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Abstract

Retro-biosynthetic approaches have made significant advances in predicting synthesis routes of target
biofuel, bio-renewable or bio-active molecules. The use of only cataloged enzymatic activities limits the
discovery of new production routes. Recent retro-biosynthetic algorithms increasingly use novel
conversions that require altering the substrate or cofactor specificities of existing enzymes while
connecting pathways leading to a target metabolite. However, identifying and re-engineering enzymes for
desired novel conversions are currently the bottlenecks in implementing such designed pathways. Herein,
we present EnzRank, a convolutional neural network (CNN) based approach, to rank-order existing
enzymes in terms of their suitability to undergo successful protein engineering through directed evolution
or de novo design towards a desired specific substrate activity. We train the CNN model on 11,800 known
active enzyme-substrate pairs from the BRENDA database as positive samples and data generated by
scrambling these pairs as negative samples using substrate dissimilarity between an enzyme’s native
substrate and all other molecules present in the dataset using Tanimoto similarity score. EnzRank
achieves an average recovery rate of 80.72% and 73.08% for positive and negative pairs on test data after

using a 10-fold holdout method for training and cross-validation. We further developed a web-based user
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interface (available at https://huggingface.co/spaces/vuul0/EnzRank) to predict enzyme-substrate activity
using SMILES strings of substrates and enzyme sequence as input to allow convenient and easy-to-use
access to EnzRank. In summary, this effort can aid de novo pathway design tools to prioritize starting
enzyme re-engineering candidates for novel reactions as well as in predicting the potential secondary

activity of enzymes in cell metabolism.

1. Introduction

Metabolic pathway design has enabled the synthesis of a wide range of (non-)natural chemical
products, including specialty chemicals, pharmaceutical compounds, and other bio-renewables (Lin et al.,
2019; Rios et al., 2021; Wang et al., 2018). Metabolic pathway assembly and construction require
consideration of a range of criteria, including encoding the relevant biochemistries, biophysical
understanding of enzymatic activity and specificity, understanding the thermodynamic feasibility of
individual enzymatic reactions, and subsequent host selection and metabolic engineering. Several
computational pathway design tools such as Path Hunter Tool (Rahman et al., 2005), MetaRoute (Blum
and Kohlbacher, 2008), and optStoic (Chowdhury and Maranas, 2015) have been put forth, which
automate some of the required steps in assembling pathways from a substrate(s) towards a target
metabolite by querying databases of known biochemical reactions. In contrast, de novo pathway design
tools such as BNICE (Finley et al., 2009), XTMS (Carbonell et al., 2014b), RetroPath (Carbonell et al.,
2014a), Retropath2.0 (Delépine et al., 2018), and novoStoic (Kumar et al., 2018) encode reactions as
molecule-agnostic rules to enable the design of pathways that include novel metabolite’s reaction steps.
Pathway design tools follow either (i) a graph-based description of reactions and metabolites (Wang et al.,
2017), (ii) a stoichiometric matrix encoding of allowed chemistries (Kumar et al., 2018), or (iii) a
retrosynthetic approach that applies generalizable reaction operators to capture possible biotransformation
(Delépine et al., 2018). The advantage of retro-biosynthesis-based algorithms is that they are not limited
by the chemistry and metabolite choices tabulated in reaction databases. Instead, they can instantiate

novel conversions on metabolites. A novel conversion is a hypothesized reaction not cataloged or
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characterized before that arises by employing a chemical reaction rule on a metabolite in a manner not
seen in nature before. Novel metabolites, in turn, are hypothetical molecules that satisfy the chemical
bonding rules of the novel conversion. The potential of novel conversions has already been demonstrated
to produce 3-hydroxy-propionic acid (3HP) (Jessen et al., 2014) using a novel B-alanine/a-ketoglutarate
aminotransferase enzyme to convert -alanine to malonyl semialdehyde, a precursor to 3HP. In another
study (Liu et al., 2021), the de novo production of 3-phenylpropanol was demonstrated using retro-

biosynthetic techniques.

As discussed above, through the application of reaction rules, retrosynthetic algorithms can craft
a multitude of possible de novo conversions that usually require the incorporation of enzymes that need to
operate on novel metabolites (either acting on non-native substrates or accepting a non-native cofactor).
However, the selection of enzyme candidates out of all known enzymes that can catalyze the needed
metabolic transformation on non-native substrates poses a crucial design challenge in metabolic
engineering and pathway design with novel steps (Fig. 1 pictorially illustrates this challenge). SimZyme
(Pertusi et al., 2015) is a tool that rank-orders enzymes based on the substrate similarity of a given
substrate to native substrates of the enzymes. Such tools can offer reasonable starting points for enzyme
discovery for missing pathway steps (Carbonell et al., 2018; Pertusi et al., 2015). However, this approach
relies upon the assumption that enzymes would structurally accommodate and catalytically engage with
novel substrates based solely on the similarity in shape and size to their native substrates. However,
enzyme-substrate reactivity depends on both substrate similarity and enzyme plasticity to accept and
perform the same chemistry on different substrates. For example, the acetyl-CoA hydrolase Achlp
enzyme from Saccharomyces cerevisiae (Fleck and Brock, 2009) exhibits a high specificity towards
succinyl-CoA. However, it shows no activity towards the chemically and size similar substrate, acetyl-

CoA.

On the contrary, phosphatase enzymes from various thermophiles overexpressed in Escherichia

coli show activity on three chemically distinct substrates glucose-6-phosphate (G6P), fructose-6-
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phosphate (F6P), and mannose-6-phosphate (M6P). The study also shows that the phosphatase derived
from different thermophiles exhibits varying substrate specificities towards the above three metabolites,
preferring one over the other in different organisms—the phosphatase derived from Thermotoga sp. 38H,
Thermoclostridium stercorarium, and Petrotoga miotherma show the highest proportion of mannose,
glucose, and fructose from M6P, G6P, and F6P, respectively (Tian et al., 2022). Therefore, enzyme
variants from different organisms can often have widely different substrate preferences and degrees of

promiscuity, reinforcing that it is not only substrate similarity but also enzyme plasticity that needs to be
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captured to identify promising enzyme candidates for novel conversions. A number of different factors
have been used on a case-by-case basis to select enzymes based on (i) substrate similarity, (ii) enzyme
family promiscuity, and (iii) accommodation of new substrate in the active site (Carbonell et al., 2018,
2014a; Kumar et al., 2018). However, no systematic and broadly applicable method exists for enzyme
selection that simultaneously leverages these multiple criteria. It is important to note that even though

numerous enzyme selection strategies use algorithms (Feehan et al., 2021; Goldman et al., 2022) that
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Fig. 1. Overall workflow for de novo pathway design. Retrosynthesis tools can assemble pathways with novel steps.

EnzRank calculates a probability score for an enzyme to have activity on a substrate. This rank-order the enzymes with the same
reaction rule can be carried out using the EnzRank scores. High scoring enzymes can be subsequently re-engineered to increase
substrate specificity towards the novel substrate.

predict the EC classification of a
given enzyme sequence to infer
whether the enzyme can catalyze
a novel substrate, this level of
detail is not sufficient for our goal
as all candidate enzymes would
presumably be classified with the

same EC number.

Often the desired activity

on a novel substrate is present,
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Fig. 2. Novel reactions using reaction rules, (A) Novel promiscuous hydroxylase
enzyme that was engineered to work on two different substrates, tyramine and tyrosol
for the synthesis of an antioxidant drug hydroxytyrosol. (B) The native reaction of
the flavin-dependent monooxygenase HpaBC enzyme that acts on 4-
hydroxyphenylacetate undergoes an exact metabolic transformation as the novel
reactions, hence the same reaction rule (shown in the blue circle). (C) number of
reactions with the same reaction rules. There are a significant number of reactions
within the same rule which demonstrates the need to design an enzyme selection tool

albeit the activity level is low (Wen et al., 2008). Protein engineering through directed evolution (DE) is a
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popular strategy for ratcheting up the desired activity with the novel substrates while at the same time
abolishing activity with the original substrate (Hibbert and Dalby, 2005; Porter et al., 2015; Taylor et al.,
2015). For example, among many other examples, DE has been demonstrated to produce steviol
glucosides using cytochrome p450 (CYPs) enzymes kaurene oxidase (KO) and kaurenoic acid
hydroxylase (KAH) in yeast (Gold et al., 2018). However, often no obvious choice exists for the starting
enzyme to undergo DE. For example, Fig. 2A shows the novel conversion of tyramine and tyrosol as
substrates with a promiscuous hydroxylase enzyme (Chen et al., 2019). These novel conversions are
inferred by applying the reaction rule implied by the known enzymatic function of a flavin-dependent
monooxygenase HpaBC enzyme on 4-hydroxyphenylacetate (shown in Fig. 2B). The KEGG database
contains as many as 967 distinct sequences of HpaBC that belong to multiple organisms making it non-
trivial to select a single (or even a handful) of suitable enzymes which may be the best starting points for
DE. In addition, depending on the specificity of the employed reaction rule, there are often undesired
reactions with the same reaction rule operating on different substrates, which should not be excluded from
consideration (see Fig. 2C). Therefore, there is a need for a computational tool to select and pick top
enzyme candidates that are most likely to either have or are likely to acquire upon engineering activity on
a given novel substrate. Herein we introduce EnzRank, a computational method that relies on training a
CNN model which uses enzyme sequences and their respective substrate's molecular signature as inputs
to assign a probability score that the enzyme sequence has activity on the substrate. The EnzRank
calculated probability score of the enzyme-substrate pairs is used to rank-order all candidate enzymes by

their potential to exhibit activity for the novel substrate.

EnzRank is inspired by the recent advances of machine learning-based approaches in predicting
enzyme classes, properties, and functions with tools such as alphafold2 (Jumper et al., 2021), DeepEC
(Ryu et al., 2019), ECpred (Dalkiran et al., 2018), and SDN2GO (Cai et al., 2020) (Table 1 shows a list of
such tools for enzymes). Machine learning methods that use enzyme sequences as input incorporate a

variety of feature encoding techniques such as UniRep (Alley et al., 2019), SeqVec (Heinzinger et al.,
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2019), ESM-1b (Rives et al., 2021), BERT (Devlin et al., 2019), and RoBERTa (Liu et al., 2019), etc. We
opted for a learnable embedding technique to learn problem-specific features for enzyme sequences along
with a convolutional neural network DeepConv-DTI (I et al., 2019). EnzRank encodes the enzyme’s
amino acid sequence as trainable embeddings to learn mappings that connect to the respective enzyme-

substrate activity.

To encode substrate structural information, we used a molecular signature-based encoding,
morgan fingerprints, which uses the presence of small substructures to define a molecule and are widely
used for chemical similarity (Capecchi et al., 2020). This architecture is largely inspired by DeepConv-
DTI (I et al., 2019), which was successful in drug-interaction prediction, similar to the problem at hand —
enzyme-substrate activity prediction. EnzRank achieves an average recovery of 80.72% for true positives
and 73.08% for true negatives on blinded test data splits. EnzRank's performance on an unseen dataset
was assessed by a small dataset of P450 monooxygenase enzymes achieving the recovery for positive and

negative activity pairs are 75% and 95%, respectively.

Table 1. Recent machine learning-based tools for enzyme functions predictions

ML tools for | Description Method Input required Reference
enzymes
DeepEC Enzyme Commission CNN Protein Sequence Ryu et al.,
(EC) number prediction 2019
ECpred EC number prediction Ensemble method Protein Sequence Dalkiran et al.,
(SVM and kNN) 2018
mlIDEEPre EC number prediction Ensemble method (CNN | Protein Sequence Zou et al.,
and RNN) 2019
Proteinfer EC number and Gene CNN Protein Sequence Sanderson et
ontology prediction al., 2021
SDN2GO Protein function CNN Protein sequence, protein Cai et al.,
prediction domain content, and known | 2020
protein-protein interactions
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DeepFRI Protein function Graph convolution Protein sequence and Gligorijevi¢ et

prediction network (GCN) structure al., 2021
SimZyme Enzyme selection for Substrate similarity of | Molecular fingerprint of Pertusi et al.,
pathway design enzyme’s native and the | substrates 2017

novel substrate

EnzRank Enzyme selection for CNN Protein sequence and This study
novel reactions in de substrate structure
novo pathway design

We demonstrate the application of EnzRank to rank-order enzyme variants by their likelihood to
exhibit activity upon the corresponding substrate. We applied it to rank-order the enzymes for novel
conversions in the pathways identified by novoStoic (Kumar et al., 2018) for 3-HP synthesis. This

computational pre-processing step can potentially speed up the process of assembling de novo pathways.

2. Results
2.1. Performance comparison of Similarity-based and CNN models on the validation
dataset
We explored two different models for enzyme-substrate activity prediction, (i) SimProd: a substrate
similarity and protein sequence identity-based model, and (ii) EnzRank: a Convolutional neural network.
SimProd uses Tanimoto-based substrate similarity and sequence alignment with all other protein
sequences. It formalizes existing intuitive strategies for enzyme selection by relying on substrate
similarity and protein sequence identity. SimProd serves as a performance floor to assess improvements
afforded by the more sophisticated CNN model. Briefly, in SimProd, for a given enzyme-substrate pair,
the substrate similarity and sequence alignment scores with all the known enzyme-substrate pairs in the
database are multiplied. The combination with the maximum score is assigned as the final score to the
examined enzyme-substrate pair. A threshold parameter was used to classify the corresponding enzyme-

substrate pairs as active based on the final scores. The SimProd model devises an optimal threshold by
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minimizing the mean absolute error between the predicted and assigned label for the activity (1: active

and O: inactive) over the entire training data (detailed method in Supplementary data).

In contrast, the CNN-based model uses both enzyme sequence and substrate molecular signatures
as inputs to a convolutional neural network in a feed-forward fashion to output a probability score for the
enzyme-substrate activity (details in the Methods section). The model uses a representation learning
approach to encode features from the enzyme sequence. The enzyme sequence first passes through an
embedding layer to assign a real-valued vector to each amino acid. The output from the embedding layer
goes through a series of 1-D convolutional layers. The molecular fingerprints of the substrate are binary
vectors of length 2,048 which are input to a full-connected layer parallelly and independently to the
enzyme sequence. Finally, the enzyme and substrate outputs are combined in a fully connected layer to
output a single real-valued probability between O and 1. The training data is passed through the model,
and the binary cross-entropy loss between true labels and predicted loss is set as the training objective
function. We used an 80:10:10 split of the entire dataset parsed from the BRENDA database to generate
training, validation, and test datasets and perform a 10-fold cross-validation training of the CNN model.
The cross-validation training yielded ten different models. We used the average recovery percentage of
positive and negative predictions across the ten models as a metric to assess model performance. The
positive recovery is defined as the percentage of known active enzyme-substrate pairs correctly predicted
as active, also called true positive (TP). The negative recovery is the percentage of correctly predicted
negative pairs in the data, true negative (TN).

X . . EEN SimProd
While both positive and negative recovery EEm EnzRank

rates for both SimProd and EnzRank are comparable

@®
o

(shown in Fig. 3), EnzRank dramatically

o
=}

outperforms SimProd over the validation dataset

% recovery
&

»N
o

(especially for positive pair recovery). The average

o Training Validation Training  Validation
Positive recovery Negative recovery

Fig. 3. The comparison of performance accuracy as %

10 Trecovery of two different models (SimProd and EnzRank)
tested for activity predictions. The positive and negative
recovery shows the percentage of correctly predicted positive
and negative pairs in the training and validation data
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recovery on validation data splits for the positive datasets are 80.74% and ~10% for EnzRank and
SimProd, respectively. Whereas the negative recovery on validation dataset is 73.74% and 91% for
EnzRank and SimProd, respectively. This implies that, unlike SimProd, which is susceptible to
overfitting, EnzRank can genuinely “learn” from patterns seen in active substrate-enzyme pairs in the
dataset and correctly recognize them in the validation dataset. Note that the negative recovery for
SimProd is higher than the EnzRank because the negative dataset itself was generated using substrate
dissimilarity of the enzyme’s native substrate and all other substrate molecules in the dataset using the
Tanimoto similarity score. Therefore, SimProd is biased toward negative recovery as it uses the similarity
between substrates and enzyme sequences to predict activity, thereby giving high accuracy toward the
negative pairs. As our goal is to predict positive activity for novel enzyme-substrate pairs, the SimProd

model will not be a viable choice.

Next, we performed hyperparameter optimization of the CNN model parameters by varying the
dropout probability and the number of epochs (Supplementary data). The dropout probability is an
important parameter to optimize as it can prevent model overfitting (Srivastava et al., 2014). The number
of epochs is the number of times the entire training data is passed through the learning algorithm. It is
associated with the generalization capacity of the neural networks and controls overfitting (Perin et al.,
2021). The grid search showed an optimal performance at a dropout probability of 0.3 and 70 epochs. The
CNN model recovered 98.96% and 98.11% positive and negative pairs over the training dataset and

80.74% and 73.74% over the validation dataset with the optimized parameters (see Table 2 for details).

Table 2. Performance metrics of EnzRank CNN model on ten different splits of the training, validation, and test datasets using
optimized hyperparameters

Training Validation Test

Data Split # (% recovery) (% recovery) (% recovery)

! Positive Negative Positive Negative Positive Negative
pairs pairs pairs pairs pairs pairs

1 98.86 97.42 81.17 72.70 81.44 73.24

2 99.52 98.96 81.44 77.11 79.73 77.12

11
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23 99.78 97.97 87.20 68.64 87.48 67.29

4 99.52 98.41 80.99 73.06 82.16 73.87
5 99.69 97.04 83.60 71.62 84.59 70.36
6 98.51 98.23 80.36 73.78 78.19 74.77
7 99.48 98.34 81.80 73.15 82.52 71.26
8 98.82 98.50 80.36 74.68 78.38 72.34
9 98.97 97.46 79.81 74.77 80.45 72.16
10 96.45 98.75 70.72 77.93 72.25 78.38
;‘J;‘;age 98.96 98.11 80.74 73.74 80.72 73.08

Moreover, it is always a good practice to test machine learning models' performance on a blinded
dataset that has a different origin from the training dataset and has not been a part of training. We
manually curated a dataset of cytochrome P450 monooxygenase enzymes (shown in Supplementary data),
including 36 enzyme-substrate pairs with 16 active pairs (positive) and 20 inactive pairs (negative). The
negative pairs were generated using small molecules (usually show activity on long-chain fatty acid with
>9C (Nakayama et al., 1996)) for which the cytochrome P450 enzymes are known not to show any
activity (Kitazume et al., 2002; Nakayama et al., 1996). EnzRank (CNN model) achieved strong positive
(75%) and negative (95%) recovery rates comparable to validation performance. It correctly identified the
lack of activity of cytochrome P450 enzymes for almost all decoy enzyme-substrate pairs (recovery 95%).
EnzRank captured enzyme-substrate activity on a smaller blind dataset with a comparable recovery

compared to the split dataset used for validation and testing.

2.2. Challenging EnzRank with a negative dataset composed of similar substrates to the
native ones

We next assessed the recovery of native from very similar substrates by EnzRank as opposed to simply

randomizing enzyme to substrate assignments in the negative dataset. To this end, we generated new test

12
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datasets using the previous 10 random test data splits. The previous datasets contained an equal
proportion of positive and negative data with 2,220 enzyme-substrate pairs (1,110 positive and 1,110
negative pairs). To generate a more “challenging” negative dataset, we paired the enzyme sequences of
the positive data with the top ~10% of most similar compounds with respect to their native substrates
using the Tanimoto similarity index, resulting in an average of ~200 negative data points for each protein
sequence. We repeated this process for all 10 splits, resulting in a test dataset of length ~222,000 in each

split.

Upon training, we found that positive pairs (i.e., native 40 1

= Positive
354

== Negative

substrates) exhibited significantly —higher scores

compared to the near-native negative pairs, as shown in

Percent

Figure 4. Supplementary data includes the same plot for
all ten splits of the test data. the statistical significance of

the score differences between positive and negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Scores

was assessed using the Wilcoxon rank-sum test accessed

. . Fig. 4. Comparison of positive and negative pairs
through the SciPy Python package. The null hypothesis  performance on one of the split test datasets

generated using similar substrates. Red and black

posited that the two sets of scores (positive and negative  bars show distributions of EnzRank predicted scores
for negative and positive enzyme-substrate pairs,

L. . X respectively. Y-axis is normalized such that the sum
data) were drawn from the same distribution, while the o pars for each category sum to 100%.

alternative hypothesis ascertains that the positive pairs scores were more likely to be greater than those
from negative pairs. The analysis yielded a p-value of 2.37e-22, which rejects the null hypothesis and
demonstrates that the positive dataset exhibiting higher scores over the negative dataset is statistically
meaningful. This proves that EnzRank can discriminate between positive and negative pairs generated by
matching known positive enzyme sequence pairs with near-native substrates. Note that it is entirely
possible that many of the pairs in the “negative” dataset may be in fact functional. Therefore, we
observed an average recovery rate of 80.72% for positive pairs (same as shown in Table 2) but also a non-

trivial recovery of 55.72% for negative pairs. This may allude to the fact that (some) of the near-native
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substrates have activity on the paired enzymes. Note that prior models (Carbonell et al., 2018; Moriya et
al., 2016) solely relied on substrate similarity and consistently ranked the most similar substrate as the top
candidate. In contrast, EnzRank leverages both substrate information and local residue patterns within
protein sequences to account for both substrate and sequence characteristics, surpassing the use of

substrate similarity alone.

2.3. Selection of enzymes for novel reactions in pathways found for 3-Hydroxypropionic
acid
We demonstrate the utility of EnzRank for pathway design by selecting prototype enzyme candidates for
conversions in the novel pathways identified by novoStoic (Kumar et al., 2018) for 3-hydroxypropionic
acid (3-HP) synthesis. Several biosynthetic pathways for 3-HP synthesis have already been identified
using glucose, glycerol, xylose, and malonic acid as starting points (Liang et al., 2022). Here, we used
pyruvate as the precursor, as glucose to pyruvate conversion pathways are well established. Both KEGG
reaction database (Kanehisa et al., 2016) entries and reaction rules implied by the cataloged reactions
were used. We first assessed the best overall conversion stoichiometry satisfying overall thermodynamic
feasibility:
1 C3Hs03+ 1 NADH + 1 H* & 1 C3HeO3 + 1| NAD* A.G"” = —32.4 kJ/mol

Using KEGG ids we have:

C00022 (pyruvate) + C00004 (NADH) + H" = C01013 (3-HP) + C00003 (NAD")

14
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Fig. 5. Three novel pathways found for 3-HP biosynthesis; The first identified pathway A includes reaction steps 1 and 2,
where pyruvate is first converted to (R)-Malate via (R)-Malate oxidoreductase in step 1, and step 2 involves a novel conversion
derived from reaction rule R1 (carboxy-lyase enzyme shown in Table 3) to convert (R)-Malate to 3-HP. Pathway B consists of
reaction steps 3 and 4; step 3 converts pyruvate to (S)-Malate using the (S)-Malate oxidoreductase enzyme, which then uses
reaction rule R2 (carboxy-lyase enzyme, Table 3) based novel conversion to produce 3-HP as step 4. Pathway C involves steps 5

and 6, where step 5 converts pyruvate to L-serine and uses reaction rule R3, derived from ammonia-lyase enzyme based on
KEGG reaction “R08846” (Table 3).

The negative standard Gibbs energy change of the overall conversion ensures that the overall
stoichiometry is thermodynamically feasible under standard conditions. The next step was the

identification of the intervening chemical conversion steps that conforms to the identified overall

Table 3. Reaction rules used in novel conversion for 3HP synthesis

Rule id Reaction rule Enzyme/homolog name Step
o OH 2
4 RO1751
R1 b v - (R, R)-tartrate carboxy-lyase 2
OH e i
(R,R)-Tartaric acid (D)-Glycerate

o o

T )j R02636 . ; Q
R2 " 18 LO/ T § UDP-D-galacturonate carboxy-lyase 4

HO'

UDP D-galacturonate UDP-L-arabmose

R08846

NADH +H* \—\D HO
R3 3,4-d1hydroxy—L-phenylalanme 6

ammonia-lyase

3,4-D1hydroxy-L-phenylalan|ne Dihydroxyphenylpropanoate
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stoichiometry using the 3,603 unique reaction rules derived from 7,053

biochemical reactions in the KEGG database. Among many identified, three
pathways (see Fig. 5) were unexplored before. Existing biosynthetic pathways
for 3-HP involve four or more reaction steps starting from pyruvate (Liang et al.,
2022). All three pathways found by novoStoic involve only two steps by
leveraging designed novel conversions. Next, we used dGPredictor (Wang et al.,

2021), an automated standard Gibbs energy prediction tool, to ensure the

Table 4. Top 10 genes
from different organism
with EnzRank score >
0.995 for rule R1

Organisms

B. Composti

S. humosa

U. limnaea

B. bacterium GR16-43

A. sediminis

H. halodurans

S. rapamycinicus

C. thermophila

S. usitatus

E. billingiae

thermodynamic feasibility of individual steps in the identified pathways. dGPredictor allows the

estimation of standard Gibbs energy change for reactions, including reactions with hypothetical

metabolites. The predicted A,G° for reaction step 1, which is KEGG reaction R00215 is -24.15 +

6.62 kJ/mol, and for the novel reaction step R1 is —11.67 £ 7.33 kJ/mol consistent with thermodynamic

feasibility for the two reaction steps under standard conditions.

Organisms

U. croceus

C. manihotivorum

Next, we applied EnzRank to rank order enzymes for novel reaction steps | A: indistinctus

R1. We found two reactions in the KEGG database conforming to the same

C. amurskyense

A. soli

A. finegoldii

reaction rule as R1 (i.e., KEGG reaction R01751 (EC 4.1.1.73) and R07125 (EC

4.1.1.85)). Upon parsing all the genes for those reactions from different organisms

using the KEGG database, we found 2,819 homologous sequences. We used EnzRank to rank-order them

in terms of their predicted activity fitness for the novel substrate. The top ten candidates with EnzRank

scores of more than 0.995 for reaction rule R1 are shown in Table 4
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Similarly, for pathway B, the thermodynamic analysis using dGPredictor | Rhizobium sp. N731

A. sanaruensis

estimates a A,G” of —13.79 + 4.78 kJ/mol for reaction step 3 (R00214) and —22.03 | M. preniciosa

S. halorespirans

+ 5.76 kJimol for step 4, (i.e., rule R2). Reactions R02636 (EC 4.1.1.67) and [ DSM 13726

RO1384 (EC 4.1.1.35) conform to reaction rule R2. As many as 2,994 sequences that code for
homologous enzymes was found. Table 5 tabulates the top ten scoring candidates. Finally, for pathway C,
the thermodynamic analysis using dGPredictor revealed that steps 5 (i.e., KEGG R00220) and 6 (i.e., rule
R3) have standard free energy of change A.G° of 29.83 + 3.43 kJ/mol and -65.64 + 4.72 kJ/mol,
respectively. Even though the overall A,G° for the pathway is negative, step 5 seems to be
thermodynamically unfavorable; therefore, pathway C does not seem to be a viable option. In summary,
we demonstrated how EnzRank could be integrated with an overall retrosynthetic workflow to rank-order

enzyme sequences as appropriate candidates for the novel conversion(s).

Table 5. Top 10 genes
from different organisms

2.4. Class Activation Maps to identify protein residues positively with EnzRank score >
0.99 for rule R2

influencing EnzRank scores
There are various approaches to interpret predictions made by a convolutional neural network in terms of
which parts of input features are most important for arriving at the predictions (Selvaraju et al., 2016;
Zhou et al., 2015). Such methods are widely used in computer vision, specifically in image classification,
to find regions of images that lead to a positive class prediction. Here we leverage one such approach,
namely, the gradient-weighted Class Activation Maps (grad-CAMs) (Selvaraju et al., 2016). Grad-CAM
uses the gradient of the output score with respect to each convolutional feature map to estimate the
contribution of individual residues to the final score (see details in the method section “Class Activation
Map”). After calculating the grad-CAM scores, we visualize them by mapping onto their corresponding
three-dimensional structures by AlphaFold-2.0 (Jumper et al., 2021). To assess the grad-CAM scores, we
applied the method on enzyme-substrate complex structures available in the Protein data bank (Berman et

al., 2003). The results are summarized in Fig. 6. We found that residues involved in binding exhibit

17



318

319

320

321

322

323

324

325

326
328
329
330

331
332

333

334

335

higher on average grad-CAM scores implying that the CNN model can learn structural features even
though the training data did not explicitly encode any. This has been seen in other studies where training
purely on sequence features identified structurally important features (Elnaggar et al., 2021; Rives et al.,
2021). Not all residues with high grad-CAM scores are near the binding site pocket. Possibly other factors
important in catalysis, such as interaction with partner subunits, dynamic movement of different enzyme

parts, and interaction with allosteric sites could be at play. Assessing these other factors is beyond the

scope of this effort.
(A) Grad-cam score (B)
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Fig. 6. Grad-CAM results for two top enzyme candidates in reaction rules R1 and R2. (A) and (C) show three-dimensional
structures of the enzymes in surface representation with the homology inferred predicted substrate interaction shown in stick
representation. The surface of the enzyme is color-coded based on the grad-CAM scores ranging from yellow (highest score) to
gray to blue (least score). (B) and (D) show respective grad-CAM score line plots for enzymes shown in (A) and (C), respectively
(stars in line plots show the binding site residues). (A) and (B) Decarboxylase enzyme in B. composti (Uniprot id:
AOATTSEPK?7) for reaction rule R1 and corresponding grad-CAM line plot. (C) and (D) Decarboxylase enzyme in U. croceus
(Uniprot id: AOA1DS8PAW?7) for reaction rule R2 and corresponding grad-CAM line plot.

2.5.User-friendly interface for predicting activity probability score using EnzRank
EnzRank input format uses the enzymes’ entire protein sequence and SMILES string of the substrate as

input. For example, EnzRank recognizes the phenylpyruvate tautomerase enzyme “P14174:
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MPMFIVNT...” as a protein sequence and the SMILES string of substrate as “3-phenylpyruvate: [O-

]C(=0)C(=0)Cclcccecl” as input (shown in Fig. 7). Another benefit of using SMILES string as input to

EnzRank instead of chemical IDs from known databases is that it allows the inclusion of novel substrates

that are not cataloged in any biochemical databases. A user-friendly interface is developed to facilitate

easier access to EnzRank for rank-ordering starting enzyme candidates for novel reactions in de novo

chemical synthesis pathways. This allows users
to input multiple enzyme sequences at once and
rank order EnzRank predicted activity scores
with the desired novel substrate. EnzRank can
also be used as a pre-processing tool to reduce
the sample size of enzymes for re-engineering
novel activity. We envision that the developed
GUI will facilitate easy adoption of EnzRank to
the broader metabolic engineering and
synthetic biology community, which relies on
de novo synthesis tools and enzyme re-
engineering tools to improve/find novel

efficient routes for biochemical synthesis.

3. Discussion

Chemical o
& Biological . 4=%
nzRank :::. -

Optimization, ..~ ™"
Laboratory .

Enzyme Sequence

P14174:MPMFIVNT...

Substrate

3-phenylpyruvate: [0-]JC(=0)C(=O)Cclecece]

Predict

EnzRank score for P14174- 3-phenylpyruvate pair:
0.924225

Fig. 7. A web-based graphical user interface for easier access to
the EnzRank tool. The interface requires the protein sequence of the
enzyme and SMILES string of the substrate as input. Next, clicking
the search button outputs the scores that can be used to to rank-order
enzymes for selecting a starting point for protein re-engineering.

In this work, we developed a CNN model for enzyme activity prediction using only the substrates’

molecular fingerprints and the enzyme sequence as inputs. We trained and validated the model using a

dataset of known enzyme-substrate activities curated from the BRENDA database. We found that the

CNN model (EnzRank) performs better than an enzyme/substrate similarity-based model (SimProd). The

better performance of the CNN model can be attributed to the use of convolution layers that can

19



361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

automatically detect local features of the enzyme sequence responsible for activity prediction. Although
the CNN-based model performed well across training-validation datasets and also on a blind dataset,
some challenges remain, such as the lack of a true negative dataset (experimentally validated) for training
the model. Here, we used a synthetic dataset formed by substrates dissimilar to the native substrate of an
enzyme as the negative data. While it is unlikely that an enzyme can be active on substrates highly
dissimilar to native substrates, using such a strict negative dataset would prevent the model from learning
about inactive substrates that are only marginally dissimilar to native substrates. However, one could keep
enriching the training dataset by including substrates that have been experimentally tested to show no
activity and progressively increase the model’s fidelity. Recent developments in natural language
processing (NLP) based literature mining tools (Cheng et al., 2008; Hur et al., 2009; Simon et al., 2019)
could potentially be leveraged to help generate better negative datasets to aid in training future machine
learning models. Various articles referring to EC class 1.1.1.1 in the BRENDA database contain limited
information on the zero activity of enzyme-substrate pairs. We performed a literature survey to find
substrates for EC class 1.1.1.1 that show no activity toward the enzyme (Supplementary data) to show the
potential of leveraging NLP-based literature mining tools to automate the generation of the

experimentally validated negative dataset as manual curation for each EC class might not be feasible.

In its current form, we anticipate that EnzRank can assist de novo pathway design tools such as
novoStoic in selecting the starting enzyme for novel substrate activity in the identified de novo pathways.
The current version of novoStoic uses substrate similarity between the desired substrate and the native
substrate of the enzyme to rank the enzymes that can perform the exact chemical transformation in a
reaction. EnzRank could uncover better enzyme targets than just using substrate similarity by accounting
for both enzyme sequence information and substrate information. Along with that, using grad-CAMs also
provide insights on specific residue level information that influences most toward the predicted EnzRank

score for enzyme-substrate activity.

20



385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

There is still scope for improvement over EnzRank rankings by including more descriptors of protein
features. For example, several machine learning-based feature extraction methods (Cai et al., 2020;
Devlin et al., 2019; Elnaggar et al., 2021; Liu et al., 2019; Rives et al., 2021) (such as UniRep, ProtBERT,
SeqVec, ESM-1b, etc.) can be utilized along with protein sequence to build a CNN model that might
further improve the performance of the activity prediction model. These feature extraction methods are
pre-trained on millions of protein sequences to learn essential features from the protein sequences.
EnzRank is, to our knowledge, the first computational tool to assist in rank-ordering starting enzymes to
undergo directed evolution toward a new substrate. EnzRank can be used within any de novo pathway
design tool that uses reaction rules to build retro-biosynthesis pathways to select the enzymes for novel
reactions, as current practices only use reaction rules for novel reactions but there exist multiple enzymes
with the same reaction rule that possess the challenge to pick a few candidates for protein re-engineering
to alter substrate/cofactor specificity. EnzRank could also help complete organism-specific metabolic

models by pinpointing possible secondary enzymatic activities of the known enzymes.

4. Methods

4.1. Dataset

Data on enzyme-substrate activities were obtained from the BRENDA database (Schomburg et al., 2002)
alongside the PDB ID for the protein sequences and the common chemical names of the active substrates.
The protein sequences were downloaded from UniProt (Bateman et al., 2021). We compiled a list of all
substrates across all enzymes. We then queried the PubChem database (Kim et al., 2021) and the Open
Parser for Systematic [IUPAC nomenclature (OPSIN) database (Lowe et al., 2011) to establish uniform
identities. OPSIN allows the identification of the [UPAC names (Mc Naught and Wilkinson, 2012) from
the common names of the substrates obtained from the BRENDA database. We then used these IUPAC
names to retrieve the simplified molecular-input line-entry system (SMILES) strings (Lunnon et al.,

1988) for the substrates from the PubChem database (Kim et al., 2021). Next, the RDkit python
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package(Landrum, 2006) (https://www.rdkit.org/) was used to generate the morgan fingerprints
(Landrum, 2006) of the substrates. The morgan fingerprints, also known as extended connectivity
fingerprints (ECFPs), are the molecular representation based on the topology of the chemical structure
within a specific distance (Rogers and Hahn, 2010). We used the Morgan fingerprint (Rogers and Hahn,
2010) to encode substrate molecules as a graph feature. Using RDkit, the molecular fingerprints of
substrates were generated for radius 2 utilizing the SMILES string of the molecules. In the end, each
substrate can be represented as a binary vector of 2,048 lengths, whose indices indicate the presence of a
specific chemical moiety within the molecule. A total of 3,500 enzymes sequence and 10,353 compounds
were parsed, resulting in 11,080 known enzyme-substrate activities. The lack of availability for negative
enzyme-substrate activity data in BRENDA leads us to use random enzyme-substrate pairs that are not
present in the parsed positive dataset. Therefore, the negative datasets were generated by first finding all
the enzyme-substrate pairs that are not known as active. Next, substrate similarity was used to pick
substrates that are dissimilar to the native substrates of the enzymes using a Tanimoto-based chemical
similarity score (Bajusz et al., 2015). The primary reason for using an entirely dissimilar substrate is to
ensure that the functional groups present in the native substrate, which might be responsible for the
possible activity, are absent in the substrate generated for negative activity. The Tanimoto index uses
molecular substructures/fingerprints to find the similarity between two chemical structures. We then pick
the top dissimilar substrates and build the dataset so that the positive and negative datasets are in equal
proportion. Thus, we generated 11,080 positive and 11,076 negative enzyme-substrate pairs, respectively.
Next, we performed an 80-10-10 split of the dataset to generate the training and validation, and test
datasets. The training dataset consists of 8,880 pairs of positive enzyme-substrate pairs with known
activity from the BRENDA database and 8,876 negative pairs with no known activity (pairs not present in
the BRENDA database and substrates dissimilar to the enzyme’s native substrate, i.e., zero Tanimoto
similarity index). The validation and test dataset both includes 1,100 pairs of both positive and negative

enzyme-substrate pairs. The notion here is to use the percentage recovery of the known enzyme-substrate
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activity (% positive recovery, TP) as a metric to measure the performance of the CNN model over a

dataset that is different from training, validation, and test data.

4.2. Convolutional neural network for enzyme-substrate activity prediction

We adopted the convolutional neural network (CNN) architecture provided by DeepConvDTI (I et al.,
2019), which was used for predicting drug-target interactions. The CNN involves convolution over the
protein sequence to extract the local residue patterns within the protein sequences and a fully connected
layer of the substrates using the molecular fingerprint as a feature. After processing these two layers, the
model concatenated these layers and constructed a fully connected layer, which resulted in the output
layer (Fig. 7). An exponential linear unit (ELU) function (Clevert et al., 2016) was used as an activation
function for every CNN layer except the output layer. ELU functions have been known for speeding up
learning in deep neural network models, leading to higher accuracy (Clevert et al., 2016). Here we define

a function ELU as-

x ifx>0
ELU(x) = {a(exp(x) -1 ifx< o0

Where a is the hyperparameter that controls the ELU function, and x is the input to the activation
function. The output layer was activated using the sigmoid function to classify enzyme-substrate pairs as
active or inactive. The final scores of the output layer are used to rank-order all the enzymes for novel
substrate activity. The entire neural network model was implemented in the Keras python package

(Chollet and others, 2015a). The detailed model summary is provided in Supplementary data.
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Fig. 8. Framework for the CNN model of EnzRank, uses the BRENDA database for known enzyme-substrate activity. An
equal proportion of negative activity was generated using the structural similarity of the enzyme’s native structures and chemical
compounds in the database and considering the ones that are completely dissimilar as the hard negative dataset. Next, we used the
80:10:10 split of the dataset to train, test, and validate the model. The CNN model uses convolution over the protein sequences
and the fully connected layer from the molecular fingerprints and concatenates them together in the final layer to output the final
score of an enzyme to have activity on a substrate

4.3. Convolution layer using embedding vectors assigned to the protein sequences

CNN-based models are known to capture important local patterns from the entire space. Fig. 8 shows the
overall schema of the convolutional layers. The model starts with an embedding layer which is a lookup
table of amino acids to the corresponding embedding vector. We used a Xavier initializer (viz., the ‘glorot
normal’ function in Keras (Glorot and Bengio, 2010)) to randomly initialize the embedding vector values,
which imposes normal distribution of the weights and output variance following the variance of input
(Glorot and Bengio, 2010). Embedding vectors are trainable, meaning embedding vector values change to
optimize the loss during the model training (Chollet and others, 2015). From the lookup table, the
embedding layer for the protein sequence is constructed by querying the embedding vector values
corresponding to each amino acid in the embedding layer. The length of the embedding matrix for all

proteins was fixed to the maximum protein length (i.e., 2,500). The margins were covered using null
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labels (i.e., the character $) and the corresponding embedding vectors, which would give a meaningless
convolution result filtered out during the global max-pooling. The convolution on embedding layer of
protein along the sequence in 1D fashion with one stride (Supplementary data), with the convolution from

j™ to the (j+WS)™amino acids in sequence, which can be defined as-

ES WS-1

(X+W)j = Z Z WmnXm,j+n

m=1 n=0

Convolution over the entire sequence gives (MPL-WS+1) size layer for each filter, where WS is the
window size. Finally, to extract the essential local features, we conducted global max-pooling for each

filter, which is defined as
MaxPoolingglobal(EPk) = max((x *w);)

Where j covers all of the convolution results of the embedding matrix from the protein sequence Py. The
result is a filter-sized vector with a max-valued convolution result for each window, which does not
include bias from the locations of local residue patterns and the maximum protein length. After pooling
all convolution results, we concatenated them to represent the essential local interaction patterns as
vector-formatted features. Finally, for the organization and abstraction of protein features, concatenated
max-pooling results are fed into a fully connected layer, which constructs the latent representation of the

protein sequences.

The fully connected layer over the molecular fingerprints was used as the latent representation of the
substrates. The latent representation of the data contains all the necessary information needed to represent
the original data point (Bishop, 2006). Finally, a fully connected layer was constructed by concatenating

the layers to represent proteins and substrates to predict the activity of enzyme-substrate pairs.

4.4. Loss function estimations and weight optimization
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The CNN architecture allows the flow of input to the output layer in a feed-forward method. The CNN

model estimates the loss using binary cross-entropy functions defined as-

n

1
loss(W,x) = == > [yilogy; + (1 = y) log(1 = )]

i

Where W and x are the weights and input to the CNN and y; and n represents the predicted output and its
size (I et al., 2019). We also used L2-norm regularization along with the loss function to avoid overfitting.

Specifically, the final loss function can be defined as-

L-1
loss,,(W,x) = loss(W,x) + B8 ) [[W!]|
=1

Where the weights are optimized using the Adam optimizer (Kingma and Ba, 2015) in Keras, which

penalizes loss to give a generalized prediction for the model.

4.5. Class Activation Map

We utilized a method based on a gradient-weighted Class Activation Map (grad-CAM) (Selvaraju et al.,
2016) to identify the residue level inference on the protein sequence for predicting the enzyme-substrate
activity. The goal here is to find residues that contribute most to the activity score. Grad-CAM uses a
class-specific gradient information that flows through the convolutional layer of a CNN to produce a
localization map of the important regions in the input. Grad-CAM is proven effective in image
classification problems (Panwar et al., 2020; Selvaraju et al., 2016). We use grad-CAM to detect residues

in the protein sequence that influences the most to the enzyme-substrate activity score.

In grad-CAM, we first compute the contribution of each filter, , in the convolutional layers used
to predict the enzyme-substrate activity label s by computing the gradient of the output y*, with respect to

the feature map F, € R’ of a convolutional layer over the entire sequence of length L:
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Where aj is the neuron importance weight of feature map k for predicting activity label s, estimated by
adding the contribution of individual residues. Afterward, we apply the weighted combination of all
feature maps in the convolution layer and follow it with a ReLU function to only obtain the residues that

have a positive influence on the activity score.

C;rad—CAM [i]] = ReLU (Z aliFk,s>

k

Where C,qq-cam[i] denotes the relative importance of residue i to activity label s. Finally, we take the

average of the grad-CAM scores from individual convolutional layers to estimate the residue-level
contribution of the protein sequence to the final activity score. The grad-CAM provides an advantage that
it can be done as a post-processing step and does not require re-training or change in architecture of the

model, making it efficient computationally and directly applicable to the model.
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All the relevant data are within the manuscript and supplementary data. The codes are available at
https://github.com/maranasgroup/EnzRank, and the web-based interface is available at

https://huggingface.co/spaces/vuul0/EnzRank
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