L))

Check for
updates

On the Range Assignment in Wireless Sensor Networks
for Minimizing the Coverage-Connectivity Cost

SAJAL K. DAS, Department of Computer Science, Missouri University of Science and Technology, USA
RAFAL KAPELKO, Department of Fundamentals of Computer Science, Wroctaw University of Science
and Technology, Poland

This article deals with reliable and unreliable mobile sensors having identical sensing radius r, communication
radius R, provided that r < R and initially randomly deployed on the plane by dropping them from an aircraft
according to general random process. The sensors have to move from their initial random positions to the
final destinations to provide greedy path ki-coverage simultaneously with kz-connectivity. In particular, we
are interested in assigning the sensing radius r and communication radius R to minimize the time required
and the energy consumption of transportation cost for sensors to provide the desired kj-coverage with ka-
connectivity. We prove that for both of these optimization problems, the optimal solution is to assign the

sensing radius equal to r = kl%s]ll and the communication radius R = k» %S]” where [|E[S]|| is the

characteristic of general random process according to which the sensors are deployed. When r < k1 m

orR < ky m, and sensors are reliable, we discover and explain the sharp increase in the time required and
the energy consumption in transportation cost to ensure the desired kj-coverage with ky-connectivity.
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1 INTRODUCTION

A wireless sensor network (WSN) typically consists of a large number of sensor nodes deployed
either randomly or according to some predefined statistical distribution over a geographical region
of interest. There exists a wide variety of applications of WSNs, such as environmental monitor-
ing (e.g., pollution, earthquake or seismic activities), wildlife habitat monitoring, structural health
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monitoring, border security and surveillance, intrusion detection, health care, diagnostics in indus-
trial process control, and so on. In many of these applications, the environment could be hostile
and/or the terrain could be difficult to reach, implying that manual deployment of sensors might
not be possible. In such situations, sensor nodes are often deployed randomly or sprinkled from an
aircraft, and they may remain unattended for months or years without any battery replenishment.

In WSNs, a fundamental problem to study is the sensing coverage [25]. However, due to limited
resources (CPU, memory, battery, signal processing, sensing and wireless communication capabili-
ties), a sensor node can sense only a small region. Therefore, the objective is to design optimal node
deployment strategies such that each point in the entire monitoring field is sensed (or covered) by
at least one sensor. There exist different notions of sensing coverage, such as blanket coverage
(static deployment of sensors that maximizes the target detection rate in the sensing field); barrier
coverage (deployment of sensors that minimizes the probability of undetected intrusion through
obstacles or barriers); sweep coverage (move sensor nodes to balance the cost, such as maximizing
event detection rate and minimizing number of missed detection), among others.

Alongside sensing coverage, another fundamental problem in WSNs is connectivity. Since a sen-
sor node has limited wireless capability constrained by the antenna size, the sensor can directly
communicate with only those that are within its radio communication radius. Thus, for any wide
area deployment, the sensors typically form a multihop network that supports various operations,
such as routing of sensed data to a sink (base station) or between far-off sensors including fusion
or aggregation en route. Now, for random deployment, a challenging problem is to guarantee that
the underlying network topology is connected. A high degree of connectivity (from graph theo-
retic viewpoint) provides higher reliability of the network against node or link failures. In WSNs,
the coverage and connectivity issues are often tackled together. However, finding an optimal node
deployment strategy that maximize coverage (i.e., how well each point in the region is covered by
sensors) yet maintaining high connectivity (i.e., how well the sensors are connected) is challeng-
ing. In this article, the mobile sensors are deployed on the plane by dropping them from an aircraft
according to general random process. We give the optimal sensor movement that maximize cov-
erage together with connectivity for both reliable and unreliable sensors. We also present further
insights including sensor deployment in three-dimensional (3D). Our solution can be widely used
in applications, such as intruder detection and border security.

Depending on the applications, sensor deployments may be static or mobile. The WSN moni-
toring region could be one-dimensional (e.g., border security between two countries, or highway
traffic), two-dimensional (e.g., agricultural field), or three-dimensional (e.g., air pollution moni-
toring, structural health of a building, or underwater sensing for oceanographic data collection).
The sensor network could be homogeneous in terms of identical sensing and/or communication
radius, or heterogeneous with non-uniform sensing and/or communication radii in which the sens-
ing/communication range is irregular (e.g., surveillance with directional antennas of different ca-
pacities, multipath and shadowing effects).

In this study, we focus on path k;-coverage (i.e., every point on the path is within a sensing
range of at least k; sensors) simultaneously with k;-connectivity (i.e., every point on the path is
within a communication range of at least k; sensors) that n sensors are deployed on the plane by
dropping them from an aircraft according to a general random process. As mentioned, random
deployment of sensors is not unrealistic, because there are situations in which it is dangerous or
even impossible for a human to deploy sensors in deterministic patterns. Moreover, due to wind,
geographic terrain and other factors, random deployment may be the only option.

The aim of this article is to analyze the optimal sensor movement to ensure greedy path k-
coverage together with kj-connectivity. We consider binary sensing and communication disc
model, i.e., the sensing area of a sensor is a circular disk of radius r and its communication area is
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also a circular disk of radius R, provided that r < R. Thus, a sensor placed at location x can sense
any point at a distance of at most » and can communicate any point at a distance of at most R.

The sensor can be reliable or unreliable. Reliable sensors can move, sense, and communicate. The
motivation for investigating unreliable sensors follows from some realistic situations (e.g., some
sensors may fail after deployment on the plane). Thus, we assume that each sensor with some
fixed probability 1 — p independently from other sensors is unreliable (not active), i.e., it cannot
move, sense, and communicate anymore.

Specifically, we investigate two optimization problems to provide path ki-coverage simultane-
ously with kj-connectivity on the plane and are interested in assigning the sensing radius r and
communication radius R to minimize

e the maximum displacement to the fixed power a > 0 of n sensors (the time),
e the sum of movement to the power a > 0 of the individual sensors (the energy).

Energy consumption and time-efficient reallocation of mobile sensors are the fundamental is-
sues in WSNs. Mobile sensors consume much more energy during the movement than that during
the communication or sensing process. Thus how to schedule mobile sensors to minimize the time
and energy to provide the required k;-coverage together with k;-connectivity has great signifi-
cance. Our solution can be widely used in border surveillance and securing buildings or a city.
Sensor barriers are used to detect intruders illegally crossing the protected area. The random de-
ployment according to general random process may be the only option for military surveillance or
wild animals. Moreover, there are situations in which premature uncontrolled crashes of sensors
are common. Our 3D network design is also useful for real-world applications such as underwater
sensor networks. In realistic deployments, the tradeoff between coverage-connectivity and time or
energy is very important to study. Moreover, the parameter a in the exponents can represent vari-
ous conditions of the line, such as friction, lubrication, and so on, which may affect the movement
of sensors.

For the optimization problems in WSN involving reliable sensors, we develop in Section 3
novel statistical analysis of the moments for general random processes. In the analysis of unre-
liable on the plane in Section 5.2, we combine results from unreliable sensors on the line (see
Section 5.1) and for reliable sensors on the plane (see Section 4) to get results for unreliable sen-
sors on the plane.

1.1 Contributions of This Paper

Fix ki, k; > 1. Assume that n mobile reliable or unreliable sensors with identical sensing radius r
and communication radius R, provided that r < R, are initially randomly deployed on the plane
according to general random process (see Definition 2, as well as Definition 1 in Section 3.1). The
sensors have to move to the final destinations to ensure greedy path k;-coverage simultaneously
with kj-connectivity (for reliable sensors see Definitions 3-4 in Section 4.1 and for unreliable sen-
sors see Definition 5 in Section 5.2, as well Assumption 12 in Section 5).

The objective is to assign the sensing radius r and the communication radius R so as to minimize
the time required and the energy consumption of transportation cost for sensors to provide the
desired k;-coverage simultaneously with k;-connectivity. To this aim, we make the following four
novel theoretical contributions.

(1) For both the optimization problems as defined above, the optimal solution is obtained when
the sensing radius r = ki @ and communication radius R = kj m, where ||E[S]]] is

the expected distance of general a-random process, i.e., the characteristic of random process
according to which the sensors are deployed.
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(2) Let € > 0 be an arbitrary small constant independent on the number of sensors n and ||E[S]||.
We discover a sharp decrease Q(n?) in both the maximum displacement to the power a > 0
of n sensors (time required) and the sum of movement to the power a > 0 of the individual

sensors (energy consumption): When r increases from k(1 — e)w to klm, and
when R increases from k(1 — g)m to kzm (see Tables 1 and 2 for a summary).

(3) For unreliable sensors, both the time required and energy consumption remain asymptot-
ically the same when r and R increases within the same range as in step (2), as shown in
Theorem 18 (Section 5.2). We design and analysis of four novel optimal randomized Al-
gorithms 1-4 to provide the desired kj-coverage simultaneously with k;-connectivity. Al-
though they are simple, the asymptotic probabilistic analysis is challenging. Our protocols

are based on a novel mathematical theory of moments for general random processes.

The rest of the article is organized as follows. Section 2 summarizes some related works.
Section 3 analyzes the moments for random processes, the results of which are used to derive
theorems pertinent to the range assignment problems in WSNs. Section 4 derives the main re-
sults on the sensing and communication radii that minimize k;-coverage simultaneously with k-
connectivity cost in terms of time and energy. Section 5 analyzes k;-coverage and k,-connectivity
cost in terms of time and energy when the sensors are unreliable. Section 6 presents further in-
sights including exact formulas, variable sensing and communication radii, sensor deployment in
higher dimension, other trajectories and real-life sensor deployment. The numerical results are
discussed in Section 7. The final section offers conclusions.

2 RELATED WORK

The coverage problem in sensor networks has been extensively studied in the literature [2, 5, 7-
9,12, 15,19, 22, 25, 28, 38-40, 42, 43, 46, 52, 55, 57, 59]. Two notions of probabilistic barrier coverage
in a belt region, namely weak and strong barrier coverage, was introduced in Reference [42]. The
barrier coverage of airdropped wireless sensors is studied in Reference [49]. It is assumed that
along each line, sensors are to be evenly distributed. Because of mechanical inaccuracy, wind,
terrain constraints, and other environment factors, the sensors will be scattered around the de-
ployment line with some random offsets. In this article, the authors model the offsets as normally
distributed random variables. In Reference [59], the authors provided a comprehensive survey on
the optimized node placement in wireless sensor networks, while the authors in Reference [25]
presented and compared several state-of-the-art algorithms and techniques to address the inte-
grated coverage-connectivity issues in WSNs. The optimal movement of mobile sensors to the
fence (perimeter) of a region delimited by a simple polygon to detect intruders, was investigated
in Reference [9]. The barrier coverage in a mobile survivability-heterogeneous wireless sensor net-
work is studied in Reference [55]. In Reference [3] is addressed the problem of k-coverage in 3D
WSNs, where each point in a 3D field is covered by at least k sensors simultaneously. The authors of
Reference [40] introduced a new architecture of barrier, called event-driven partial barrier, which
is able to monitor any movements of objects in the event-driven environment. In Reference [15]
is addressed three optimization problems to achieve weak barrier coverage in WSNs to minimize
the number of sensors moved, the average distance as well as the maximum distance moved by
the sensors. The authors of Reference [60] focused on the k-coverage problem, which requires a
selection of a minimum subset of nodes among the deployed ones such that each point in the tar-
get region is covered by at least k nodes. The target coverage problem in mobile sensor networks
where all the targets need to be covered by sensors continuously is studied in Reference [21]. The
goal is to minimize the moving distance of sensors to cover all targets in the surveillance region,
which is in the Euclidean space. It is assumed that initially all the sensors are located at k base
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stations. In Reference [48] is proposed developed a fully autonomous system that controls drones
to provide high- quality unobstructed coverage of targets from appropriate viewpoints based on
a novel Oriented Line Segment Target Model. In Reference [29], the authors present a complete
solution to the minimum-cost barrier coverage problem. The cost here can be any performance
measurement and is usually defined as the resource consumed or occupied by the sensor barriers.
The proposed PUSH-PULL-IMPROVE algorithm, is the first one that provides a distributed solu-
tion to the minimum-cost barrier coverage problem in asynchronous wireless sensor networks.
The authors of Reference [17] proposed a taxonomy for classifying coverage protocols in WSNs.
In Reference [23], the authors investigated the cooperative sweep coverage problem with mobile
sensors to periodically cover all positions of interest in the surveillance region, while the authors
of Reference [53] addressed the coverage control problem for a network of heterogeneous mobile
sensors with bound position measurement errors on a circle.

Connectivity has been the subject of extensive interest (e.g., see References [1, 4, 6, 18, 24, 27, 30,
58, 62]). In Reference [14] the availability of nodes, the sensor coverage, and the connectivity have
been discussed on network lifetime. The authors of Reference [58] present the design and analysis
of novel protocols that can dynamically configure a network to achieve guaranteed degrees of cov-
erage and connectivity. In Reference [4], the authors investigate the critical density for percolation
in coverage and connectivity in 3D WSNs, as well as the corresponding critical network degree.
The proposed approach is based on Baxter’s factorization of the Ornstein-Zernike equation and
the pair-connectedness theory. The critical sensor density for partial connectivity of a large area
sensor network was studied in Reference [11], assuming that sensor deployment follows the Pois-
son distribution. The quality of connectivity of a wireless network that has a realistic number of
nodes is characterized in Reference [13]. In Reference [10], the authors classify and summarize
the state-of-the-art algorithms and techniques that address the connectivity-coverage issues in
the wireless sensor networks. In Reference [27], the authors assume that the sensors are deployed
uniformly at random in a 3D Field of Interest. It is considered the case when the sensors have only
directional sensing capability and may have heterogeneity in terms of the sensing range, commu-
nication range, and/or probability of being alive. For such 3D heterogeneous directional WSNs, the
authors derive probabilistic expressions for k-coverage and m-connectivity that are useful to opti-
mize the cost of random deployment. The authors of Reference [5] investigate connectivity based
on the degree of sensing coverage by studying k-covered WSNs, where every location in the field
is simultaneously covered (or sensed) by at least k sensors (property known as k-coverage, where
k is the degree of coverage). The model called the Reuleaux Triangle, to characterize k-coverage
with the help of Helly’s Theorem and the analysis of the intersection of sensing disks of k sensors
were proposed. In Reference [6], the authors focus on the connectivity and k-coverage issues in
3D WSNs, where each point is covered by at least k sensors (the maximum value of k is called the
coverage degree). The Reuleaux tetrahedron model to characterize k-coverage of a 3D field was
proposed to investigate the corresponding minimum sensor spatial density. The family of prob-
lems whose goal is to design a network with maximal connectedness subject to a fixed budget
constraint is investigated in Reference [61]. In Reference [44], the connectivity of an uncertain
random graph with respect to edges is discussed.

Unreliable sensors has been studied in sensor networks. The problem of optimally placing unre-
liable sensors in a one-dimensional environment is considered in Reference [19]. In wireless sensor
networks, the effect of a high rate of node failure in wireless sensor networks on network connec-
tivity was investigated in Reference [50]; the authors provide a formal analysis that establishes
the relationship between node density, network size, failure probability, and network connectivity.
The unreliable sensor network with n nodes, arranged in a grid over a square region of unit area
is investigated in Reference [51]; here the authors give the necessary and sufficient conditions for
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the random grid network to cover the unit square region as well as ensure that the active nodes
are connected.

There is also interest in the statistical community for investigating the absolute moments and
moments around the mean of some random variables [16, 20, 31, 32, 36, 41, 56]. Recurrence rela-
tions for integrals that involve the density of multivariate normal distributions are developed in
Reference [31]. In Reference [32], the expected absolute difference of the arrival times to the integer
power between two identical and independent Poisson processes is represented as the combination
of the Pochhammer polynomials. Some inequalities for absolute moments of independent random
variables, using the representation in terms of the characteristic function, is presented in Refer-
ence [56]. Moreover, the lower bound of the probability that a binomial random variable exceeds
its expectation is analyzed in Reference [16].

In this article, we present a novel mathematical theory of moments for general random pro-
cesses on the plane. As an application to sensor networks, the time required (Time,(n,r,R),
Time, ,(n,7,R)) and the energy consumption (Energy,(n,r,R), Energy, ,(n,r,R)) of the trans-
portation cost to the power a > 0 for reliable and unreliable sensors from initial random position
according to general random process to anchor points on the plane are analyzed (see Definition 4
in Section 4 for reliable sensors and Definition 5 in Section 5.2 for unreliable sensors).

We remark that our work is related to the series of papers [20, 33, 34, 36, 37, 39] dealing with
reliable sensors. In References [38, 39], the Energy metric was analyzed for uniformly distributed
random sensors in the unit interval for barrier coverage and in the higher dimension for area
coverage. The works in References [33, 34, 37] deal with Time and Energy respectively for coverage
(1-coverage) with interference, where the sensors are deployed according to the arrival times of
Poisson process with arrival rate A > 0. It is worth pointing out the above mentioned papers treat
only the very special case when random sensors obey the beta (uniform distribution) and gamma
distributions (Poisson process) and when the sensors are only reliable, i.e., it can move, sense and
communicate with probability 1. Thus, it is natural to extend the previous works and analyze the
sensor deployment according to general random process on the plane.

Our investigation of greedy path k;-coverage simultaneously with k,-connectivity for unreliable
sensors is inspired [19], where the authors consider the problem of optimal disk-coverage in a one-
dimensional environment by unreliable sensors, under a probabilistic failure model. It is assumed
that sensors can fail independently and with the same probability. The aim is to minimize, in ex-
pectation, the largest distance between a point in the environment and an active sensor. It is worth
pointing out the mentioned paper [19] consider the equispaced placement and random placement
according to uniform distribution of n unreliable sensors in the unit interval. and when the sensors
cannot move. Thus, it is natural to extend the previous work and investigate time required and
energy consumption for transportation cost of sensors to ensure greedy path k;-coverage together
with kz-connectivity when the sensors are deployed according to general random process on the
plane and can fail independently and with the same probability p.

The novelty of our work in this article current article lies in the investigation of greedy path k;-
coverage simultaneously with k;-connectivity for both reliable and unreliable sensors and in the
derivation of closed form asymptotic formulas for both Time and Energy without using any spe-
cific density function (zamma and beta) for a wide class of distributions. Although there are studies
that consider the problem of coverage and connectivity simultaneously, none of them so far de-
rived the closed form asymptotic formulas for Time and Energy for reliable and unreliable sensors.

3 ANALYSIS OF THE MOMENTS FOR GENERAL RANDOM PROCESSES

In this section, we present an analytical combinatorial approach to probabilistic analysis of mo-
ments for random processes. The obtained new result about moments are pertinent to the range
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assignment problem in WSNs. In particular, the random vector S; given by Equation (6) represents
the position of jth sensor on the plane in Section 4.

3.1 The Model, Assumptions, and Preliminaries

Now we will introduce two new definitions of (m, a, )-property and general a-random process on
the plane. We also recall the notations and some known special inequalities to be used in the sequel.
Definition 1 together with Definition 2 allow us to obtain the novel results about the moments for
general random processes for a wide class of distributions, without using specific density function,
just moment equations. The formal definition of (m, @, )-property is as follows.

Definition 1 ((m, ., f)-Property). Fix a, f > 0. Let m be an even positive integer. Consider two
sequences {T7;};>1, {&i};5, of positive, absolutely continuous random variables. Assume indepen-
dence between sequences {7;};>, {£};5,; and assume that

Vizr (Elnl=a, E[tf] <Cim pei2.3....m}), 1)
VipteNv(o) peN, 25pispprspsm  E[elt el =E[| B[] B[] @
Visr (ELE] =5, E[E] < Com. pef23,...m)), (3)
VipteN\(0) peeN, 25pisprrspsm E[ENER | =E[e B[] B[], @

The random vector V; with (m, @, f)-property is defined by the following formula:

J J
V; = (Z 7, g,-). )
i=1 =1

Note that complicated Assumption (2) is weaker than independence of random variables {7;} ;1.
To observe this, consider the case when m = 2. Then Equation (2) is indeed only pairwise in-
dependence of random variables {7;};-;. It is well known that pairwise independence does not
imply independence (see Reference [54]). Hence, Assumption (4) is also weaker than independence
of random variables {7;};>:.

Let us define the general two-dimensional a-random process as follows.

Definition 2 (General a-Random Process on the Plane). Let A > 0 be parameter. Fix a, a, f > 0. Let
m be the smallest even integer greater than or equal to a. Assume that, random vector V; has the
(m, a, p)-property. The general a-random process is finite random process S1, Sy, . . . S, defined by
the formula
Vi :
Sj:=7 for je{1,2,...,n}. (6)
Let ||E[S]]| be the Euclidean norm of vector S;. We call the expected vector of general a-random
process as

™)

E[S] = E[S,] = (“ ﬁ)

FA
and the expected distance of general a-random process as

2 2
IIE[S]I| = ||E[S,]I| = —V‘";ﬁ. (®)
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From Equations (1), (3), (5), and (6) for j := 1, it is clear that E[S;] = (, g) Note that the random
variable S; represents the position of jth sensor on the plane (see Section 4). Equations (1), (3), (5), (6),
and (7) yields

E[S;] = JE[S]. ©9)

In this study, we will provide asymptotic probabilistic analysis for the range assignment in wireless
mobile sensor networks. Hence let us recall the Landau asymptotic notations:

e f(n) = O(g(n)) if there exists a constant C; > 0 and integer N such that |f(n)| < Ci|g(n)|
foralln > N;

o f(n) = Q(g(n)) if there exists a constant C, > 0 and integer N such that |f(n)| > Cz|g(n)|
foralln > N;

« f(n) = ©(g(n) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).

We will also apply Jensen’s inequality for expectations. If f is a convex function and X is random
variable, then

fEX]D <E[f(X)], (10)

provided the expectations exists (see Reference [47, Proposition 3.1.2]).
Finally, the following elementary inequality will also be useful. Fix a > 0. Let x,y € R, U {0}.
Then

(x +y)* < max (2“71, 1) (x% +y?). (11)

3.2 The mth Central Moment for Special Random Variable

In this subsection, we derive closed analytical formula for the expected mth moment around the
mean for the random variable X; = Z{:l 7;, assuming that Equations (1) and (2) hold and m is a
fixed positive even integer.

Namely, we prove Theorem 1. Notice that Theorem 1 for random variable X is helpful in deriving
the main results for random vector V; in the next subsection (see Theorem 2) and thus necessary
in analysis of greedy path ki-coverage simultaneously with k,-connectivity in WSNs. Moreover, to
the best of our knowledge, the closed analytical asymptotic formula in Theorem 1 present new
statistical properties of random variable X;.

To illustrate the asymptotic closed formula in Theorem 1, we consider the special case whenm =
2. The analysis of the second central moment for random variable X is easy and the asymptotic
formula in Theorem 1 for m := 2 holds as identity.

Applying Equation (2) for m := 2, we get E[7;,7;,] = E[7;,]E[7;,]. From Equation (1), it follows
that E[r;,] = E[7;,] = . Thus,

E[(7;, — @) (15, — @)] = E[(1;, — @)]E[(7;, — )] = 0.
Therefore, we conclude
E ((Xj - E(Xj))z) =F ((Xj —ja)z) =FE (('[1 )+ (=)’ + e+ (7 - a)z)

=E(m-a?f)+ > Bl - @)El(n - @) =E((n - )?)j = Var[n]).

ISTiliTiz <j

Hence, identity E((X; — E(X;))?) = Var [r;] j confirms the closed analytical formula in Theorem 1
for m := 2.

THEOREM 1. Let us fix an even positive integer m. Consider the sequence {t;};, of positive, ab-
solutely continuous random variables. Assume that Equations (1) and (2) hold in Definition 2. Let
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46:10 S. K. Das and R. Kapelko
Xj = Zle 7;. Then the following identity is valid:
m m! (Var [n])% m )
=——FVj? + 0] j? .
|- o )

It is worthwhile to mention that, the asymptotic analysis in the proof of Theorem 1 lies in
combinatoric. The technique is somewhat similar to the proof of Theorem 2 in Reference [35].

E [(X; - E[X;])

3.3 Expected Distance to the Power m for Special Random Vectors

In this subsection, we derive closed analytical formula for the expected distance to the power m
between random vector V; with (m, a, 8)-property and its mean E[V], provided that m is a fixed
positive even integer.

It will be seen later in Section 4 that the random position of the sensor S; on the plane is determined

by the random vector %, where A is positive real parameter.

We are now ready to present Theorem 2. We note that Theorem 2 is crucial to explain the sharp
increase in the time required and in the energy consumption for transportation cost of sensors to
ensure the desired coverage (see Section 4). Moreover, if we restrict the sensor displacements to
specific random variables, then Corollary 3 is useful in deriving the exact formulas for the minimal
time required and energy consumption of transportation cost for sensors to provide the desired k-
coverage with k,-connectivity (see Section 6.1 for details).

THEOREM 2. Let m be an even positive integer. Let V; = (X;,Y;) be the random vector with
(m, a, B)-property. Then the following identity is valid

m

m\r 3 .. . ' oy i
E[I1v; - BV, ] = (;m) 2(2’)("; _2,7) (Var [n]) (Var [£])27) | 1% + 0 (%),
> =0 2

where ||V; — E[V;]]| is the Euclidean distance between V; and E[V].
Finally, we give a simpler expression for the E[||V; — E[V;]||™] when Var[r;] = Var [&].

COROLLARY 3. Let m be an even positive integer. Let V; = (X;,Y;) be the random vector with
(m, a, B)-property. Assume that Var ;] = Var [&;]. Then the following identity is valid

m] _ (™M z.m mg
E[I17; - BV = (5 ) @Var [ ¥ % + 0 (%),
where ||V; — E[V;]|| is the Euclidean distance between V; and E[V;].

Proor. Corollary 3 follows immediately from Theorem 2 for Var [7;] = Var [&;] and the follow-
ing identity Z?:o (z.i) (m—z;) = 2™ (see Reference [26, Identity (5.39)]). O

m _
1 5 L

3.4 Expected Distance to the Power a for General a-random Process on the Plane

In this subsection, we extend Theorem 1 from Section 3.3 to real-valued exponents. Namely, we
combine together the obtained earlier result for E [||Vj - E[Vj]||m], where m is an even integer
with Jensen’s inequality (see Equation (10)), as well as Equations (6) and (8) to get the new result
for E [| IS; — E[Sj]lla] , where a is positive real.

It will be seen later in Section 4 that Theorems 4-6 proved in this subsection are crucial in the
analysis of Algorithms 1 and 2 and thus in deriving the main results of this article for reliable sensors
(see Tables 1 and 2).

The following theorem is about the power cost when the sensor S; moves to the position E[S;].
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TuroREM 4. Consider the random variable S; as in Definition 2. Then,

© (j%) IIE[S]I®  when a > 2

E [IlS; - E[S;]11] = {o (J%) IE[S]I®  when a€(0.2)°

The next result about the expected distance to the power a between random vector S; and
E[S;] + O(1)E[S] support our earlier Theorem 4.

THEOREM 5. Consider the random variable S; as in Definition 2. Then,

© (j%) IE[S]II®  when a>2

E [”S] —E[Sj] + O(l)E[S]“a] = {O (]%) ||E[S]||a when ac (0,2).

The next theorem is about the power cost when the sensor S; moves to the position (1—¢)E[S;]+
O(1)E[S]. The proof of Theorem 6 is analogous to that of Theorem 5.

THEOREM 6. Fixe > 0 arbitrary small constant independent on j and ||E[S]||. Consider the random
variable S; as in Definition 2. Fix a > 0. Then

E [IIS; - (1 - #)E[S;] + O()E[S]||] = © () I[E[S]]|°.

4 ki;-COVERAGE AND k;-CONNECTIVITY IN SENSOR NETWORKS

In this section, we formally define k;-coverage and k;-connectivity problem and then formulate
two optimization problem: time required and energy consumption for this problem. We also pro-
pose two optimal algorithms for minimizing the time required and the energy consumption of the
transportation cost to the power a > 0 as a function of the sensing radius r, communication radius
R to provide ki-coverage simultaneously with k;-connectivity.

4.1 Problem Formulation

Recall that in this study we investigate sensing and communication binary disc model, i.e., the
sensing area of a sensor is a circular disk of radius  and the communication area of a sensor is a
circular disk of radius R, provided that r < R.

Throughout this subsection, ¢ > 0 is arbitrary small constant independent on the number
of sensors n and on the expected vector of general a-random process E[S] (see Definition 2 in
Section 3.1).

Let us now formulate the movement requirement for providing the k;-coverage simultaneously
with k;-connectivity.

Definition 3. Let us fix the positive integers ki, k, and move the sensors from their initial random
positions Sy, Sy, ... S, on the plane to the final destination Py, Py, ... P, on the plane such that
every point on the path connecting points (0,0), Py, P,, ... P, is within the sensing range of at
least k; sensors and the communication range of at least k; sensors.

Figure 1 illustrates our initial random placement according to general random process.
In Section 4, we restrict our analysis to the greedy path k;-coverage with k;-connectivity, i.e.,
the points Py, P, ... P, are situated on the line passing through the points E[S] and (0, 0). Obvi-
ously, when the distances

[Py = (0, 0)[[, [Pz = Pull, ..., |[Pn = Pn-ill

are fixed the maximal distance maX;e(1,,... n} |IP; — (0,0)|| is maximized when the points
P,,P,,...P, are situated on the line. It is also well known that border surveillance for intrusion
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E[S1]

Fig. 1. The positions of three mobile sensors S1, Sz, S3 on the plane according to general random process.

detection is an important application of sensor networks. Hence, it is natural to maximize the pro-
tected line, i.e., the length from the origin (0, 0) to the point (sensor) P, when [|P,, — (0,0)|| =
maxje(1,2,....n} [IPi — (0,0)]], i.e., the sensor P, is the rightmost sensor.

Therefore, we consider the greedy strategy. The others greedy strategies when the points
Py, Py, ... P, are situated on the others lines will be discussed in Section 6.4. Namely, it will
be explain that analyzed time required and energy consumption is minimized when the points
Py, P,, ... P, are on the line passing through the points E[S] and (0, 0).

We are now ready to formulate two optimization problems: time required and energy con-
sumption for transportation cost of sensors to ensure greedy path k;-coverage together with k-
connectivity.

Definition 4. Fix a > 0. Let S1,S,,...S, be the initial locations of n sensors with identical
sensing radius r and communication radius R on the plane [0, o) X [0, c0) according to general
a-random process. Assume that (x;,y;) is the final destination of sensor S; (j € {1,2,...n}) on
the line passing through the points E[S] and (0, 0) such that every point on the line connecting
points (0,0), (x1,y1), (x2,Y2), - . . (xn,yn) is within the sensing range of at least k; sensors and the
communication range of at least k; sensors. We are interested in asymptotic (in large number of
sensors n) for

Time, (n,7, R) = max E[lIS; - (x;,y)II]

n

Energy.(n,r,R) = ZE [“Sj - (xj7yj)||a] .

Jj=1

Tables 1 and 2 summarize the results proved in the next subsection. It is discovered that Q (n%)
sharply declines for both Time,(n, r, R), and Energy,(n, r, R) for all exponents a > 0 when the
sensing radius r increases from k; (1 — ¢) @ to ky @; and when the communication radius
R increases from k(1 — g)m to k @.

Finally, we give a simple Lemma 7 about a one-dimensional scenario that will help us to find
relationship between sensing radius r and communication radius R on the plane in the analysis of
Algorithms 1 and 2 in the next subsection.

Obviously, the sensor with one-dimensional sensing radius ; and communication radius R,
placed at location x on the line [0, o) can sense any point at distance at most ry either to the left

or right of x and can communicate any point at distance at most R; either to the left or right of x.

LEmMA 7. Consider n sensors wy, < wan, < -+ < Wy, with identical one-dimensional sens-
ing radius r; = klg and one-dimensional communication radius R; = kzg on the line [0, ). Let
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Table 1. Time Required Time,(n, r, R) of the Transportation Cost to the Power a > 0 to Ensure Greedy
Path ki-coverage Together with kz-connectivity as a Function of Sensing Radius r, Communication Radius
R and the Expected Distance of General a-random Process ||E[S]|| Provided That ¢ > 0

Sensing radius r Communication radius R Time,(n, r, R) Algorithm
© (n?) |IE[S]|® ifa>2;
- & LEESTH R = ke LEGIT " 1
@ 12 272 0 (n?) |IES]I® ifa e (0.2)
(b) r:kl(l—e)”E[ZS]” R:kz”E[zS]”, © (n?) [IE[S]|® if a>0 2
(c) r:klllE[ZS]” R:kz(l—é‘)”E[ZS]”, © (n?) [IE[S]||* if a>0 2
@ | roky@-g BB | Ro gy - o LEENL © (n) IES]II® if a >0 2

Table 2. Energy Consumption Energy,(n,r, R) and of the Transportation Cost to the Power a > 0 to
Ensure Greedy Path ki-coverage Together with kz-connectivity as a Function of Sensing Radius r,
Communication Radius R and the Expected Distance of General a-random Process ||E[S]]|
Provided That ¢ > 0

Sensing radius r Communication radius R Energy,(n,r,R) Algorithm
@ | =k LR R = kLS @(j“wm[M3ﬁaza 1
O (n#*1) I[E[S]1® ifae (0,2)
) | 7= k(1 - o) LB R = k, LEELIL 0 (n!) |[E[S]|I* if a> 0 9
© r = k, LEEI R = ky(1 — ¢) LEUL © (n“1) |IE[S]]| if a >0 2
I R = ky(1 — ) LECULL © (n**1) B[S if a >0 2

k = max (k1, ky) and n > k. Assume that the sensors occupy the following positions

d
Wj,n :]E lf]E {1,2,...,k},
win =R+ (j—-k)d if je{k+1,k+2,...,min(n,n+2-k)},

d
Wi n :R+(n+2—2k)d+(j—(n+2—k))§ifj€{n+3—k,...,n} and k > 3.

Then every point from the origin to the last sensors is within the sensing radius of at least k; sensors
and the communication radius of at least k; sensors.

Proor. Assume that the sensors have identical one-dimensional sensing radius r; equal to klg
and one-dimensional communication radius R; equal to kzg. Let k = max (ky, k»). Notice that the
point py. = k% is the position of kth sensor.

Therefore, every point in the interval [0, py] is in the sensing radius of at least k; sensors and
in the communication radius of at least k, sensors. As observed from Figure 2, every point in the
interval [pk’pmin(n,rﬁsz)fl]

e isin the sensing range of q;, sensors on the left and g,, sensors on the right and q;, +g,, > ki,

e is in the communication range of q;, sensors on the left and g,, sensors on the right and
LT 4qr 2 ks.

The length of interval [pmin(n,n+2-k)-11- Pn] is equal to (k + 1) 5 4 for k # 2 and is equal to d for
k = 2. Therefore, every point in the interval [pk, Pmin(n, n+2-k)-1] is within the sensing radius of at
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dprdpp g p3 d pe d P d P

Fig. 2. lllustration of Lemma 7 fork; = 1,ky = 2,11 = %, Ri=d,andn=6.

least k; sensors and the communication radius of at least k = k; sensors. This completes the proof
of lemma. ]

4.2 Analysis of Algorithms 1 and 2

In this subsection, we minimize the time required and the energy consumption of the transportation
cost to the power a > 0 as a function of the sensing radius r, communication radius R and large
number of sensors n to provide k;-coverage simultaneously with k,-connectivity (see Definition 4,
as well as Definition 3).

Namely, we present two asymptotically optimal algorithms. It is worth pointing out that
Algorithms 1 and 2 are very simple but the asymptotic analysis in Theorems 8 and 9 is challenging.
In the proof of Theorems 8 and 9 we apply the statistical results from Section 3.2 and Section 3.3
about central moments special random variables and the distance to the power for special random
vectors and Lemma 7 from Section 4.1.

We are now ready to formulate the main results in this subsection.

THEOREM 8. Assume that n sensors S1, Sy, ...,S, with identical sensing radius r and identical
communication radius R are initially randomly placed according to general a-random process. Let
assumption (a) in Tables 1 and 2 about r and R holds. Fix k = max (ky, k;).! Then Time,(n,r, R) and
Energy,(n,r,R) of Algorithm 1 is respectively,

Time,(n,r,R) = © (n%) IE[S]*  ifa=2
T TN 0/(nf) B ifae 0.2)°
(e (nt ) IE[SIe ifa>2
Energy,(n,7,R) = {O (ngﬂ) IE[S]Ie ifae (0,2)

Proor. Fix k = max (ky, k;). Assume that the n sensors on the plane have identical sensing
radius r = kl@ and communication radius R = k2@' First, observe that sensors at the
final positions (x1,y1), (x2,Y2), . .. (xXn,yn) after Algorithm 1 lie on the line passing through the
points E[S] and (0, 0). Observe that

[IE[S]]I
2
[IE[S]]I

||(X1, yl) - (0’ 0)” =

>

(xj,y;) = (xj-1,yj-)Il = if je{2,...,k} (seesteps 2—4 of Algorithm 1),

(xj,y;) = (xj—.yj-)Il = [IE[S] || if j € {k+1,k+2,...,min(n,n+2—k)} (see steps 5-7 of Algorithm 1),

(xj,y;) = (xj,yj-)l = @ if je{n+3—k,...,n}and k >3 (see steps 8—11 of Algorithm 1).
Therefore, we can apply Lemma 7 for d := ||E[S] || and deduce that every point on the line con-
necting points (0, 0), (x1, y1), (x2,Y2), - . . (xXn,yn) is within the sensing range of at least k; sensors

and the communication range of at least k; sensors. Hence, Algorithm 1 is correct.

!Note that in this study max(r, R) = R and max (ki, k) = k».
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We now estimate Time, (n, r, R) and Energya(n, r, R) of Algorithm 1. Recall that jE[S] = E[S/]
(see Equation (9)). Hence

E[s)]

Sj=(xj,y;) =S = if je{l,...,k} (seesteps 2—4 of Algorithm 1), (12)

E
]—k@ifje{k+1,k+2,...,min(n,n+z—k)} (13)

8= (xy) =S —E[S;
(see steps 5—7 of Algorithm 1),
E[S]

Sj = (. y) =85 —E[S;] —k=—= = (i - (n+2-k))

5 if je{n+3—k,....,n}andk >3

(14)

E[S]
2

(see steps 8—11 of Algorithm 1).

We are now ready to apply Theorem 4, Theorem 5 and Theorem 6 to evaluate separately Equa-
tions (12), (13), and (14).

Case of Equation (12)

Passing to the expectations and using Theorem 6 with ¢ = % and O(1) := 0, we get

([l - o0 '] = &[|J5s - 5E8[ | = 0 6oy nmts e
Since j € {2,...,k} and k is fixed, we have
E[|s; - (0] = OIEISIN® if jef2.... .k} a>o.

Case of Equation (13)
Since k = O(1), we can apply Theorem 5 with O(1) := % and get

ay _ [©(j2)IE[S]I9  when a 22, , . .
E [HSj = (xj, yj)” ] = o (]%) IES]|¢  when a € (0,2) provided that j € {k+1, k+2, ..., min(n, n+2-k)}.
Case of Equation (14)
Observe that 2 < k +j— (n+ 2 — k) < 2k — 2 = O(1). Therefore, we can apply Theorem 5 with
oQ) = —% (k+j—(n+2-k))and get

a

E [HSj - (xj, yj)”a] = {2 ((]]2?)) lllli[[z]]llllaa :}}:2 aazez(’o 2) provided that j € {n+3—k,...,n}and k > 3.

Putting together the Estimations Cases of Equation (12), Case of Equation (13), Case of
Equation (14), we have

Time, (n,r,R) = max E [||Sj - (xj,y5)

1<j<n

“I- © (nf)[[E[S]I*  when a>2
“|o(n®)IIE[SIN® when a€(0,2)
of Algorithm 1.

Combining together Estimations: Case of Equation (63), Case of Equation (64), Case of Equa-
tion (65) and the well-known identity 3.7, j7 =©(n%*!), when a > 0 we get

Energy.(n,r,R) = ZE [HS]' = (%, y5)

J=1

a1 [©(n?)IE[S]]® when a>2,
O (nz ) ||E[S]]|* when a € (0,2)
I=1o(w)

of Algorithm 1.
This completes the proof of Theorem 8. O
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ALGORITHM 1: k-Moving sensors to the anchor points

Require: The initial locations Si, Sy, .. .S, of the n sensors with identical sensing radius r and

communication radius R on the plane [0, o) X [0, 00) according to general a-random process.
Let assumption (a) in Tables 1 and 2 holds.

Ensure: The final positions (x1,y1), (x2,12),... (xn,y,) of the n sensors on the plane [0, c0) X

[T
M 2

b AN U S A

[0, 00) such that every point on the path connecting points (0,0), (x1,y1), (x2,Y2), - - . (Xn,Yn)
is within the sensing range of at least k; sensors and the communication range of at least k;
Sensors.

k := max (ky, k»);
forj=1tok do
move the sensor S; to the position (xj,y;) = j@;
end for
forj=k+1tomin(n,n+2-k) do
move the sensor S; to the position (xj,y;) = k@ + (j— k)E[S];
end for
if k > 3 then
forj=n+3—-kton do
move the sensor S; to the position (x;,y;) = k@ +(n+2-2k)E[S]+(—(n+2— k))@;
end for
end if

ALGORITHM 2: (¢, k)-Moving sensors to the anchor points

Require: The initial locations Si, Sy, .. .S, of the n sensors with identical sensing radius r and

communication radius R on the plane [0, 00) X [0, o) according to general a-random process.
Let assumption (b) or (c) or (d) in Tables 1 and 2 holds.

Ensure: The final positions (x1,y1), (x2,y2),... (xn,yn) of the n sensors on the plane [0, c0) X

—_
154

11:
12:

R A A R i

[0, 00) such that every point on the path connecting points (0,0), (x1,y1), (x2,Y2), - . (Xn,Yn)
is within the sensing range of at least k; sensors and the communication range of at least k;
Sensors.
k := max (ky, k»);
forj=1tok do
move the sensor S; to the position (x;,y;) = j(1 - e)@;
end for
for j =k +1tomin(n,n+ 2 - k) do
move the sensor S; to the position (xj,y;) = k(1 - 5)@ + (- k)(1-¢)E[S];
end for
if k > 3 then
forj=n+3—-kton do
move the sensor S; to the position (x;,y;) = k(1 - E)@ +(n+2-2k)(1-¢)E[S]+ (-
(n+2-k)(1 - )2
end for
end if
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In the next theorem, we analyze Algorithm 2. The proof of Theorem 9 is analogous to that of
Theorem 8.

THEOREM 9. Fix ¢ > 0 independent on ||E[S]|| and n. Assume that n sensors Sy, S, ..., S, with
identical sensing radius r and identical communication radius R are initially randomly placed accord-
ing to general a-random process. Let assumption (b) or (c) or (d) in Tables 1 and 2 about r and R
holds. Fix k = max (ki, kz). Then Time,(n, r, R) and Energy,(n,r, R) of Algorithm 2 is respectively:

Time, (n,r,R) = © (n*) |[E[S]||* if a > 0,

Energy,(n,r,R) = © (n“”) [IE[STI|* if a > O.

4.3 Optimality of Algorithms 1 and 2

In this subsection, we investigate optimality of Algorithms 1 and 2. Namely, we prove that algo-
rithms analyzed in the previous subsection minimize the desired costs, i.e., the time required and
the energy consumption of the transportation cost to the power a > 0.

First, we must define a optimality metric. We assume that any algorithm reallocate random sen-
sors to the anchor points. Namely the jth sensors S; on the plane is moved to the position Q; on
the plane and the anchor position Q; does not depend on the random vector S;.

The optimality of Algorithm 1 when a > 2 follows directly from Theorem 10. Algorithm 1 indeed
minimize the required time and the energy consumption of transportation cost in reallocation of
Sensors.

We can prove the following general reallocation theorem.

THEOREM 10. Fixa > 2. Let Sy, Sy, ... Sy betheinitial locations of n according to general a-random
process. Assume that Q1,Qo, ... Qy, is the final location. Then

max E [115; - Qil1°] =@ (n#) IIELSTII,
n

DUE[IIS; - Qi) =@ (n ) IIE[S]])”.

7=1
ProoF. Fix a > 2. First, observe that
I1S; — Q;II> = IIS; — E[S;] + E[S;] - QjI >

Since E[S; — E[S;]] = 0 and the anchor position Q; does not depend on the random vector S;, we
have

E[IIS; — Q;1I*] = E[IIS; — E[S;II*] + E[IIE[S;] — Q;lI%].
Therefore
E[IIS; - Q;1I*] = E[IIS; — E[S;l/%].

Using Theorem 4 for a := 2, we get
E[IIS; - Q"] = © () |E[S]I*
Applying Jensen’s inequality (see Equation (10)) for X := ||S; — Q;||? and f(x) := x %, we get
E[lIs; - Q] = (E[IIS; - @iP])* = (@ () IESTII?)* .
Hence

E[IIS; - Qil1°] = @ (j%) IIB[S]I1°,
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Finally, using the well-known identity Z;lzl j? =O(n?*') we have
max E [115; - Qil1°] =@ (n?) IELS]II,
zn]E [115; - Qil1?] =0 (n**") 1IELSTII“.
=1
This completes the proof of Theorem 10. ]

The situation is more subtle with optimality of Algorithm 2. Let us recall that the final destina-
tion of sensors in Algorithm 2 is on the line passing through the points E[S] and (0, 0). Therefore,
we must restate the general reallocation in this case.

The next theorem states that Algorithm 2 minimize the time required and the energy consump-
tion of transportation cost in reallocation of sensors on the line passing through the points E[S]
and (0, 0).

S1, S, ..., S, with identical sensing radius r and identical communication radius R are initially ran-

domly placed according to general a-random process. Let r = k(1 — g)m orR =ky(1—- g)m
Then

THEOREM 11. Fix a > 2. Fix ¢ > 0 independent on ||E[S]|| and n. Assume that n sensors

Time, (n,r,R) = Q (n°) |[E[S]]|,
Energya(n,r,R) = Q (n*"") [E[S]]|“.

5 ki;-COVERAGE AND k;-CONNECTIVITY BY UNRELIABLE SENSORS

After deployment from an aircraft, a mobile sensor on the plane may fail with a certain probabil-
ity implying each sensor, with some fixed probability independently from other sensors, cannot
move, sense and communicate. In this section, we analyze k;-coverage simultaneously with k-
connectivity for unreliable sensors. The assumptions about our model are the followings.

AssumPTION 12 (UNRELIABLE SENSORs). Fix p € (0, 1) independent on the number of sensors n.
We assume that each sensor with probability 1 — p independently from the others is unreliable (not
active), i.e., it cannot move, sense, and communicate anymore.

Observe that in Assumption 12 each sensor with probability p independently from the others
sensors can move, sense and communicate. Obviously when p = 1 the sensors can move, sense
and communicate and thus are reliable.

We break this section into two subsections. First, the closed analytical formulas are designed
for the time required and the energy consumption of the transportation cost to the power a > 0
of Algorithm 3 to achieve 1-coverage simultaneously with 1-connectivity for unreliable sensors
on the line [0, c0). Second, we analyze optimal Algorithm 4 for minimizing the time required and
the energy consumption of the transportation cost to the power a > 0 as a function of the sens-
ing radius r, communication radius R to provide k;-coverage simultaneously with k,-connectivity
when the sensors are unreliable on the plane. Let us recall that analysis of unreliable sensors on
the plane combine results from unreliable sensors on the line and for reliable sensors on the plane.

5.1 Unreliable Sensors on the Line

In this subsection, we give closed analytical formulas for the maximum of expected displacement
to the positive integer power ¢ and the sum of expected movement to the positive integer power ¢
to achieve 1-coverage simultaneously with 1-connectivity for equispaced placement of n unreliable
sensors on the line [0, o) (see Theorem 13 together with Theorem 15 and Theorem 16).
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Fig. 3. Four unreliable mobile sensors wi.4, wo.4, W3.4, Wa:4 on the line.

It will be seen later in this subsection that the mentioned closed analytical formulas for unreli-
able sensors only in a very special case (equispaced placement for 1-coverage with 1-connectivity
on the line) are sufficient to get tight bounds for the maximum displacement to the real power
a > 0 and the sum of movement to the real power a > 0 to achieve k;-coverage simultaneously
with k;-connectivity on the plane.

In this subsection, we assume that the n sensors with identical one-dimensional sensing radius
ro= % and one-dimensional communication radius Ry = % occupy the equidistance points % +
(i—1)dfori=1,2,...n Let usrecall that the sensor with one-dimensional sensing radius r; and
communication radius R; placed at location x on the line [0, o) can sense any point at distance at
most r; either to the left or right of x and can communicate any point at distance at most R; either
to the left or right of x. It is easy to see that the deployment of n reliable sensors that can sense,
communicate, and move withr; = R; = % at the equidistance points % +(i—-1)dfori=1,2,...n.
ensures the desired 1-coverage with 1-connectivity without any additional movement.

However, the perfectly reliable configuration of n sensors is possible but it is very rare events.
Observe that, in our model the probability of perfectly reliable configuration is equal to p”. Since
p is fixed, we see that p”, which is exponentially small for large n. Therefore, in most cases the
sensors have to move to achieve the final location such that, every point from the origin to the last
active sensors is within the sensing range and communication range of exactly one sensor (see
Algorithm 3).

Although Algorithm 3 is simple, the asymptotic analysis is non-trivial. Figure 3 illustrates four
unreliable sensors wy.4, Wo.4, W3.4, Wa.a. Let the black dots represent reliable (active) sensors and
white dots represent unreliable sensors. In this example the sensor w; 4 moves left-to-right to the

osition € and the sensor w, 4 moves to the position £ + d.
p 2 ) p 2

ALGORITHM 3: Moving unreliable sensors on the line

Require: The initial locations w; , < wy, < -+ < wy, , of the n sensors with identical one-

dimensional sensing radius r; = % and one-dimensional communication radius Ry = % on the

line [0, o) at the equidistance points , i.e., w; , = % +(i—-1)dfori=1,2,...,n.

Ensure: The final positions of n sensors on the [0, o0) such that, every point from the origin to the
last active sensors is within the sensing range of at least one sensor and the communication
range of at least 1 sensors.

1. z:= %;

2. for j=1ton do

3. if sensor w; , is active then

4 move w; , left-to-right to z;

5: z:=z+d;

6: else

7 do nothing;

8: endif

9:

end for

We now prove the following exact asymptotic result about the expected displacement to the
integer power t for nth unreliable sensor on the line [0, c0).
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THEOREM 13. Fix t positive integer. Let |mw,, ,| be the movement of sensor w,, , in Algorithm 3.
Then

E[Imwi.nl'| = d'p (1= p)'n' + 0('™)).

ProOOF. Assume that random variable X,, denotes the number of unreliable sensors in the set of
sensors of cardinality n. Let us recall that failures of n sensors are random and independent with
probability 1 — p. Therefore, random variable X, obeys the binomial distribution with parameters
nand 1 —p. Hence

Pr[X, =1] = (’;)(1—p)lp"-’, for 1 €{0,1,2,...,n}. (15)

Obviously, the sensor w,, , moves only when it is active. Therefore
E[[mw, |1 = E[|mwp a|" |Wn.n is active]p. (16)

We now make the following important observation.

The movement of sensor w, , is equal to Id conditional on the event that the sensor wy, , is
active and the number of unreliable sensors is . (Figure 3 illustrates this observation for n = 4 and
I = 2. In this case, the movement pf sensors wy 4 is equal to 2d). Hence,

E [(|mwn,n|t

Putting together Equations (15), (16), and (17), we have

X, | = z] — (d)". (17)

Wp,n 18 actlve)

n-1 n—1
E[[mwnal| =p ) (” f 1)(1 —p)'p" N a) = pd (” | 1)(1 —p)p" U (18)
1=0 1=0

Equation (18) give indeed closed expression for the expected movement to the integer power of
sensor wy, ,. However, the resulting formula is difficult to obtain the desired asymptotic result,
the main result of Theorem 13. We now apply Stirling number of the second kind technology to
Equation (18) to provide asymptotic analysis and thus to prove Theorem 13. We use the following
notations for the rising factorial [26]

b 1 forl; =0
o lig-1)... (=L +1) forh>1"
Observe that

n-1

(n;l)(1—p)lp”‘1"l’1= > (";1)(1—p)lp"‘l‘ll“

I=1+1

n-1
(n-1)k@1-p)h Z (" ; 1 l_ ll)(l — p)lhpn-1=h=(=h)
- a

=1

n-1

1=0

(n=Di1-p)t =nt(1-p+0(n"). (19)

Let { ltl } be the Stirling numbers of the first kind, which are defined for all integer numbers such
that0 <[, <t.
The following basic formula involving Stirling numbers of the second and rising factorial is

known ,
t A
= S 2
I E { I }l (20)

1L,=0
(see Identity (6.10) in Reference [26]).
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Putting together Equations (18), (19), and (20), as well as {;} =1, we have

E [[mw,,|'| = d'p (n'(1-p)' +O(n'™)).
This completes the proof of Theorem 13. O

Combining together the result of Theorem 13 for positive integer ¢ with Jensen’s inequality for
expectations (Equation (10)), we prove the following asymptotic result about the expected displace-
ment to the power a > 0 for nth unreliable sensor. The proof of Theorem 14 is analogous to that
of Theorem 4.

THEOREM 14. Fix a > 0. Let |mwy,_,| be the movement of sensor w, ,, in Algorithm 3. Then

d*®(n%) ifa>1

E [|mWn,n|a] = {dao(na) ifae(0,1) .

We now prove that the maximal expected movement to the power a achieves the latest sensor.

THEOREM 15. Fixa > 0. Let |mwj,,,

be the movement of sensor w; , in Algorithm 3. Then

max E Hmwj,n a] =E [|mwy,|*] .

1<j<n
Proor. Fix j € {1,2,...,n}. As in the proof of Theorem 13, we observe that the movement of
sensor wj, , is equal to j;d conditional on the sensor w; , is active and the number of unreliable sen-
sors in the interval [0, wj ] is equal to j;. (See important observation in the proof of Theorem 13).
Hence
a a

|mw]~,n| < |mwp.n|?, (21)

provided that both w; , and wy, ,, are active (reliable).
Let A denotes the event that both sensors w; , and w, , are active. From Equation (21), we have

“14] < E[[mwyn|® |A]. (22)

E[|mwj’n

Let B denotes the event that the sensor w; , is active (reliable) and w,,_, is not active (unreliable). Let
C denotes the event that the sensor w; , is not active (unreliable) and w, , is active (reliable). Let
us recall that in our model each sensor with probability p independently from the others sensors
is active (see Assumption 12). Hence

PrB="PrC =p(1-p).

Observe that
a
|B] < E[|mw,,|*|C].

E[)mwj’n
Therefore
“I1BUC] < E[Jmwy.n|* |BUC]. (23)

E[|mwj,n

Putting together Equations (22) and (23), we have

max E Hmwj,n a] = E [[mwy q|*] .

1<j<n

This completes the proof of Theorem 15. O

We now prove the following exact asymptotic result about the sum of expected movement to
the integer power ¢ for unreliable sensors.
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THEOREM 16. Fix t positive integer. Let [mw; ,| be the movement of sensor wj ,, in Algorithm 3.

Then

n t

ZE[|mwj,n|t] =d' (%nt+1 +O(nt)). (24)
j=1

Proor. First, we define

Cost(t,n) :==E i “mwj,n

t] _ ;E Umwj,,, '] .

Let Y,, be the set of active sensors in the set of n unreliable sensors. We consider the number of
active sensor, namely the random variable |Y,| and define two costs:

Cost(t,n); := E Z |mwj,n|t ‘IYnI =i

Wj’nEYn

and

Dost(t,n); :==E Z (‘mwj,n +d>t Y, =1i].

Wj,nEYn

Observe that
n
Cost(t,n) = Z Cost(t, n); Pr[|Y,| = i].
i=0
Let us recall that failures of n sensors are random and independent with probability 1—p. Therefore
Pr[|Y,| = i] = p'(1 — p)"~'. Hence

;E Z d||Yp| =i Pr[|Yn|=i]=ZE[di(ril)]Pr[|Yn|:i]:Z('z)pi(l_p)nidi

Wjn€Yn i=0 i=0

1 n—1 : —i = n-1 i— n—-1-(i—
=Z(i_1)p’(l—p)" dn=dpn2(i_1)p Y1 -p)" Y = dpn. (25)
i=1

i=1
We now make the following crucial observation.

e When the sensor wy., is active with probability p then the Cost(t, n) for n sensors is reduced
to the cost Cost(t,n — 1) for n — 1 sensors.

o If the sensor wy., is not active with probability 1 — p, then each active sensor in the set of
n — 1 sensors has to move additional distance d.

Therefore
n—1
Cost(t,n) = pCost(t,n—1) + (1 - p) Z Dost(t,n — 1); Pr[|Y,—1| = i]. (26)
i=0
We are now ready to prove the main asymptotic result in Theorem 16, namely Equation (24).
The proof of Equation (24) for Cost(t,n) will be done by induction. For t = 1, we directly
calculate

—_

n— n—1
Dost(1,n — 1); Pr[|Y,—;| = i] = Cost(l,n—1) + ZE Z d‘IYn_ll =i| Pr[|Y,—1| = i].

i=0 Wjn-1€Yn-1

I
o

i

(27)
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Putting together Equation (26) for ¢ := 1 and Equations (27) and (25) for n := n — 1, we have
Cost(1,n) = Cost(1,n— 1) +d(1 — p)p(n —1).
Hence, by telescoping, as well as Formula Cost(1,0) = 0 we get
n n 2
Cost(1,n) = Z (Cost(1, j) — Cost(1, j — 1)) = Z d1-p)p(i—-1)=d ((1 —op O(n)) .
j=1 j=1 2

Assume that the Equation (24) for n := n — 1 and thus for Cost(t,n — 1) holds for the numbers

1,2,...,t. Putting together the binomial theorem for (mw; ,—1 + d)**!, inductive assumption, and
Equation (25) for d := d**! and n := n — 1, we have
n—1 t+1 F+1
ZDost(t +1,n—=1); Pr[|Yp_e] = i] = Z ( ] )d”l_lCost(l,n —1) +d"™p(n—-1)
i=0 I=1
t
e, 1\ (A -p)p p)'p I+1 !
=Cost(t+1,n—1)+d +IZ( )d (d — CPP,_y +0((n-1)")
—Cost(t+1n—1)+d”1((t+1)( PP ”1+O( )) (28)

Putting together Equations (28) and (26) for t := t + 1 leads to
Cost(t + 1,n) = Cost(t + 1,n — 1) + d'*! ((1 -p)*pn'*t + 0 (nt)) .

Hence, by telescoping, as well as Formula Cost(t + 1,0) = 0 we have

n n

Cost(t + 1,n) = Z (Cost(t + 1,j) — Cost(t + 1,j — 1)) = d'*? Z ((1 -p)*lpittt 10 (jt))
j=1 j=1
— g+ 1-p™'p t+2+0( t+l)
42 '
This gives the claimed Equation (24) for ¢ := t + 1 and thus for Cost(t + 1, n). O

Putting together the result of Theorem 16 for positive integer t with Jensen’s inequality for
expectations (Equation (10)), discrete Hélder inequality we prove the following asymptotic result
about the sum of expected movement to the real power a > 0 for unreliable sensors.

THEOREM 17. Fixa > 0. Let |mwj,n

. 1] [d?Om) ifa>1
2F “’"Wf’” ] - {d“O(n““) ifae(0,1)

Jj=1

be the movement of sensor wj ,, in Algorithm 3. Then

5.2 Unreliable Sensors on the Plane

In this subsection, we study the k;-coverage simultaneously with k;-connectivity for unreliable
sensors on the plane. Namely, we minimize the time required and the energy consumption of the
transportation cost to the power a > 0 of Algorithm 4 as a function of the sensing radius r, com-
munication radius R and large number of sensors n. The precise formulation of our optimization
problems is as follows.

Definition 5. Fix a > 0. Let S1,S,,...S,, be the initial locations of n unreliable sensors with
identical sensing radius r and communication radius R on the plane [0, o) X [0, o) according to
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general a-random process. Assume that m(S;) is the movement of sensor S; in Algorithm 4. We
are interested in asymptotic (in large number of sensors n) for

n

Energyap(n,rR) = ) E[[[m (s;)]|']
j=1

Time, p(n,7,R) = max E [”m (Sj)Ha] .

1<j<n

We present Algorithm 4 in two phases. In the first phase (see steps 1-5 in initialization), we
apply Algorithm 1 or Algorithm 2 from Section 4.2 to the sensors on the plane. We deduce that
every point on the line connecting points (0, 0), (x1, Y1), (x2,y2), - - -, (Xn, Yn) is within the sensing
range of at least k; sensors and the communication range of at least k, sensors. Therefore, the first
phase reduces the transportation cost to the power a > 0 on the plane to the transportation cost
to the power a > 0 on the line passing through the points E[S] and (0, 0).

Then, in the second phase (see steps 6—16), we provide necessary additional movement to assure
that, every point on the path connecting the origin (0, 0) and active sensors is within the sensing
range of at least k; sensors and the communication range of at least k; sensors. Namely, apply
Theorem 14, as well as Theorem 15 and Theorem 17 on the line [0, ) for unreliable sensors on
the line passing through the points E[S] and (0, 0).

Hence, our Algorithm 4 is correct.

ALGORITHM 4: Moving unreliable sensors on the plane

Require: The initial locations Sy, S, . ..S, of the n unreliable sensors with identical sensing
radius r and communication radius R on the plane [0, o) X [0, c0) according to general a-
random process.

Ensure: The final positions of n sensors such that, every point on the path connecting the origin
(0, 0) and active sensors is within the sensing range of at least k; sensors and the communica-
tion range of at least k, sensors.

initialization

1 if £ = £ = EC then

2. apply Algorithm 1 for the sensors Sy, S, ... S,;
3: else

4 Apply Algorithm 2 for the sensors Sy, Sy, ... Sp;
5: end if

end initialization
Let (x1,y1), (x2,Y2), - - ., (Xn, yn) be the location of the n sensors after Algorithm 1 or Algorithm 2
from Section 4.2.

6: i =1;

7 (%, y) = (x1,41);

8: forj=1ton do

9:  if sensor §; is active then

10: move S; to (x,y);
11: i=i+1;

12: (x,y) = (xi,y1);
13 else

14: do nothing;

15:  end if

16: end for
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Moreover in some situations the sensors are often deployed randomly or sprinkled from an
aircraft. After the deployment some sensors may become unreliable, i.e., it cannot move, sense
and communicate. Hence, the proposed Algorithm 4 seems to be of practical importance.

We are now ready to formulate the main results for unreliable sensors on the plane.

THEOREM 18. Fix ¢ > 0 independent on n and ||E[S]||. Assume that

r R IELSTII [ELSTI
k—l,k—ze{(l—g)—,—}.

2 2
Then the following asymptotic identities are valid:

Timen (1,7, R) = O (n%) ||E[S]I| when a > 1 ’ (29)
O (n?) ||E[S]]|* when ac€(0,1)
O(n*)||E[S]||* when a>1
E ,r,R) = R 30
nergyap(n.r. k) {O(n““)HE[S]H“ when a € (0,1) (30

Proor. We now estimate Time, ,(n,r,R) and Energy, ,(n,r, R) of Algorithm 4. Fix a > 0. Let
m1(S;) be the movement of sensor §; in the first phase of Algorithm 4, m,(S;) be the movement
of sensor S; in the second phase of Algorithm 4 and m(S;) be the movement of sensor §; in
Algorithm 4. We know that in two-phases Algorithm 4 each sensor moves in the first phase and
then moves additionally in the second phase. Therefore,

[m)|| = [[ma(p)]| + [|mas)]]- (31)

Now, we define the time required and the energy consumption of the transportation cost to the
power a > 0 in the second phase of Algorithm 4 by the following formulas:

Time(2) = lrgjannE [”m(SJ)Ha] ,

Energy(2) = Z E [||mes)|] -
j=1

First, we evaluate Time(2) and Energy(2). Let us recall that (x1,y1), (x2,y2), ..., (xn,yn) is the
location of the n sensors after the first phase of Algorithm 4 and on the line passing through the
points E[S] and (0, 0) (see steps 1-5 in initialization). Since the first phase in currently analyzed
Algorithm 4 is exactly Algorithm 1 or Algorithm 2 from Section 4.2, we have

161, — 0,001 = (1 - ) FEELL 32
1658~ Gyl = (- )W e oy (33)

provided that A € {0, ¢} and [ € {1, 2} (see the proof of Theorem 8 and Theorem 9 from Section 4.2).
We know from the analysis of unreliable sensors on the line in Section 5.1 in that the movement
of active sensor sensor w is equal to d; + d; + .. .d}, provided that [ is the number of unreliable
sensors in the interval [0, w], and d; is the distance between two consecutive sensors. (See the
important observation after Equation (16) in the proof of Theorem 13.)
From Equation (32) and Equation (33), we have

NS

Therefore, we can apply Theorem 14, as well as Theorem 15 and Theorem 17 on the line [0, o) for
unreliable sensors on the line passing through the points E[S] and (0, 0). Namely,

< I(xj,y;) — (xj—1,yj—1)Il < IE[S] ||, provided that j € {1,...,n}.
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e we upper bound Time(2) and Energy(2) by the maximal expected displacement to the fixed
power a > 0 of n sensors and the sum of expected movement to the power a > 0 of the
individual sensors of Algorithm 3 for d := ||E [S]|],

e we lower bound Time(2) and Energy(2) by the maximal expected displacement to the fixed
power a > 0 of n sensors and the sum of expected movement to the power a > 0 of the
individual sensors of Algorithm 3 for d := 1_7‘9 [|E [S]I].

Hence,
Time(2) = O (n?) ||E[S]||* when a>1 1)
o) IE[S]|* when a€ (0,1)°
_ [emeES]I1® when a>1
Energy(2) = {O(n““)IIE[S]II“ when ae (0,1) (35)

Putting together Inequality (11) for x := [|m(S;)|| and y := ||m(S;)||, as well as Equation (31),
we have

[m(s)||" < max(2e=, 1) (|[mu(s)]|" + (s
a a
ot < [|mis))
Hence, passing to the expectations lead to
Time, ,(n,r,R) < max(2°~', 1) (Time,(n,r, R) + Time(2)), (36)
Energy, ,(n,7,R) < max(2°7!, 1) (Energy.(n, r, R) + Energy(2)), 37)
Time(2) < Time, p(n,7,R), (38)
Energy(2) < Energy, p(n,r,R). (39)

Putting all together (34)—(39) and Theorems 8 and 9, we obtain Equations (29)—(30). This completes
the proof of Theorem 18. O

6 EXTENSIONS

In this study, n mobile sensors Si, S, ... S, are initially randomly deployed on the plane [0, c0) X
[0, 00) according to general process. It is assumed that

I[E[S;1] - E[S;]I| = [[E[S]Il = [IE[S]| for j=1,2....,n—-1,

where [|E[S]|| is the expected distance of general a-random process according to which sensors
are deployed (see Definition 2 in Section 3.1 and Figure 1 in Section 4).

For both the optimization problems: time required and energy consumption for transportation
cost of sensors to ensure greedy path ki-coverage simultaneously with k,-connectivity (see Defi-
nition 4, as well as Definition 3 in Section 4) the optimal solution is Algorithm 5. (Notice that
Algorithm 5 is indeed Algorithm 1 analyzed in Section 4.2. To verify this fact it is enough to ap-
ply substitution jE[S] = E[S;] (see Equation (9) in Algorithm 1). Then, to attain the k;-coverage
together with k;-connectivity is for the sensors to assign the sensing radius r = klw and

communication radius r = kzm.

However, the presented Algorithm 5 is simple it does not give the intuitions about the optimal
solution for the general random process. The next Algorithm 6 is both simple and intuitive. We
are able to prove the following remark.
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ALGORITHM 5: optimal solution

1: k= max(kl,kg);
2: forj=1tok do
3. move the sensor S; to the position E[fj ];
4: end for
5. forj=k+ 1tomin(n,n+2—-k) do
6:  move the sensor S; to the position E[S;] - k@;
7. end for
8: if k > 3 then
9. forj=n+3-kton do
10: move the sensor S; to the position E[S;] - k@ -J-(n+2- k))@;
11:  end for
12: end if
Remark 1. If Algorithm 6 is executed for r = k; w and R = k2w’ then every point on

the line connecting points E[Sy] and E[S,_¢] is within the range sensing range of k; sensors and
the communication range of k; sensors, provided that k = max(ky, k2).

Proor. The proof of Remark 1 is analogous to that of Theorem 8 and even simpler. We know
that sensors at the final positions E[S;], E[S:] , ... E[S,] after Algorithm 6 lie on the line passing
through the points E[S] and (0, 0); and ||E[S;+1] —E[S;]I| = |[E[S]||, provided that j € {1,2,...,n}.

Let k = max(ky, ky). Observe that every point P on the line connecting the points E[S;] and
E[S,—k] is

e in the sensing range of q;, sensors in the interval connecting the points E[S;] and P; and g,
sensors in the interval connecting the points P and E[S,] and g;, + q,, > ki,

e in the communication range of g;, sensors in the interval connecting the points E[S;] and
PP; and ¢,, sensors in the interval connecting the points P and E[S,] and q;, + q,, > k2.

This completes the proof of Remark 1. O

ALGORITHM 6: Simplified version of optimal solution
1: k = max(ky, kp);
2: forj=1ton do
3. move the sensor S; to the position E[S;];
4: end for

6.1 Exact Formulas

Fix an even positive integer m. Let us recall that

.m m .m 1 my
max jz =nz, E]2=m n: +O(n
1<j<n 74_1

3

). (40)
j=1
Our theoretical results in the previous sections are for general random process including uni-
form, exponential and others distributions. If we restrict to specific random variable, then we can
give exact formulas for
n
. _ L ) m — R ) m
Time,, = 1r21asan [IISJ E[S;]lI ] and Energy,, = ZE [||S] E[S;]II ]
=
for Algorithm 6.
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However, the exact Equations (42), (43), (45), (46), (47), and (48) are for Algorithm 6 it is possible
to apply the similar combinatorial arguments as in the proof of Theorem 1 and Theorem 2 to
validate Equations (42), (43), (45), and (46) for Algorithm 5 and Equation (47) and (48) for properly
modified version of Algorithm 5 to the sensors on the (—co, o).

(a) The uniform distribution.

Let {r;};»; and {f,},>l be identically distributed uniform random variables over the interval [0, 2]
and let V; = (X]_, 7, Zl ) §l) Assume that Assumptions (2) and (4) in Definition 1 hold. Notice
that E[7;] = 1and Var [r;] = 3 L (see Reference [45]). Hence, Assumptions (1) and (3) in Definition 1
hold for & := 1 and f := 1. Observe that

(ZE 7], EE ) . (41)
i=1 i=1

Combining Corollary 3, Equation (41), as well as Var [r;] = 5 lead to

e I L 2\% m g
(v, - Glm] = (3)1(5) 7% +0 (%),
Let us recall that the position of jth sensor is determined by the random variable S; =

% for je{1,2,...,n}. Hence

.’ . 2%
pis = &2 s =2
(see Definition 2 for @ := 1 and f := 1 in Section 3.1).
Using this, we have
(£)'

E[|IS; - E[S;]1I"] = o

ZES]H™ +0 (577 IIELS] ™.

Applying Equation (40), we have

Time,, =

o JIE[S]] ™ + 0 (n® ") IELS] 1™, (42)

Energym, = % |E[S]| ™ + O (n ) IIELS]| |™. (43)

(b) The exponential distribution.

Let {7;};>1, {7i};>1 be identically distributed exponential random variables with rate equal to 1 (pa-
rameter A = 1) and let V; = (Zf::l T, {:1 &;). Assume that Assumptions (2) and (4) in Definition 1
hold. We know that E[7;] = 1 and Var [r;] = 1 (see Reference [45]). Hence, Assumptions (1) and (3)
in Definition 1 hold for @ := 1 and f := 1. Notice that

(2&, 21551)_ (44)

i=1

Applying Corollary 3, Equation (44), as well as Var [;] = 1 we have

E[IIV; - G.)l™] = (E)!ﬁﬁ +o (7).
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Since A = 1 the position of jth sensor is determined by the random variable S; = V;. Hence,

m

E[S;]1=(.J). [E[S]II" =27

(see Definition 2 for A := 1,  := 1 and § := 1 in Section 3.1).
Using this, we have

my,.m m A m
E[l1s; - BIS;™] = ()5 IEGSII™ + 0 (5% IESI™,
Applying Equation (40), we get

Time,, = (

NIS

E[S]||™ +O (n ") |[E[S]| ™, (45)

—

%)
(z+1)"

(c) The Gaussian distribution.

Let {r;};5; be identically distributed normal random variables with E[z;] = 1 and Var [7;] = 02 > 0,
and let X; := Z{:zl 7;. Assume that Assumption (2) in Definition 1 holds. Let us recall that the
theoretical analysis in this article consider random sensors on the plane [0, o) X [0, c0) displaced
according to general random process, This random placement uses normal distribution on the
(—00, 00). Therefore, we must restate and get the result on the (—co, 00); but our analysis is even
simpler. First, observe that the main Theorem 1 in Section 3.2 is valid regardless of the assumption
about positivity of random variables. Putting together Theorem 1, Var [r;] = 0% > 0,and E[X 1=

we have
B[(x-1)"] = =%

% (@)

In our random placement of sensors on the (—o0, o) the position of jth sensor is determined by

Energyn = ZHELS]I ™ + O (n ) IIELS]] 1™ (46)

m

£ +O(%’).

the random variable sz%forje{l,Z,...,n}.Hence
J
E|S;| ==
[J] P
Therefore
E[Tl] m 1
E[S]I™ = |E[S1]|" = = —
ELS]|™ = E[S] ‘A =

Using this, we have
B[(5-B[5])"] = = BISI" + 0 (7% IELs)™
> )!

Applying Equation (40), we have

' m m m
Timey = —=——n* [E[S]|™ + O (n* ") [E[S]|" . (47)
@)% (2)!
' a m m
Energyy, = ma n2 *1E[S]I™ + O (rﬁ) [E[S]|™. (48)

@)% (2 +1)!

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 46. Publication date: August 2021.



46:30 S. K. Das and R. Kapelko

6.2 Variable Sensing and Communication Radii

In the above derivations, it is assumed that the sensors have identical sensing radius r and com-
munication radius R. However, this approach is not limited to homogeneous setting only, and
the proposed methodology can also handle sensors with variable sensing and communication radii.
Let ry, 72, ... ry be the sensing radii of n sensors and let Ry, Ry, . .. R, be the communication radii
of n sensors in a heterogeneous mobile sensor network. Let ryin = min (ry,72,...7,,). and let
Rmin = min (Ry, Ry, ... Ry, ). Then, the optimal solution for the time required and the energy
consumption of transportation cost for sensors to provide the desired greedy path k;-coverage
simultaneously with kj-connectivity is to choose the characteristic of general random process
[IE[S]]] = Zmin(rjc“%, Rkiz"‘) and execute optimal Algorithm 5. Of course, the tradeoffs arising
among the parameters r1,7s, ..., 7n, R1, Rz, ..., Ry, and ||E[S]|| to provide the desired greedy path
ki-coverage together with k,-connectivity need further theoretical studies, as well as experimental
evaluation.

6.3 Sensor Deployment in Three-dimensional Space

The proposed theory for sensors on the plane can be extended to the cases where the sensors
are dropped in three-dimensional region as well as in higher dimensions. Let us consider three
dimensional case. We can similarly to (m, «, f)-property in two dimension (see Definition 1)
define (m,a, B,y)-property in three dimension. Then the position of the sensor S; is deter-
mined by the vector %(X}-, Y;,Z;), where the vector (X},Y;,Z;) has (m,«a, f,y)-property. How-
ever, it is natural extension our two-dimensional investigation to higher dimension the cru-
cial in analysis of the threshold phenomena closed analytical formula in three dimension for
E[lI(X;,Y;,Z;) — E[(X},Y}, Z;)]II"™] is even complicated than closed analytical formula in two di-
mension for E[||(Xj, Y;) — E[(Xj, Y;)]|I™] in Theorem 2 from Section 3.3.

6.4 Other Trajectories

This subsection discusses other greedy strategies. We assume that n mobile sensors Sy, Sy, ... S,
initially randomly deployed on the plane [0, o) X [0, 00) according to general process move to
the final destination Py, P,, . . . P, situated on the other lines not only passing through the points
E[S] and (0,0) (see Figure 4). We explain that the time required and the energy consumption is
minimized when the points Py, Py, . . . P,, are on the line passing through the points E[S] and (0, 0).

We consider general straight line with gradient M,;E[S] and intercept ¢ = 0, where M, =
[cos(y) — sin(y)

sin(y)  cos(y)
Let z; > 0. In the first strategy the sensor S; moves to the position z;E[S] on the line with

gradient E[S] and intercept ¢ = 0 and in the second the sensor S; moves to the position z;M, E[S]
on the line with gradient zM, E[S] and intercept ¢ = 0 We now compare these movements.
The direct calculation for vectors, as well as E[S;] = jE[S] (see Equation (9)) lead to

] is the rotation matrix.

E [I1S; - z;MyE[S]II°] = E [IIS; - 2/B[S]I?] + 2iz;(1 = cos(y)|E[S]I*.
Since (1 — cos(y))||E[S]||* > 0 and z; > 0, we have

E [IIS; - z;M,E[S]II°] = E[IIS; - zE[S]II?] -
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Fig. 4. Five mobile sensors S1, Sz, S3, S4, S5 dropped from the aircraft on the plane.

Therefore,
el B L1872 2 e B (1S, =2 EISIIC).
STE[lIS; - 2;MESIIF] 2 Y E[IIS; - /S]] .
j=1 Jj=1

Hence, on the line not passing through the points E[S] and (0, 0) the time required and the
energy of the transportation cost to the power 2 of transportation cost in reallocation of sensors
to provide the desired k;-coverage together with k;-connectivity are both minimized.

However, when a > 2 and we know the asymptotic of the expected cost for large j. Namely

E[IIS; - z/E[SII1P] = ©G)IESIP,  E[IIS; - zE[S]II] = © (j%) IIE[S]]I? (49)

the much stronger result is possible. (Notice that the mentioned expected costs (Equation (49)) are
the expected movement of sensors when the time required and the energy consumption of trans-
portation cost for sensors to provide the desired k;-coverage with k,-connectivity is minimized).
Combining Equation (49) with Jensen’s inequality for expectations (Equation (10)) we can prove
the following upper bounds

max E[IIS — z;M,E[S]]|%] 2 max E[IIS; - zE[S]11].

Jjein2, ..., Jel{l2, ...,
n n
DUE[IIS; - ;M E[S]1°] = Y IS, - ZES]IY .
= =

The presented argument is valid for other expected costs for large j. Namely
E [IIS; - z/EIS]I1?] = © (%) IESIIP,  E[IIS; - ZE[S]II*] = © () [[E[S]]I°.
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Fig. 5. Timeq(n,r,R) = ©(1) of Algorithm 1 Fig. 6. Timeq(n,r,R) = @(n%) of Algorithm 2
for k=ky =k =2 for e=0.5 and k=k; =ky = 2.

6.5 Real-life Sensor Deployment

It is worth mentioning that our experimental evaluations in the next Section 7 are restricted to
some specific random variables. It is assumed that the sensors are randomly displaced according to
the evaluated distributions. However, the methodology proposed in this article is also applicable for
the real-life sensor deployment. When the sensors Sy, Sy, . .., S, are distributed according to some
unknown distribution, we have to estimate E[S; ], E[S;], . . . E[S,, ] and execute optimal Algorithm 6.
The estimation of E[S;], E[S2], ... E[S,] is even reduced to the estimation E[S] = E[S;] when
E[S;] = JE[S{]. Then, we assign the sensing radius r = klﬁ and communication radius R =
kg@ to optimize the energy consumption and the time required in movement for greedy path
ki-coverage simultaneously with k;-connectivity.

Hence, it will be interesting to provide experiments considering some realistic settings. However,
this experimental evaluation may be expensive due to the large realistic data that would be required
for reliable estimation.

7 NUMERICAL RESULTS

In this section, we provide a set of experiments to illustrate Theorem 8 and Theorem 9 for reliable
sensors (see Section 4.2); Theorem 14 together with Theorem 15 and Theorem 17 for unreliable
sensors (see Section 5.1). While the theoretical results are for general random process, in the ex-
periments we have restricted to specific random variable. We evaluate both time and energy.

7.1 Evaluation of Time, (n,r, R).

For the case of time, we evaluate 2-coverage together 2-connectivity we choose to experiments
two sequences {gi};>, {hi};>; of exponential distribution with parameter A = +/n. Assume in-
dependence between sequences {7;};51, {£i};5,; and additionally assume that, random variables
{7i}i>1 and {&;};5, are independent. Then, in Definition 1 properties (2) and (4) hold for all m
integer greater than 2. Notice that E[g;] = E[h;] = % for i > 1 (see Reference [47]). In this ex-
perimental evaluation, the position of the jth sensor random variable S; is defined by the formula
S; = (Z{:1 gi, Z{::l hi). Hence, in Definition 1 we have 7; = ¢;A, & = h;Aand a = f = 1. Therefore,

the expected distance of this specified random process is given by the formula |[E [S]|| = ‘/72 = %

(see Equation (8)).
Figure 5 depicts experimental Time;(n, r, R) of Algorithm 1 (Algorithm 2 when ¢ = 0) for 2-
coverage together with 2-connectivity when r = R = o LEEIIL % In this case, we conduct

2
Algorithm 7 for ¢ = 0.
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ALGORITHM 7:
1: n:=1
2: whilen <50 do
3 forj=1to 100 do
4 Generate S; = (X1(j), Y1(4)),S2 = (X2(j), Y2(7))»- - -»Seon = (Xs0n(j)> Ys0n(j)) random
points on the plane [0, c0) X [0, o) such that ¥;e(1,2,.. . 60n}, (Xi(j) and Y;(j) are the sum of
i independent and identically distributed exponential random variables with parameter

A = V60n; X;(j) and Y;(j) are independent);

5: Calculate T1(60n, j) = max;<;<eon ||St — (xs, y¢)|| according to Algorithm 2 for k =
E[S] = (%, %) and ¢;
end for

Calculate the average T(60n) = zlo 23}0:1 T1(60n,v + (I — 1)20);
Insert the points T1(60n) into the chart;

10:  end for

11: n:=n+1

12: end while

6
7. forl=1to5 do
8
9

In Figure 6, the black points represent numerical results of conducted Algorithm 7 for ¢ = 0.5.
Notice that the experimental Time;(n,r,R) of Algorithm 2 is in @(n%). Hence, the carried out
experiments confirm very well the obtained theoretical tight bound @(n%) (see Time,(n,r,R) in
Theorem 9 for a := 1 and ||E[S]|| = \/i%)

In Figure 5, the black points represent numerical results of conducted Algorithm 7 for ¢ = 0. No-
tice that the experimental Ty (n, , R) of Algorithm 1 is in ©(1). Hence, the carried out experiments
confirm very well the obtained theoretical upper bound O (1) (see Time,(n, r, R) in Theorem 8 for

a:=1and [[E[S]]| = vig)'
Figure 6 depicts the experimental Time;(n, r, R) of Algorithm 2 for 2-coverage together with 2-

Nz orR = Nz In this case, we conduct

connectivity when ¢ = 0.5 considering the parameters r = - PN PR

Algorithm 7 for ¢ = 0.5.
It is worth pointing out that Figures 5 and 6 together illustrates the sharp decline from @( %)
to ©(1) in Time; (n, r, R) for 2-coverage together with 2-connectivity when r increases from

:ﬁ or R increases from to \F

z\F v

2(0

7.2 Evaluation of Energy;(n,r,R)

For the case of energy, we evaluate 1-coverage together with 1-connectivity we choose to exper-
iments two sequences {g;};>, {hi};»; of uniform distribution over the interval [0, \%] Assume
independence between sequences {7;};s1. {£i};-; and additionally assume that, random variables
{7;}i>1 and {&;};5, are independent. Then, in Definition 1 properties (2) and (4) hold for all m
integer greater than 2. Notice that E[g;] = E[h;] = % for i > 1 (see Reference [47]). In this ex-
perlmental evaluation, the position of the jth sensor random variable S; is defined by the formula

(Z] 191’21 L hi). Hence, in Definition 1 we have 7; = g;vn, & = hjyn,a = f = 1 and in
Deﬁn1t10n 2 it is A = +/n. Therefore, the expected distance of of this specified random process is
given by the formula ||E [S]|| = £ :ﬁ (see Equation (8)).
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Figure 7 depicts experimental Energy,(n,r, R) of Algorithm 1 (Algorithm 2 when ¢ = 0) for

1-coverage together with 1-connectivity when r = R = m = Z{F In this case, we conduct
Algorithm 8 for ¢ = 0.
ALGORITHM 8:

1: n:=1

2: while n < 50 do

3. forj=1to 100 do

4 Generate S; = (X1(j), Y1()),S2 = (X2(j), Y2(}))»- .-, Sson = (Xeon (), Yeon(j)) random
points on the plane [0, o) X [0, 00) such that V;e(1,2, .. 60n}, (Xi(j) and Y;(j) are the sum of
i independent and identically distributed of uniform distribution over the interval [0, \f]

X;(j) and Y;(j) are independent);

5 Calculate E5(60n,j) = 2% ||S; — (xs, y,)||* according to Algorithm 2 for k = 1, E[S] =
(\/Lﬁ’ \/LH) and ¢;

6: end for

7. forl=1to5 do

8: Calculate the average E;(60n) = 55 L 320 Ep(60n,v + (I — 1)20);

9: Insert the points E,(60n) into the chart;

10:  end for
11: n:i=n+1
12: end while

In Figure 7, the black points represent numerical results of conducted Algorithm 8 for ¢ = 0.
The additional line {(n, 3n),1 < n < 3000} is the leading term in theoretical estimation. Applying
Corollary 3 for V; = (X_, givn, X)_, hivn), where var[g;] = var[h;] = ﬁ and omitting the

technical details, we can get the leading term. Hence,

- 1 1 1
IS: = (xr,yo)|IF = =n+ O(1) according to Algorithm 1 for k =1 and E[S] = ( )
5 : L

Figure 8 depicts the experimental Energy2(n, r, R) of Algorithm 2 for 1-coverage together with
f

1-connectivity when ¢ = 0.5 considering the parameters r = e OF R = 4\\? In this case, we
conduct Algorithm 8 for ¢ = 0.5.

In Figure 8, the black points represent numerical results of conducted Algorithm 8 for ¢ = 0.5.
Notice that the experimental Energy,(n, r, R) of Algorithm 2 is in ®@(n?). Hence, the carried out

experiments confirm very well the obtained theoretical tight bound ©(n?) (see Energy,(n, r, R) in
Theorem 9 for a := 2 and ||E[S]|| = %)
It is worth pointing out that Figures 7 and 8 together illustrates the sharp decline from ©(n?) to
V2

O (n) in Energyz(n, r, R) for 1-coverage together with 1-connectivity when r increases from == to

2\n
Nz or R increases from Nz to Nz

wn 24/n wn'

7.3 Evaluation of Time for Unreliable Sensors

We evaluate the maximum displacement to the power a = 1 (Time) of unreliable sensors in Algo-
rithm 3. In the experimental evaluation, we choose reliability parameter p = l , i.e., each sensor
with probability p = 3 1ndependently from the other sensor is active (see Assumptlon 12).
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Fig. 7. Energya(n,r,R) = %n of Algorithm 1 for Fig. 8. Energyz(n,r,R) =© (nz) of Algorithm 2
ki=ky,=k=1. fore=05andk =k =ky = 1.
ALGORITHM 9:
1: n:=1

2: while n <50 do

32 forj=1to50 do

4: Generate Xi(j), X2(j), - - ., Xson(j) unreliable sensors at the equidistance points, i.e.,
X;(j) = % +(i—1)dfori=1,2,...,60n suchthat V;c(1.2....6on}, (Xi(j) with probability %
independently from others sensors is realiable, i.e., it can move, sense and communicate);

5: Calculate T, 1 (60n, j) the maximum of the reliable sensor’s displacements to the power
a in Algorithm 3;

6: end for

7. forl=1to5 do

8: Calculate the average Ta,% (60n) = 1—10 Zi)ozl Ta’%(éon, v+ (I —1)10);

9: Insert the points T, 1 (60n) into the chart;

10  end for
11: n:=n+1
12: end while

Figures 9 and 10 depict experimental maximum displacement to the power 1 of Algorithm 3
whend = 1andd = % In this case, we conduct Algorithm 9 for parameters a = 1,d = 1
and parametersa = 1,d = % In Figures 9 and 10 the black dots represents numerical results of
conducted Algorithm 9 for parameters a = 1, d = 1 and parametersa = 1,d = <.

Notice that the experimental maximum displacement to the power 1 of Algorithm 3 ford =1
is in © (n). Hence, the carried out experiments confirm very well the obtained theoretical tight
bound © (n) (see Theorem 14 together with Theorem 15 for a := 1 and d := 1).

Observe that the experimental maximum displacement to the power 1 of Algorithm 3 ford = %
is in © (1). Hence, as in the previous experiment, the carried out experiments confirm very well
the obtained theoretical tight bound © (1) (see Theorem 14 together with Theorem 15 for a := 1
and d := %)

Notice that the experimental maximum displacement to the power 2 of Algorithm 3 ford =1
isin © (nz) Hence, the carried out experiments confirm very well the obtained theoretical tight
bound @O (n) (see Theorem 14 together with Theorem 15 for a := 2 and d := 1).

Observe that the experimental maximum displacement to the power 2 of Algorithm 3 ford = £

n
is in © (1). Hence, as in the previous experiment, the carried out experiments confirm very well
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the obtained theoretical tight bound © (1) (see Theorem 14 together with Theorem 15 for a := 2

andd := 1).
n
Figures 11 and 12 depict experimental maximum displacement to the power 2 of Algorithm 3
whend = 1and d = % In this case, we conduct Algorithm 9 for parameters a = 2,d = 1 and

parameters a = 2,d = % In Figures 11 and 12 the black dots represent numerical results of
1

Algorithm 9 for parameters a = 2, d = 1 and parametersa = 2, d = o

7.4 Evaluation of Energy for Unreliable Sensors

We evaluate the sum of displacement to the power a = 1 (Energy) of unreliable sensors in Al-
gorithm 3. As in the previous subsection, in the experimental evaluation we choose reliability
parameter p = %, i.e., each sensor with probability p = % independently from the other sensor is
active (see Assumption 12).

Figures 13 and 14 depict experimental sum of displacement to the power 1 of Algorithm 3 when
d = % and d = # In this case, we conduct Algorithm 10 for parameters a = 1, d = % and

parameters a = 1, d = # In Figures 13 and 14 the black dots represent numerical results of

1
PR

The experimental sum of displacement to the power 1 of Algorithm 3 for d = % is in © (n).
Hence, the carried out experiments confirm very well the obtained theoretical tight bound © (n)
(see Theorem 17 for a :== 1 and d := %)

Algorithm 10 for parameters a = 1, d = + and parametersa = 1,d =
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Fig. 13. Sum of displacement to the power 1 of Fig. 14. Sum of displacement to the power 1 of
Algorithm 3 for d = % Algorithm 3 for d = #

Observe that the experimental maximum displacement to the power 1 of Algorithm 3 for d =
# is in ©(y/nn). Hence, as in the previous experiment, the carried out experiments confirm very

well the obtained theoretical tight bound @(+/n) (see Theorem 17 for a := 1 and d := #)

ALGORITHM 10:
1: n:=1
2: while n <50 do
32 forj=1to50 do
4: Generate Xi(j), X2(j), - - ., Xeon(j) unreliable sensors at the equidistance points, i.e.,
X;(j) = % +(i—1)dfori=1,2,...,60n suchthat V;c(1.2....6on}, (Xi(j) with probability %
independently from others sensors is reliable, i.e., it can move, sense and communicate);

5: Calculate Ea,% (60n, j) the sum of displacement to the power a of reliable sensors in
Algorithm 3;

6: end for

7. forl=1to5 do

8: Calculate the average Ea’%(60n) = % Z;)O:l Ea’%(60n, v+ (I —1)10);

9:

Insert the points E, 1 (60n) into the chart;
10:  end for

11: n:=n+1

12: end while

Figures 15 and 16 depict experimental sum of displacement to the power 2 of Algorithm 3 when
d = % and d = # In this case, we conduct Algorithm 10 for parameters a = 2, d = % and
parameters a = 2,d = # In Figures 15 and 16 the black dots represent numerical results of
Algorithm 10 for parameters a = 2, d = % and parameters a = 2,d = #

The experimental sum of displacement to the power 2 of Algorithm 3 for d = % is in © (n).
Hence, the carried out experiments confirm very well the obtained theoretical tight bound © (n)
(see Theorem 17 for a := 2 and d := %)

Observe that the experimental maximum displacement to the power 2 of Algorithm 3 for d =
# is in © (1). Hence, as in the previous experiment, the carried out experiments confirm very

well the obtained theoretical tight bound © (1) (see Theorem 17 for a := 2 and d := #)
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8 CONCLUSION

In this article, we addressed the fundamental problem of the range assignment in wireless mobile
sensors networks in which n mobile sensors with identical sensing radius » and communication
radius R, provided that r < R are initially randomly deployed on the plane by dropping them
from an aircraft according to general random process. To this end, we minimized the time required
and the energy consumption of transportation cost for sensors as the function of sensing radius
r and communication radius R to provide the desired greedy k;-coverage simultaneously with
k2-connectivity. We proved that for both of these optimization problems, the optimal solution is

K, IIE[ZS]II

to assign the sensing radius equal to r = and the communication radius equal to R =

ko m, where |[E[S]|| is the distance of general random process according to which the sensors
are deployed. We also discovered and explained the sharp increase, i.e., the threshold phenomena
in the time required and the energy consumption in transportation cost to ensure the desired k;-
coverage together with k;-connectivity when r < k; m orR < kgm.

We further analyzed the desired ki-coverage together with k;-connectivity for unreliable sen-
sors. For unreliable sensors both the time required and the energy consumption in transportation
cost to ensure the desired ki-coverage together with k,-connectivity remains asymptotically the
same when r is below or equal to k; m or R is below or equal to k- HE[S | While we have dis-
cussed the applicability of our approach to sensors having variable sensmg and communication
radii an open problem for future study is the range assignment in heterogeneous wireless mobile
sensors networks. Additionally, it would be interesting to explore the range assignment problem
for sensors with variable sensing and communication radii when some sensors are unreliable or
even fail with some fixed probability.

APPENDICES
APPENDIX A

ProoF. (Theorem 1) Fix an even positive integer m. Assume that j > 7.
First, combining together Equation (1), multinomial theorem, as well as Equation (2), we deduce
that

E[(X -E[X ] E[ ]05) Z(ll 12), [H —a}
Z(h lz)' - .>.1_[E[<ff—a>“],

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 46. Publication date: August 2021.



On the Range Assignment in WSN for Minimizing the Coverage-Connectivity Cost 46:39

where
= {(llalz,...lj) ENj:ll +12+"‘+lj =m}.
Applying Equation (1), we get E[(r; — «)] = E[r;] — @ = 0. Hence, we have a simpler expression,

[(X - E[X |m] - Z @) |(12 )! HE[ 7 -a) (50)

where
Bi={(l,by...L,) eN : L+l +--+L=m, L#1fori=12,...,j}
Observe that
Bi =B, UB; and B, N B3 =0, (51)
By, = {(l}, 5, .. l)eN’ Lh+b+--+L=m L;#1, [;€{0,2} for i=1,2,...,j},
By ={(llpy... ) EN c L+ b+ -+ j=m, [#1for i=1,2,...,5, Ji(l;#2)}

1By | = (;) 1Bs] =0 (j%71). (52)

Notice that
E [(rl- - a)z] = Var[r]. (53)
We now make the important observation that the sum (Equation (50)) is equal to the sum of
Equations (54) and (55).
The second sum (Equation (55)) is negligible. Thus, the asymptotics of Equation (50) depends

on the expression given by the first sum (Equation (54)).
Together, Equations (52) and (53) imply

. ,- | (Var [,]) 2
Z(h lz)' - A)|HE[(“‘“)’]=;%
7.

Using Equation (1) in Definition 1, we have

I; Li
(- ]| < B[1n - '] <Eftmi+ ] = 3 (Eefim] o = Y (()o[] o
I
< Cim Z (lti)al"_t =Cim(a+ l)l"
t=0

Hence, by Equation (52), as well as formula [; + I, + - - - + [; = m, we get

J
Z(ll N (1)! 'HE[ - a)f S;m!BIE[(n

<miCP, (a+1)™ |Bs| =0 (j%7'). (55)

< Z m!Cy",, (a +1)™

Finally, combining Equations (50), (51), (54), and (55) completes the proof of Theorem 1. O
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APPENDIX B
Proor. (Theorem 2) As a first step, we combine together binomial theorem with independence

of random variables X;, Y; and get

m
2

(x, —EDX) + (v - E[Y]))% E(

E [IIV; ~E[V)I"] = E

—

o

3

(?)E((Xj_E[Xj])Zi)E((),f _E[Yf])mizj)‘ (56)

Hence, estimating the expected distance to the power m between random vector V; with (m, a, f8)-
property and its mean E[V}] is reduced to estimating the expected mth moments around the mean
for the random variables X; and Y;. Due to properties (3) and (4) in Definition 1 for the sequence
{ri};>1 Theorem 1 also holds for random variable Y; = Zle &;. Therefore, applying Theorem 1

i=0

for random variable X; = Zle 7; and m := 2i, as well as for random variable Y; = }/_, & and
m:=m — 2i we get

E((X ElX])’ ) Lk ;Y?;.[T—l]) j o). (57)
B (v - E)" ) = (m zi_fZErmsfz’j?y+o( 2oi1) (58)
7_ .

By substituting Equations (56) and (57) into (58), we get

m!%imz . m_: | . m m
E[nvj-Ervgnm]=((%2 }](?)(m_f)<varhﬂr<varwd>zﬂ>jz+o('z*).

2r S\
This completes the proof of Theorem 2. O
APPENDIX C
Proor. (Theorem 4) Putting together Equations (6) and (8), we have
1V — E[V;]I1
E [Ils; - E[S]11] = al ]HE@NW- (59)

a

(Voo + 77)
From Theorem 2, we have for m positive even integer

E[IIV; —E[V,]I"] =0 (7). (60)

First, let us prove the upper bound. Let m be the smallest even integer greater than or equal to
a > 0. Applying Jensen’s inequality (see Equation (10)) for X := ||V; — E[V;][|* and f(x) := xa,
we get

(E[I1v, - B[V, 11)) * < EM%—E 1]
Using Equation (60), we get E [IIV - E[V;]|I¢ ] (@ ( %)) ( ) . Hence
E [IIV; - E[V;]II*] =0 (j*) when a>o0. (61)

This proves the upper bound.
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Next, we prove the lower bound. Assume a > 2. Using Jensen’s inequality for X := ||V; —E[V;]||?
and f(x) := x?,
(& [I1v; - LV, ])% < [, - ErvI]
Using Equation (60), we get E [| |V; —E[V ] (@ ( 2)) ( ) . Hence
E[IIV; - E[V ] Q(j?) when a> 2. (62)

This proves the lower bound.
Finally combining Equations (59), (61), and (62), as well as the asymptotic (\/az + ﬂz)a =0(1)
completes the proof of Theorem 4. O

APPENDIX D

ProoF. (Theorem 5) There are two cases to consider.
The upper bound.
Fix a > 0. We argue as follows. Combining together the triangle inequality for vectors S; —E[S;]

and O(1)E[S], as well as elementary Inequality (11) for x := HSj - E[Sj]H and y := ||O(1)E[S]|| we
have
|5 - EL5;1 + OELS]|* < max (2, 1) (|}s; - B[S, + 101 ELSI®)

Passing to the expectations, we get
E[||s; - ELs;1 + O()E[S]||"] < max (227%,1) (E[||s; - ELS,]||"] + l0()1°1E[S]11°) .
Applying Theorem 4, we have
E [||s; - Els;] + 0(1 ||] O (%) IIE[S]II, a > o.

This proves the upper bound.
The lower bound.
Fix a > 2. We argue as follows. Combining together the triangle inequality for vectors S; —E[S;]

and O(1)E[S], as well as elementary Inequality (11) for x := ||Sj - E[SJ-]H and y := || — O(1)E[S]||
we have

|; — BLS,]||" < max (227, 1) ||s; - E[S;] + O(E[S]]||" + max (247, 1) | — O(1)||[E[S]]|°.

Passing to the expectations, we get

E [||s; - Es)]]]
oo < (Ellls-Es+ o@EEN|] + - oiEEsn)
Applying Theorem 4, we have E[||S; — E[S;] + O(1)E[S]||*] = QG?)||E[S]I|4, a > 2. This is
enough to prove the desired lower bound and completes the proof of Theorem 5. O
APPENDIX E

Proor. (Theorem 6) The proof of Theorem 6 is analogous to that of Theorem 5.

First, we prove the upper bound. Combining together the triangle inequality for vectors S; —
E[S;] + O(1)E[S] and €E[S;], as well as Inequality (11) for x := [|S; — E[S;] + O(1)E[S]|| and
y := |[eE[S;]]| we get

11S; — (1= £)E[S;] + O(DE[S]II* < max (27", 1) (IIS; - E[S;] + (O(1) — 1) E[S]I| + |I£E[S;]]1%) .
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Passing to the expectations and applying Theorem 5, Identity O(1) — 1 = O(1), as well as Equation
(9) we have

E [|IS; - (1 - )E[S;] + O(1)E[S]||*]

max (2471, 1)

<E[IIS; - E[S;] + O(DE[S]||*] + E [I1E[S;]11°]
=0 (%) IIE[S]II + &%/ |E[S]]]°.
Hence

E[IIS; - (1 - &)E[S;] + O(DE[S]|I*] = O () IIE[S]II“.

This proves the upper bound.
To prove the lower bound, we combine the triangle inequality for vectors S; — (1 — ¢)E[S;] +

O(1)E[S] and - (S, — E[S;] + O(1)E[S]), and Inequality (11) for x := ||S;— (1-¢)E[S;]+O(1)E[S]||
and y := || - (S; - E[S;] + O(1)E[S]) ||. Then, we get

lI€E[S,]11¢ < max (2971, 1) [IS; - (1 - £)E[S;] + O(DE[S]||* + max (27", 1) || - (S; — E[S;] + O(1)E[S]) ||“.
Passing to the expectations, we have

E [I1eE[S;]1|°] < max (27", 1) E [IIS; - (1 - £)E[S;] + O(1)E[S]||%]
+max (27, 1) E [Il - (S; - E[S;] + O()E[S]) 11] .

Hence, applying Theorem 5, as well as Equation (9) we have

4GeE[S]I a oy
E[I1S; - (1= 9)B[S;] + OWELSN|“] = s = O (7 IELS]IN = @ ) IELS]II".
This proves the lower bound and completes proof of Theorem 6. ]
APPENDIX F

Proor. (Theorem 9) The proof of Theorem 9 is analogous to that of Theorem 8.
Fix k = max (ky, k) Assume that the n sensors on the plane have identical sensing radius r =
ki ”E[ZS]” and communication radius R = k, HE[S] I . First, observe that sensors at the final positions

(x1, 1), (x2,Y2), - . . (xn,yn) after Algorithm 2 lie on the line passing through the points E[S] and
(0,0). Observe that

1- E[S
e 30) — 0, 011 = LRI
(x5, yj) = (xj—1, yj-) I = w if jel2 ...,k} (seesteps 2—4 of Algorithm 2),
(x5, yj) = (xj—1, yj—) I = 1A= )E[S]||if j € (k+ 1, k+2, ..., min(n, n+2 - k)} (see steps 5-7 of Algorithm 2),
(x5, yj) = (xj—1, yj-) | = ﬂ if je{n+3—-k,...,n}and k > 3 (see steps 8—12 of Algorithm 2).
Therefore, we can apply Lemma 7 for d := ||(1 — ¢)E[S] || and deduce that every point on the

line connecting points (0, 0), (x1,y1), (x2,y2), . . . (xn,yn) is within the sensing range of at least k;
sensors and the communication range of at least k, sensors. Hence, Algorithm 2 is correct.
We now estimate Time,(n, r, R) and Energy, (n, r, R) of Algorithm 2.
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Let us recall that jE[S] = E[S,] (see Equation (9)). Hence

(1-0E[s)]

5 if je{l,...,k} (see steps 2—4 of Algorithm 2), (63)

(1-¢E[S]

Sj = (xj,y;) =S; —

Sj = (x.y) =85 - (1= OB [8;] - k if je(k+1L,k+2,....min(mn+2-k)} (64)
(see steps 5—7 of Algorithm 2),

Sj = (xj,y5) =S5 - (1= 9)E 5] -k(1-5)@ —(-(+2-k)(1-e)

if je{n+3—-k,...,nfand k>3 (65)
(see steps 8—12 of Algorithm 2).

E[S]
2

We are now ready to apply Theorem 6 and evaluate separately Equations (63), (64), and (65).
Case of Equation (63)
Passing to the expectations and using Theorem 6 with ¢ := ”TE and O(1) := 0, we get

E[|[s; - Gu)|] = © G NEESIN® if e (2. k).

Case of Equation (64)
_ k(1-e)

Since k = O(1), we can apply Theorem 6 with O(1) := =5— and get

E [“Sj - (xj,yj)Ha] =0 (j*) provided that j € {k+ 1,k +2,...,min(n,n+ 2 —k)}.

Case of Equation (65)
Observe that 2 < k +j — (n + 2 — k) < 2k — 2 = O(1). Therefore, we can apply Theorem 6 with

0(1) := =5 (k + j - (n + 2 - k) and and get
E [”Sj - (xj,yj)Ha] =0 (j%) provided that je{n+3—k,...,n} and k > 3.
Combining together Estimations: Case of Equation (63), Case of Equation (64), Case of Equa-

tion (65), we have

Time,(n,r,R) = max E [HSj - (x5,y5) a] =0 (n%

1<j<n
of Algorithm 2.
Putting together Estimations: Case of Equation (63), Case of Equation (64), Case of Equation (65)
and the well-known identity 21'-1:1 j% = ©(n7*"), when a > 0 we have

n
Energy,(n,r,R) = ZE [“Sj - (xj,yj)Ha] =0 (n““) .
j=1
of Algorithm 2.
This completes the proof of Theorem 9. O

APPENDIX G

ProOF. (Theorem 11) There are two cases to consider

Case l:r = k(1 - g)m

Assume that sensor S; moves to the position Q;, which lie on the line passing through the
points E[S] and (0,0). provided that j € {1,2,...,n}. Let Qy = (0.0). We look at the points
Q1,Q3,Qs, ... Q, and choose the point Py = w.

Point P, is in the middle of interval connecting point (0, 0) and Qy, . If P, is not in sensing range
of Qg , then it is in the sensing range of at most k; — 1 sensors. Therefore, P, must be in the sensing
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range of sensor Qy,, i.e.,

1k, - Poll < SHEESIIC - 0)

Therefore, [|Qg, || < [[k1E[S][[(1 — ¢). Since Q, lies on the line passing through the points E[S]
and (0, 0), we have
Ok, = kiE[S](1 - Ay), (66)

provided that e < A; <1

Let j be the positive integer and j + 1 < kll We now look at the points Qg j, Qk,j+15 - - - Qiyjuaky
and choose the point
Qkpjrk; — Qxyj
— 5,
Point P; is in the middle of interval connecting point Q,; and Q, j+x,. If P; is not in the sensing
range of Q, j+k,, then it is not in the sensing range of Qy,; and thus is in the sensing range of at
most k; — 1 sensors. Therefore, P; must be in the sensing range of the sensor Qg jt,, i.e.,

P =

k
1Qu ey = Pll < S IELSTIICL ~ e).
Therefore
Qk«, j+k, — Qiyjll < KLE[S](1 - ¢). (67)
Putting together Equations (66) and (67), as well as the fact that Q, ; lies on the line passing through
the points E[S] and (0, 0) we have

J
Quj = Z kE[S](1 - A;),
=1

provided that ¢ < A; < 1. Using this, as well as Equation (9), we have
A] + Az + ... Aj
Sk = Quyy = S = BlSi) + B[Sy, ] | = ).
Since e < A; <1and 0 < € < 1, we have
Al + Ay + ... Aj
e<g=—-—""J <1
J
Clearly ¢; depends on j but 1 > ¢; > ¢. Hence, we can apply the similar arguments to that as in
the proof of Theorem 6 to deduce that

E[||Sk = Qul|]* = (k1)*© ) 1IELST)1“.

Since Z;‘:ll(klj)“ =0 (n““), when a > 0 and k; is fixed we have

max E [|IS; - Q1] 2 s, B [115k,; = Qisl1] = © (n*) IE[S] 11

1<j
Therefore,
Time, (.7, R) = Q (n*) |[E[s]]|°,
n 5
DTE[IS; - QilI] = Y E ISk - Qull®] = © (n*1) IE[STII
Jj=1 j=1
Hence

Energya(n,r,R) = Q (n*"") [E[S]]|°.
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Case 2R = k,(1 - 5)@

The proof of Case 2 is analogous to that of Case 1. Namely, we apply the same arguments as in
Case 1 for ky := ky, and the sensing radius := the communication radius.

This completes the proof of Theorem 11. O

APPENDIX H

Proor. (Theorem 14) The proof of the theorem is analogous to the proof of Theorem 4.
From Theorem 13, we have for ¢ positive integer

E [|mwn,n|t] =d'e (n’) . (68)

First, let us prove the upper bound. Let t be the smallest integer greater than or equal to a > 0.
Applying Jensen’s inequality (see Equation (10)) for X := mw, , and f(x) := x4, we get

(B [lmwnal D) @ < E [jmwnal'] .
Therefore,

~|2

E [|mwy n|?] < (dtG (nt)) =d*©(n%).
Hence
E [|mwy,,n|?] =d%0 (t*) when a > 0. (69)

This proves the upper bound.
Next, we prove the lower bound. Assume that a > 1. Using Jensen’s inequality for X := mw,, ,
and f(x) := x?, we have

(E [mw}l,n])a < E [|mwnal?]-
Applying Equation (68) for ¢ := 1 lead to
E [[mwy a|*] = (dO (n))* = d*© (n?).

Hence
E [[mwy,n|?] =d*Q (n*) when a > 1.
This proves the upper bound and completes the proof of Theorem 14. O
APPENDIX I
Proo¥F. (Theorem 17) From Theorem 16, we have for t positive integer
n
ZE “mwj,,,r] =d'e (n”l) . (70)
=1

There are two cases to consider.

Case the upper bound
Let k be the smallest integer greater than real a > 0. We use discrete Holder inequality with
parameters £ and - and get

Sl < (33 @ s

Jj=1 J=1

-

“1)5)?(2)ta=(§<Enmwﬂn"1>é)?w. o

Jj=1

Next, we use Jensen'’s inequality (see Equation (10)) for f(x) := xa and X = [Imw; »1*] and get

a])5 <E [|mwj,n a] . (72)

(E [|mwsn
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Combining together Equations (71) and (72), as well as Equation (70), we deduce that

DL [ D o [
=1 1

Jj=

[
t

] aie (dt® (nm))? 5t Z 490 (na+1).

Hence,
n

D E[min
j=1
This is enough to prove the lower bound.
Case the lower bound
Fix a > 1. We use discrete Holder inequality with parameters a and -%; and get

a] =d°0 (n““) , when a > 0.

-1

n a n a n
)| n=. @3

B {fmwinl] < | 2 (€ [fmowial])") | 251) = | 20 (B [l

j=1 j=1 j=1 j=1

=

Next, we use Jensen’s inequality (see Equation (10)) for f(x) := x* and X =: [|mw; ,|] and get

(E Hij,n ])a <E Hmwj,n a] . (74)
Combining together Equations (73) and (74), as well as Equation (70), for ¢ := 1 we deduce that
a
SUE [lmw|] = [ S [l | 7 = (a0 () e = v (ne)
j=1 =1
Hence,
n
Z E [|mwj,n a] =dQ (n““) , when a > 1.
i=1
This is enough to prove thi: lower bound and completes the proof of Theorem 17. O
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