are not limited 46 

by the chemistry and metabolite choices tabulated in reaction databases. Instead, they can instantiate 47 

novel conversions on metabolites. A novel conversion is a hypothesized reaction not cataloged or 48 
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characterized before that arises by employing a chemical reaction rule on a metabolite in a manner not 49 

seen in nature before. Novel metabolites, in turn, are hypothetical molecules that satisfy the chemical 50 

bonding rules of the novel conversion. The potential of novel conversions has already been demonstrated 51 

to produce 3-hydroxy-propionic acid (3HP) (Jessen et al., 2014) using a novel β-alanine/α-ketoglutarate 52 

aminotransferase enzyme to convert β-alanine to malonyl semialdehyde, a precursor to 3HP. In another 53 

study (Liu et al., 2021), the de novo production of 3-phenylpropanol was demonstrated using retro-54 

biosynthetic techniques. 55 

As discussed above, through the application of reaction rules, retrosynthetic algorithms can craft 56 

a multitude of possible de novo conversions that usually require the incorporation of enzymes that need to 57 

operate on novel metabolites (either acting on non-native substrates or accepting a non-native cofactor). 58 

However, the selection of enzyme candidates out of all known enzymes that can catalyze the needed 59 

metabolic transformation on non-native substrates poses a crucial design challenge in metabolic 60 

engineering and pathway design with novel steps (Fig. 1 pictorially illustrates this challenge). SimZyme 61 

(Pertusi et al., 2015) is a tool that rank-orders enzymes based on the substrate similarity of a given 62 

substrate to native substrates of the enzymes. Such tools can offer reasonable starting points for enzyme 63 

discovery for missing pathway steps (Carbonell et al., 2018; Pertusi et al., 2015). However, this approach 64 

relies upon the assumption that enzymes would structurally accommodate and catalytically engage with 65 

novel substrates based solely on the similarity in shape and size to their native substrates. However, 66 

enzyme-substrate reactivity depends on both substrate similarity and enzyme plasticity to accept and 67 

perform the same chemistry on different substrates. For example, the acetyl-CoA hydrolase Ach1p 68 

enzyme from Saccharomyces cerevisiae (Fleck and Brock, 2009) exhibits a high specificity towards 69 

succinyl-CoA. However, it shows no activity towards the chemically and size similar substrate, acetyl-70 

CoA. 71 

On the contrary, phosphatase enzymes from various thermophiles overexpressed in Escherichia 72 

coli show activity on three chemically distinct substrates glucose-6-phosphate (G6P), fructose-6-73 
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phosphate (F6P), and mannose-6-phosphate (M6P). The study also shows that the phosphatase derived 74 

from different thermophiles exhibits varying substrate specificities towards the above three metabolites, 75 

preferring one over the other in different organisms—the phosphatase derived from Thermotoga sp. 38H, 76 

Thermoclostridium stercorarium, and Petrotoga miotherma show the highest proportion of mannose, 77 

glucose, and fructose from M6P, G6P, and F6P, respectively (Tian et al., 2022).  Therefore, enzyme 78 

variants from different organisms can often have widely different substrate preferences and degrees of 79 

promiscuity, reinforcing that it is not only substrate similarity but also enzyme plasticity that needs to be 80 
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captured to identify promising enzyme candidates for novel conversions. A number of different factors 81 

have been used on a case-by-case basis to select enzymes based on (i) substrate similarity, (ii) enzyme 82 

family promiscuity, and (iii) accommodation of new substrate in the active site (Carbonell et al., 2018, 83 

2014a; Kumar et al., 2018). However, no systematic and broadly applicable method exists for enzyme 84 

selection that simultaneously leverages these multiple criteria. It is important to note that even though 85 

numerous enzyme selection strategies use algorithms (Feehan et al., 2021; Goldman et al., 2022) that 86 
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predict the EC classification of a 87 

given enzyme sequence to infer 88 

whether the enzyme can catalyze 89 

a novel substrate, this level of 90 

detail is not sufficient for our goal 91 

as all candidate enzymes would 92 

presumably be classified with the 93 

same EC number. 94 

Often the desired activity 95 

on a novel substrate is present, 96 

albeit the activity level is low (Wen et al., 2008). Protein engineering through directed evolution (DE) is a 97 

Fig. 2. Novel reactions using reaction rules, (A) Novel promiscuous hydroxylase 
enzyme that was engineered to work on two different substrates, tyramine and tyrosol 
for the synthesis of an antioxidant drug hydroxytyrosol.  (B) The native reaction of 
the flavin-dependent monooxygenase HpaBC enzyme that acts on 4-
hydroxyphenylacetate undergoes an exact metabolic transformation as the novel 
reactions, hence the same reaction rule (shown in the blue circle). (C) number of 
reactions with the same reaction rules. There are a significant number of reactions 
within the same rule which demonstrates the need to design an enzyme selection tool 

Fig. 1.  Overall workflow for de novo pathway design. Retrosynthesis tools can assemble pathways with novel steps. 
EnzRank calculates a probability score for an enzyme to have activity on a substrate. This rank-order the enzymes with the same 
reaction rule can be carried out using the EnzRank scores. High scoring enzymes can be subsequently re-engineered to increase 
substrate specificity towards the novel substrate.  
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popular strategy for ratcheting up the desired activity with the novel substrates while at the same time 98 

abolishing activity with the original substrate (Hibbert and Dalby, 2005; Porter et al., 2015; Taylor et al., 99 

2015). For example, among many other examples, DE has been demonstrated to produce steviol 100 

glucosides using cytochrome p450 (CYPs) enzymes kaurene oxidase (KO) and kaurenoic acid 101 

hydroxylase (KAH) in yeast (Gold et al., 2018).  However, often no obvious choice exists for the starting 102 

enzyme to undergo DE. For example, Fig. 2A shows the novel conversion of tyramine and tyrosol as 103 

substrates with a promiscuous hydroxylase enzyme (Chen et al., 2019). These novel conversions are 104 

inferred by applying the reaction rule implied by the known enzymatic function of a flavin-dependent 105 

monooxygenase HpaBC enzyme on 4-hydroxyphenylacetate (shown in Fig. 2B). The KEGG database 106 

contains as many as 967 distinct sequences of HpaBC that belong to multiple organisms making it non-107 

trivial to select a single (or even a handful) of suitable enzymes which may be the best starting points for 108 

DE. In addition, depending on the specificity of the employed reaction rule, there are often undesired 109 

reactions with the same reaction rule operating on different substrates, which should not be excluded from 110 

consideration (see Fig. 2C). Therefore, there is a need for a computational tool to select and pick top 111 

enzyme candidates that are most likely to either have or are likely to acquire upon engineering activity on 112 

a given novel substrate. Herein we introduce EnzRank, a computational method that relies on training a 113 

CNN model which uses enzyme sequences and their respective substrate's molecular signature as inputs 114 

to assign a probability score that the enzyme sequence has activity on the substrate. The EnzRank 115 

calculated probability score of the enzyme-substrate pairs is used to rank-order all candidate enzymes by 116 

their potential to exhibit activity for the novel substrate.  117 

EnzRank is inspired by the recent advances of machine learning-based approaches in predicting 118 

enzyme classes, properties, and functions with tools such as alphafold2 (Jumper et al., 2021), DeepEC 119 

(Ryu et al., 2019), ECpred (Dalkiran et al., 2018), and SDN2GO (Cai et al., 2020) (Table 1 shows a list of 120 

such tools for enzymes). Machine learning methods that use enzyme sequences as input incorporate a 121 

variety of feature encoding techniques such as UniRep (Alley et al., 2019), SeqVec (Heinzinger et al., 122 
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2019), ESM-1b (Rives et al., 2021), BERT (Devlin et al., 2019), and RoBERTa (Liu et al., 2019), etc. We 123 

opted for a learnable embedding technique to learn problem-specific features for enzyme sequences along 124 

with a convolutional neural network DeepConv-DTI (I et al., 2019). EnzRank encodes the enzyme’s 125 

amino acid sequence as trainable embeddings to learn mappings that connect to the respective enzyme-126 

substrate activity.  127 

To encode substrate structural information, we used a molecular signature-based encoding, 128 

morgan fingerprints, which uses the presence of small substructures to define a molecule and are widely 129 

used for chemical similarity (Capecchi et al., 2020). This architecture is largely inspired by DeepConv-130 

DTI (I et al., 2019), which was successful in drug-interaction prediction, similar to the problem at hand – 131 

enzyme-substrate activity prediction. EnzRank achieves an average recovery of 80.72% for true positives 132 

and 73.08% for true negatives on blinded test data splits. EnzRank's performance on an unseen dataset 133 

was assessed by a small dataset of P450 monooxygenase enzymes achieving the recovery for positive and 134 

negative activity pairs are 75% and 95%, respectively.  135 

Table 1. Recent machine learning-based tools for enzyme functions predictions 136 

ML tools for 

enzymes 

Description  Method Input required Reference 

DeepEC Enzyme Commission 
(EC) number prediction 

CNN Protein Sequence Ryu et al., 
2019 

ECpred EC number prediction  Ensemble method 
(SVM and kNN) 

Protein Sequence Dalkiran et al., 
2018 

mlDEEPre EC number prediction  Ensemble method (CNN 
and RNN) 

Protein Sequence Zou et al., 
2019 

Proteinfer EC number and Gene 
ontology prediction 

CNN  Protein Sequence Sanderson et 
al., 2021 

SDN2GO Protein function 
prediction 

CNN Protein sequence, protein 
domain content, and known 
protein-protein interactions 

Cai et al., 
2020 
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DeepFRI Protein function 
prediction 

Graph convolution 
network (GCN) 

Protein sequence and 
structure 

Gligorijević et 
al., 2021 

SimZyme Enzyme selection for 
pathway design 

Substrate similarity of 
enzyme’s native and the 
novel substrate 

Molecular fingerprint of 
substrates 

Pertusi et al., 
2017 

EnzRank  Enzyme selection for 
novel reactions in de 
novo pathway design 

CNN Protein sequence and 
substrate structure 

This study  

 137 

We demonstrate the application of EnzRank to rank-order enzyme variants by their likelihood to 138 

exhibit activity upon the corresponding substrate. We applied it to rank-order the enzymes for novel 139 

conversions in the pathways identified by novoStoic (Kumar et al., 2018) for 3-HP synthesis. This 140 

computational pre-processing step can potentially speed up the process of assembling de novo pathways.    141 

2. Results  142 

2.1. Performance comparison of Similarity-based and CNN models on the validation 143 

dataset 144 

We explored two different models for enzyme-substrate activity prediction, (i) SimProd: a substrate 145 

similarity and protein sequence identity-based model, and (ii) EnzRank: a Convolutional neural network. 146 

SimProd uses Tanimoto-based substrate similarity and sequence alignment with all other protein 147 

sequences. It formalizes existing intuitive strategies for enzyme selection by relying on substrate 148 

similarity and protein sequence identity. SimProd serves as a performance floor to assess improvements 149 

afforded by the more sophisticated CNN model. Briefly, in SimProd, for a given enzyme-substrate pair, 150 

the substrate similarity and sequence alignment scores with all the known enzyme-substrate pairs in the 151 

database are multiplied. The combination with the maximum score is assigned as the final score to the 152 

examined enzyme-substrate pair. A threshold parameter was used to classify the corresponding enzyme-153 

substrate pairs as active based on the final scores. The SimProd model devises an optimal threshold by 154 
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minimizing the mean absolute error between the predicted and assigned label for the activity (1: active 155 

and 0: inactive) over the entire training data (detailed method in Supplementary data). 156 

In contrast, the CNN-based model uses both enzyme sequence and substrate molecular signatures 157 

as inputs to a convolutional neural network in a feed-forward fashion to output a probability score for the 158 

enzyme-substrate activity (details in the Methods section). The model uses a representation learning 159 

approach to encode features from the enzyme sequence. The enzyme sequence first passes through an 160 

embedding layer to assign a real-valued vector to each amino acid. The output from the embedding layer 161 

goes through a series of 1-D convolutional layers. The molecular fingerprints of the substrate are binary 162 

vectors of length 2,048 which are input to a full-connected layer parallelly and independently to the 163 

enzyme sequence. Finally, the enzyme and substrate outputs are combined in a fully connected layer to 164 

output a single real-valued probability between 0 and 1. The training data is passed through the model, 165 

and the binary cross-entropy loss between true labels and predicted loss is set as the training objective 166 

function. We used an 80:10:10 split of the entire dataset parsed from the BRENDA database to generate 167 

training, validation, and test datasets and perform a 10-fold cross-validation training of the CNN model. 168 

The cross-validation training yielded ten different models. We used the average recovery percentage of 169 

positive and negative predictions across the ten models as a metric to assess model performance. The 170 

positive recovery is defined as the percentage of known active enzyme-substrate pairs correctly predicted 171 

as active, also called true positive (TP). The negative recovery is the percentage of correctly predicted 172 

negative pairs in the data, true negative (TN).  173 

While both positive and negative recovery 174 

rates for both SimProd and EnzRank are comparable 175 

(shown in Fig. 3), EnzRank dramatically 176 

outperforms SimProd over the validation dataset 177 

(especially for positive pair recovery). The average 178 

Fig. 3. The comparison of performance accuracy as % 

recovery of two different models (SimProd and EnzRank) 

tested for activity predictions. The positive and negative 
recovery shows the percentage of correctly predicted positive 
and negative pairs in the training and validation data 
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recovery on validation data splits for the positive datasets are 80.74% and ~10% for EnzRank and 179 

SimProd, respectively. Whereas the negative recovery on validation dataset is 73.74% and 91% for 180 

EnzRank and SimProd, respectively. This implies that, unlike SimProd, which is susceptible to 181 

overfitting, EnzRank can genuinely “learn” from patterns seen in active substrate-enzyme pairs in the 182 

dataset and correctly recognize them in the validation dataset. Note that the negative recovery for 183 

SimProd is higher than the EnzRank because the negative dataset itself was generated using substrate 184 

dissimilarity of the enzyme’s native substrate and all other substrate molecules in the dataset using the 185 

Tanimoto similarity score. Therefore, SimProd is biased toward negative recovery as it uses the similarity 186 

between substrates and enzyme sequences to predict activity, thereby giving high accuracy toward the 187 

negative pairs. As our goal is to predict positive activity for novel enzyme-substrate pairs, the SimProd 188 

model will not be a viable choice.  189 

Next, we performed hyperparameter optimization of the CNN model parameters by varying the 190 

dropout probability and the number of epochs (Supplementary data). The dropout probability is an 191 

important parameter to optimize as it can prevent model overfitting (Srivastava et al., 2014). The number 192 

of epochs is the number of times the entire training data is passed through the learning algorithm. It is 193 

associated with the generalization capacity of the neural networks and controls overfitting (Perin et al., 194 

2021). The grid search showed an optimal performance at a dropout probability of 0.3 and 70 epochs. The 195 

CNN model recovered 98.96% and 98.11% positive and negative pairs over the training dataset and 196 

80.74% and 73.74% over the validation dataset with the optimized parameters (see Table 2 for details). 197 

Table 2. Performance metrics of EnzRank CNN model on ten different splits of the training, validation, and test datasets using 198 

optimized hyperparameters 199 

Data Split # 

↓ 

Training 
(% recovery) 

Validation 
(% recovery) 

Test 
(% recovery) 

Positive 

pairs 

Negative 

pairs 

Positive 

pairs 

Negative 

pairs 

Positive 

pairs 

Negative 

pairs 

1 98.86 97.42 81.17 72.70 81.44 73.24 

2 99.52 98.96 81.44 77.11 79.73 77.12 
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23 99.78 97.97 87.20 68.64 87.48 67.29 

4 99.52 98.41 80.99 73.06 82.16 73.87 

5 99.69 97.04 83.60 71.62 84.59 70.36 

6 98.51 98.23 80.36 73.78 78.19 74.77 

7 99.48 98.34 81.80 73.15 82.52 71.26 

8 98.82 98.50 80.36 74.68 78.38 72.34 

9 98.97 97.46 79.81 74.77 80.45 72.16 

10 96.45 98.75 70.72 77.93 72.25 78.38 

Average 

score  
98.96 98.11 80.74 73.74 80.72 73.08 

 200 

Moreover, it is always a good practice to test machine learning models' performance on a blinded 201 

dataset that has a different origin from the training dataset and has not been a part of training. We 202 

manually curated a dataset of cytochrome P450 monooxygenase enzymes (shown in Supplementary data), 203 

including 36 enzyme-substrate pairs with 16 active pairs (positive) and 20 inactive pairs (negative). The 204 

negative pairs were generated using small molecules (usually show activity on long-chain fatty acid with 205 

>9C (Nakayama et al., 1996)) for which the cytochrome P450 enzymes are known not to show any 206 

activity (Kitazume et al., 2002; Nakayama et al., 1996). EnzRank (CNN model) achieved strong positive 207 

(75%) and negative (95%) recovery rates comparable to validation performance. It correctly identified the 208 

lack of activity of cytochrome P450 enzymes for almost all decoy enzyme-substrate pairs (recovery 95%). 209 

EnzRank captured enzyme-substrate activity on a smaller blind dataset with a comparable recovery 210 

compared to the split dataset used for validation and testing.  211 

 212 

2.2. Challenging EnzRank with a negative dataset composed of similar substrates to the 213 

native ones  214 

We next assessed the recovery of native from very similar substrates by EnzRank as opposed to simply 215 

randomizing enzyme to substrate assignments in the negative dataset. To this end, we generated new test 216 
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datasets using the previous 10 random test data splits. The previous datasets contained an equal 217 

proportion of positive and negative data with 2,220 enzyme-substrate pairs (1,110 positive and 1,110 218 

negative pairs). To generate a more “challenging” negative dataset, we paired the enzyme sequences of 219 

the positive data with the top ~10% of most similar compounds with respect to their native substrates 220 

using the Tanimoto similarity index, resulting in an average of ~200 negative data points for each protein 221 

sequence. We repeated this process for all 10 splits, resulting in a test dataset of length ~222,000 in each 222 

split. 223 

Upon training, we found that positive pairs (i.e., native 224 

substrates) exhibited significantly higher scores 225 

compared to the near-native negative pairs, as shown in 226 

Figure 4. Supplementary data includes the same plot for 227 

all ten splits of the test data. the statistical significance of 228 

the score differences between positive and negative pairs 229 

was assessed using the Wilcoxon rank-sum test accessed 230 

through the SciPy Python package. The null hypothesis 231 

posited that the two sets of scores (positive and negative 232 

data) were drawn from the same distribution, while the 233 

alternative hypothesis ascertains that the positive pairs scores were more likely to be greater than those 234 

from negative pairs. The analysis yielded a p-value of 2.37e-22, which rejects the null hypothesis and 235 

demonstrates that the positive dataset exhibiting higher scores over the negative dataset is statistically 236 

meaningful. This proves that EnzRank can discriminate between positive and negative pairs generated by 237 

matching known positive enzyme sequence pairs with near-native substrates. Note that it is entirely 238 

possible that many of the pairs in the “negative” dataset may be in fact functional.  Therefore, we 239 

observed an average recovery rate of 80.72% for positive pairs (same as shown in Table 2) but also a non-240 

trivial recovery of 55.72% for negative pairs. This may allude to the fact that (some) of the near-native 241 

Fig. 4. Comparison of positive and negative pairs 

performance on one of the split test datasets 
generated using similar substrates. Red and black 
bars show distributions of EnzRank predicted scores 
for negative and positive enzyme-substrate pairs, 
respectively. Y-axis is normalized such that the sum 
of bars for each category sum to 100%. 
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substrates have activity on the paired enzymes. Note that prior models (Carbonell et al., 2018; Moriya et 242 

al., 2016) solely relied on substrate similarity and consistently ranked the most similar substrate as the top 243 

candidate. In contrast, EnzRank leverages both substrate information and local residue patterns within 244 

protein sequences to account for both substrate and sequence characteristics, surpassing the use of 245 

substrate similarity alone.  246 

 247 

2.3. Selection of enzymes for novel reactions in pathways found for 3-Hydroxypropionic 248 

acid 249 

We demonstrate the utility of EnzRank for pathway design by selecting prototype enzyme candidates for 250 

conversions in the novel pathways identified by novoStoic (Kumar et al., 2018) for 3-hydroxypropionic 251 

acid (3-HP) synthesis. Several biosynthetic pathways for 3-HP synthesis have already been identified 252 

using glucose, glycerol, xylose, and malonic acid as starting points (Liang et al., 2022). Here, we used 253 

pyruvate as the precursor, as glucose to pyruvate conversion pathways are well established. Both KEGG 254 

reaction database (Kanehisa et al., 2016) entries and reaction rules implied by the cataloged reactions 255 

were used. We first assessed the best overall conversion stoichiometry satisfying overall thermodynamic 256 

feasibility: 257 

1 C3H4O3 + 1 NADH + 1 H+  1 C3H6O3 + 1 NAD+   ∆° =  −32.4 /l 258 

Using KEGG ids we have:    259 

C00022 (pyruvate) + C00004 (NADH) + H+  C01013 (3-HP) + C00003 (NAD+) 260 
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 261 

Fig. 5. Three novel pathways found for 3-HP biosynthesis; The first identified pathway A includes reaction steps 1 and 2, 262 

where pyruvate is first converted to (R)-Malate via (R)-Malate oxidoreductase in step 1, and step 2 involves a novel conversion 263 

derived from reaction rule R1 (carboxy-lyase enzyme shown in Table 3) to convert (R)-Malate to 3-HP. Pathway B consists of 264 

reaction steps 3 and 4; step 3 converts pyruvate to (S)-Malate using the (S)-Malate oxidoreductase enzyme, which then uses 265 

reaction rule R2 (carboxy-lyase enzyme, Table 3) based novel conversion to produce 3-HP as step 4. Pathway C involves steps 5 266 

and 6, where step 5 converts pyruvate to L-serine and uses reaction rule R3, derived from ammonia-lyase enzyme based on 267 

KEGG reaction “R08846” (Table 3).   268 

The negative standard Gibbs energy change of the overall conversion ensures that the overall 269 

stoichiometry is thermodynamically feasible under standard conditions. The next step was the 270 

identification of the intervening chemical conversion steps that conforms to the identified overall 271 

Table 3. Reaction rules used in novel conversion for 3HP synthesis 
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stoichiometry using the 3,603 unique reaction rules derived from 7,053 272 

biochemical reactions in the KEGG database. Among many identified, three 273 

pathways (see Fig. 5) were unexplored before. Existing biosynthetic pathways 274 

for 3-HP involve four or more reaction steps starting from pyruvate (Liang et al., 275 

2022). All three pathways found by novoStoic involve only two steps by 276 

leveraging designed novel conversions. Next, we used dGPredictor (Wang et al., 277 

2021), an automated standard Gibbs energy prediction tool, to ensure the 278 

thermodynamic feasibility of individual steps in the identified pathways. dGPredictor allows the 279 

estimation of standard Gibbs energy change for reactions, including reactions with hypothetical 280 

metabolites. The predicted ΔrG
′o for reaction step 1, which is KEGG reaction R00215 is -24.15 ± 281 

6.62 kJ/mol, and for the novel reaction step R1 is −11.67 ± 7.33 kJ/mol consistent with thermodynamic 282 

feasibility for the two reaction steps under standard conditions.  283 

 284 

 285 

Next, we applied EnzRank to rank order enzymes for novel reaction steps 286 

R1. We found two reactions in the KEGG database conforming to the same 287 

reaction rule as R1 (i.e., KEGG reaction R01751 (EC 4.1.1.73) and R07125 (EC 288 

4.1.1.85)). Upon parsing all the genes for those reactions from different organisms 289 

using the KEGG database, we found 2,819 homologous sequences. We used EnzRank to rank-order them 290 

in terms of their predicted activity fitness for the novel substrate. The top ten candidates with EnzRank 291 

scores of more than 0.995 for reaction rule R1 are shown in Table 4 292 

Organisms 

B. Composti 

S. humosa 

U. limnaea 

B. bacterium GR16-43 

A. sediminis 

H. halodurans 

S. rapamycinicus 

C. thermophila 

S. usitatus 

E. billingiae 

Organisms 
U. croceus 

C. manihotivorum 

A. indistinctus 

C. amurskyense 

A. soli  

A. finegoldii 

Table 4. Top 10 genes 
from different organism 
with EnzRank score > 
0.995 for rule R1 
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  Similarly, for pathway B, the thermodynamic analysis using dGPredictor 293 

estimates a ΔrG
′o of −13.79 ± 4.78 kJ/mol for reaction step 3 (R00214) and −22.03 294 

± 5.76 kJ/mol for step 4, (i.e., rule R2). Reactions R02636 (EC 4.1.1.67) and 295 

R01384 (EC 4.1.1.35) conform to reaction rule R2. As many as 2,994 sequences that code for 296 

homologous enzymes was found. Table 5 tabulates the top ten scoring candidates. Finally, for pathway C, 297 

the thermodynamic analysis using dGPredictor revealed that steps 5 (i.e., KEGG R00220) and 6 (i.e., rule 298 

R3) have standard free energy of change ΔrG
′o of 29.83 ± 3.43 kJ/mol and -65.64 ± 4.72 kJ/mol, 299 

respectively. Even though the overall ΔrG
′o for the pathway is negative, step 5 seems to be 300 

thermodynamically unfavorable; therefore, pathway C does not seem to be a viable option. In summary, 301 

we demonstrated how EnzRank could be integrated with an overall retrosynthetic workflow to rank-order 302 

enzyme sequences as appropriate candidates for the novel conversion(s).  303 

 304 

2.4. Class Activation Maps to identify protein residues positively 305 

influencing EnzRank scores 306 

There are various approaches to interpret predictions made by a convolutional neural network in terms of 307 

which parts of input features are most important for arriving at the predictions (Selvaraju et al., 2016; 308 

Zhou et al., 2015). Such methods are widely used in computer vision, specifically in image classification, 309 

to find regions of images that lead to a positive class prediction. Here we leverage one such approach, 310 

namely, the gradient-weighted Class Activation Maps (grad-CAMs) (Selvaraju et al., 2016). Grad-CAM 311 

uses the gradient of the output score with respect to each convolutional feature map to estimate the 312 

contribution of individual residues to the final score (see details in the method section “Class Activation 313 

Map”). After calculating the grad-CAM scores, we visualize them by mapping onto their corresponding 314 

three-dimensional structures by AlphaFold-2.0 (Jumper et al., 2021). To assess the grad-CAM scores, we 315 

applied the method on enzyme-substrate complex structures available in the Protein data bank (Berman et 316 

al., 2003). The results are summarized in Fig. 6. We found that residues involved in binding exhibit 317 

Rhizobium sp. N731 

A. sanaruensis 

M. preniciosa 

S. halorespirans 

DSM 13726 

Table 5. Top 10 genes 
from different organisms 
with EnzRank score > 
0.99 for rule R2  
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higher on average grad-CAM scores implying that the CNN model can learn structural features even 318 

though the training data did not explicitly encode any. This has been seen in other studies where training 319 

purely on sequence features identified structurally important features (Elnaggar et al., 2021; Rives et al., 320 

2021). Not all residues with high grad-CAM scores are near the binding site pocket. Possibly other factors 321 

important in catalysis, such as interaction with partner subunits, dynamic movement of different enzyme 322 

parts, and interaction with allosteric sites could be at play. Assessing these other factors is beyond the 323 

scope of this effort. 324 

 325 

Fig. 6. Grad-CAM results for two top enzyme candidates in reaction rules R1 and R2. (A) and (C) show three-dimensional 326 

structures of the enzymes in surface representation with the homology inferred predicted substrate interaction shown in stick 327 

representation. The surface of the enzyme is color-coded based on the grad-CAM scores ranging from yellow (highest score) to 328 

gray to blue (least score). (B) and (D) show respective grad-CAM score line plots for enzymes shown in (A) and (C), respectively 329 

(stars in line plots show the binding site residues). (A) and (B) Decarboxylase enzyme in B. composti (Uniprot id: 330 

A0A7T5EPK7) for reaction rule R1 and corresponding grad-CAM line plot. (C) and (D) Decarboxylase enzyme in U. croceus 331 

(Uniprot id: A0A1D8PAW7) for reaction rule R2 and corresponding grad-CAM line plot.  332 

2.5.User-friendly interface for predicting activity probability score using EnzRank 333 

EnzRank input format uses the enzymes’ entire protein sequence and SMILES string of the substrate as 334 

input. For example, EnzRank recognizes the phenylpyruvate tautomerase enzyme “P14174: 335 
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MPMFIVNT…” as a protein sequence and the SMILES string of substrate as “3-phenylpyruvate: [O-336 

]C(=O)C(=O)Cc1ccccc1” as input (shown in Fig. 7). Another benefit of using SMILES string as input to 337 

EnzRank instead of chemical IDs from known databases is that it allows the inclusion of novel substrates 338 

that are not cataloged in any biochemical databases. A user-friendly interface is developed to facilitate 339 

easier access to EnzRank for rank-ordering starting enzyme candidates for novel reactions in de novo 340 

chemical synthesis pathways. This allows users 341 

to input multiple enzyme sequences at once and 342 

rank order EnzRank predicted activity scores 343 

with the desired novel substrate. EnzRank can 344 

also be used as a pre-processing tool to reduce 345 

the sample size of enzymes for re-engineering 346 

novel activity. We envision that the developed 347 

GUI will facilitate easy adoption of EnzRank to 348 

the broader metabolic engineering and 349 

synthetic biology community, which relies on 350 

de novo synthesis tools and enzyme re-351 

engineering tools to improve/find novel 352 

efficient routes for biochemical synthesis. 353 

 354 

3. Discussion 355 

In this work, we developed a CNN model for enzyme activity prediction using only the substrates’ 356 

molecular fingerprints and the enzyme sequence as inputs. We trained and validated the model using a 357 

dataset of known enzyme-substrate activities curated from the BRENDA database. We found that the 358 

CNN model (EnzRank) performs better than an enzyme/substrate similarity-based model (SimProd). The 359 

better performance of the CNN model can be attributed to the use of convolution layers that can 360 

Fig. 7. A web-based graphical user interface for easier access to 
the EnzRank tool. The interface requires the protein sequence of the 
enzyme and SMILES string of the substrate as input. Next, clicking 
the search button outputs the scores that can be used to to rank-order 
enzymes for selecting a starting point for protein re-engineering.  
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automatically detect local features of the enzyme sequence responsible for activity prediction. Although 361 

the CNN-based model performed well across training-validation datasets and also on a blind dataset, 362 

some challenges remain, such as the lack of a true negative dataset (experimentally validated) for training 363 

the model. Here, we used a synthetic dataset formed by substrates dissimilar to the native substrate of an 364 

enzyme as the negative data. While it is unlikely that an enzyme can be active on substrates highly 365 

dissimilar to native substrates, using such a strict negative dataset would prevent the model from learning 366 

about inactive substrates that are only marginally dissimilar to native substrates. However, one could keep 367 

enriching the training dataset by including substrates that have been experimentally tested to show no 368 

activity and progressively increase the model’s fidelity. Recent developments in natural language 369 

processing (NLP) based literature mining tools (Cheng et al., 2008; Hur et al., 2009; Simon et al., 2019) 370 

could potentially be leveraged to help generate better negative datasets to aid in training future machine 371 

learning models. Various articles referring to EC class 1.1.1.1 in the BRENDA database contain limited 372 

information on the zero activity of enzyme-substrate pairs. We performed a literature survey to find 373 

substrates for EC class 1.1.1.1 that show no activity toward the enzyme (Supplementary data) to show the 374 

potential of leveraging NLP-based literature mining tools to automate the generation of the 375 

experimentally validated negative dataset as manual curation for each EC class might not be feasible.   376 

In its current form, we anticipate that EnzRank can assist de novo pathway design tools such as 377 

novoStoic in selecting the starting enzyme for novel substrate activity in the identified de novo pathways. 378 

The current version of novoStoic uses substrate similarity between the desired substrate and the native 379 

substrate of the enzyme to rank the enzymes that can perform the exact chemical transformation in a 380 

reaction. EnzRank could uncover better enzyme targets than just using substrate similarity by accounting 381 

for both enzyme sequence information and substrate information. Along with that, using grad-CAMs also 382 

provide insights on specific residue level information that influences most toward the predicted EnzRank 383 

score for enzyme-substrate activity.  384 
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There is still scope for improvement over EnzRank rankings by including more descriptors of protein 385 

features. For example, several machine learning-based feature extraction methods (Cai et al., 2020; 386 

Devlin et al., 2019; Elnaggar et al., 2021; Liu et al., 2019; Rives et al., 2021) (such as UniRep, ProtBERT, 387 

SeqVec, ESM-1b, etc.) can be utilized along with protein sequence to build a CNN model that might 388 

further improve the performance of the activity prediction model. These feature extraction methods are 389 

pre-trained on millions of protein sequences to learn essential features from the protein sequences. 390 

EnzRank is, to our knowledge, the first computational tool to assist in rank-ordering starting enzymes to 391 

undergo directed evolution toward a new substrate. EnzRank can be used within any de novo pathway 392 

design tool that uses reaction rules to build retro-biosynthesis pathways to select the enzymes for novel 393 

reactions, as current practices only use reaction rules for novel reactions but there exist multiple enzymes 394 

with the same reaction rule that possess the challenge to pick a few candidates for protein re-engineering 395 

to alter substrate/cofactor specificity. EnzRank could also help complete organism-specific metabolic 396 

models by pinpointing possible secondary enzymatic activities of the known enzymes. 397 

 398 

4. Methods  399 

4.1. Dataset 400 

Data on enzyme-substrate activities were obtained from the BRENDA database (Schomburg et al., 2002) 401 

alongside the PDB ID for the protein sequences and the common chemical names of the active substrates. 402 

The protein sequences were downloaded from UniProt (Bateman et al., 2021). We compiled a list of all 403 

substrates across all enzymes. We then queried the PubChem database (Kim et al., 2021) and the Open 404 

Parser for Systematic IUPAC nomenclature (OPSIN) database (Lowe et al., 2011) to establish uniform 405 

identities. OPSIN allows the identification of the IUPAC names (Mc Naught and Wilkinson, 2012) from 406 

the common names of the substrates obtained from the BRENDA database. We then used these IUPAC 407 

names to retrieve the simplified molecular-input line-entry system (SMILES) strings (Lunnon et al., 408 

1988) for the substrates from the PubChem database (Kim et al., 2021). Next, the RDkit python 409 
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package(Landrum, 2006) (https://www.rdkit.org/) was used to generate the morgan fingerprints 410 

(Landrum, 2006) of the substrates. The morgan fingerprints, also known as extended connectivity 411 

fingerprints (ECFPs), are the molecular representation based on the topology of the chemical structure 412 

within a specific distance (Rogers and Hahn, 2010). We used the Morgan fingerprint (Rogers and Hahn, 413 

2010) to encode substrate molecules as a graph feature. Using RDkit, the molecular fingerprints of 414 

substrates were generated for radius 2 utilizing the SMILES string of the molecules. In the end, each 415 

substrate can be represented as a binary vector of 2,048 lengths, whose indices indicate the presence of a 416 

specific chemical moiety within the molecule. A total of 3,500 enzymes sequence and 10,353 compounds 417 

were parsed, resulting in 11,080 known enzyme-substrate activities. The lack of availability for negative 418 

enzyme-substrate activity data in BRENDA leads us to use random enzyme-substrate pairs that are not 419 

present in the parsed positive dataset. Therefore, the negative datasets were generated by first finding all 420 

the enzyme-substrate pairs that are not known as active. Next, substrate similarity was used to pick 421 

substrates that are dissimilar to the native substrates of the enzymes using a Tanimoto-based chemical 422 

similarity score (Bajusz et al., 2015). The primary reason for using an entirely dissimilar substrate is to 423 

ensure that the functional groups present in the native substrate, which might be responsible for the 424 

possible activity, are absent in the substrate generated for negative activity. The Tanimoto index uses 425 

molecular substructures/fingerprints to find the similarity between two chemical structures. We then pick 426 

the top dissimilar substrates and build the dataset so that the positive and negative datasets are in equal 427 

proportion. Thus, we generated 11,080 positive and 11,076 negative enzyme-substrate pairs, respectively. 428 

Next, we performed an 80-10-10 split of the dataset to generate the training and validation, and test 429 

datasets. The training dataset consists of 8,880 pairs of positive enzyme-substrate pairs with known 430 

activity from the BRENDA database and 8,876 negative pairs with no known activity (pairs not present in 431 

the BRENDA database and substrates dissimilar to the enzyme’s native substrate, i.e., zero Tanimoto 432 

similarity index). The validation and test dataset both includes 1,100 pairs of both positive and negative 433 

enzyme-substrate pairs. The notion here is to use the percentage recovery of the known enzyme-substrate 434 
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activity (% positive recovery, TP) as a metric to measure the performance of the CNN model over a 435 

dataset that is different from training, validation, and test data.  436 

 437 

4.2. Convolutional neural network for enzyme-substrate activity prediction 438 

We adopted the convolutional neural network (CNN) architecture provided by DeepConvDTI (I et al., 439 

2019), which was used for predicting drug-target interactions. The CNN involves convolution over the 440 

protein sequence to extract the local residue patterns within the protein sequences and a fully connected 441 

layer of the substrates using the molecular fingerprint as a feature. After processing these two layers, the 442 

model concatenated these layers and constructed a fully connected layer, which resulted in the output 443 

layer (Fig. 7). An exponential linear unit (ELU) function (Clevert et al., 2016) was used as an activation 444 

function for every CNN layer except the output layer. ELU functions have been known for speeding up 445 

learning in deep neural network models, leading to higher accuracy (Clevert et al., 2016). Here we define 446 

a function ELU as- 447 

 =   exp − 1         if  > 0         if  ≤  0 448 

Where  is the hyperparameter that controls the ELU function, and x is the input to the activation 449 

function. The output layer was activated using the sigmoid function to classify enzyme-substrate pairs as 450 

active or inactive.  The final scores of the output layer are used to rank-order all the enzymes for novel 451 

substrate activity. The entire neural network model was implemented in the Keras python package 452 

(Chollet and others, 2015a). The detailed model summary is provided in Supplementary data. 453 
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 454 

4.3. Convolution layer using embedding vectors assigned to the protein sequences 455 

CNN-based models are known to capture important local patterns from the entire space. Fig. 8 shows the 456 

overall schema of the convolutional layers. The model starts with an embedding layer which is a lookup 457 

table of amino acids to the corresponding embedding vector. We used a Xavier initializer (viz., the ‘glorot 458 

normal’ function in Keras (Glorot and Bengio, 2010)) to randomly initialize the embedding vector values, 459 

which imposes normal distribution of the weights and output variance following the variance of input 460 

(Glorot and Bengio, 2010). Embedding vectors are trainable, meaning embedding vector values change to 461 

optimize the loss during the model training (Chollet and others, 2015). From the lookup table, the 462 

embedding layer for the protein sequence is constructed by querying the embedding vector values 463 

corresponding to each amino acid in the embedding layer. The length of the embedding matrix for all 464 

proteins was fixed to the maximum protein length (i.e., 2,500). The margins were covered using null 465 

Fig. 8. Framework for the CNN model of EnzRank, uses the BRENDA database for known enzyme-substrate activity. An 
equal proportion of negative activity was generated using the structural similarity of the enzyme’s native structures and chemical 
compounds in the database and considering the ones that are completely dissimilar as the hard negative dataset. Next, we used the 
80:10:10 split of the dataset to train, test, and validate the model. The CNN model uses convolution over the protein sequences 
and the fully connected layer from the molecular fingerprints and concatenates them together in the final layer to output the final 
score of an enzyme to have activity on a substrate 
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labels (i.e., the character $) and the corresponding embedding vectors, which would give a meaningless 466 

convolution result filtered out during the global max-pooling. The convolution on embedding layer of 467 

protein along the sequence in 1D fashion with one stride (Supplementary data), with the convolution from 468 

jth to the (j+WS)th amino acids in sequence, which can be defined as- 469 

x + w =    ,,







 470 

Convolution over the entire sequence gives (MPL–WS+1) size layer for each filter, where WS is the 471 

window size. Finally, to extract the essential local features, we conducted global max-pooling for each 472 

filter, which is defined as 473 

 = max  ∗  474 

Where j covers all of the convolution results of the embedding matrix from the protein sequence . The 475 

result is a filter-sized vector with a max-valued convolution result for each window, which does not 476 

include bias from the locations of local residue patterns and the maximum protein length. After pooling 477 

all convolution results, we concatenated them to represent the essential local interaction patterns as 478 

vector-formatted features. Finally, for the organization and abstraction of protein features, concatenated 479 

max-pooling results are fed into a fully connected layer, which constructs the latent representation of the 480 

protein sequences.  481 

The fully connected layer over the molecular fingerprints was used as the latent representation of the 482 

substrates. The latent representation of the data contains all the necessary information needed to represent 483 

the original data point (Bishop, 2006). Finally, a fully connected layer was constructed by concatenating 484 

the layers to represent proteins and substrates to predict the activity of enzyme-substrate pairs. 485 

 486 

4.4. Loss function estimations and weight optimization 487 
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The CNN architecture allows the flow of input to the output layer in a feed-forward method. The CNN 488 

model estimates the loss using binary cross-entropy functions defined as- 489 

,  =  − 1 [ log  + 1 −   log 1 −  ]



 490 

Where W and x are the weights and input to the CNN and   and n represents the predicted output and its 491 

size (I et al., 2019). We also used L2-norm regularization along with the loss function to avoid overfitting. 492 

Specifically, the final loss function can be defined as-  493 

,  =  ,  +   ||||



  494 

Where the weights are optimized using the Adam optimizer (Kingma and Ba, 2015) in Keras, which 495 

penalizes loss to give a generalized prediction for the model. 496 

 497 

4.5. Class Activation Map 498 

We utilized a method based on a gradient-weighted Class Activation Map (grad-CAM) (Selvaraju et al., 499 

2016) to identify the residue level inference on the protein sequence for predicting the enzyme-substrate 500 

activity. The goal here is to find residues that contribute most to the activity score. Grad-CAM uses a 501 

class-specific gradient information that flows through the convolutional layer of a CNN to produce a 502 

localization map of the important regions in the input. Grad-CAM is proven effective in image 503 

classification problems (Panwar et al., 2020; Selvaraju et al., 2016). We use grad-CAM to detect residues 504 

in the protein sequence that influences the most to the enzyme-substrate activity score.  505 

In grad-CAM, we first compute the contribution of each filter, k, in the convolutional layers used 506 

to predict the enzyme-substrate activity label s by computing the gradient of the output , with respect to 507 

the feature map  ∈  ℝ of a convolutional layer over the entire sequence of length L: 508 
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 =   
,




 509 

Where  is the neuron importance weight of feature map k for predicting activity label s, estimated by 510 

adding the contribution of individual residues. Afterward, we apply the weighted combination of all 511 

feature maps in the convolution layer and follow it with a ReLU function to only obtain the residues that 512 

have a positive influence on the activity score.  513 

C [] =   ,
 514 

Where C [] denotes the relative importance of residue i to activity label s. Finally, we take the 515 

average of the grad-CAM scores from individual convolutional layers to estimate the residue-level 516 

contribution of the protein sequence to the final activity score. The grad-CAM provides an advantage that 517 

it can be done as a post-processing step and does not require re-training or change in architecture of the 518 

model, making it efficient computationally and directly applicable to the model.  519 
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