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On the Range Assignment in Wireless Sensor Networks

for Minimizing the Coverage-Connectivity Cost
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This article deals with reliable and unreliablemobile sensors having identical sensing radius r , communication

radius R, provided that r ≤ R and initially randomly deployed on the plane by dropping them from an aircraft

according to general random process. The sensors have to move from their initial random positions to the

onal destinations to provide greedy path k1-coverage simultaneously with k2-connectivity. In particular, we

are interested in assigning the sensing radius r and communication radius R to minimize the time required

and the energy consumption of transportation cost for sensors to provide the desired k1-coverage with k2-

connectivity. We prove that for both of these optimization problems, the optimal solution is to assign the

sensing radius equal to r = k1
| |E[S] | |

2 and the communication radius R = k2
| |E[S] | |

2 , where | |E[S]| | is the
characteristic of general random process according to which the sensors are deployed. When r < k1

| |E[S] | |
2

or R < k2
| |E[S] | |

2 , and sensors are reliable, we discover and explain the sharp increase in the time required and

the energy consumption in transportation cost to ensure the desired k1-coverage with k2-connectivity.
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1 INTRODUCTION

Awireless sensor network (WSN) typically consists of a large number of sensor nodes deployed

either randomly or according to some predeoned statistical distribution over a geographical region

of interest. There exists a wide variety of applications of WSNs, such as environmental monitor-

ing (e.g., pollution, earthquake or seismic activities), wildlife habitat monitoring, structural health
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monitoring, border security and surveillance, intrusion detection, health care, diagnostics in indus-

trial process control, and so on. In many of these applications, the environment could be hostile

and/or the terrain could be diocult to reach, implying that manual deployment of sensors might

not be possible. In such situations, sensor nodes are often deployed randomly or sprinkled from an

aircraft, and they may remain unattended for months or years without any battery replenishment.

In WSNs, a fundamental problem to study is the sensing coverage [25]. However, due to limited

resources (CPU, memory, battery, signal processing, sensing and wireless communication capabili-

ties), a sensor node can sense only a small region. Therefore, the objective is to design optimal node

deployment strategies such that each point in the entire monitoring oeld is sensed (or covered) by

at least one sensor. There exist diferent notions of sensing coverage, such as blanket coverage

(static deployment of sensors that maximizes the target detection rate in the sensing oeld); barrier

coverage (deployment of sensors that minimizes the probability of undetected intrusion through

obstacles or barriers); sweep coverage (move sensor nodes to balance the cost, such as maximizing

event detection rate and minimizing number of missed detection), among others.

Alongside sensing coverage, another fundamental problem in WSNs is connectivity. Since a sen-

sor node has limited wireless capability constrained by the antenna size, the sensor can directly

communicate with only those that are within its radio communication radius. Thus, for any wide

area deployment, the sensors typically form a multihop network that supports various operations,

such as routing of sensed data to a sink (base station) or between far-of sensors including fusion

or aggregation en route. Now, for random deployment, a challenging problem is to guarantee that

the underlying network topology is connected. A high degree of connectivity (from graph theo-

retic viewpoint) provides higher reliability of the network against node or link failures. In WSNs,

the coverage and connectivity issues are often tackled together. However, onding an optimal node

deployment strategy that maximize coverage (i.e., how well each point in the region is covered by

sensors) yet maintaining high connectivity (i.e., how well the sensors are connected) is challeng-

ing. In this article, the mobile sensors are deployed on the plane by dropping them from an aircraft

according to general random process. We give the optimal sensor movement that maximize cov-

erage together with connectivity for both reliable and unreliable sensors. We also present further

insights including sensor deployment in three-dimensional (3D). Our solution can be widely used

in applications, such as intruder detection and border security.

Depending on the applications, sensor deployments may be static or mobile. The WSN moni-

toring region could be one-dimensional (e.g., border security between two countries, or highway

traoc), two-dimensional (e.g., agricultural oeld), or three-dimensional (e.g., air pollution moni-

toring, structural health of a building, or underwater sensing for oceanographic data collection).

The sensor network could be homogeneous in terms of identical sensing and/or communication

radius, or heterogeneous with non-uniform sensing and/or communication radii in which the sens-

ing/communication range is irregular (e.g., surveillance with directional antennas of diferent ca-

pacities, multipath and shadowing efects).

In this study, we focus on path k1-coverage (i.e., every point on the path is within a sensing

range of at least k1 sensors) simultaneously with k2-connectivity (i.e., every point on the path is

within a communication range of at least k2 sensors) that n sensors are deployed on the plane by

dropping them from an aircraft according to a general random process. As mentioned, random

deployment of sensors is not unrealistic, because there are situations in which it is dangerous or

even impossible for a human to deploy sensors in deterministic patterns. Moreover, due to wind,

geographic terrain and other factors, random deployment may be the only option.

The aim of this article is to analyze the optimal sensor movement to ensure greedy path k1-

coverage together with k2-connectivity. We consider binary sensing and communication disc

model, i.e., the sensing area of a sensor is a circular disk of radius r and its communication area is
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also a circular disk of radius R, provided that r ≤ R. Thus, a sensor placed at location x can sense

any point at a distance of at most r and can communicate any point at a distance of at most R.

The sensor can be reliable or unreliable. Reliable sensors can move, sense, and communicate. The

motivation for investigating unreliable sensors follows from some realistic situations (e.g., some

sensors may fail after deployment on the plane). Thus, we assume that each sensor with some

oxed probability 1 − p independently from other sensors is unreliable (not active), i.e., it cannot

move, sense, and communicate anymore.

Speciocally, we investigate two optimization problems to provide path k1-coverage simultane-

ously with k2-connectivity on the plane and are interested in assigning the sensing radius r and

communication radius R to minimize

• the maximum displacement to the oxed power a > 0 of n sensors (the time),

• the sum of movement to the power a > 0 of the individual sensors (the energy).

Energy consumption and time-eocient reallocation of mobile sensors are the fundamental is-

sues in WSNs. Mobile sensors consume much more energy during the movement than that during

the communication or sensing process. Thus how to schedule mobile sensors to minimize the time

and energy to provide the required k1-coverage together with k2-connectivity has great signio-

cance. Our solution can be widely used in border surveillance and securing buildings or a city.

Sensor barriers are used to detect intruders illegally crossing the protected area. The random de-

ployment according to general random process may be the only option for military surveillance or

wild animals. Moreover, there are situations in which premature uncontrolled crashes of sensors

are common. Our 3D network design is also useful for real-world applications such as underwater

sensor networks. In realistic deployments, the tradeof between coverage-connectivity and time or

energy is very important to study. Moreover, the parameter a in the exponents can represent vari-

ous conditions of the line, such as friction, lubrication, and so on, which may afect the movement

of sensors.

For the optimization problems in WSN involving reliable sensors, we develop in Section 3

novel statistical analysis of the moments for general random processes. In the analysis of unre-

liable on the plane in Section 5.2, we combine results from unreliable sensors on the line (see

Section 5.1) and for reliable sensors on the plane (see Section 4) to get results for unreliable sen-

sors on the plane.

1.1 Contributions of This Paper

Fix k1,k2 ≥ 1. Assume that n mobile reliable or unreliable sensors with identical sensing radius r

and communication radius R, provided that r ≤ R, are initially randomly deployed on the plane

according to general random process (see Deonition 2, as well as Deonition 1 in Section 3.1). The

sensors have to move to the onal destinations to ensure greedy path k1-coverage simultaneously

with k2-connectivity (for reliable sensors see Deonitions 3–4 in Section 4.1 and for unreliable sen-

sors see Deonition 5 in Section 5.2, as well Assumption 12 in Section 5).

The objective is to assign the sensing radius r and the communication radius R so as to minimize

the time required and the energy consumption of transportation cost for sensors to provide the

desired k1-coverage simultaneously with k2-connectivity. To this aim, we make the following four

novel theoretical contributions.

(1) For both the optimization problems as deoned above, the optimal solution is obtained when

the sensing radius r = k1
| |E[S] | |

2 and communication radius R = k2
| |E[S] | |

2 , where | |E[S]| | is
the expected distance of general a-random process, i.e., the characteristic of random process

according to which the sensors are deployed.
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(2) Let ε > 0 be an arbitrary small constant independent on the number of sensors n and | |E[S]| |.
We discover a sharp decrease Ω(n

a
2 ) in both the maximum displacement to the power a > 0

of n sensors (time required) and the sum of movement to the power a > 0 of the individual

sensors (energy consumption): When r increases from k1 (1 − ε )
| |E[S] | |

2 to k1
| |E[S] | |

2 , and

when R increases from k2 (1 − ε ) | |E[S] | |2 to k2
| |E[S] | |

2 (see Tables 1 and 2 for a summary).

(3) For unreliable sensors, both the time required and energy consumption remain asymptot-

ically the same when r and R increases within the same range as in step (2), as shown in

Theorem 18 (Section 5.2). We design and analysis of four novel optimal randomized Al-

gorithms 1–4 to provide the desired k1-coverage simultaneously with k2-connectivity. Al-

though they are simple, the asymptotic probabilistic analysis is challenging. Our protocols

are based on a novel mathematical theory of moments for general random processes.

The rest of the article is organized as follows. Section 2 summarizes some related works.

Section 3 analyzes the moments for random processes, the results of which are used to derive

theorems pertinent to the range assignment problems in WSNs. Section 4 derives the main re-

sults on the sensing and communication radii that minimize k1-coverage simultaneously with k2-

connectivity cost in terms of time and energy. Section 5 analyzes k1-coverage and k2-connectivity

cost in terms of time and energy when the sensors are unreliable. Section 6 presents further in-

sights including exact formulas, variable sensing and communication radii, sensor deployment in

higher dimension, other trajectories and real-life sensor deployment. The numerical results are

discussed in Section 7. The onal section ofers conclusions.

2 RELATEDWORK

The coverage problem in sensor networks has been extensively studied in the literature [2, 5, 7–

9, 12, 15, 19, 22, 25, 28, 38–40, 42, 43, 46, 52, 55, 57, 59]. Two notions of probabilistic barrier coverage

in a belt region, namely weak and strong barrier coverage, was introduced in Reference [42]. The

barrier coverage of airdropped wireless sensors is studied in Reference [49]. It is assumed that

along each line, sensors are to be evenly distributed. Because of mechanical inaccuracy, wind,

terrain constraints, and other environment factors, the sensors will be scattered around the de-

ployment line with some random ofsets. In this article, the authors model the ofsets as normally

distributed random variables. In Reference [59], the authors provided a comprehensive survey on

the optimized node placement in wireless sensor networks, while the authors in Reference [25]

presented and compared several state-of-the-art algorithms and techniques to address the inte-

grated coverage-connectivity issues in WSNs. The optimal movement of mobile sensors to the

fence (perimeter) of a region delimited by a simple polygon to detect intruders, was investigated

in Reference [9]. The barrier coverage in a mobile survivability-heterogeneous wireless sensor net-

work is studied in Reference [55]. In Reference [3] is addressed the problem of k-coverage in 3D

WSNs, where each point in a 3D oeld is covered by at leastk sensors simultaneously. The authors of

Reference [40] introduced a new architecture of barrier, called event-driven partial barrier, which

is able to monitor any movements of objects in the event-driven environment. In Reference [15]

is addressed three optimization problems to achieve weak barrier coverage in WSNs to minimize

the number of sensors moved, the average distance as well as the maximum distance moved by

the sensors. The authors of Reference [60] focused on the k-coverage problem, which requires a

selection of a minimum subset of nodes among the deployed ones such that each point in the tar-

get region is covered by at least k nodes. The target coverage problem in mobile sensor networks

where all the targets need to be covered by sensors continuously is studied in Reference [21]. The

goal is to minimize the moving distance of sensors to cover all targets in the surveillance region,

which is in the Euclidean space. It is assumed that initially all the sensors are located at k base
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stations. In Reference [48] is proposed developed a fully autonomous system that controls drones

to provide high- quality unobstructed coverage of targets from appropriate viewpoints based on

a novel Oriented Line Segment Target Model. In Reference [29], the authors present a complete

solution to the minimum-cost barrier coverage problem. The cost here can be any performance

measurement and is usually deoned as the resource consumed or occupied by the sensor barriers.

The proposed PUSH-PULL-IMPROVE algorithm, is the orst one that provides a distributed solu-

tion to the minimum-cost barrier coverage problem in asynchronous wireless sensor networks.

The authors of Reference [17] proposed a taxonomy for classifying coverage protocols in WSNs.

In Reference [23], the authors investigated the cooperative sweep coverage problem with mobile

sensors to periodically cover all positions of interest in the surveillance region, while the authors

of Reference [53] addressed the coverage control problem for a network of heterogeneous mobile

sensors with bound position measurement errors on a circle.

Connectivity has been the subject of extensive interest (e.g., see References [1, 4, 6, 18, 24, 27, 30,

58, 62]). In Reference [14] the availability of nodes, the sensor coverage, and the connectivity have

been discussed on network lifetime. The authors of Reference [58] present the design and analysis

of novel protocols that can dynamically conogure a network to achieve guaranteed degrees of cov-

erage and connectivity. In Reference [4], the authors investigate the critical density for percolation

in coverage and connectivity in 3D WSNs, as well as the corresponding critical network degree.

The proposed approach is based on Baxter’s factorization of the Ornstein-Zernike equation and

the pair-connectedness theory. The critical sensor density for partial connectivity of a large area

sensor network was studied in Reference [11], assuming that sensor deployment follows the Pois-

son distribution. The quality of connectivity of a wireless network that has a realistic number of

nodes is characterized in Reference [13]. In Reference [10], the authors classify and summarize

the state-of-the-art algorithms and techniques that address the connectivity-coverage issues in

the wireless sensor networks. In Reference [27], the authors assume that the sensors are deployed

uniformly at random in a 3D Field of Interest. It is considered the case when the sensors have only

directional sensing capability and may have heterogeneity in terms of the sensing range, commu-

nication range, and/or probability of being alive. For such 3D heterogeneous directionalWSNs, the

authors derive probabilistic expressions for k-coverage andm-connectivity that are useful to opti-

mize the cost of random deployment. The authors of Reference [5] investigate connectivity based

on the degree of sensing coverage by studying k-covered WSNs, where every location in the oeld

is simultaneously covered (or sensed) by at least k sensors (property known as k-coverage, where

k is the degree of coverage). The model called the Reuleaux Triangle, to characterize k-coverage

with the help of Helly’s Theorem and the analysis of the intersection of sensing disks of k sensors

were proposed. In Reference [6], the authors focus on the connectivity and k-coverage issues in

3D WSNs, where each point is covered by at least k sensors (the maximum value of k is called the

coverage degree). The Reuleaux tetrahedron model to characterize k-coverage of a 3D oeld was

proposed to investigate the corresponding minimum sensor spatial density. The family of prob-

lems whose goal is to design a network with maximal connectedness subject to a oxed budget

constraint is investigated in Reference [61]. In Reference [44], the connectivity of an uncertain

random graph with respect to edges is discussed.

Unreliable sensors has been studied in sensor networks. The problem of optimally placing unre-

liable sensors in a one-dimensional environment is considered in Reference [19]. In wireless sensor

networks, the efect of a high rate of node failure in wireless sensor networks on network connec-

tivity was investigated in Reference [50]; the authors provide a formal analysis that establishes

the relationship between node density, network size, failure probability, and network connectivity.

The unreliable sensor network with n nodes, arranged in a grid over a square region of unit area

is investigated in Reference [51]; here the authors give the necessary and suocient conditions for
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the random grid network to cover the unit square region as well as ensure that the active nodes

are connected.

There is also interest in the statistical community for investigating the absolute moments and

moments around the mean of some random variables [16, 20, 31, 32, 36, 41, 56]. Recurrence rela-

tions for integrals that involve the density of multivariate normal distributions are developed in

Reference [31]. In Reference [32], the expected absolute diference of the arrival times to the integer

power between two identical and independent Poisson processes is represented as the combination

of the Pochhammer polynomials. Some inequalities for absolute moments of independent random

variables, using the representation in terms of the characteristic function, is presented in Refer-

ence [56]. Moreover, the lower bound of the probability that a binomial random variable exceeds

its expectation is analyzed in Reference [16].

In this article, we present a novel mathematical theory of moments for general random pro-

cesses on the plane. As an application to sensor networks, the time required (Timea (n, r ,R),

Timea,p (n, r ,R)) and the energy consumption (Energya (n, r ,R), Energya,p (n, r ,R)) of the trans-

portation cost to the power a > 0 for reliable and unreliable sensors from initial random position

according to general random process to anchor points on the plane are analyzed (see Deonition 4

in Section 4 for reliable sensors and Deonition 5 in Section 5.2 for unreliable sensors).

We remark that our work is related to the series of papers [20, 33, 34, 36, 37, 39] dealing with

reliable sensors. In References [38, 39], the Energy metric was analyzed for uniformly distributed

random sensors in the unit interval for barrier coverage and in the higher dimension for area

coverage. Theworks in References [33, 34, 37] deal withTime andEnergy respectively for coverage

(1-coverage) with interference, where the sensors are deployed according to the arrival times of

Poisson process with arrival rate λ > 0. It is worth pointing out the above mentioned papers treat

only the very special case when random sensors obey the beta (uniform distribution) and gamma

distributions (Poisson process) and when the sensors are only reliable, i.e., it can move, sense and

communicate with probability 1. Thus, it is natural to extend the previous works and analyze the

sensor deployment according to general random process on the plane.

Our investigation of greedy path k1-coverage simultaneously with k2-connectivity for unreliable

sensors is inspired [19], where the authors consider the problem of optimal disk-coverage in a one-

dimensional environment by unreliable sensors, under a probabilistic failure model. It is assumed

that sensors can fail independently and with the same probability. The aim is to minimize, in ex-

pectation, the largest distance between a point in the environment and an active sensor. It is worth

pointing out the mentioned paper [19] consider the equispaced placement and random placement

according to uniform distribution of n unreliable sensors in the unit interval. and when the sensors

cannot move. Thus, it is natural to extend the previous work and investigate time required and

energy consumption for transportation cost of sensors to ensure greedy path k1-coverage together

with k2-connectivity when the sensors are deployed according to general random process on the

plane and can fail independently and with the same probability p.

The novelty of our work in this article current article lies in the investigation of greedy path k1-

coverage simultaneously with k2-connectivity for both reliable and unreliable sensors and in the

derivation of closed form asymptotic formulas for both Time and Energy without using any spe-

cioc density function (gamma and beta) for a wide class of distributions. Although there are studies

that consider the problem of coverage and connectivity simultaneously, none of them so far de-

rived the closed form asymptotic formulas for Time and Energy for reliable and unreliable sensors.

3 ANALYSIS OF THE MOMENTS FOR GENERAL RANDOM PROCESSES

In this section, we present an analytical combinatorial approach to probabilistic analysis of mo-

ments for random processes. The obtained new result about moments are pertinent to the range
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assignment problem in WSNs. In particular, the random vector Sj given by Equation (6) represents

the position of jth sensor on the plane in Section 4.

3.1 The Model, Assumptions, and Preliminaries

Nowwewill introduce two new deonitions of (m,³ , ´ )-property and general a-random process on

the plane.We also recall the notations and some known special inequalities to be used in the sequel.

Deonition 1 together with Deonition 2 allow us to obtain the novel results about the moments for

general random processes for a wide class of distributions, without using specioc density function,

just moment equations. The formal deonition of (m,³ , ´ )-property is as follows.

Deonition 1 ((m,³ , ´ )-Property). Fix ³ , ´ > 0. Letm be an even positive integer. Consider two

sequences {τi }i≥1 ,
{

ξi
}

i≥1 of positive, absolutely continuous random variables. Assume indepen-

dence between sequences {τi }i≥1,
{

ξi
}

i≥1; and assume that

∀i≥1
(

E [τi ] = ³ , E
[
τ
p
i

]
≤ C1,m , p ∈ {2, 3, . . .m}

)

, (1)

∀it ,t ∈N\{0}, pt ∈N, 2≤p1+p2+· · ·+pl ≤m E
[
τ
p1
i1
τ
p2
i2
. . . τ

pl
il

]
= E

[
τ
p1
i1

]
E
[
τ
p2
i2

]
. . . E

[
τ
pl
il

]
. (2)

∀i≥1
(

E [ξi ] = ´, E
[
ξ
p
i

]
≤ C2,m , p ∈ {2, 3, . . .m}

)

, (3)

∀it ,t ∈N\{0}, pt ∈N, 2≤p1+p2+· · ·+pl ≤m E
[
ξ
p1
i1
ξ
p2
i2
. . . ξ

pl
il

]
= E

[
ξ
p1
i1

]
E
[
ξ
p2
i2

]
. . . E

[
ξ
pl
il

]
. (4)

The random vector Vj with (m,³ , ´ )-property is deoned by the following formula:

Vj := ��
j
∑

i=1

τi ,

j
∑

i=1

ξi�� . (5)

Note that complicated Assumption (2) is weaker than independence of random variables {τi }i≥1.
To observe this, consider the case when m = 2. Then Equation (2) is indeed only pairwise in-

dependence of random variables {τi }i≥1. It is well known that pairwise independence does not

imply independence (see Reference [54]). Hence, Assumption (4) is also weaker than independence

of random variables {τi }i≥1.
Let us deone the general two-dimensional a-random process as follows.

Deonition 2 (General a-Random Process on the Plane). Let λ > 0 be parameter. Fix a,³ , ´ > 0. Let

m be the smallest even integer greater than or equal to a. Assume that, random vector Vj has the

(m,³ , ´ )-property. The general a-random process is onite random process S1,S2, . . . Sn deoned by

the formula

Sj :=
Vj

λ
for j ∈ {1, 2, . . . ,n}. (6)

Let | |E[S1]| | be the Euclidean norm of vector S1. We call the expected vector of general a-random

process as

E[S] = E[S1] =

(

³

λ
,
´

λ

)

(7)

and the expected distance of general a-random process as

| |E[S]| | = | |E[S1]| | =
√

³2
+ ´2

λ
. (8)
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From Equations (1), (3), (5), and (6) for j := 1, it is clear that E[S1] = ( α
λ
,
β

λ
). Note that the random

variable Sj represents the position of jth sensor on the plane (see Section 4). Equations (1), (3), (5), (6),

and (7) yields

E[Sj ] = jE[S]. (9)

In this study, we will provide asymptotic probabilistic analysis for the range assignment in wireless

mobile sensor networks. Hence let us recall the Landau asymptotic notations:

• f (n) = O (д(n)) if there exists a constant C1 > 0 and integer N such that | f (n) | ≤ C1 |д(n) |
for all n > N ;

• f (n) = Ω(д(n)) if there exists a constant C2 > 0 and integer N such that | f (n) | ≥ C2 |д(n) |
for all n > N ;

• f (n) = Θ(д(n)) if and only if f (n) = O (д(n)) and f (n) = Ω(д(n)).

We will also apply Jensen’s inequality for expectations. If f is a convex function and X is random

variable, then

f (E[X ]) ≤ E
[

f (X )
]

, (10)

provided the expectations exists (see Reference [47, Proposition 3.1.2]).

Finally, the following elementary inequality will also be useful. Fix a > 0. Let x ,y ∈ R+ ∪ {0}.
Then

(x + y)a ≤ max
(

2a−1, 1
)

(xa + ya ). (11)

3.2 Themth Central Moment for Special Random Variable

In this subsection, we derive closed analytical formula for the expectedmth moment around the

mean for the random variable X j =
∑j

i=1 τi , assuming that Equations (1) and (2) hold andm is a

oxed positive even integer.

Namely, we prove Theorem 1. Notice that Theorem 1 for randomvariableX j is helpful in deriving

the main results for random vector Vj in the next subsection (see Theorem 2) and thus necessary

in analysis of greedy path k1-coverage simultaneously with k2-connectivity in WSNs. Moreover, to

the best of our knowledge, the closed analytical asymptotic formula in Theorem 1 present new

statistical properties of random variable X j .

To illustrate the asymptotic closed formula in Theorem 1, we consider the special case whenm =

2. The analysis of the second central moment for random variable X j is easy and the asymptotic

formula in Theorem 1 form := 2 holds as identity.

Applying Equation (2) form := 2, we get E[τi1τi2] = E[τi1]E[τi2]. From Equation (1), it follows

that E[τi1] = E[τi2] = ³ . Thus,

E[
(

τi1 − ³
) (

τi2 − ³
)

] = E[(τi1 − ³ )]E[(τi2 − ³ )] = 0.

Therefore, we conclude

E
(

(

X j − E(X j )
)2
)

= E
(

(

X j − j³
)2
)

= E
(

(τ1 − ³ )2 + (τ2 − ³ )2 + · · · +
(

τj − ³
)2
)

= jE
(

(τ1 − ³ )2
)

+

∑

1≤τi1�τi2 ≤j
E[(τi1 − ³ )]E[(τi2 − ³ )] = E

(

(τ1 − ³ )2
)

j = Var [τ1] j .

Hence, identity E((X j −E(X j ))
2) = Var [τ1] j conorms the closed analytical formula in Theorem 1

form := 2.

Theorem 1. Let us ox an even positive integer m. Consider the sequence {τi }i≥1 of positive, ab-
solutely continuous random variables. Assume that Equations (1) and (2) hold in Deonition 2. Let
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X j :=
∑j

i=1 τi . Then the following identity is valid:

E
[(
X j − E[X j ]

)m ]
=

m! (Var [τ1])
m
2

2
m
2

(

m
2

)

!
j
m
2 +O

(

j
m
2 −1
)

.

It is worthwhile to mention that, the asymptotic analysis in the proof of Theorem 1 lies in

combinatoric. The technique is somewhat similar to the proof of Theorem 2 in Reference [35].

3.3 Expected Distance to the Powerm for Special Random Vectors

In this subsection, we derive closed analytical formula for the expected distance to the powerm

between random vector Vj with (m,³ , ´ )-property and its mean E[Vj ], provided thatm is a oxed

positive even integer.

It will be seen later in Section 4 that the random position of the sensor Sj on the plane is determined

by the random vector
Vj

λ
, where λ is positive real parameter.

We are now ready to present Theorem 2. We note that Theorem 2 is crucial to explain the sharp

increase in the time required and in the energy consumption for transportation cost of sensors to

ensure the desired coverage (see Section 4). Moreover, if we restrict the sensor displacements to

specioc random variables, then Corollary 3 is useful in deriving the exact formulas for the minimal

time required and energy consumption of transportation cost for sensors to provide the desired k1-

coverage with k2-connectivity (see Section 6.1 for details).

Theorem 2. Let m be an even positive integer. Let Vj = (X j ,Yj ) be the random vector with

(m,³ , ´ )-property. Then the following identity is valid

E
[
| |Vj − E[Vj ]| |m

]
=
���
(

m
2

)

!

2
m
2

m
2
∑

i=0

(

2i

i

) (

m − 2i
m
2 − i

)

(Var [τ1])
i (Var [ξ1])

m
2 −i )�	� j

m
2 +O

(

j
m
2 −1
)

,

where | |Vj − E[Vj ]| | is the Euclidean distance between Vj and E[Vj ].

Finally, we give a simpler expression for the E[| |Vj − E[Vj ]| |m] when Var[τ1] = Var [ξ1].

Corollary 3. Let m be an even positive integer. Let Vj = (X j ,Yj ) be the random vector with

(m,³ , ´ )-property. Assume that Var [τ1] = Var [ξ1]. Then the following identity is valid

E
[
| |Vj − E[Vj ]| |m

]
=

(

m

2

)

! (2Var [τ1])
m
2 j

m
2 +O

(

j
m
2 −1
)

,

where | |Vj − E[Vj ]| | is the Euclidean distance between Vj and E[Vj ].

Proof. Corollary 3 follows immediately from Theorem 2 for Var [τ1] = Var [ξ1] and the follow-

ing identity
∑

m
2

i=0

(

2i
i

)

(

m−2i
m
2 −i

)

= 2m (see Reference [26, Identity (5.39)]). �

3.4 Expected Distance to the Power a for General a-random Process on the Plane

In this subsection, we extend Theorem 1 from Section 3.3 to real-valued exponents. Namely, we

combine together the obtained earlier result for E
[
| |Vj − E[Vj ]| |m

]
, wherem is an even integer

with Jensen’s inequality (see Equation (10)), as well as Equations (6) and (8) to get the new result

for E
[
| |Sj − E[Sj ]| |a

]
, where a is positive real.

It will be seen later in Section 4 that Theorems 4–6 proved in this subsection are crucial in the

analysis of Algorithms 1 and 2 and thus in deriving the main results of this article for reliable sensors

(see Tables 1 and 2).

The following theorem is about the power cost when the sensor Sj moves to the position E[Sj ].
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Theorem 4. Consider the random variable Sj as in Deonition 2. Then,

E
[
| |Sj − E[Sj ]| |a

]
=

⎧⎪«⎪¬
Θ
(

j
a
2

)

| |E[S]| |a when a ≥ 2

O
(

j
a
2

)

| |E[S]| |a when a ∈ (0, 2)
.

The next result about the expected distance to the power a between random vector Sj and

E[Sj ] +O (1)E[S] support our earlier Theorem 4.

Theorem 5. Consider the random variable Sj as in Deonition 2. Then,

E
[
| |Sj − E[Sj ] +O (1)E[S]| |a

]
=

⎧⎪«⎪¬
Θ
(

j
a
2

)

| |E[S]| |a when a ≥ 2

O
(

j
a
2

)

| |E[S]| |a when a ∈ (0, 2)
.

The next theorem is about the power cost when the sensor Sj moves to the position (1−ε )E[Sj ]+
O (1)E[S]. The proof of Theorem 6 is analogous to that of Theorem 5.

Theorem 6. Fix ε > 0 arbitrary small constant independent on j and | |E[S]| |. Consider the random
variable Sj as in Deonition 2. Fix a > 0. Then

E
[
| |Sj − (1 − ε )E[Sj ] +O (1)E[S]| |a

]
= Θ (ja ) | |E[S]| |a .

4 k1-COVERAGE AND k2-CONNECTIVITY IN SENSOR NETWORKS

In this section, we formally deone k1-coverage and k2-connectivity problem and then formulate

two optimization problem: time required and energy consumption for this problem. We also pro-

pose two optimal algorithms for minimizing the time required and the energy consumption of the

transportation cost to the power a > 0 as a function of the sensing radius r , communication radius

R to provide k1-coverage simultaneously with k2-connectivity.

4.1 Problem Formulation

Recall that in this study we investigate sensing and communication binary disc model, i.e., the

sensing area of a sensor is a circular disk of radius r and the communication area of a sensor is a

circular disk of radius R, provided that r ≤ R.

Throughout this subsection, ε > 0 is arbitrary small constant independent on the number

of sensors n and on the expected vector of general a-random process E[S] (see Deonition 2 in

Section 3.1).

Let us now formulate the movement requirement for providing the k1-coverage simultaneously

with k2-connectivity.

Deonition 3. Let us ox the positive integersk1,k2 andmove the sensors from their initial random

positions S1, S2, . . . Sn on the plane to the onal destination P1,P2, . . . Pn on the plane such that

every point on the path connecting points (0, 0), P1, P2, . . . Pn is within the sensing range of at

least k1 sensors and the communication range of at least k2 sensors.

Figure 1 illustrates our initial random placement according to general random process.

In Section 4, we restrict our analysis to the greedy path k1-coverage with k2-connectivity, i.e.,

the points P1,P2, . . . Pn are situated on the line passing through the points E[S] and (0, 0). Obvi-

ously, when the distances

| |P1 − (0, 0) | | , | |P2 − P1 | | , . . . , | |Pn − Pn−1 | |

are oxed the maximal distance maxi ∈{1,2, ...,n } | |Pi − (0, 0) | | is maximized when the points

P1,P2, . . . Pn are situated on the line. It is also well known that border surveillance for intrusion
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Fig. 1. The positions of three mobile sensors S1,S2,S3 on the plane according to general random process.

detection is an important application of sensor networks. Hence, it is natural to maximize the pro-

tected line, i.e., the length from the origin (0, 0) to the point (sensor) Pn when | |Pn − (0, 0) | | =
maxi ∈{1,2, ...,n } | |Pi − (0, 0) | |, i.e., the sensor Pn is the rightmost sensor.

Therefore, we consider the greedy strategy. The others greedy strategies when the points

P1,P2, . . . Pn are situated on the others lines will be discussed in Section 6.4. Namely, it will

be explain that analyzed time required and energy consumption is minimized when the points

P1,P2, . . . Pn are on the line passing through the points E[S] and (0, 0).

We are now ready to formulate two optimization problems: time required and energy con-

sumption for transportation cost of sensors to ensure greedy path k1-coverage together with k2-

connectivity.

Deonition 4. Fix a > 0. Let S1,S2, . . . Sn be the initial locations of n sensors with identical

sensing radius r and communication radius R on the plane [0,∞) × [0,∞) according to general

a-random process. Assume that (x j ,yj ) is the onal destination of sensor Sj (j ∈ {1, 2, . . .n}) on
the line passing through the points E[S] and (0, 0) such that every point on the line connecting

points (0, 0), (x1,y1), (x2,y2), . . . (xn ,yn ) is within the sensing range of at least k1 sensors and the

communication range of at least k2 sensors. We are interested in asymptotic (in large number of

sensors n) for

Timea (n, r ,R) = max
1≤j≤n

E
[
| |Sj − (x j ,yj ) | |a

]
,

Energya (n, r ,R) =

n
∑

j=1

E
[
| |Sj − (x j ,yj ) | |a

]
.

Tables 1 and 2 summarize the results proved in the next subsection. It is discovered that Ω
(

n
a
2

)

sharply declines for both Timea (n, r ,R), and Energya (n, r ,R) for all exponents a > 0 when the

sensing radius r increases from k1 (1 − ε ) | |E[S] | |2 to k1
| |E[S] | |

2 ; and when the communication radius

R increases from k2 (1 − ε ) | |E[S] | |2 to k2
| |E[S] | |

2 .

Finally, we give a simple Lemma 7 about a one-dimensional scenario that will help us to ond

relationship between sensing radius r and communication radius R on the plane in the analysis of

Algorithms 1 and 2 in the next subsection.

Obviously, the sensor with one-dimensional sensing radius r1 and communication radius R1

placed at location x on the line [0,∞) can sense any point at distance at most r1 either to the left

or right of x and can communicate any point at distance at most R1 either to the left or right of x .

Lemma 7. Consider n sensors w1,n ≤ w2,n ≤ · · · ≤ wn,n with identical one-dimensional sens-

ing radius r1 = k1
d
2 and one-dimensional communication radius R1 = k2

d
2 on the line [0,∞). Let

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 46. Publication date: August 2021.



On the Range Assignment in WSN for Minimizing the Coverage-Connectivity Cost 46:13

Table 1. Time Required Timea (n, r ,R) of the Transportation Cost to the Power a > 0 to Ensure Greedy

Path k1-coverage Together with k2-connectivity as a Function of Sensing Radius r , Communication Radius

R and the Expected Distance of General a-random Process | |E[S]| | Provided That ε > 0

Sensing radius r Communication radius R Timea (n, r ,R) Algorithm

(a) r = k1
| |E[S] | |

2 R = k2
| |E[S] | |

2 ,
Θ
(

n
a
2

)

| |E[S]| |a if a ≥ 2;

O
(

n
a
2

)

| |E[S]| |a if a ∈ (0, 2)
1

(b) r = k1 (1 − ε ) | |E[S] | |2 R = k2
| |E[S] | |

2 , Θ (na ) | |E[S]| |a if a > 0 2

(c) r = k1
| |E[S] | |

2 R = k2 (1 − ε ) | |E[S] | |2 , Θ (na ) | |E[S]| |a if a > 0 2

(d) r = k1 (1 − ε ) | |E[S] | |2 R = k2 (1 − ε ) | |E[S] | |2 , Θ (na ) | |E[S]| |a if a > 0 2

Table 2. Energy Consumption Energya (n, r ,R) and of the Transportation Cost to the Power a > 0 to

Ensure Greedy Path k1-coverage Together with k2-connectivity as a Function of Sensing Radius r ,

Communication Radius R and the Expected Distance of General a-random Process | |E[S]| |
Provided That ε > 0

Sensing radius r Communication radius R Energya (n, r ,R) Algorithm

(a) r = k1
| |E[S] | |

2 R = k2
| |E[S] | |

2 ,
Θ
(

n
a
2 +1
)

| |E[S]| |a if a ≥ 2;

O
(

n
a
2 +1
)

| |E[S]| |a if a ∈ (0, 2)
1

(b) r = k1 (1 − ε ) | |E[S] | |2 R = k2
| |E[S] | |

2 , Θ
(

na+1
)

| |E[S]| |a if a > 0 2

(c) r = k1
| |E[S] | |

2 R = k2 (1 − ε ) | |E[S] | |2 , Θ
(

na+1
)

| |E[S]| |a if a > 0 2

(d) r = k1 (1 − ε ) | |E[S] | |2 R = k2 (1 − ε ) | |E[S] | |2 , Θ
(

na+1
)

| |E[S]| |a if a > 0 2

k = max (k1,k2) and n ≥ k . Assume that the sensors occupy the following positions

w j,n =j
d

2
if j ∈ {1, 2, . . . ,k },

w j,n =R + (j − k )d if j ∈ {k + 1,k + 2, . . . ,min(n,n + 2 − k )},

w j,n =R + (n + 2 − 2k )d + (j − (n + 2 − k ))d
2
if j ∈ {n + 3 − k, . . . ,n} and k ≥ 3.

Then every point from the origin to the last sensors is within the sensing radius of at least k1 sensors

and the communication radius of at least k2 sensors.

Proof. Assume that the sensors have identical one-dimensional sensing radius r1 equal to k1
d
2

and one-dimensional communication radius R1 equal to k2
d
2 . Let k = max (k1,k2). Notice that the

point pk = k
d
2 is the position of kth sensor.

Therefore, every point in the interval [0,pk ] is in the sensing radius of at least k1 sensors and

in the communication radius of at least k2 sensors. As observed from Figure 2, every point in the

interval [pk ,pmin(n,n+2−k )−1]

• is in the sensing range of ql1 sensors on the left and qr1 sensors on the right and ql1+qr1 ≥ k1,

• is in the communication range of ql2 sensors on the left and qr2 sensors on the right and

ql2 + qr2 ≥ k2.

The length of interval [pmin(n,n+2−k )−1],pn] is equal to (k + 1) d2 for k � 2 and is equal to d for

k = 2. Therefore, every point in the interval [pk ,pmin(n,n+2−k )−1] is within the sensing radius of at
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Fig. 2. Illustration of Lemma 7 for k1 = 1, k2 = 2, r1 =
d
2 , R1 = d , and n = 6.

least k1 sensors and the communication radius of at least k = k2 sensors. This completes the proof

of lemma. �

4.2 Analysis of Algorithms 1 and 2

In this subsection, weminimize the time required and the energy consumption of the transportation

cost to the power a > 0 as a function of the sensing radius r , communication radius R and large

number of sensors n to provide k1-coverage simultaneously with k2-connectivity (see Deonition 4,

as well as Deonition 3).

Namely, we present two asymptotically optimal algorithms. It is worth pointing out that

Algorithms 1 and 2 are very simple but the asymptotic analysis in Theorems 8 and 9 is challenging.

In the proof of Theorems 8 and 9 we apply the statistical results from Section 3.2 and Section 3.3

about central moments special random variables and the distance to the power for special random

vectors and Lemma 7 from Section 4.1.

We are now ready to formulate the main results in this subsection.

Theorem 8. Assume that n sensors S1,S2, . . . ,Sn with identical sensing radius r and identical

communication radius R are initially randomly placed according to general a-random process. Let

assumption (a) in Tables 1 and 2 about r and R holds. Fix k = max (k1,k2).
1 Then Timea (n, r ,R) and

Energya (n, r ,R) of Algorithm 1 is respectively,

Timea (n, r ,R) =
⎧⎪«⎪¬
Θ
(

n
a
2

)

| |E[S]| |a if a ≥ 2

O
(

n
a
2

)

| |E[S]| |a if a ∈ (0, 2)
,

Energya (n, r ,R) =
⎧⎪«⎪¬
Θ
(

n
a
2 +1
)

| |E[S]| |a if a ≥ 2

O
(

n
a
2 +1
)

| |E[S]| |a if a ∈ (0, 2)
.

Proof. Fix k = max (k1,k2). Assume that the n sensors on the plane have identical sensing

radius r = k1
| |E[S] | |

2 and communication radius R = k2
| |E[S] | |

2 . First, observe that sensors at the

onal positions (x1,y1), (x2,y2), . . . (xn ,yn ) after Algorithm 1 lie on the line passing through the

points E[S] and (0, 0). Observe that

| |(x1,y1) − (0, 0) | | = | |E [S] | |
2

,

| |(x j ,yj ) − (x j−1,yj−1) | | =
| |E [S] | |

2
if j ∈ {2, . . . ,k } (see steps 2−4 of Algorithm 1),

| |(x j ,yj ) − (x j−1,yj−1) | | = | |E [S] | | if j ∈ {k + 1,k + 2, . . . ,min(n,n + 2 − k )} (see steps 5−7 of Algorithm 1),

| |(x j ,yj ) − (x j−1,yj−1) | | =
| |E [S] | |

2
if j ∈ {n + 3 − k, . . . ,n} and k ≥ 3 (see steps 8−11 of Algorithm 1).

Therefore, we can apply Lemma 7 for d := | |E [S] | | and deduce that every point on the line con-

necting points (0, 0), (x1,y1), (x2,y2), . . . (xn ,yn ) is within the sensing range of at least k1 sensors

and the communication range of at least k2 sensors. Hence, Algorithm 1 is correct.

1Note that in this study max(r, R ) = R and max (k1, k2) = k2.
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We now estimate Timea (n, r ,R) and Energya (n, r ,R) of Algorithm 1. Recall that jE[S] = E[Sj ]

(see Equation (9)). Hence

Sj − (x j ,yj ) = Sj −
E
[
Sj

]
2

if j ∈ {1, . . . ,k } (see steps 2−4 of Algorithm 1), (12)

Sj − (x j ,yj ) = Sj − E
[
Sj

]
− k E [S]

2
if j ∈ {k + 1,k + 2, . . . ,min(n,n + 2 − k )} (13)

(see steps 5−7 of Algorithm 1),

Sj − (x j ,yj ) = Sj − E
[
Sj

]
− k E [S]

2
− (j − (n + 2 − k ))E [S]

2
if j ∈ {n + 3 − k, . . . ,n} and k ≥ 3

(14)

(see steps 8−11 of Algorithm 1).

We are now ready to apply Theorem 4, Theorem 5 and Theorem 6 to evaluate separately Equa-

tions (12), (13), and (14).

Case of Equation (12)

Passing to the expectations and using Theorem 6 with ε = 1
2 and O (1) := 0, we get

E
[������Sj − (x j ,yj )

������a ] = E
[����
����Sj − 1

2
E[Sj ]

����
����
a ]
= Θ (ja ) | |E[S]| |a .

Since j ∈ {2, . . . ,k } and k is oxed, we have

E
[������Sj − (x j ,yj )

������a ] = O (1) | |E[S]| |a if j ∈ {2, . . . ,k }, a > 0.

Case of Equation (13)

Since k = O (1), we can apply Theorem 5 with O (1) := k
2 and get

E
[������Sj − (x j , yj )

������a ] = ⎧⎪«⎪¬
Θ
(

j
a
2

)

| |E[S] | |a when a ≥ 2,

O
(

j
a
2

)

| |E[S] | |a when a ∈ (0, 2),
provided that j ∈ {k +1, k +2, . . . , min(n, n+2−k ) }.

Case of Equation (14)

Observe that 2 ≤ k + j − (n + 2 − k ) ≤ 2k − 2 = O (1). Therefore, we can apply Theorem 5 with

O (1) := − 1
2
(k + j − (n + 2 − k )) and get

E
[������Sj − (x j , yj )

������a ] = ⎧⎪«⎪¬
Θ
(

j
a
2

)

| |E[S] | |a when a ≥ 2,

O
(

j
a
2

)

| |E[S] | |a when a ∈ (0, 2),
provided that j ∈ {n + 3 − k, . . . , n } and k ≥ 3.

Putting together the Estimations Cases of Equation (12), Case of Equation (13), Case of

Equation (14), we have

Timea (n, r ,R) = max
1≤j≤n

E
[������Sj − (x j ,yj )

������a ] = ⎧⎪«⎪¬
Θ
(

n
a
2

)

| |E[S]| |a when a ≥ 2

O
(

n
a
2

)

| |E[S]| |a when a ∈ (0, 2)
.

of Algorithm 1.

Combining together Estimations: Case of Equation (63), Case of Equation (64), Case of Equa-

tion (65) and the well-known identity
∑n

j=1 j
a
2 = Θ(n

a
2 +1), when a > 0 we get

Energya (n, r ,R) =

n
∑

j=1

E
[������Sj − (x j ,yj )

������a ] = ⎧⎪«⎪¬
Θ
(

n
a
2

)

| |E[S]| |a when a ≥ 2,

O
(

n
a
2

)

| |E[S]| |a when a ∈ (0, 2)

of Algorithm 1.

This completes the proof of Theorem 8. �
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ALGORITHM 1: k-Moving sensors to the anchor points

Require: The initial locations S1,S2, . . . Sn of the n sensors with identical sensing radius r and

communication radius R on the plane [0,∞) × [0,∞) according to general a-random process.

Let assumption (a) in Tables 1 and 2 holds.

Ensure: The onal positions (x1,y1), (x2,y2), . . . (xn ,yn ) of the n sensors on the plane [0,∞) ×
[0,∞) such that every point on the path connecting points (0, 0), (x1,y1), (x2,y2), . . . (xn ,yn )

is within the sensing range of at least k1 sensors and the communication range of at least k2
sensors.

1: k := max (k1,k2);

2: for j = 1 to k do

3: move the sensor Sj to the position (x j ,yj ) = j
E[S]
2 ;

4: end for

5: for j = k + 1 to min(n,n + 2 − k ) do

6: move the sensor Sj to the position (x j ,yj ) = k
E[S]
2 + (j − k )E [S];

7: end for

8: if k ≥ 3 then

9: for j = n + 3 − k to n do

10: move the sensor Sj to the position (x j ,yj ) = k
E[S]
2 + (n+2−2k )E [S]+ (j− (n+2−k ))

E[S]
2 ;

11: end for

12: end if

ALGORITHM 2: (ε,k )-Moving sensors to the anchor points

Require: The initial locations S1,S2, . . . Sn of the n sensors with identical sensing radius r and

communication radius R on the plane [0,∞) × [0,∞) according to general a-random process.

Let assumption (b) or (c ) or (d ) in Tables 1 and 2 holds.

Ensure: The onal positions (x1,y1), (x2,y2), . . . (xn ,yn ) of the n sensors on the plane [0,∞) ×
[0,∞) such that every point on the path connecting points (0, 0), (x1,y1), (x2,y2), . . . (xn ,yn )

is within the sensing range of at least k1 sensors and the communication range of at least k2
sensors.

1: k := max (k1,k2);

2: for j = 1 to k do

3: move the sensor Sj to the position (x j ,yj ) = j (1 − ε ) E[S]2 ;

4: end for

5: for j = k + 1 to min(n,n + 2 − k ) do

6: move the sensor Sj to the position (x j ,yj ) = k (1 − ε ) E[S]2 + (j − k ) (1 − ε )E [S];
7: end for

8: if k ≥ 3 then

9: for j = n + 3 − k to n do

10: move the sensor Sj to the position (x j ,yj ) = k (1 − ε ) E[S]2 + (n + 2 − 2k ) (1 − ε )E [S] + (j −
(n + 2 − k )) (1 − ε ) E[S]2 ;

11: end for

12: end if
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In the next theorem, we analyze Algorithm 2. The proof of Theorem 9 is analogous to that of

Theorem 8.

Theorem 9. Fix ε > 0 independent on | |E[S]| | and n. Assume that n sensors S1,S2, . . . ,Sn with

identical sensing radius r and identical communication radius R are initially randomly placed accord-

ing to general a-random process. Let assumption (b) or (c ) or (d ) in Tables 1 and 2 about r and R

holds. Fix k = max (k1,k2). Then Timea (n, r ,R) and Energya (n, r ,R) of Algorithm 2 is respectively:

Timea (n, r ,R) = Θ (na ) | |E[S]| |a if a > 0,

Energya (n, r ,R) = Θ
(

na+1
)

| |E[S]| |a if a > 0.

4.3 Optimality of Algorithms 1 and 2

In this subsection, we investigate optimality of Algorithms 1 and 2. Namely, we prove that algo-

rithms analyzed in the previous subsection minimize the desired costs, i.e., the time required and

the energy consumption of the transportation cost to the power a > 0.

First, we must deone a optimality metric. We assume that any algorithm reallocate random sen-

sors to the anchor points. Namely the jth sensors Sj on the plane is moved to the position Qj on

the plane and the anchor position Qj does not depend on the random vector Sj .

The optimality of Algorithm 1whena ≥ 2 follows directly fromTheorem 10. Algorithm 1 indeed

minimize the required time and the energy consumption of transportation cost in reallocation of

sensors.

We can prove the following general reallocation theorem.

Theorem 10. Fixa ≥ 2. Let S1,S2, . . . Sn be the initial locations ofn according to generala-random

process. Assume that Q1,Q2, . . .Qn is the onal location. Then

max
1≤j≤n

E
[
| |Sj − Qj | |a

]
=Ω
(

n
a
2

)

| |E[S]| |a ,
n
∑

j=1

E
[
| |Sj − Qj | |a

]
=Ω
(

n
a
2 +1
)

| |E[S]| |a .

Proof. Fix a ≥ 2. First, observe that

| |Sj − Qj | |2 = | |Sj − E[Sj ] + E[Sj ] − Qj | |2.

Since E[Sj − E[Sj ]] = 0 and the anchor position Qj does not depend on the random vector Sj , we

have

E[| |Sj − Qj | |2] = E[| |Sj − E[Sj | |2] + E[| |E[Sj ] − Qj | |2].
Therefore

E[| |Sj − Qj | |2] ≥ E[| |Sj − E[Sj | |2].
Using Theorem 4 for a := 2, we get

E[| |Sj − Qj | |2] = Θ (j ) | |E[S]| |2.

Applying Jensen’s inequality (see Equation (10)) for X := | |Sj − Qj | |2 and f (x ) := x
a
2 , we get

E
[
| |Sj − Qj | |a

]
≥
(

E
[
| |Sj − Qj | |2

] ) a
2
=

(

Θ (j ) | |E[S]| |2
)
a
2
.

Hence

E[| |Sj − Qj | |a] = Ω
(

j
a
2

)

| |E[S]| |a .
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Finally, using the well-known identity
∑n

j=1 j
a
2 = Θ(n

a
2 +1) we have

max
1≤j≤n

E
[
| |Sj − Qj | |a

]
=Ω
(

n
a
2

)

| |E[S]| |a ,
n
∑

j=1

E
[
| |Sj − Qj | |a

]
=Ω
(

n
a
2 +1
)

| |E[S]| |a .

This completes the proof of Theorem 10. �

The situation is more subtle with optimality of Algorithm 2. Let us recall that the onal destina-

tion of sensors in Algorithm 2 is on the line passing through the points E[S] and (0, 0). Therefore,

we must restate the general reallocation in this case.

The next theorem states that Algorithm 2 minimize the time required and the energy consump-

tion of transportation cost in reallocation of sensors on the line passing through the points E[S]

and (0, 0).

Theorem 11. Fix a ≥ 2. Fix ε > 0 independent on | |E[S]| | and n. Assume that n sensors

S1,S2, . . . ,Sn with identical sensing radius r and identical communication radius R are initially ran-

domly placed according to general a-random process. Let r = k1 (1 − ε ) | |E[S] | |2 or R = k2 (1 − ε ) | |E[S] | |2 .

Then

Timea (n, r ,R) = Ω (na ) | |E[S]| |a ,

Energya (n, r ,R) = Ω
(

na+1
)

| |E[S]| |a .

5 k1-COVERAGE AND k2-CONNECTIVITY BY UNRELIABLE SENSORS

After deployment from an aircraft, a mobile sensor on the plane may fail with a certain probabil-

ity implying each sensor, with some oxed probability independently from other sensors, cannot

move, sense and communicate. In this section, we analyze k1-coverage simultaneously with k2-

connectivity for unreliable sensors. The assumptions about our model are the followings.

Assumption 12 (Unreliable Sensors). Fix p ∈ (0, 1) independent on the number of sensors n.

We assume that each sensor with probability 1 − p independently from the others is unreliable (not

active), i.e., it cannot move, sense, and communicate anymore.

Observe that in Assumption 12 each sensor with probability p independently from the others

sensors can move, sense and communicate. Obviously when p = 1 the sensors can move, sense

and communicate and thus are reliable.

We break this section into two subsections. First, the closed analytical formulas are designed

for the time required and the energy consumption of the transportation cost to the power a > 0

of Algorithm 3 to achieve 1-coverage simultaneously with 1-connectivity for unreliable sensors

on the line [0,∞). Second, we analyze optimal Algorithm 4 for minimizing the time required and

the energy consumption of the transportation cost to the power a > 0 as a function of the sens-

ing radius r , communication radius R to provide k1-coverage simultaneously with k2-connectivity

when the sensors are unreliable on the plane. Let us recall that analysis of unreliable sensors on

the plane combine results from unreliable sensors on the line and for reliable sensors on the plane.

5.1 Unreliable Sensors on the Line

In this subsection, we give closed analytical formulas for the maximum of expected displacement

to the positive integer power t and the sum of expected movement to the positive integer power t

to achieve 1-coverage simultaneously with 1-connectivity for equispaced placement ofn unreliable

sensors on the line [0,∞) (see Theorem 13 together with Theorem 15 and Theorem 16).
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Fig. 3. Four unreliable mobile sensorsw1:4,w2:4,w3:4,w4:4 on the line.

It will be seen later in this subsection that the mentioned closed analytical formulas for unreli-

able sensors only in a very special case (equispaced placement for 1-coverage with 1-connectivity

on the line) are suocient to get tight bounds for the maximum displacement to the real power

a > 0 and the sum of movement to the real power a > 0 to achieve k1-coverage simultaneously

with k2-connectivity on the plane.

In this subsection, we assume that the n sensors with identical one-dimensional sensing radius

r1 =
d
2 and one-dimensional communication radius R1 =

d
2 occupy the equidistance points d

2 +

(i − 1)d for i = 1, 2, . . .n. Let us recall that the sensor with one-dimensional sensing radius r1 and

communication radius R1 placed at location x on the line [0,∞) can sense any point at distance at

most r1 either to the left or right of x and can communicate any point at distance at most R1 either

to the left or right of x . It is easy to see that the deployment of n reliable sensors that can sense,

communicate, and move with r1 = R1 =
d
2 at the equidistance points d

2 + (i − 1)d for i = 1, 2, . . .n.

ensures the desired 1-coverage with 1-connectivity without any additional movement.

However, the perfectly reliable conoguration of n sensors is possible but it is very rare events.

Observe that, in our model the probability of perfectly reliable conoguration is equal to pn . Since

p is oxed, we see that pn , which is exponentially small for large n. Therefore, in most cases the

sensors have to move to achieve the onal location such that, every point from the origin to the last

active sensors is within the sensing range and communication range of exactly one sensor (see

Algorithm 3).

Although Algorithm 3 is simple, the asymptotic analysis is non-trivial. Figure 3 illustrates four

unreliable sensors w1:4,w2:4,w3:4,w4:4. Let the black dots represent reliable (active) sensors and

white dots represent unreliable sensors. In this example the sensorw2,4 moves left-to-right to the

position d
2 and the sensorw4,4 moves to the position d

2 + d .

ALGORITHM 3:Moving unreliable sensors on the line

Require: The initial locations w1,n ≤ w2,n ≤ · · · ≤ wn,n of the n sensors with identical one-

dimensional sensing radius r1 =
d
2 and one-dimensional communication radius R1 =

d
2 on the

line [0,∞) at the equidistance points , i.e.,wi,n =
d
2 + (i − 1)d for i = 1, 2, . . . ,n.

Ensure: The onal positions of n sensors on the [0,∞) such that, every point from the origin to the

last active sensors is within the sensing range of at least one sensor and the communication

range of at least 1 sensors.

1: z := d
2 ;

2: for j = 1 to n do

3: if sensorw j,n is active then

4: movew j,n left-to-right to z;

5: z := z + d ;

6: else

7: do nothing;

8: end if

9: end for

We now prove the following exact asymptotic result about the expected displacement to the

integer power t for nth unreliable sensor on the line [0,∞).
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Theorem 13. Fix t positive integer. Let |mwn,n | be the movement of sensor wn,n in Algorithm 3.

Then

E
[��mwn,n

��t ] = dtp ((1 − p)tnt +O (nt−1)
)

.

Proof. Assume that random variable Xn denotes the number of unreliable sensors in the set of

sensors of cardinality n. Let us recall that failures of n sensors are random and independent with

probability 1 − p. Therefore, random variable Xn obeys the binomial distribution with parameters

n and 1 − p. Hence

Pr[Xn = l] =

(

n

l

)

(1 − p)lpn−l , for l ∈ {0, 1, 2, . . . ,n}. (15)

Obviously, the sensorwn,n moves only when it is active. Therefore

E[��mwn,n
��t ] = E[��mwn,n

��t |wn,n is active]p. (16)

We now make the following important observation.

The movement of sensor wn,n is equal to ld conditional on the event that the sensor wn,n is

active and the number of unreliable sensors is l . (Figure 3 illustrates this observation for n = 4 and

l = 2. In this case, the movement pf sensorsw4,4 is equal to 2d). Hence,

E
[
(��mwn,n

��t ���wn,n is active
) ����Xn−1 = l

]
= (ld )t . (17)

Putting together Equations (15), (16), and (17), we have

E
[��mwn,n

��t ] = p
n−1
∑

l=0

(

n − 1
l

)

(1 − p)lpn−1−l (ld )t = pdt
n−1
∑

l=0

(

n − 1
l

)

(1 − p)lpn−1−l l t . (18)

Equation (18) give indeed closed expression for the expected movement to the integer power of

sensor wn,n . However, the resulting formula is diocult to obtain the desired asymptotic result,

the main result of Theorem 13. We now apply Stirling number of the second kind technology to

Equation (18) to provide asymptotic analysis and thus to prove Theorem 13. We use the following

notations for the rising factorial [26]

l l1 =
⎧⎪«⎪¬
1 for l1 = 0

l (l − 1) . . . (l − l1 + 1) for l1 ≥ 1
.

Observe that
n−1
∑

l=0

(

n − 1
l

)

(1 − p)lpn−1−l l l1 =
n−1
∑

l=l+1

(

n − 1
l

)

(1 − p)lpn−1−l l l1

= (n − 1)l1 (1 − p)l1
n−1
∑

l=l1

(

n − 1 − l1
l − l1

)

(1 − p)l−l1pn−1−l1−(l−l1 )

= (n − 1)l1 (1 − p)l1 = nl1 (1 − p)l1 +O
(

nl1−1
)

. (19)

Let
{
t
l1

}
be the Stirling numbers of the orst kind, which are deoned for all integer numbers such

that 0 ≤ l1 ≤ t .

The following basic formula involving Stirling numbers of the second and rising factorial is

known

l t =

t
∑

l1=0

{

t

l1

}

l l1 (20)

(see Identity (6.10) in Reference [26]).
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Putting together Equations (18), (19), and (20), as well as
{
t
t

}
= 1, we have

E
[��mwn,n

��t ] = dtp (nt (1 − p)t +O (nt−1)
)

.

This completes the proof of Theorem 13. �

Combining together the result of Theorem 13 for positive integer t with Jensen’s inequality for

expectations (Equation (10)), we prove the following asymptotic result about the expected displace-

ment to the power a > 0 for nth unreliable sensor. The proof of Theorem 14 is analogous to that

of Theorem 4.

Theorem 14. Fix a > 0. Let |mwn,n | be the movement of sensorwn,n in Algorithm 3. Then

E
[��mwn,n

��a ] = ⎧⎪«⎪¬
daΘ(na ) if a ≥ 1

daO (na ) if a ∈ (0, 1)
.

We now prove that the maximal expected movement to the power a achieves the latest sensor.

Theorem 15. Fix a > 0. Let
���mw j,n

��� be the movement of sensorw j,n in Algorithm 3. Then

max
1≤j≤n

E
[���mw j,n

���a ] = E
[��mwn,n

��a ] .
Proof. Fix j ∈ {1, 2, . . . ,n}. As in the proof of Theorem 13, we observe that the movement of

sensorw j,n is equal to jld conditional on the sensorw j,n is active and the number of unreliable sen-

sors in the interval [0,w j,n] is equal to jl . (See important observation in the proof of Theorem 13).

Hence ���mw j,n
���a ≤ ��mwn,n

��a , (21)

provided that bothw j,n andwn,n are active (reliable).

LetA denotes the event that both sensorsw j,n andwn,n are active. From Equation (21), we have

E[
���mw j,n

���a |A] ≤ E[��mwn,n
��a |A]. (22)

LetB denotes the event that the sensorw j,n is active (reliable) andwn,n is not active (unreliable). Let

C denotes the event that the sensor w j,n is not active (unreliable) and wn,n is active (reliable). Let

us recall that in our model each sensor with probability p independently from the others sensors

is active (see Assumption 12). Hence

PrB = PrC = p (1 − p).

Observe that

E[
���mw j,n

���a |B] ≤ E[��mwn,n
��a |C].

Therefore

E[
���mw j,n

���a |B ∪C] ≤ E[��mwn,n
��a |B ∪C]. (23)

Putting together Equations (22) and (23), we have

max
1≤j≤n

E
[���mw j,n

���a ] = E
[��mwn,n

��a ] .
This completes the proof of Theorem 15. �

We now prove the following exact asymptotic result about the sum of expected movement to

the integer power t for unreliable sensors.
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Theorem 16. Fix t positive integer. Let |mw j,n | be the movement of sensor w j,n in Algorithm 3.

Then
n
∑

j=1

E
[���mw j,n

���t
]
= dt

(

(1 − p)tp
t + 1

nt+1 +O
(

nt
)

)

. (24)

Proof. First, we deone

Cost(t ,n) := E

£¤¤¤¤¤¥
n
∑

j=1

[���mw j,n
���t
]¦§§§§§̈ =

n
∑

j=1

E
[���mw j,n

���t
]
.

Let Yn be the set of active sensors in the set of n unreliable sensors. We consider the number of

active sensor, namely the random variable |Yn | and deone two costs:

Cost(t ,n)i := E

£¤¤¤¤¤¥
∑

w j,n ∈Yn

���mw j,n
���t ����|Yn | = i

¦§§§§§̈
and

Dost(t ,n)i := E

£¤¤¤¤¤¥
∑

w j,n ∈Yn

(���mw j,n
��� + d)t ����|Yn | = i

¦§§§§§̈ .
Observe that

Cost(t ,n) =

n
∑

i=0

Cost(t ,n)i Pr[|Yn | = i].

Let us recall that failures ofn sensors are random and independent with probability 1−p. Therefore
Pr[|Yn | = i] = pi (1 − p)n−i . Hence

n
∑

i=0

E

£¤¤¤¤¤¥
∑

w j,n ∈Yn

d
����|Yn | = i

¦§§§§§̈ Pr[|Yn | = i] =
n
∑

i=0

E

[
di

(

n

i

)]
Pr[|Yn | = i] =

n
∑

i=0

(

n

i

)

pi (1 − p)n−idi

=

n
∑

i=1

(

n − 1
i − 1

)

pi (1 − p)n−idn = dpn
n
∑

i=1

(

n − 1
i − 1

)

pi−1 (1 − p)n−1−(i−1) = dpn. (25)

We now make the following crucial observation.

• When the sensorw1:n is active with probability p then the Cost(t ,n) for n sensors is reduced

to the cost Cost(t ,n − 1) for n − 1 sensors.
• If the sensor w1:n is not active with probability 1 − p, then each active sensor in the set of

n − 1 sensors has to move additional distance d .

Therefore

Cost(t ,n) = pCost(t ,n − 1) + (1 − p)
n−1
∑

i=0

Dost(t ,n − 1)i Pr[|Yn−1 | = i]. (26)

We are now ready to prove the main asymptotic result in Theorem 16, namely Equation (24).

The proof of Equation (24) for Cost(t ,n) will be done by induction. For t = 1, we directly

calculate

n−1
∑

i=0

Dost(1,n − 1)i Pr[|Yn−1 | = i] = Cost(1,n − 1) +
n−1
∑

i=0

E

£¤¤¤¤¤¥
∑

w j,n−1∈Yn−1

d
����|Yn−1 | = i

¦§§§§§̈ Pr[|Yn−1 | = i].
(27)
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Putting together Equation (26) for t := 1 and Equations (27) and (25) for n := n − 1, we have

Cost(1,n) = Cost(1,n − 1) + d (1 − p)p (n − 1).

Hence, by telescoping, as well as Formula Cost(1, 0) = 0 we get

Cost(1,n) =

n
∑

j=1

(Cost(1, j ) − Cost(1, j − 1)) =
n
∑

j=1

d (1 − p)p (j − 1) = d
(

(1 − p)pn
2

2
+O (n)

)

.

Assume that the Equation (24) for n := n − 1 and thus for Cost(t ,n − 1) holds for the numbers

1, 2, . . . , t . Putting together the binomial theorem for (mw j,n−1 +d )
t+1, inductive assumption, and

Equation (25) for d := dt+1 and n := n − 1, we have
n−1
∑

i=0

Dost(t + 1,n − 1)i Pr[|Yn−1 | = i] =
t+1
∑

l=1

(

t + 1

l

)

dt+1−lCost(l ,n − 1) + dt+1p (n − 1)

= Cost(t + 1,n − 1) + dt+1p (n − 1) +
t
∑

l=1

(

t + 1

l

)

dt+1−l
(

dl
(1 − p)lp
t + 1

(n − 1)l+1 +O
(

(n − 1)l
)

)

= Cost(t + 1,n − 1) + dt+1
(

(t + 1)
(1 − p)tp
t + 1

nt+1 +O
(

nt
)

)

. (28)

Putting together Equations (28) and (26) for t := t + 1 leads to

Cost(t + 1,n) = Cost(t + 1,n − 1) + dt+1
(

(1 − p)t+1pnt+1 +O
(

nt
))

.

Hence, by telescoping, as well as Formula Cost(t + 1, 0) = 0 we have

Cost(t + 1,n) =

n
∑

j=1

(Cost(t + 1, j ) − Cost(t + 1, j − 1)) = dt+1
n
∑

j=1

(

(1 − p)t+1pjt+1 +O
(

jt
))

= dt+1
(

(1 − p)t+1p
t + 2

nt+2 +O
(

nt+1
)

)

.

This gives the claimed Equation (24) for t := t + 1 and thus for Cost(t + 1,n). �

Putting together the result of Theorem 16 for positive integer t with Jensen’s inequality for

expectations (Equation (10)), discrete Hölder inequality we prove the following asymptotic result

about the sum of expected movement to the real power a > 0 for unreliable sensors.

Theorem 17. Fix a > 0. Let
���mw j,n

��� be the movement of sensorw j,n in Algorithm 3. Then

n
∑

j=1

E
[���mw j,n

���t
]
=

⎧⎪«⎪¬
daΘ(na+1) if a ≥ 1

daO (na+1) if a ∈ (0, 1)
.

5.2 Unreliable Sensors on the Plane

In this subsection, we study the k1-coverage simultaneously with k2-connectivity for unreliable

sensors on the plane. Namely, we minimize the time required and the energy consumption of the

transportation cost to the power a > 0 of Algorithm 4 as a function of the sensing radius r , com-

munication radius R and large number of sensors n. The precise formulation of our optimization

problems is as follows.

Deonition 5. Fix a > 0. Let S1,S2, . . . Sn be the initial locations of n unreliable sensors with

identical sensing radius r and communication radius R on the plane [0,∞) × [0,∞) according to
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general a-random process. Assume thatm(Sj ) is the movement of sensor Sj in Algorithm 4. We

are interested in asymptotic (in large number of sensors n) for

Energya,p (n, r ,R) =

n
∑

j=1

E
[������m (Sj ) ������a ] ,

Timea,p (n, r ,R) = max
1≤j≤n

E
[������m (Sj ) ������a ] .

We present Algorithm 4 in two phases. In the orst phase (see steps 1–5 in initialization), we

apply Algorithm 1 or Algorithm 2 from Section 4.2 to the sensors on the plane. We deduce that

every point on the line connecting points (0, 0), (x1,y1), (x2,y2), . . . , (xn ,yn ) is within the sensing

range of at least k1 sensors and the communication range of at least k2 sensors. Therefore, the orst

phase reduces the transportation cost to the power a > 0 on the plane to the transportation cost

to the power a > 0 on the line passing through the points E[S] and (0, 0).

Then, in the second phase (see steps 6–16), we provide necessary additional movement to assure

that, every point on the path connecting the origin (0, 0) and active sensors is within the sensing

range of at least k1 sensors and the communication range of at least k2 sensors. Namely, apply

Theorem 14, as well as Theorem 15 and Theorem 17 on the line [0,∞) for unreliable sensors on

the line passing through the points E[S] and (0, 0).

Hence, our Algorithm 4 is correct.

ALGORITHM 4:Moving unreliable sensors on the plane

Require: The initial locations S1,S2, . . . Sn of the n unreliable sensors with identical sensing

radius r and communication radius R on the plane [0,∞) × [0,∞) according to general a-

random process.

Ensure: The onal positions of n sensors such that, every point on the path connecting the origin

(0, 0) and active sensors is within the sensing range of at least k1 sensors and the communica-

tion range of at least k2 sensors.

initialization

1: if r
k1
=

R
k2
=
| |E[S] | |

2 then

2: apply Algorithm 1 for the sensors S1,S2, . . . Sn ;

3: else

4: Apply Algorithm 2 for the sensors S1,S2, . . . Sn ;

5: end if

end initialization

Let (x1,y1), (x2,y2), . . . , (xn ,yn ) be the location of the n sensors after Algorithm 1 or Algorithm 2

from Section 4.2.

6: i = 1;

7: (x ,y) := (x1,y1);

8: for j = 1 to n do

9: if sensor Sj is active then

10: move Sj to (x ,y);

11: i := i + 1;

12: (x ,y) := (xi ,yi );

13: else

14: do nothing;

15: end if

16: end for
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Moreover in some situations the sensors are often deployed randomly or sprinkled from an

aircraft. After the deployment some sensors may become unreliable, i.e., it cannot move, sense

and communicate. Hence, the proposed Algorithm 4 seems to be of practical importance.

We are now ready to formulate the main results for unreliable sensors on the plane.

Theorem 18. Fix ε > 0 independent on n and | |E[S]| |. Assume that

r

k1
,
R

k2
∈
{

(1 − ε ) | |E[S]| |
2
,
| |E[S]| |

2

}

.

Then the following asymptotic identities are valid:

Timea,p (n, r ,R) =
⎧⎪«⎪¬
Θ (na ) | |E[S]| |a when a ≥ 1

O (na ) | |E[S]| |a when a ∈ (0, 1)
, (29)

Energya,p (n, r ,R) =
⎧⎪«⎪¬
Θ(na+1) | |E[S]| |a when a ≥ 1

O (na+1) | |E[S]| |a when a ∈ (0, 1)
, (30)

Proof. We now estimate Timea,p (n, r ,R) and Energya,p (n, r ,R) of Algorithm 4. Fix a > 0. Let

m1 (Sj ) be the movement of sensor Sj in the orst phase of Algorithm 4,m2 (Sj ) be the movement

of sensor Sj in the second phase of Algorithm 4 and m(Sj ) be the movement of sensor Sj in

Algorithm 4. We know that in two-phases Algorithm 4 each sensor moves in the orst phase and

then moves additionally in the second phase. Therefore,������m(Sj )
������ = ������m1 (Sj )

������ + ������m2 (Sj )
������ . (31)

Now, we deone the time required and the energy consumption of the transportation cost to the

power a > 0 in the second phase of Algorithm 4 by the following formulas:

Time(2) = max
1≤j≤n

E
[������m(Sj )

������a ] ,
Energy(2) =

n
∑

j=1

E
[������m(Sj )

������a ] .
First, we evaluate Time(2) and Energy(2). Let us recall that (x1,y1), (x2,y2), . . . , (xn ,yn ) is the

location of the n sensors after the orst phase of Algorithm 4 and on the line passing through the

points E[S] and (0, 0) (see steps 1–5 in initialization). Since the orst phase in currently analyzed

Algorithm 4 is exactly Algorithm 1 or Algorithm 2 from Section 4.2, we have

| |(x1,y1) − (0, 0) | | = (1 − ∆) | |E [S] | |
2
, (32)

| |(x j ,yj ) − (x j−1,yj−1) | | = (1 − ∆) | |E [S] | |
l

if j ∈ {2, . . . ,n}, (33)

provided that ∆ ∈ {0, ε } and l ∈ {1, 2} (see the proof of Theorem 8 and Theorem 9 from Section 4.2).

We know from the analysis of unreliable sensors on the line in Section 5.1 in that the movement

of active sensor sensor w is equal to d1 + d2 + . . .dl , provided that l is the number of unreliable

sensors in the interval [0,w], and dj is the distance between two consecutive sensors. (See the

important observation after Equation (16) in the proof of Theorem 13.)

From Equation (32) and Equation (33), we have

(1 − ε ) | |E [S] | |
2

≤ ||(x j ,yj ) − (x j−1,yj−1) | | ≤ | |E [S] | |, provided that j ∈ {1, . . . ,n}.

Therefore, we can apply Theorem 14, as well as Theorem 15 and Theorem 17 on the line [0,∞) for

unreliable sensors on the line passing through the points E[S] and (0, 0). Namely,
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• we upper bound Time(2) and Energy(2) by the maximal expected displacement to the oxed

power a > 0 of n sensors and the sum of expected movement to the power a > 0 of the

individual sensors of Algorithm 3 for d := | |E [S]| |,
• we lower bound Time(2) and Energy(2) by the maximal expected displacement to the oxed

power a > 0 of n sensors and the sum of expected movement to the power a > 0 of the

individual sensors of Algorithm 3 for d := 1−ε
2 | |E [S]| |.

Hence,

Time(2) =
⎧⎪«⎪¬
Θ (na ) | |E[S]| |a when a ≥ 1

O (na ) | |E[S]| |a when a ∈ (0, 1)
, (34)

Energy(2) =
⎧⎪«⎪¬
Θ(na+1) | |E[S]| |a when a ≥ 1

O (na+1) | |E[S]| |a when a ∈ (0, 1)
. (35)

Putting together Inequality (11) for x := | |m1 (Sj ) | | and y := | |m1 (Sj ) | |, as well as Equation (31),

we have ������m(Sj )
������a ≤ max(2a−1, 1)

(������m1 (Sj )
������a + ������m2 (Sj )

������a ) ,������m2 (Sj )
������a ≤ ������m(Sj )

������a .
Hence, passing to the expectations lead to

Timea,p (n, r ,R) ≤ max(2a−1, 1) (Timea (n, r ,R) + Time(2)) , (36)

Energya,p (n, r ,R) ≤ max(2a−1, 1) (Energya (n, r ,R) + Energy(2)), (37)

Time(2) ≤ Timea,p (n, r ,R), (38)

Energy(2) ≤ Energya,p (n, r ,R). (39)

Putting all together (34)–(39) and Theorems 8 and 9, we obtain Equations (29)–(30). This completes

the proof of Theorem 18. �

6 EXTENSIONS

In this study, n mobile sensors S1, S2, . . . Sn are initially randomly deployed on the plane [0,∞) ×
[0,∞) according to general process. It is assumed that

| |E[Sj+1] − E[Sj ]| | = | |E[S1]| | = | |E[S]| | for j = 1, 2 . . . ,n − 1,

where | |E[S]| | is the expected distance of general a-random process according to which sensors

are deployed (see Deonition 2 in Section 3.1 and Figure 1 in Section 4).

For both the optimization problems: time required and energy consumption for transportation

cost of sensors to ensure greedy path k1-coverage simultaneously with k2-connectivity (see Deo-

nition 4, as well as Deonition 3 in Section 4) the optimal solution is Algorithm 5. (Notice that

Algorithm 5 is indeed Algorithm 1 analyzed in Section 4.2. To verify this fact it is enough to ap-

ply substitution jE[S] = E[Sj ] (see Equation (9) in Algorithm 1). Then, to attain the k1-coverage

together with k2-connectivity is for the sensors to assign the sensing radius r = k1
| |E[S] | |

2 and

communication radius r = k2
| |E[S] | |

2 .

However, the presented Algorithm 5 is simple it does not give the intuitions about the optimal

solution for the general random process. The next Algorithm 6 is both simple and intuitive. We

are able to prove the following remark.
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ALGORITHM 5: optimal solution

1: k = max(k1,k2);

2: for j = 1 to k do

3: move the sensor Sj to the position
E[Sj ]

2 ;

4: end for

5: for j = k + 1 to min(n,n + 2 − k ) do

6: move the sensor Sj to the position E[Sj ] − k E[S]
2 ;

7: end for

8: if k ≥ 3 then

9: for j = n + 3 − k to n do

10: move the sensor Sj to the position E[Sj ] − k E[S]
2 − (j − (n + 2 − k )) E[S]2 ;

11: end for

12: end if

Remark 1. If Algorithm 6 is executed for r = k1
| |E[S] | |

2 and R = k2
| |E[S] | |

2 , then every point on

the line connecting points E[Sk ] and E[Sn−k ] is within the range sensing range of k1 sensors and

the communication range of k2 sensors, provided that k = max(k1,k2).

Proof. The proof of Remark 1 is analogous to that of Theorem 8 and even simpler. We know

that sensors at the onal positions E[S1], E[S2] , . . . E[Sn] after Algorithm 6 lie on the line passing

through the points E[S] and (0, 0); and | |E[Sj+1]−E[Sj ]| | = | |E[S]| |, provided that j ∈ {1, 2, . . . ,n}.
Let k = max(k1,k2). Observe that every point P on the line connecting the points E[Sk ] and

E[Sn−k ] is

• in the sensing range of ql1 sensors in the interval connecting the points E[S1] and P; and qr1
sensors in the interval connecting the points P and E[Sn] and ql1 + qr1 ≥ k1,

• in the communication range of ql2 sensors in the interval connecting the points E[S1] and

P; and qr2 sensors in the interval connecting the points P and E[Sn] and ql2 + qr2 ≥ k2.

This completes the proof of Remark 1. �

ALGORITHM 6: Simplioed version of optimal solution

1: k = max(k1,k2);

2: for j = 1 to n do

3: move the sensor Sj to the position E[Sj ];

4: end for

6.1 Exact Formulas

Fix an even positive integerm. Let us recall that

max
1≤j≤n

j
m
2 = n

m
2 ,

n
∑

j=1

j
m
2 =

1
m
2 + 1

n
m
2 +1 +O

(

n
m
2

)

. (40)

Our theoretical results in the previous sections are for general random process including uni-

form, exponential and others distributions. If we restrict to specioc random variable, then we can

give exact formulas for

Timem = max
1≤j≤n

E
[
| |Sj − E[Sj ]| |m

]
and Energym =

n
∑

j=1

E
[
| |Sj − E[Sj ]| |m

]
for Algorithm 6.
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However, the exact Equations (42), (43), (45), (46), (47), and (48) are for Algorithm 6 it is possible

to apply the similar combinatorial arguments as in the proof of Theorem 1 and Theorem 2 to

validate Equations (42), (43), (45), and (46) for Algorithm 5 and Equation (47) and (48) for properly

modioed version of Algorithm 5 to the sensors on the (−∞,∞).

(a) The uniform distribution.

Let {τi }i≥1 and
{

ξi
}

i≥1 be identically distributed uniform random variables over the interval [0, 2]

and let Vj = (
∑j

i=1 τi ,
∑j

i=1 ξi ). Assume that Assumptions (2) and (4) in Deonition 1 hold. Notice

that E[τi ] = 1 and Var [τi ] =
1
3 (see Reference [45]). Hence, Assumptions (1) and (3) in Deonition 1

hold for ³ := 1 and ´ := 1. Observe that

E[Vj ] = ��
j
∑

i=1

E[τi ],

j
∑

i=1

E[ξi ]�� = (j, j ). (41)

Combining Corollary 3, Equation (41), as well as Var [τ1] =
1
3 lead to

E
[
| |Vj − (j, j ) | |m

]
=

(

m

2

)

!
(

2

3

)
m
2

j
m
2 +O

(

j
m
2 −1
)

.

Let us recall that the position of jth sensor is determined by the random variable Sj =
Vj

λ
for j ∈ {1, 2, . . . ,n}. Hence

E[Sj ] =
(j, j )

λ
, | |E[S]| |m = 2

m
2

λm

(see Deonition 2 for ³ := 1 and ´ := 1 in Section 3.1).

Using this, we have

E
[
| |Sj − E[Sj ]| |m

]
=

(

m
2

)

!

(3)
m
2

j
m
2 | |E[S]| |m +O

(

j
m
2 −1
)

| |E[S]| |m .

Applying Equation (40), we have

Timem =

(

m
2

)

!

(3)
m
2

n
m
2 | |E[S]| |m +O

(

n
m
2 −1
)

| |E[S]| |m , (42)

Energym =

(

m
2

)

!

(3)
m
2

(

m
2 + 1

) n
m
2 +1 | |E[S]| |m +O

(

n
m
2

)

| |E[S]| |m . (43)

(b) The exponential distribution.

Let {τi }i≥1, {τi }i≥1 be identically distributed exponential random variables with rate equal to 1 (pa-

rameter λ = 1) and let Vj = (
∑j

i=1 τi ,
∑j

i=1 ξi ). Assume that Assumptions (2) and (4) in Deonition 1

hold. We know that E[τi ] = 1 and Var [τi ] = 1 (see Reference [45]). Hence, Assumptions (1) and (3)

in Deonition 1 hold for ³ := 1 and ´ := 1. Notice that

E[Vj ] = ��
j
∑

i=1

E[τi ],

j
∑

i=1

E[ξi ]�� = (j, j ). (44)

Applying Corollary 3, Equation (44), as well as Var [τ1] = 1 we have

E
[
| |Vj − (j, j ) | |m

]
=

(

m

2

)

!2
m
2 j

m
2 +O

(

j
m
2 −1
)

.
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Since λ = 1 the position of jth sensor is determined by the random variable Sj = Vj . Hence,

E[Sj ] = (j, j ), | |E[S]| |m = 2
m
2

(see Deonition 2 for λ := 1, ³ := 1 and ´ := 1 in Section 3.1).

Using this, we have

E
[
| |Sj − E[Sj ]| |m

]
=

(

m

2

)

!j
m
2 | |E[S]| |m +O

(

j
m
2 −1
)

| |E[S]| |m .

Applying Equation (40), we get

Timem =
(

m

2

)

!n
m
2 | |E[S]| |m +O

(

n
m
2 −1
)

| |E[S]| |m , (45)

Energym =

(

m
2

)

!
(

m
2 + 1

) n
m
2 +1 | |E[S]| |m +O

(

n
m
2

)

| |E[S]| |m . (46)

(c) The Gaussian distribution.

Let {τi }i≥1 be identically distributed normal random variables with E[τi ] = 1 and Var [τi ] = σ 2
> 0,

and let X j :=
∑j

i=1 τi . Assume that Assumption (2) in Deonition 1 holds. Let us recall that the

theoretical analysis in this article consider random sensors on the plane [0,∞) × [0,∞) displaced

according to general random process, This random placement uses normal distribution on the

(−∞,∞). Therefore, we must restate and get the result on the (−∞,∞); but our analysis is even

simpler. First, observe that the main Theorem 1 in Section 3.2 is valid regardless of the assumption

about positivity of random variables. Putting together Theorem 1, Var [τi ] = σ 2
> 0, and E[X j ] = j,

we have

E
[(
X j − j

)m ]
=

m!σm

(2)
m
2

(

m
2

)

!
j
m
2 +O

(

j
m
2 −1
)

.

In our random placement of sensors on the (−∞,∞) the position of jth sensor is determined by

the random variable Sj =
X j

λ
for j ∈ {1, 2, . . . ,n}. Hence

E
[
S j
]
=

j

λ
.

Therefore

|E[S]|m = |E[S1]|m =
�����
E[τ1]

λ

�����
m

=

1

λm
.

Using this, we have

E
[(
S j − E

[
S j
] )m ]

=

m!σm

(2)
m
2

(

m
2

)

!
j
m
2 |E[S]|m +O

(

j
m
2 −1
)

|E[S]|m .

Applying Equation (40), we have

Timem =
m!σm

(2)
m
2

(

m
2

)

!
n
m
2 |E[S]|m +O

(

n
m
2 −1
)

|E[S]|m , (47)

Energym =
m!σa

(2)
m
2

(

m
2 + 1

)

!
n
m
2 +1 |E[S]|m +O

(

n
m
2

)

|E[S]|m . (48)
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6.2 Variable Sensing and Communication Radii

In the above derivations, it is assumed that the sensors have identical sensing radius r and com-

munication radius R. However, this approach is not limited to homogeneous setting only, and

the proposed methodology can also handle sensors with variable sensing and communication radii.

Let r1, r2, . . . rn be the sensing radii of n sensors and let R1,R2, . . .Rn be the communication radii

of n sensors in a heterogeneous mobile sensor network. Let rmin = min (r1, r2, . . . rn , ). and let

Rmin = min (R1,R2, . . .Rn , ). Then, the optimal solution for the time required and the energy

consumption of transportation cost for sensors to provide the desired greedy path k1-coverage

simultaneously with k2-connectivity is to choose the characteristic of general random process

| |E[S]| | = 2min( rmin

k1
,
Rmin

k2
) and execute optimal Algorithm 5. Of course, the tradeofs arising

among the parameters r1, r2, . . . , rn , R1,R2, . . . ,Rn , and | |E[S]| | to provide the desired greedy path
k1-coverage together with k2-connectivity need further theoretical studies, as well as experimental

evaluation.

6.3 Sensor Deployment in Three-dimensional Space

The proposed theory for sensors on the plane can be extended to the cases where the sensors

are dropped in three-dimensional region as well as in higher dimensions. Let us consider three

dimensional case. We can similarly to (m,³ , ´ )-property in two dimension (see Deonition 1)

deone (m,³ , ´,γ )-property in three dimension. Then the position of the sensor Sj is deter-

mined by the vector 1
λ
(X j ,Yj ,Z j ), where the vector (X j ,Yj ,Z j ) has (m,³ , ´,γ )-property. How-

ever, it is natural extension our two-dimensional investigation to higher dimension the cru-

cial in analysis of the threshold phenomena closed analytical formula in three dimension for

E[| |(X j ,Yj ,Z j ) − E[(X j ,Yj ,Z j )]| |m] is even complicated than closed analytical formula in two di-

mension for E[| |(X j ,Yj ) − E[(X j ,Yj )]| |m] in Theorem 2 from Section 3.3.

6.4 Other Trajectories

This subsection discusses other greedy strategies. We assume that n mobile sensors S1, S2, . . . Sn
initially randomly deployed on the plane [0,∞) × [0,∞) according to general process move to

the onal destination P1,P2, . . . Pn situated on the other lines not only passing through the points

E[S] and (0, 0) (see Figure 4). We explain that the time required and the energy consumption is

minimized when the points P1,P2, . . . Pn are on the line passing through the points E[S] and (0, 0).

We consider general straight line with gradient MλE[S] and intercept c = 0, where Mλ =[
cos(γ ) − sin(γ )
sin(γ ) cos(γ )

]
is the rotation matrix.

Let zj ≥ 0. In the orst strategy the sensor Sj moves to the position zjE[S] on the line with

gradient E[S] and intercept c = 0 and in the second the sensor Sj moves to the position zjMγ E[S]

on the line with gradient zMγ E[S] and intercept c = 0 We now compare these movements.

The direct calculation for vectors, as well as E[Sj ] = jE[S] (see Equation (9)) lead to

E
[
| |Sj − zjMγ E[S]| |2

]
= E

[
| |Sj − zjE[S]| |2

]
+ 2jzj (1 − cos(γ )) | |E[S]| |2.

Since (1 − cos(γ )) | |E[S]| |2 ≥ 0 and zj ≥ 0, we have

E
[
| |Sj − zjMγ E[S]| |2

]
≥ E

[
| |Sj − zjE[S]| |2

]
.
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Fig. 4. Five mobile sensors S1,S2,S3,S4, S5 dropped from the aircrav on the plane.

Therefore,

max
j ∈{1,2, ...,n }

E
[
| |Sj − zjMγ E[S]| |2

]
≥ max

j ∈{1,2, ...,n }
E
[
| |Sj − zjE[S]| |2

]
,

n
∑

j=1

E
[
| |Sj − zjMγ E[S]| |2

]
≥

n
∑

j=1

E
[
| |Sj − zjE[S]| |2

]
.

Hence, on the line not passing through the points E[S] and (0, 0) the time required and the

energy of the transportation cost to the power 2 of transportation cost in reallocation of sensors

to provide the desired k1-coverage together with k2-connectivity are both minimized.

However, when a ≥ 2 and we know the asymptotic of the expected cost for large j. Namely

E
[
| |Sj − zjE[S]| |2

]
= Θ(j ) | |E[S]| |2, E

[
| |Sj − zjE[S]| |a

]
= Θ
(

j
a
2

)

| |E[S]| |2 (49)

the much stronger result is possible. (Notice that the mentioned expected costs (Equation (49)) are

the expected movement of sensors when the time required and the energy consumption of trans-

portation cost for sensors to provide the desired k1-coverage with k2-connectivity is minimized).

Combining Equation (49) with Jensen’s inequality for expectations (Equation (10)) we can prove

the following upper bounds

max
j ∈{1,2, ...,n }

E
[
| |Sj − zjMγ E[S]| |a

]
≥ max

j ∈{1,2, ...,n }
E
[
| |Sj − zjE[S]| |a

]
,

n
∑

j=1

E
[
| |Sj − zjMγ E[S]| |a

]
≥

n
∑

j=1

E
[
| |Sj − zjE[S]| |a

]
.

The presented argument is valid for other expected costs for large j. Namely

E
[
| |Sj − zjE[S]| |2

]
= Θ
(

j2
)

| |E[S]| |2, E
[
| |Sj − zjE[S]| |a

]
= Θ (ja ) | |E[S]| |a .
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Fig. 5. Time1 (n, r ,R) = Θ(1) of Algorithm 1

for k = k1 = k2 = 2.
Fig. 6. Time1 (n, r ,R) = Θ(n

1
2 ) of Algorithm 2

for ε = 0.5 and k = k1 = k2 = 2.

6.5 Real-life Sensor Deployment

It is worth mentioning that our experimental evaluations in the next Section 7 are restricted to

some specioc random variables. It is assumed that the sensors are randomly displaced according to

the evaluated distributions. However, the methodology proposed in this article is also applicable for

the real-life sensor deployment. When the sensors S1,S2, . . . ,Sn are distributed according to some

unknown distribution, we have to estimate E[S1],E[S2], . . . E[Sn] and execute optimal Algorithm 6.

The estimation of E[S1], E[S2], . . . E[Sn] is even reduced to the estimation E[S] = E[S1] when

E[Sj ] = jE[S1]. Then, we assign the sensing radius r = k1
E[S]
2 and communication radius R =

k2
E[S]
2 to optimize the energy consumption and the time required in movement for greedy path

k1-coverage simultaneously with k2-connectivity.

Hence, it will be interesting to provide experiments considering some realistic settings. However,

this experimental evaluationmay be expensive due to the large realistic data thatwould be required

for reliable estimation.

7 NUMERICAL RESULTS

In this section, we provide a set of experiments to illustrate Theorem 8 and Theorem 9 for reliable

sensors (see Section 4.2); Theorem 14 together with Theorem 15 and Theorem 17 for unreliable

sensors (see Section 5.1). While the theoretical results are for general random process, in the ex-

periments we have restricted to specioc random variable. We evaluate both time and energy.

7.1 Evaluation of Time1 (n, r ,R).

For the case of time, we evaluate 2-coverage together 2-connectivity we choose to experiments

two sequences
{

дi
}

i≥1, {hi }i≥1 of exponential distribution with parameter λ =
√
n. Assume in-

dependence between sequences {τi }i≥1,
{

ξi
}

i≥1; and additionally assume that, random variables

{τi }i≥1 and
{

ξi
}

i≥1 are independent. Then, in Deonition 1 properties (2) and (4) hold for all m

integer greater than 2. Notice that E[дi ] = E[hi ] =
1
λ
for i ≥ 1 (see Reference [47]). In this ex-

perimental evaluation, the position of the jth sensor random variable Sj is deoned by the formula

Sj = (
∑j

i=1 дi ,
∑j

i=1 hi ). Hence, in Deonition 1 we have τi = дiλ, ξi = hiλ and ³ = ´ = 1. Therefore,

the expected distance of this specioed random process is given by the formula | |E [S]| | =
√
2
λ
=

√
2√
n

(see Equation (8)).

Figure 5 depicts experimental Time1 (n, r ,R) of Algorithm 1 (Algorithm 2 when ε = 0) for 2-

coverage together with 2-connectivity when r = R = 2 | |E[S] | |2 =

√
2√
n
. In this case, we conduct

Algorithm 7 for ε = 0.
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ALGORITHM 7:

1: n := 1

2: while n ≤ 50 do

3: for j = 1 to 100 do

4: Generate S1 = (X1 (j ),Y1 (j )) ,S2 = (X2 (j ),Y2 (j )) , . . . ,S60n = (X60n (j ),Y60n (j )) random

points on the plane [0,∞)× [0,∞) such that ∀i ∈{1,2, ...,60n } , (Xi (j ) and Yi (j ) are the sum of

i independent and identically distributed exponential random variables with parameter

λ =
√
60n; Xi (j ) and Yi (j ) are independent);

5: Calculate T1 (60n, j ) = max1≤t ≤60n ����St − (xt ,yt )���� according to Algorithm 2 for k = 2,

E [S] = ( 1√
n
,

1√
n
) and ε ;

6: end for

7: for l = 1 to 5 do

8: Calculate the average T1 (60n) =
1
20

∑20
v=1 T1 (60n,v + (l − 1)20);

9: Insert the points T1 (60n) into the chart;

10: end for

11: n := n + 1

12: end while

In Figure 6, the black points represent numerical results of conducted Algorithm 7 for ε = 0.5.

Notice that the experimental Time1 (n, r ,R) of Algorithm 2 is in Θ(n
1
2 ). Hence, the carried out

experiments conorm very well the obtained theoretical tight bound Θ(n
1
2 ) (see Timea (n, r ,R) in

Theorem 9 for a := 1 and | |E [S]| | =
√
2√
n
).

In Figure 5, the black points represent numerical results of conducted Algorithm 7 for ε = 0. No-

tice that the experimental T1 (n, r ,R) of Algorithm 1 is in Θ(1). Hence, the carried out experiments

conorm very well the obtained theoretical upper boundO (1) (see Timea (n, r ,R) in Theorem 8 for

a := 1 and | |E [S]| | =
√
2√
n
).

Figure 6 depicts the experimental Time1 (n, r ,R) of Algorithm 2 for 2-coverage together with 2-

connectivity when ε = 0.5 considering the parameters r =
√
2

2
√
n
or R =

√
2

2
√
n
. In this case, we conduct

Algorithm 7 for ε = 0.5.

It is worth pointing out that Figures 5 and 6 together illustrates the sharp decline from Θ(n
1
2 )

to Θ(1) in Time1 (n, r ,R) for 2-coverage together with 2-connectivity when r increases from
√
2

2
√
n
to

√
2√
n
or R increases from

√
2

2
√
n
to
√
2√
n
.

7.2 Evaluation of Energy2 (n, r ,R)

For the case of energy, we evaluate 1-coverage together with 1-connectivity we choose to exper-

iments two sequences
{

дi
}

i≥1, {hi }i≥1 of uniform distribution over the interval [0, 2√
n
]. Assume

independence between sequences {τi }i≥1,
{

ξi
}

i≥1; and additionally assume that, random variables

{τi }i≥1 and
{

ξi
}

i≥1 are independent. Then, in Deonition 1 properties (2) and (4) hold for all m

integer greater than 2. Notice that E[дi ] = E[hi ] =
1√
n
for i ≥ 1 (see Reference [47]). In this ex-

perimental evaluation, the position of the jth sensor random variable Sj is deoned by the formula

Sj = (
∑j

i=1 дi ,
∑j

i=1 hi ). Hence, in Deonition 1 we have τi = дi
√
n, ξi = hi

√
n, ³ = ´ = 1 and in

Deonition 2 it is λ =
√
n. Therefore, the expected distance of of this specioed random process is

given by the formula | |E [S]| | =
√
2
λ
=

√
2√
n
(see Equation (8)).
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Figure 7 depicts experimental Energy2 (n, r ,R) of Algorithm 1 (Algorithm 2 when ε = 0) for

1-coverage together with 1-connectivity when r = R =
| |E[S] | |

2 =

√
2

2
√
n
. In this case, we conduct

Algorithm 8 for ε = 0.

ALGORITHM 8:

1: n := 1

2: while n ≤ 50 do

3: for j = 1 to 100 do

4: Generate S1 = (X1 (j ),Y1 (j )) ,S2 = (X2 (j ),Y2 (j )) , . . . ,S60n = (X60n (j ),Y60n (j )) random

points on the plane [0,∞)× [0,∞) such that ∀i ∈{1,2, ...,60n } , (Xi (j ) and Yi (j ) are the sum of

i independent and identically distributed of uniform distribution over the interval [0, 2√
n
];

Xi (j ) and Yi (j ) are independent);

5: Calculate E2 (60n, j ) =
∑60n

t=1
����St − (xt ,yt )����2 according to Algorithm 2 for k = 1, E [S] =

( 1√
n
,

1√
n
) and ε ;

6: end for

7: for l = 1 to 5 do

8: Calculate the average E2 (60n) =
1
20

∑20
v=1 E2 (60n,v + (l − 1)20);

9: Insert the points E2 (60n) into the chart;

10: end for

11: n := n + 1

12: end while

In Figure 7, the black points represent numerical results of conducted Algorithm 8 for ε = 0.

The additional line {(n, 13n), 1 ≤ n ≤ 3000} is the leading term in theoretical estimation. Applying

Corollary 3 for Vj = (
∑j

i=1 дi
√
n,
∑j

i=1 hi
√
n), where var[дi ] = var[hi ] =

1
3n and omitting the

technical details, we can get the leading term. Hence,

n
∑

t=1

����St − (xt ,yt )����2 = 1

3
n +O (1) according to Algorithm 1 for k = 1 and E [S] =

(

1
√
n
,
1
√
n

)

.

Figure 8 depicts the experimental Energy2 (n, r ,R) of Algorithm 2 for 1-coverage together with

1-connectivity when ε = 0.5 considering the parameters r =
√
2

4
√
n
or R =

√
2

4
√
n
. In this case, we

conduct Algorithm 8 for ε = 0.5.

In Figure 8, the black points represent numerical results of conducted Algorithm 8 for ε = 0.5.

Notice that the experimental Energy2 (n, r ,R) of Algorithm 2 is in Θ(n2). Hence, the carried out

experiments conorm very well the obtained theoretical tight bound Θ(n2) (see Energy2 (n, r ,R) in

Theorem 9 for a := 2 and | |E [S]| | =
√
2√
n
).

It is worth pointing out that Figures 7 and 8 together illustrates the sharp decline from Θ(n2) to

Θ (n) in Energy2 (n, r ,R) for 1-coverage together with 1-connectivity when r increases from
√
2

2
√
n
to

√
2

4
√
n
or R increases from

√
2

2
√
n
to
√
2

4
√
n
.

7.3 Evaluation of Time for Unreliable Sensors

We evaluate the maximum displacement to the power a = 1 (Time) of unreliable sensors in Algo-

rithm 3. In the experimental evaluation, we choose reliability parameter p = 1
2 , i.e., each sensor

with probability p = 1
2 independently from the other sensor is active (see Assumption 12).
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Fig. 7. Energy2 (n, r ,R) =
1
3n of Algorithm 1 for

k1 = k2 = k = 1.

Fig. 8. Energy2 (n, r ,R) = Θ
(

n2
)

of Algorithm 2

for ε = 0.5 and k = k1 = k2 = 1.

ALGORITHM 9:

1: n := 1

2: while n ≤ 50 do

3: for j = 1 to 50 do

4: Generate X1 (j ),X2 (j ), . . . ,X60n (j ) unreliable sensors at the equidistance points, i.e.,

Xi (j ) =
d
2 + (i − 1)d for i = 1, 2, . . . , 60n such that ∀i ∈{1,2, ...,60n } , (Xi (j ) with probability 1

2
independently from others sensors is realiable, i.e., it can move, sense and communicate);

5: Calculate Ta, 12
(60n, j ) the maximum of the reliable sensor’s displacements to the power

a in Algorithm 3;

6: end for

7: for l = 1 to 5 do

8: Calculate the average Ta, 12
(60n) = 1

10

∑10
v=1 Ta, 12

(60n,v + (l − 1)10);
9: Insert the points Ta, 12

(60n) into the chart;

10: end for

11: n := n + 1

12: end while

Figures 9 and 10 depict experimental maximum displacement to the power 1 of Algorithm 3

when d = 1 and d = 1
n
. In this case, we conduct Algorithm 9 for parameters a = 1, d = 1

and parameters a = 1, d = 1
n
. In Figures 9 and 10 the black dots represents numerical results of

conducted Algorithm 9 for parameters a = 1, d = 1 and parameters a = 1, d = 1
n
.

Notice that the experimental maximum displacement to the power 1 of Algorithm 3 for d = 1

is in Θ (n). Hence, the carried out experiments conorm very well the obtained theoretical tight

bound Θ (n) (see Theorem 14 together with Theorem 15 for a := 1 and d := 1).

Observe that the experimental maximum displacement to the power 1 of Algorithm 3 for d = 1
n

is in Θ (1). Hence, as in the previous experiment, the carried out experiments conorm very well

the obtained theoretical tight bound Θ (1) (see Theorem 14 together with Theorem 15 for a := 1

and d := 1
n
).

Notice that the experimental maximum displacement to the power 2 of Algorithm 3 for d = 1

is in Θ
(

n2
)

. Hence, the carried out experiments conorm very well the obtained theoretical tight

bound Θ (n) (see Theorem 14 together with Theorem 15 for a := 2 and d := 1).

Observe that the experimental maximum displacement to the power 2 of Algorithm 3 for d = 1
n

is in Θ (1). Hence, as in the previous experiment, the carried out experiments conorm very well

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 46. Publication date: August 2021.



46:36 S. K. Das and R. Kapelko

Fig. 9. Maximum displacement to the power 1

of Algorithm 3 for d = 1.
Fig. 10. Maximum displacement to the power 1

of Algorithm 3 for d = 1
n .

Fig. 11. Maximum displacement to the power 2

of Algorithm 3 for d = 1.
Fig. 12. Maximum displacement to the power 2

of Algorithm 3 for d = 1
n .

the obtained theoretical tight bound Θ (1) (see Theorem 14 together with Theorem 15 for a := 2

and d := 1
n
).

Figures 11 and 12 depict experimental maximum displacement to the power 2 of Algorithm 3

when d = 1 and d = 1
n
. In this case, we conduct Algorithm 9 for parameters a = 2, d = 1 and

parameters a = 2, d = 1
n
. In Figures 11 and 12 the black dots represent numerical results of

Algorithm 9 for parameters a = 2, d = 1 and parameters a = 2, d = 1
n
.

7.4 Evaluation of Energy for Unreliable Sensors

We evaluate the sum of displacement to the power a = 1 (Energy) of unreliable sensors in Al-

gorithm 3. As in the previous subsection, in the experimental evaluation we choose reliability

parameter p = 1
2 , i.e., each sensor with probability p = 1

2 independently from the other sensor is

active (see Assumption 12).

Figures 13 and 14 depict experimental sum of displacement to the power 1 of Algorithm 3 when

d = 1
n
and d = 1

n3/2 . In this case, we conduct Algorithm 10 for parameters a = 1, d = 1
n
and

parameters a = 1, d = 1
n3/2 . In Figures 13 and 14 the black dots represent numerical results of

Algorithm 10 for parameters a = 1, d = 1
n
and parameters a = 1, d = 1

n3/2 .

The experimental sum of displacement to the power 1 of Algorithm 3 for d = 1
n
is in Θ (n).

Hence, the carried out experiments conorm very well the obtained theoretical tight bound Θ (n)

(see Theorem 17 for a := 1 and d := 1
n
).
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Fig. 13. Sum of displacement to the power 1 of

Algorithm 3 for d = 1
n .

Fig. 14. Sum of displacement to the power 1 of

Algorithm 3 for d = 1
n3/2 .

Observe that the experimental maximum displacement to the power 1 of Algorithm 3 for d =
1

n3/2 is in Θ(
√
n). Hence, as in the previous experiment, the carried out experiments conorm very

well the obtained theoretical tight bound Θ(
√
n) (see Theorem 17 for a := 1 and d := 1

n3/2 ).

ALGORITHM 10:

1: n := 1

2: while n ≤ 50 do

3: for j = 1 to 50 do

4: Generate X1 (j ),X2 (j ), . . . ,X60n (j ) unreliable sensors at the equidistance points, i.e.,

Xi (j ) =
d
2 + (i − 1)d for i = 1, 2, . . . , 60n such that ∀i ∈{1,2, ...,60n } , (Xi (j ) with probability 1

2
independently from others sensors is reliable, i.e., it can move, sense and communicate);

5: Calculate Ea, 12
(60n, j ) the sum of displacement to the power a of reliable sensors in

Algorithm 3;

6: end for

7: for l = 1 to 5 do

8: Calculate the average Ea, 12
(60n) = 1

10

∑10
v=1 Ea, 12

(60n,v + (l − 1)10);
9: Insert the points Ea, 12

(60n) into the chart;

10: end for

11: n := n + 1

12: end while

Figures 15 and 16 depict experimental sum of displacement to the power 2 of Algorithm 3 when

d = 1
n
and d = 1

n3/2 . In this case, we conduct Algorithm 10 for parameters a = 2, d = 1
n
and

parameters a = 2, d = 1
n3/2 . In Figures 15 and 16 the black dots represent numerical results of

Algorithm 10 for parameters a = 2, d = 1
n
and parameters a = 2, d = 1

n3/2 .

The experimental sum of displacement to the power 2 of Algorithm 3 for d = 1
n
is in Θ (n).

Hence, the carried out experiments conorm very well the obtained theoretical tight bound Θ (n)

(see Theorem 17 for a := 2 and d := 1
n
).

Observe that the experimental maximum displacement to the power 2 of Algorithm 3 for d =
1

n3/2 is in Θ (1). Hence, as in the previous experiment, the carried out experiments conorm very

well the obtained theoretical tight bound Θ (1) (see Theorem 17 for a := 2 and d := 1
n3/2 ).
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Fig. 15. Sum of displacement to the power 2 of

Algorithm 3 for d = 1
n .

Fig. 16. Sum of displacement to the power 2 of

Algorithm 3 for d = 1
n3/2 .

8 CONCLUSION

In this article, we addressed the fundamental problem of the range assignment in wireless mobile

sensors networks in which n mobile sensors with identical sensing radius r and communication

radius R, provided that r ≤ R are initially randomly deployed on the plane by dropping them

from an aircraft according to general random process. To this end, we minimized the time required

and the energy consumption of transportation cost for sensors as the function of sensing radius

r and communication radius R to provide the desired greedy k1-coverage simultaneously with

k2-connectivity. We proved that for both of these optimization problems, the optimal solution is

to assign the sensing radius equal to r = k1
| |E[S] | |

2 and the communication radius equal to R =

k2
| |E[S] | |

2 , where | |E[S]| | is the distance of general random process according to which the sensors

are deployed. We also discovered and explained the sharp increase, i.e., the threshold phenomena

in the time required and the energy consumption in transportation cost to ensure the desired k1-

coverage together with k2-connectivity when r < k1
| |E[S] | |

2 or R < k2
| |E[S] | |

2 .

We further analyzed the desired k1-coverage together with k2-connectivity for unreliable sen-

sors. For unreliable sensors both the time required and the energy consumption in transportation

cost to ensure the desired k1-coverage together with k2-connectivity remains asymptotically the

same when r is below or equal to k1
| |E[S] | |

2 or R is below or equal to k2
| |E[S] | |

2 . While we have dis-

cussed the applicability of our approach to sensors having variable sensing and communication

radii an open problem for future study is the range assignment in heterogeneous wireless mobile

sensors networks. Additionally, it would be interesting to explore the range assignment problem

for sensors with variable sensing and communication radii when some sensors are unreliable or

even fail with some oxed probability.

APPENDICES

APPENDIX A

Proof. (Theorem 1) Fix an even positive integerm. Assume that j > m
2 .

First, combining together Equation (1), multinomial theorem, as well as Equation (2), we deduce

that

E
[
(X j − E[X j ]|m

]
= E

[
(X j − j³ )m

]
=

∑

B

m!

(l1)!(l2)! . . . (lj )!
E

£¤¤¤¤¥
j
∏

i=1

(τi − ³ )li
¦§§§§̈

=

∑

B

m!

(l1)!(l2)! . . . (lj )!

j
∏

i=1

E
[
(τi − ³ )li

]
,
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where

B = {(l1, l2, . . . lj ) ∈ Nj : l1 + l2 + · · · + lj =m}.
Applying Equation (1), we get E [(τi − ³ )] = E [τi ] − ³ = 0. Hence, we have a simpler expression,

E
[
(X j − E[X j ]|m

]
=

∑

B1

m!

(l1)!(l2)! . . . (lj )!

j
∏

i=1

E
[
(τi − ³ )li

]
, (50)

where

B1 = {(l1, l2, . . . lj ) ∈ Nj : l1 + l2 + · · · + lj =m, li � 1 for i = 1, 2, . . . , j}.

Observe that

B1 = B2 ∪ B3 and B2 ∩ B3 = ∅, (51)

B2 = {(l1, l2, . . . lj ) ∈ Nj : l1 + l2 + · · · + lj =m, li � 1, li ∈ {0, 2} for i = 1, 2, . . . , j},

B3 = {(l1, l2, . . . lj ) ∈ Nj : l1 + l2 + · · · + lj =m, li � 1 for i = 1, 2, . . . , j, ∃i (li � 2)},

|B2 | =
(

j
m
2

)

, |B3 | = O
(

j
m
2 −1
)

. (52)

Notice that

E
[
(τi − ³ )2

]
= Var [τ1] . (53)

We now make the important observation that the sum (Equation (50)) is equal to the sum of

Equations (54) and (55).

The second sum (Equation (55)) is negligible. Thus, the asymptotics of Equation (50) depends

on the expression given by the orst sum (Equation (54)).

Together, Equations (52) and (53) imply

∑

B2

m!

(l1)!(l2)! . . . (lj )!

j
∏

i=1

E
[
(τi − ³ )li

]
=

∑

B2

m! (Var [τ1])
m
2

2
m
2

=

m! (Var [τ1])
m
2

2
m
2

|B2 | =
m! (Var [τ1])

m
2

2
m
2

(

m
2

)

!
j
m
2 +O

(

j
m
2 −1
)

. (54)

Using Equation (1) in Deonition 1, we have

���E [
(τi − ³ )li

] ��� ≤ E
[
|τi − ³ |li

]
≤ E

[
( |τi | + ³ )li

]
=

li
∑

t=0

(

li

t

)

E
[
|τi |t

]
³ li−t =

li
∑

t=0

(

li

t

)

E
[
τ ti

]
³ li−t

≤ C1,m

li
∑

t=0

(

li

t

)

³ li−t = C1,m (³ + 1)li .

Hence, by Equation (52), as well as formula l1 + l2 + · · · + lj =m, we get

�������
∑

B3

m!

(l1)!(l2)! . . . (lj )!

j
∏

i=1

E
[
(τi − ³ )li

] ������� ≤
∑

B3

m!

j
∏

i=1

���E [
(τi − ³ )li

] ��� ≤
∑

B3

m!Cm
1,m (³ + 1)m

≤ m!Cm
1,m (³ + 1)m |B3 | = O

(

j
m
2 −1
)

. (55)

Finally, combining Equations (50), (51), (54), and (55) completes the proof of Theorem 1. �
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APPENDIX B

Proof. (Theorem 2) As a orst step, we combine together binomial theorem with independence

of random variables X j , Yj and get

E
[
| |Vj − E[Vj ]| |m

]
= E
(

(

X j − E[X j ]
)2
+

(

Yj − E[Yj ]
)2
)
m
2

= E
���

m
2
∑

i=0

(m
2

i

)

(

X j − E[X j ]
)2i (

Yj − E[Yj ]
)m−2i�	�

=

m
2
∑

i=0

(m
2

i

)

E
(

(

X j − E[X j ]
)2i
)

E
(

(

Yj − E[Yj ]
)m−2i )

. (56)

Hence, estimating the expected distance to the powerm between random vectorVj with (m,³ , ´ )-

property and its mean E[Vj ] is reduced to estimating the expectedmth moments around the mean

for the random variables X j and Yj . Due to properties (3) and (4) in Deonition 1 for the sequence

{τi }i≥1 Theorem 1 also holds for random variable Yj =
∑j

i=1 ξi . Therefore, applying Theorem 1

for random variable X j =
∑j

i=1 τi and m := 2i , as well as for random variable Yj =
∑j

i=1 ξi and

m :=m − 2i we get

E
(

(

X j − E[X j ]
)2i
)

=

(2i )! (Var [τ1])
i

2i (i )!
ji +O

(

ji−1
)

. (57)

E
(

(

Yj − E[Yj ]
)m−2i )

=

(m − 2i )! (Var [ξ1])
m
2 −i

2
m
2 −i
(

m
2 − i

)

!
j
m
2 −i +O

(

j
m
2 −i−1

)

. (58)

By substituting Equations (56) and (57) into (58), we get

E
[
| |Vj − E[Vj ]| |m

]
=
���
(

m
2

)

!

2
m
2

m
2
∑

i=0

(

2i

i

) (

m − 2i
m
2 − i

)

(Var [τ1])
i (Var [ξ1])

m
2 −i )�	� j

m
2 +O

(

j
m
2 −1
)

.

This completes the proof of Theorem 2. �

APPENDIX C

Proof. (Theorem 4) Putting together Equations (6) and (8), we have

E
[
| |Sj − E[Sj ]| |a

]
=

E
[
| |Vj − E[Vj ]| |a

]
(
√

³2
+ ´2
)a | |E[S]| |a . (59)

From Theorem 2, we have form positive even integer

E
[
| |Vj − E[Vj ]| |m

]
= Θ
(

j
m
2

)

. (60)

First, let us prove the upper bound. Letm be the smallest even integer greater than or equal to

a > 0. Applying Jensen’s inequality (see Equation (10)) for X := | |Vj − E[Vj ]| |a and f (x ) := x
m
a ,

we get
(

E
[
| |Vj − E[Vj ]| |a

] ) m
a ≤ E

[
| |Vj − E[Vj ]| |m

]
.

Using Equation (60), we get E
[
| |Vj − E[Vj ]| |a

]
≤
(

Θ
(

j
m
2

))
a
m
= Θ
(

j
a
2

)

. Hence

E
[
| |Vj − E[Vj ]| |a

]
= O
(

j
a
2

)

when a > 0. (61)

This proves the upper bound.
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Next, we prove the lower bound.Assume a ≥ 2. Using Jensen’s inequality forX := | |Vj −E[Vj ]| |2
and f (x ) := x

a
2 ,

(

E
[
| |Vj − E[Vj ]| |2

] ) a
2 ≤ E

[
| |Vj − E[Vj ]| |a

]
.

Using Equation (60), we get E
[
| |Vj − E[Vj ]| |a

]
≥
(

Θ
(

j2
))

a
2
= Θ
(

j
a
2

)

. Hence

E
[
| |Vj − E[Vj ]| |a

]
= Ω
(

j
a
2

)

when a ≥ 2. (62)

This proves the lower bound.

Finally combining Equations (59), (61), and (62), as well as the asymptotic
(
√

³2
+ ´2
)a
= Θ(1)

completes the proof of Theorem 4. �

APPENDIX D

Proof. (Theorem 5) There are two cases to consider.

The upper bound.

Fix a > 0. We argue as follows. Combining together the triangle inequality for vectors Sj −E[Sj ]
andO (1)E[S], as well as elementary Inequality (11) for x :=

������Sj − E[Sj ]������ and y := | |O (1)E[S]| | we
have ������Sj − E[Sj ] +O (1)E[S]

������a ≤ max
(

2a−1, 1
) (������Sj − E[Sj ]������a + |O (1) |a | |E[S]| |a

)

.

Passing to the expectations, we get

E
[������Sj − E[Sj ] +O (1)E[S]

������a ] ≤ max
(

2a−1, 1
) (

E
[������Sj − E[Sj ] ������a] + |O (1) |a | |E[S]| |a

)

.

Applying Theorem 4, we have

E
[������Sj − E[Sj ] +O (1)E[S]

������a ] = O (j a2 ) | |E[S]| |a , a > 0.

This proves the upper bound.

The lower bound.

Fix a ≥ 2. We argue as follows. Combining together the triangle inequality for vectors Sj −E[Sj ]
and O (1)E[S], as well as elementary Inequality (11) for x :=

������Sj − E[Sj ]������ and y := | | −O (1)E[S]| |
we have������Sj − E[Sj ]������a ≤ max

(

2a−1, 1
) ������Sj − E[Sj ] +O (1)E[S]]

������a +max
(

2a−1, 1
)

| −O (1) |a | |E[S]| |a .

Passing to the expectations, we get

E
[������Sj − E[Sj ]������a ]
max (2a−1, 1)

≤
(

E
[������Sj − E[Sj ] +O (1)E[S]]

������a ] + | −O (1) |a | |E[S]| |a
)

.

Applying Theorem 4, we have E[| |Sj − E[Sj ] + O (1)E[S]| |a] = Ω(j
a
2 ) | |E[S]| |a , a ≥ 2. This is

enough to prove the desired lower bound and completes the proof of Theorem 5. �

APPENDIX E

Proof. (Theorem 6) The proof of Theorem 6 is analogous to that of Theorem 5.

First, we prove the upper bound. Combining together the triangle inequality for vectors Sj −
E[Sj ] + O (1)E[S] and εE[Sj ], as well as Inequality (11) for x := | |Sj − E[Sj ] + O (1)E[S]| | and
y := | |εE[Sj ]| | we get

| |Sj − (1− ε )E[Sj ]+O (1)E[S]| |a ≤ max
(

2a−1, 1
) (

| |Sj − E[Sj ] + (O (1) − 1) E[S]| |a + | |εE[Sj ]| |a
)

.
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Passing to the expectations and applying Theorem 5, IdentityO (1)− 1 = O (1), as well as Equation

(9) we have

E
[
| |Sj − (1 − ε )E[Sj ] +O (1)E[S]| |a

]
max (2a−1, 1)

≤ E
[
| |Sj − E[Sj ] +O (1)E[S]| |a

]
+ E

[
| |εE[Sj ]| |a

]
= O
(

j
a
2

)

| |E[S]| |a + εa ja | |E[S]| |a .

Hence

E
[
| |Sj − (1 − ε )E[Sj ] +O (1)E[S]| |a

]
= O (ja ) | |E[S]| |a .

This proves the upper bound.
To prove the lower bound, we combine the triangle inequality for vectors Sj − (1 − ε )E[Sj ] +

O (1)E[S] and−
(

Sj − E[Sj ] +O (1)E[S]
)

, and Inequality (11) for x := | |Sj− (1−ε )E[Sj ]+O (1)E[S]| |
and y := | | −

(

Sj − E[Sj ] +O (1)E[S]
)

| |. Then, we get

| |εE[Sj ]| |a ≤ max
(

2a−1, 1
)

| |Sj − (1− ε )E[Sj ]+O (1)E[S]| |a +max
(

2a−1, 1
)

| | −
(

Sj − E[Sj ] +O (1)E[S]
)

| |a .

Passing to the expectations, we have

E
[
| |εE[Sj ]| |a

]
≤ max

(

2a−1, 1
)

E
[
| |Sj − (1 − ε )E[Sj ] +O (1)E[S]| |a

]
+max

(

2a−1, 1
)

E
[
| | −
(

Sj − E[Sj ] +O (1)E[S]
)

| |a
]
.

Hence, applying Theorem 5, as well as Equation (9) we have

E
[
| |Sj − (1 − ε )E[Sj ] +O (1)E[S]| |a

]
=

εa ja | |E[S]| |a

max (2a−1, 1)
−O
(

j
a
2

)

| |E[S]| |a = Ω (ja ) | |E[S]| |a .

This proves the lower bound and completes proof of Theorem 6. �

APPENDIX F

Proof. (Theorem 9) The proof of Theorem 9 is analogous to that of Theorem 8.
Fix k = max (k1,k2) Assume that the n sensors on the plane have identical sensing radius r =

k1
| |E[S] | |

2 and communication radius R = k2
| |E[S] | |

2 . First, observe that sensors at the onal positions
(x1,y1), (x2,y2), . . . (xn ,yn ) after Algorithm 2 lie on the line passing through the points E[S] and
(0, 0). Observe that

| |(x1, y1) − (0, 0) | | = (1 − ε ) | |E [S] | |
2

,

| |(x j , yj ) − (x j−1, yj−1) | | =
(1 − ε ) | |E [S] | |

2
if j ∈ {2, . . . , k } (see steps 2−4 of Algorithm 2),

| |(x j , yj ) − (x j−1, yj−1) | | = | |(1 − ε )E [S] | | if j ∈ {k + 1, k + 2, . . . , min(n, n + 2 − k ) } (see steps 5−7 of Algorithm 2),

| |(x j , yj ) − (x j−1, yj−1) | | =
| |(1 − ε )E [S] | |

2
if j ∈ {n + 3 − k, . . . , n } and k ≥ 3 (see steps 8−12 of Algorithm 2).

Therefore, we can apply Lemma 7 for d := | |(1 − ε )E [S] | | and deduce that every point on the

line connecting points (0, 0), (x1,y1), (x2,y2), . . . (xn ,yn ) is within the sensing range of at least k1
sensors and the communication range of at least k2 sensors. Hence, Algorithm 2 is correct.

We now estimate Timea (n, r ,R) and Energya (n, r ,R) of Algorithm 2.
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Let us recall that jE[S] = E[Sj ] (see Equation (9)). Hence

Sj − (x j ,yj ) = Sj −
(1 − ε )E

[
Sj

]
2

if j ∈ {1, . . . ,k } (see steps 2−4 of Algorithm 2), (63)

Sj − (x j ,yj ) = Sj − (1 − ε )E
[
Sj

]
− k (1 − ε )E [S]

2
if j ∈ {k + 1,k + 2, . . . ,min(n,n + 2 − k )} (64)

(see steps 5−7 of Algorithm 2),

Sj − (x j ,yj ) = Sj − (1 − ε )E
[
Sj

]
− k (1 − ε ) E [S]

2
− (j − (n + 2 − k )) (1 − ε ) E [S]

2
if j ∈ {n + 3 − k, . . . ,n} and k ≥ 3 (65)

(see steps 8−12 of Algorithm 2).

We are now ready to apply Theorem 6 and evaluate separately Equations (63), (64), and (65).

Case of Equation (63)

Passing to the expectations and using Theorem 6 with ε := 1+ε
2 and O (1) := 0, we get

E
[������Sj − (x j ,yj )

������a ] = Θ (ja ) | |E[S]| |a if j ∈ {2, . . . ,k }.

Case of Equation (64)

Since k = O (1), we can apply Theorem 6 with O (1) :=
k (1−ε )

2 and get

E
[������Sj − (x j ,yj )

������a ] = Θ (ja ) provided that j ∈ {k + 1,k + 2, . . . ,min(n,n + 2 − k )}.

Case of Equation (65)

Observe that 2 ≤ k + j − (n + 2 − k ) ≤ 2k − 2 = O (1). Therefore, we can apply Theorem 6 with

O (1) := − (1−ε )
2

(k + j − (n + 2 − k )) and and get

E
[������Sj − (x j ,yj )

������a ] = Θ (ja ) provided that j ∈ {n + 3 − k, . . . ,n} and k ≥ 3.

Combining together Estimations: Case of Equation (63), Case of Equation (64), Case of Equa-

tion (65), we have

Timea (n, r ,R) = max
1≤j≤n

E
[������Sj − (x j ,yj )

������a ] = Θ (na )

of Algorithm 2.

Putting together Estimations: Case of Equation (63), Case of Equation (64), Case of Equation (65)

and the well-known identity
∑n

j=1 j
a
2 = Θ(n

a
2 +1), when a > 0 we have

Energya (n, r ,R) =

n
∑

j=1

E
[������Sj − (x j ,yj )

������a ] = Θ
(

na+1
)

.

of Algorithm 2.

This completes the proof of Theorem 9. �

APPENDIX G

Proof. (Theorem 11) There are two cases to consider

Case 1: r = k1 (1 − ε ) | |E[S] | |2
Assume that sensor Sj moves to the position Qj , which lie on the line passing through the

points E[S] and (0, 0). provided that j ∈ {1, 2, . . . ,n}. Let Q0 = (0.0). We look at the points

Q1,Q2,Q3, . . .Qk1 and choose the point P0 =
Qk1−(0,0)

2 .

Point P0 is in the middle of interval connecting point (0, 0) and Qk1 . If P0 is not in sensing range

ofQk1 , then it is in the sensing range of at most k1−1 sensors. Therefore, P0 must be in the sensing
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range of sensor Qk1 , i.e.,

| |Qk1 − P0 | | ≤
k1

2
| |E[S]| |(1 − ε ).

Therefore, | |Qk1 | | ≤ | |k1E[S]| |(1 − ε ). Since Qk1 lies on the line passing through the points E[S]

and (0, 0), we have

Qk1 = k1E[S](1 − ∆1), (66)

provided that ε ≤ ∆1 ≤ 1

Let j be the positive integer and j + 1 ≤ n
k1
. We now look at the points Qk1 j ,Qk1 j+1, . . .Qk1 j+k1

and choose the point

Pj =
Qk1 j+k1 − Qk1 j

2
.

Point Pj is in the middle of interval connecting point Qk1 j and Qk1 j+k1 . If Pj is not in the sensing

range of Qk1 j+k1 , then it is not in the sensing range of Qk1 j and thus is in the sensing range of at

most k1 − 1 sensors. Therefore, Pj must be in the sensing range of the sensor Qk1 j+k1 , i.e.,

| |Qk1 j+k1 − Pj | | ≤
k1

2
| |E[S]| |(1 − ε ).

Therefore

| |Qk1 j+k1 − Qk1 j | | ≤ k1E[S](1 − ε ). (67)

Putting together Equations (66) and (67), as well as the fact thatQk1 j lies on the line passing through

the points E[S] and (0, 0) we have

Qk1 j =

j
∑

i=1

k1E[S](1 − ∆i ),

provided that ε ≤ ∆i ≤ 1. Using this, as well as Equation (9), we have

Sk1 j − Qk1 j = Sk1 j − E[Sk1 j ] + E[Sk1 j ]
(

∆1 + ∆2 + . . . ∆j

j

)

.

Since ϵ ≤ ∆i ≤ 1 and 0 < ϵ ≤ 1, we have

ε ≤ εj =
∆1 + ∆2 + . . . ∆j

j
≤ 1.

Clearly εj depends on j but 1 ≥ εj ≥ ε . Hence, we can apply the similar arguments to that as in

the proof of Theorem 6 to deduce that

E
[������Sk1 j − Qk1 j ������]a = (k1)

aΘ (ja ) | |E[S]| |a .

Since
∑

n
k1

j=1 (k1j )
a
= Θ
(

na+1
)

, when a > 0 and k1 is oxed we have

max
1≤j≤n

E
[
| |Sj − Qj | |a

]
≥ max

1≤j≤ n
k1

E
[
| |Sk1 j − Qk1 j | |a

]
= Θ (na ) | |E[S]| |a .

Therefore,

Timea (n, r ,R) = Ω (na ) | |E[S]| |a ,
n
∑

j=1

E
[
| |Sj − Qj | |a

]
≥

n
k1
∑

j=1

E
[
| |Sk1 j − Qk1 j | |a

]
= Θ
(

na+1
)

| |E[S]| |a .

Hence

Energya (n, r ,R) = Ω
(

na+1
)

| |E[S]| |a .
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Case 2 R = k2 (1 − ε ) | |E[S] | |2
The proof of Case 2 is analogous to that of Case 1. Namely, we apply the same arguments as in

Case 1 for k1 := k2, and the sensing radius := the communication radius.

This completes the proof of Theorem 11. �

APPENDIX H

Proof. (Theorem 14) The proof of the theorem is analogous to the proof of Theorem 4.

From Theorem 13, we have for t positive integer

E
[��mwn,n

��t ] = dtΘ (nt ) . (68)

First, let us prove the upper bound. Let t be the smallest integer greater than or equal to a > 0.

Applying Jensen’s inequality (see Equation (10)) for X :=mwn,n and f (x ) := x
t
a , we get

(

E
[��mwn,n

��a ] ) ta ≤ E
[��mwn,n

��t ] .
Therefore,

E
[��mwn,n

��a ] ≤ (dtΘ (nt )) at = daΘ (na ) .

Hence

E
[��mwn,n

��a ] = daO (ta ) when a > 0. (69)

This proves the upper bound.

Next, we prove the lower bound. Assume that a ≥ 1. Using Jensen’s inequality for X := mw1
n,n

and f (x ) := xa , we have
(

E
[
mw1

n,n

] )a
≤ E
[��mwn,n

��a ] .
Applying Equation (68) for t := 1 lead to

E
[��mwn,n

��a ] ≥ (dΘ (n))a = daΘ (na ) .

Hence

E
[��mwn,n

��a ] = daΩ (na ) when a ≥ 1.

This proves the upper bound and completes the proof of Theorem 14. �

APPENDIX I

Proof. (Theorem 17) From Theorem 16, we have for t positive integer

n
∑

j=1

E
[���mw j,n

���t
]
= dtΘ

(

nt+1
)

. (70)

There are two cases to consider.

Case the upper bound

Let k be the smallest integer greater than real a > 0. We use discrete Hölder inequality with

parameters t
a
and t

t−a and get

n
∑

j=1

E
[���mw j,n

���a ] ≤ ���
n
∑

j=1

(

E
[���mw j,n

���a ] )
t
a �	�

a
t ���

n
∑

j=1

1
�	�
t−a
t

=
���

n
∑

j=1

(

E
[���mw j,n

���a ] )
t
a �	�

a
t

n
t−a
t . (71)

Next, we use Jensen’s inequality (see Equation (10)) for f (x ) := x
t
a and X =: [|mw j,n |a] and get

(

E
[���mw j,n

���a ] )
t
a ≤ E

[���mw j,n
���a ] . (72)
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Combining together Equations (71) and (72), as well as Equation (70), we deduce that

n
∑

j=1

E
[���mw j,n

���a ] ≤ ���
n
∑

j=1

E
[���mw j,n

���t
]�	�

a
t

n
t−a
t =

(

dtΘ
(

nt+1
))

a
t n

t−a
t = daΘ

(

na+1
)

.

Hence,
n
∑

j=1

E
[���mw j,n

���a ] = daO (na+1) , when a > 0.

This is enough to prove the lower bound.

Case the lower bound

Fix a ≥ 1. We use discrete Hölder inequality with parameters a and a
a−1 and get

n
∑

j=1

E
[���mw j,n

���] ≤ ���
n
∑

j=1

(

E
[���mw j,n

���] )a�	�
1
a ���

n
∑

j=1

1
�	�
a−1
a

=
���

n
∑

j=1

(

E
[���mw j,n

���] )a�	�
1
a

n
a−1
a . (73)

Next, we use Jensen’s inequality (see Equation (10)) for f (x ) := xa and X =: [|mw j,n |] and get
(

E
[���mw j,n

���] )a ≤ E
[���mw j,n

���a ] . (74)

Combining together Equations (73) and (74), as well as Equation (70), for t := 1 we deduce that

n
∑

j=1

E
[���mw j,n

���a ] ≥ ���
n
∑

j=1

E
[���mw j,n

���]�	�
a

n−a+1 =
(

dΘ
(

n2
))a

n−a+1 = daΘ
(

na+1
)

.

Hence,
n
∑

j=1

E
[���mw j,n

���a ] = daΩ (na+1) , when a ≥ 1.

This is enough to prove the lower bound and completes the proof of Theorem 17. �
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