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The advent of the edge computing network paradigm places the computational and storage resources away
from the data centers and closer to the edge of the network largely comprising the heterogeneous IoT devices
collecting huge volumes of data. This paradigm has led to considerable improvement in network latency and
bandwidth usage over the traditional cloud-centric paradigm. However, the next generation networks con-
tinue to be stymied by their inability to achieve adaptive, energy-eocient, timely data transfer in a dynamic
and failure-prone environment—the very optimization challenges that are dealt with by biological networks
as a consequence of millions of years of evolution. The transcriptional regulatory network (TRN) is a biologi-
cal network whose innate topological robustness is a function of its underlying graph topology. In this article,
we survey these properties of TRN and the metrics derived therefrom that lend themselves to the design of
smart networking protocols and architectures.We then review a body of literature on bio-inspired networking
solutions that leverage the stated properties of TRN. Finally, we present a vision for specioc aspects of TRNs
that may inspire future research directions in the oelds of large-scale social and communication networks.
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1 INTRODUCTION

The present-day network architectures facilitate the communication among millions of users pos-
sessing heterogeneous smart devices. Such devices are equipped with sensing, computing, and
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Fig. 1. Modern edge computing network paradigm.

actuating capabilities and employ a plethora of communication protocols, viz., Wi-Fi, Bluetooth
Low Energy (BLE), Zigbee, 3G/4G/5G LTE, and so on, to carry out data exchange over the Inter-
net [1]. This network ecosystem, popularly termed the Internet of Things (IoT), entails a high
rate of message exchanges (which are both delay-intensive as well as privacy-invasive) between
the smart devices and back-end servers, as elucidated by the following use-case from the domain
of smart healthcare.
Consider a scenario in smart healthcare where a patient is equipped with smart device(s) mon-

itoring his/her physiological parameters (e.g., temperature, blood pressure, glucose level, heart
rate, etc.). Typically, the following generic steps are employed to push the patient data into the
back-end cloud server and retrieve them on request from authorized users: (1) the caregiver uses
a smartphone-based app. to control the monitoring device, (2) the app. uses Zigbee or BLE to send
the request to a gateway device, which is sent to the cloud using Wi-Fi, (3) the remote security
server hosted in the cloud authenticates the requester and the legitimacy of the request, (4) the
server sends the response to the gateway device, which is forwarded to the device, and (5) the
device actuates and sends back the response to the requester via the gateway. Evidently, such a
multi-stage communication protocol, involving the edge sensors (i.e., healthcare IoT devices), edge
devices (i.e., smartphone), gateway, and the cloud, is subject to delay as well as privacy breach.
To address such challenges, we see a shift from centralized cloud computing to a new paradigm

of edge computing, which attempts to improve the task response time as well security by bringing
data processing closer to the edge of the network [2]. Speciocally, a new layer, called fog layer,
has been added to connect the centralized cloud to edge sensors. The fog layer is an abstract layer
that may not necessarily demand physical resources and can be loosely-coupled between the edge
devices and gateway nodes (Figure 1). In practice, the capabilities of network devices, viz., access
points, Wi-Fi routers, and so on, are enhanced so that they can host the fog application. The fog
application maintains a snapshot of the global data (hosted in the cloud) and is capable of location-
aware and low-latency computing. It is also equipped with data aggregation functions to reduce
data replication. With respect to the smart healthcare example, as the patient’s recent data are
stored in the edge of the hospital network, the likelihood of security or privacy intrusion reduces
considerably.
Let us consider how diferent types of wireless networks ot into the four-layered edge network

paradigm. There are wireless sensor networks that transfer environmental data collected by sen-
sors to the base station [3], while disaster response networks perform opportunistic event sensing
and reporting in the aftermath of natural disaster [4]. IoT networks (IoT-Nets) sense and report
data in urban spaces to inform decision-making in smart city settings [5]. There are edge centric
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IoT networks that allow individuals in possession of mobile devices to collect and report events to
the cloud platform via intermediate fog nodes [6]. It is interesting to note that the stated networks
involve diferent layers of the modern network paradigm. Speciocally,wireless sensor networks

(WSNs) operate on layer 1, disaster response network (DRNs) involve mobile sensors (layer 1)
and the coordination center (CC) (layer 3), and IoT-Nets entail communication between hetero-
geneous IoT sensors (layer 1) and the cloud (layer 4); onally, the edge computing platforms work
with all the four layers by combining edge sensors, fog layer and the cloud. There are quite a few
challenges that impede the design of the next generation networks [7].

(1) There is the dynamic nature of mobile ad hoc networks and cognitive radio networks w.r.t.
connectivity, traoc and bandwidth.

(2) The DRN and edge-centric IoT network need to be infrastructure-less and autonomous to
achieve high scalability.

(3) The communication networks need to provide seamless service despite component failures

due to energy depletion or hardware faults.
(4) Network entities need to exhibit self-organization and act collaboratively to achieve complex

system goals.
(5) The communication networks constitute resource-constrained sensing devices andmust nec-

essarily incorporate energy eociency to continue communication over long periods [8].

One answer to such challenges lies with a oeld of computing inspired by nature—bio-inspired com-

puting—based on the idea that the biological systems are characterized by certain key properties
that are a direct consequence of evolution. They adapt to the changing environment, exhibit high
resilience to failures and attacks, and collaboratively accomplish complex tasks, while making
minimum use of available resources. Swarm intelligence-based algorithms [7], artiocial immune
systems [9], physarum-based transport network algorithms [10] are well-studied examples of bio-
inspired computing. There is a special class of bio-inspired computing, called bio-inspired network-
ing, deoned as a class of strategies inspired by principles governing biological systems that enable
eocient and scalable communication protocols under uncertain conditions [7].
Dressler et al. discussed that biological networks, as a consequence of millions of years of evolu-

tion, tackle the aforementioned challenges faced by large scale communication networks. Specif-
ically, biological networks evolve and adapt to varying environmental factors, exhibit robustness
against perturbation and failures, efectively manage constrained resources through global intelli-
gence, and self-organize in a fully distributed fashion. For instance, ant colony optimization iden-
tioes optimized paths between food source and ants’ nests based on the length and quantity of a
chemical, called pheromone, left in the trail [11]. Artiocial immune systemmimics the immune sys-
tem ofmammals that detect, memorize and react to systemic changes [9], while systems replicating
cellular signalling (of which transcriptional networks are a part) capture the complex patterns of
biochemical interactions within living organisms [12]. Thus, it stands to reason that large scale
networks inspired from biological systems should naturally achieve the much-needed optimization of

several connicting system objectives, viz., adaptive, timely, energy-eocient information dissemination

in a dynamic environment subject to component failures.
The focus of this article is the application of a biological network, termed the transcriptional

regulatory network (TRN) in the design of smart communication networking solutions. The
robustness of TRNs in the face of mutation or noise has been a key area of interest in computational
biology [13]. Studies show that the robustness of TRNs can be ascribed to its underlying network
topology [14]. Consequently, there have been eforts to apply the innate robustness of TRNs in the
design of robust and energy-eocient computer network architectures and protocols by exploiting
the standard graph-theoretic attributes of TRNs. We deone robustness as the ability of the network
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Fig. 2. Overview of contributions.

to carry out information now despite component (i.e., node or link) failures. In this work, for the orst
time, we discuss the association between the graph properties of TRNs (such as motif abundance)
and its observed robustness; this is followed by an investigation of the metrics to quantify TRN
robustness and some networking solutions that leverage it. In Figure 2, we depict the four sections
(graph properties, metrics, solutions and future directions) and sub-features thereof (in blue). We
highlight the potential areas of exploration of TRN that may motivate new research directions.
Note that unlike the topology control mechanisms that operate on the MAC layer by adjusting the
sensor transmission power dynamically [15], most of the bio-inspired TRN-based solutions work
on the network layer alone by exchanging control packets with neighbor devices [16].
The contents of the survey have been organized as follows. Section 2 brieny covers the biolog-

ical background and modeling techniques of TRNs. Section 3 discusses the topological attributes
of the TRN along with some pertinent results to illustrate them. Section 4 deals with the diferent
metrics that either emerge from properties of TRNs or help explain its graph properties. Section 5
discusses the works that apply the properties of TRN in bio-inspired networking solutions, Sec-
tion 6 motivates future research directions and Section 7 discusses the concluding remarks.

2 TRANSCRIPTIONAL REGULATORY NETWORKS

In this section, we discuss the rudimentary concepts that form the basis of transcriptional networks,
followed by an overview of diferent ways to model them.

2.1 Components of a Transcriptional Regulation System

Each living cell possesses a nucleus that houses the genetic material of the cell. The nucleus has
certain threadlike structures called chromosomes that carry vital information that cause the transfer
of parental traits to the ofspring. The chromosomes are made of molecules of deoxyribonucleic
acid (DNA). Segments or lengths of DNA, carrying certain instructions for protein synthesis, are
called genes. The genes constitute the fundamental building blocks of cellular level intelligence.
A transcriptional regulation system consists of genes, cis-elements, and regulators [17]. The

regulators are generally proteins, called transcription factors (TFs), and other regulators such
as RNAs andmetabolites also take part in gene regulation. The process of gene expressionworks in
two steps: transcription and translation (see Figure 3). During transcription, the regulating entities
bind to the cis-elements lying in structural regions of the double-stranded DNA, called cis-region,
to regulate transcription—the process of reading and copying the sequence of bases encoded by
a gene to facilitate gene expression. The role of the cis-regions in turn is to aggregate all the
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Fig. 3. Transcription and translation during gene expression.

Fig. 4. Lev: Boolean graph for a three-gene network. Right: Truth table for Boolean network.

input signals to facilitate the generation of a gene expression signal. During transcription, a DNA
segment is copied into RNA, calledmessenger RNA (mRNA). The mRNA molecules convey the
information of specioc amino acids to ribosome, leading to protein generation in a process called
translation.
The ways to model transcriptional regulation systems can be broadly grouped into the following

two classes: (i) dynamic and (ii) static. It has been shown that these network models can explain
the dynamics of interactions in TRNs and its efects on the mechanism of diseases [18]. There are
dynamic and static that can explain the dynamics of interactions in TRNs and its efects on the
mechanism of diseases [18].

2.2 Dynamic Model

Thesemodels show the continuous change in gene expression over time.We discuss two categories
of dynamic models.

2.2.1 Ordinary Diferential Equation Model. This model captures how a gene is regulated by
several other signals from regulatory entities, such as TFs [19]. Typically, each gene performs the
task of aggregating the signals from its inputs to create an output signal as follows:

d (xu (t ))

dt
= fu (xu1 (t ),xu2 (t ), . . .). (1)

In the above equation, xu represents the concentration of gene u at time t , while the variables
xu1 ,xu2 , . . . are concentrations of regulating molecules that innuence the expression of xu . Finally,
fu is the rate function specifying the manner in which the input signals afect xu .

2.2.2 Boolean Network Model. A gene can assume two deonite states: ON (denoted by 1) and
OFF (denoted by 0), leading to a graphical representation [20, 21]. Since every target gene can
be regulated by multiple regulator entities, there are logic operations like AND, OR, and NOT to
deone relationships between the regulating nodes that may activate (or deactivate) a gene.
Consider a set of N genes x1,x2, . . . ,xN and a set of Boolean functions F showing gene interac-

tion. Since a gene can exist in binary states, an-gene network is shown by a sequence ofn bits, each
bit corresponding to a gene state. Each node in theBoolean network (BN) is a bit-string (like 001)
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(Figure 4 (left)), representing a single state of the network and the edges designate state transitions.
Every gene can have li number of Boolean functions associated with it. The truth table deoned
in Figure 4 (right) has functions of the form f ij : j = 1, 2, . . . , li , which shows the jth function

controlling gene expression for the ith gene. For example, f 12 represents the orst Boolean function
associated with the second gene. BN has been extended to a probabilistic Boolean network model
to incorporate the uncertainty of gene expression [22]. Here every function f ij is associated with a

probability value pij denoting the chance that f
i
j will be chosen from the Boolean functions set, F .

2.3 Static Model

Static models lack the time aspect. They represent a qualitative interaction between genes within
the network, while capturing the underlying combinatorial interactions among them [17].

2.3.1 Bayesian Network Model. It combines the statistical and graph theoretic approaches of
representing gene interactions [23, 24]. It uses an acyclic graphG = (V ,E), whereu ∈ V represents
the gene expression level and the edges are indicative of the node dependencies.
The Bayesian network considers the probability of gene expression given its parent P (u |Pa(u)),

where Pa(u) is the parent of node u. If P (u |Pa(u)) is known, then one may calculate the joint
probability distribution [25]. Analogous to the Boolean model (see Section 2.2.2), the nodes can
have values ON and OFF implying activation and inhibition, respectively. The calculation of the
joint probability for the N -node Bayesian network (where |V | = N ) is given by

P (u1,u2, . . . ,uN ) =

N∏

i=1

P (ui |Pa(ui )). (2)

This chain rule helps formalize the Bayesian network. The rule states that the joint probability of
the expression or inhibition of multiple genes is a product of the probabilities of each gene given
its parent (or predecessor). We compute P (A = ON ,B = ON ,C = OFF ,D = ON ) in Figure 5,

P (A = ON ,B = ON ,C = OFF ,D = ON ) = P (A = ON ) × P (B = ON |A = ON )

× P (C = OFF |A = ON ) × P (D = ON |B = ON ,C = OFF ) = 0.6 × 0.7 × 0.9 × 0.1 = 0.0378. (3)

From Figure 5, it is clear that the Bayesian network is a directed acyclic graph. The absence of
directed cycles makes it convenient to deone a joint probability based on individual conditional
probabilities. Also, if there are directed cycles in the Bayesian network, it would come under the
ambit of an extended Bayesian model, called dynamic Bayesian model. Modeling a genetic network
with a feedback (or a directed cycle) with the help of dynamic Bayesian networkmodel requires the
inclusion of the orst-order Markov assumption into the deonition of the Bayesian network. Given
that a node Xi (t ) at time t has parent nodes Pa(Xi ) (t − 1) at time t − 1 [26], the joint probability is

P (X1,X2, . . . ,XN ) =

N∏

i=1

P (Xi (t ) |Pa(Xi ) (t − 1)). (4)

2.3.2 Graph Theoretic Model. A graph is an ordered pair G = (V ,E), where V is a onite, non-
empty set of objects called vertices (or nodes); and E is a (possibly empty) set of 2-subsets ofV , called
edges [27]. A directed graph is a graph in which edges have directions. A directed edge (u,v ) ∈ E,
where u and v are termed the regulator and target nodes, allows unidirectional information now
from vertex u to v and not necessarily from v to u.
The directed graph representation of TRN shows the interaction between TFs and genes, where

V is a set of TFs/genes, E is a set of regulatory interactions between TF→ TF or TF→ gene, and
edge signs W : W((u,v )) → {+,−},∀(u,v ) ∈ E. Here, activation (+) implies that an increase in
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Fig. 5. The acyclic graph shows the probability distribution of each node given its parent node.

Fig. 6. Graph theoretic representation of TRN and snapshot of E. coli TRN (redrawn from Reference [28]).

the concentration of the regulator leads to an increase in the concentration of target. Analogously,
inhibition (−) implies that an increase in the concentration of the regulator leads to a decrease
in target’s concentration. Figure 6 (left) shows a signed graph representation of TRN, where the
node labeledX is a regulating gene/TF and Y is a target gene. (Often weights are assigned to edges
to indicate the strength of regulation [29].) Figure 6 (right) depicts a snapshot of the TRN of a
unicellular organism Escherichia coli [28].

Degree and path in directed graph: The number of edges leaving a node u is termed its out-degree
(denoted by deд+ (u)) and number of edges entering a node is its in-degree (denoted by deд− (u)). A
directed path is a sequence of vertices such that there is a directed edge pointing from each vertex to
its successor in the sequence, with no repeated edges. We represent a path as p = {uj ,uj+1, . . . ,un },
where (ui ,ui+1) ∈ E (j ≤ i < n). A directed path is simple if it has no repeated node except the
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Table 1. TRN Graphs

TRN type E. coli S. cerevisiae human Mouse
No. of nodes 1565 4441 2862 2456
No. of edges 3758 12873 8427 6490

Fig. 7. Structure of TRN: (a) Three-tier topology: Directed edges indicate TF→ TF and TF→ gene links across

and within tiers (redrawn from References [33, 34]); (b) out-degree distribution of human TRN on a log log

scale.

starting and ending node. The length of a simple path is deoned as the number of edges it contains.
In the interest of consistency, the above graph notations have been used in Sections 3 and 4.

2.4 Dataset

The validated and nearly complete TRNs of E. coli and Saccharomyces cerevisiae were extracted
from a tool called GeneNetWeaver [30] that creates meaningful network structures of functionally
similar genes (i.e., genes that show a higher mutual interaction than expected by chance). The hu-
man and mouse TRNs were obtained from the TRRUST database that presents literature-curated
human TF-target interactions [31, 32]; these TRNs catalogue the partially known interactions be-
tween TFs and genes. The orders and sizes of the four TRN topologies considered in this work are
summarized in Table 1.

3 TOPOLOGICAL PROPERTIES OF TRN

Let us discuss the key topological properties of a TRN, which collectively make them efective
templates for designing networking solutions. We visualize the graph properties of TRNs using a
three-tier topological characterization [33, 34], which is a simplioed depiction of the hierarchical
structure of TRNs classifying TRN nodes into three tiers based on in- and out-degree distributions
(see Figure 7(a)). It is noteworthy that Gerstein et al. studied the hierarchy of network interac-
tions of TFs and mRNAs in humans on the basis of properties such as connectivity, motifs, and so
on [35]. Similarly, Bhardwaj et al. employed breadth-orst search to form a hierarchy of TFs based
on regulating-regulated TF relationships to identify the master regulators in E. coli and S.cerevisiae
TRNs [36]. Finally, Ma et al. [37] proposed the ove-level hierarchy of TFs and operons in E. coli.

The three-tier topological characterization classioes the TRN nodes into the following three
tiers based on in- and out-degree distributions:

• Tier 1 consists of the set of nodes with only out-degree edges (i.e., {u ∈ V : deд− (u) = 0}).
• Tier 2 consists of the set of nodes with non-zero in and out-degree edges (i.e., {u ∈ V :
deд+ (u) > 0anddeд− (u) > 0}).
• Tier 3 comprises the set of nodes with only in-degree edges (i.e., {u ∈ V : deд+ (u) = 0}).
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Table 2. Percentage of Nodes in Each Tier of E. coli,

S. cerevisiae, Human, and Mouse TRN

E. coli S. cerevisiae Human Mouse

Tier 1 4.1 0.7 12.9 14.8
Tier 2 6.2 2.8 14.8 18.8
Tier 3 89.7 96.4 72.2 66.3

Table 3. Percentage of Edges in Each Tier Pair in E. coli,

S. cerevisiae, Human, and Mouse TRN

Tier pair E. coli S. cerevisiae Human Mouse

(1→ 2) 0.5 0.5 4.0 6.2
(1→ 3) 10.3 11.0 11.1 10.5
(2→ 2) 8.0 3.3 18.3 27.8
(2→ 3) 81.0 85.1 66.5 55.3

We discuss the node and edge distribution across the three tiers in E. coli, S. cerevisiae, human and
mouse TRN. This topological characterization illustrates that information now in the TRN takes
place from the hubs (high degree TF nodes in tiers 1 and 2) to the non-hubs (tier 3 genes).

3.1 Node and Edge Distribution

We tabulate the distribution of nodes and edges within and across tiers in Tables 2 and 3.

3.1.1 Node Distribution. Table 2 shows that tiers 1 and 2 make up a small fraction of nodes in
all TRNs. All nodes containing self-loops belong to tier 2 (see Figure 7(a)), and the tier 3 contains
most of the nodes: 88.6% in E. coli, 96.4% in S. cerevisiae, 72.2% in human, and 66.3% in mouse.

3.1.2 Edge Distribution. The arrows in Figure 7(a) show possible edge direction within and
across tiers, which are between tiers 1 → 2, 1 → 3, 2 → 2, and 2 → 3. We summarize the
percentage of edges between and across tiers in Table 3. In all TRNs, over 50% of edges are between
tiers 2 and 3.

3.2 Graph Properties

This section is dedicated to the following properties of TRN: (1) scale free out-degree distribution,
(2) low graph density, (3) small world property, (4) motif abundance, (5) clustering tendency, (6)
robustness to random node failures and vulnerability to hub failures, (7) TF-gene regulation, and
(8) preferential attachment, the orst six of which are discussed in light of the three-tier topology.

3.2.1 Scale Free Out-degree Distribution. A scale free network is one whose degree distribution
follows a power law.1 Such networks are characterized by the presence of a few well-connected
nodes, called hubs that possess a high degree, while most of the nodes have a lower degree [38–40].

Table 2 shows that tier 1 and tier 2 nodes account for approximately less that 10% of total nodes
in E. coli and S. cerevisiae and less than 35% nodes in human and mouse but possess all the out-
degree edges; tier 3, containing most of the TRN nodes, have zero out-degree (see Figure 7(a)).
Since a few nodes have a disproportionately high out-degree, TRN topologies are out-degree scale

1A power-law distribution has the functional form P (k ) = Ak−γ . Here, A is a constant that ensures that the P (k ) values
add up to 1 and the degree exponent γ is usually in the range 2 < γ < 3.
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Table 4. Density of TRN Graphs

TRN type E. coli S. cerevisiae Human Mouse
D 0.0015 0.00065 0.0010 0.0010

Table 5. Diameter (D) and Average Shortest Path (Z ) of TRN

TRN type E. coli S. cerevisiae Human Mouse
D 9 6 9 10
Z 2.6 4.6 4.3 4.8

free in nature. In Figure 7(b), we show the power-law degree distribution of human TRN on a
log-log scale.

3.2.2 Low Graph Density. We deone graph density D on a scale of 0 to 1, as

D =
|E |

|V | × ( |V | − 1)
. (5)

In the above equation, D = 1 indicates a complete directed graph and D = 0 corresponds to an
empty graph. We show in Table 4 that the TRN topologies exhibit a very low graph density [41].

Reason: Tier 3, which account for 60–90% nodes in TRN, have no edges within it. Since the majority
of nodes are not directly connected, TRN topologies have an overall low graph density.

3.2.3 Small World Property. A small world network is one where it is possible to travel from
one node to another in a limited number of hops [42]. Small world property is measured in terms
of graph diameter, calculated as the largest shortest path between any pair of vertices [43].

The three-tier topological characterization of TRN depicts that information nows unidirection-
ally from tier 1 to tier 3 (see Figure 3 (left)), making TRNsweakly-connected graphs (i.e., there exist
some nodes that are not reachable from other nodes). Since the diameter is not deoned for weakly
connected topologies, we use the following two metrics to demonstrate the small world property
of TRN: (1) diameter of undirected TRN and (2) average shortest path from tier 1 to 3 nodes (deoned
below).
Given V = t1 ∪ t2 ∪ t3, where ti is the set of nodes belonging to the ith tier (i = 1, 2, 3) in the

three-tier topology, the average shortest path is deoned as

Z =
1

|P |

∑

u ∈t1

∑

v ∈t3
d (u,v ). (6)

Note that in the above equation P is the number of (u,v ) node pairs such that u ∈ t1, v ∈ t3 and v
is reachable from u.
From three-tier topology, we intuit that the expected number of hops from a tier 1 to a tier 3

node should be 2 (tier 1 → tier 2 → tier 3). From Table 5, we observe that the highest D is 10
and Z is 4.8 (using Equation (6)), for undirected TRN. This shows the small world property of
TRNs [44, 45] and explains the low end-to-end communication delay in large-scale bio-inspired
wireless networks. We discuss in Section 4.2 that TRNs exhibit shorter path length compared to
their randomized counterparts.

3.2.4 Motif Abundance. Network motifs are subgraphs that repeat themselves in complex net-
works, such as social and technological networks [46]. They are considered to be the building
blocks and play key functional roles in biological networks like TRNs [47–52]. For instance, mo-
tifs control the gene expression by moderating the responses to nuctuating external signals. They
are considered to be input-output devices that require inputs like heat, nutrients and pressure and
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Fig. 8. (a) FFL motif with diferent FFL motif centrality roles (i.e., roles A, B, C) marked blue(b) lev: TF S

regulates TF I , and S and I jointly regulate T ; right: S and I regulate T .

produce outputs like regulation signals that act upon the targets. Based on duration and intensity
of regulation, the motifs could control some of the vital functions in the living organisms [53].

Motif detection tools: There exist a variety of tools to detect network motifs. Two popular tools
are MFINDER [54] and MAVISTO [55]. While MFINDER is capable of detection of network motifs,
MAVISTO is equipped with a visualization tool to capture the presence of a motif in a network
by a force-directed graph layout algorithm. Wernicke et al. put forward a scalable and fast motif
detection tool, called FANMOD [56], that is capable of handling colored vertices and edges tomodel
diferent kinds of node interactions such as onding motifs in protein-gene interaction networks.
In FANMOD, the subgraphs are grouped into isomorphic subgraph classes based on canonical
graph-labeling algorithm NAUTY [57]. It then calculates the frequency of subgraph classes in
a user-specioed number of random graphs generated from the original network, by switching
edges between vertices. More details about other existing motif detection tools can be found in
Reference [58].
Let us now discuss the most abundant motifs and some of their functionalities in the TRN.

(1) Feed forward loop (FFL) is known to be one of the most abundant motifs in TRN [59, 60].
Figure 8(a) shows a FFL motif, where TFs S and I regulate the expression of gene T . S is
the general TF, I is the specioc TF and T is the efector operon; S regulates T directly and
indirectly (via I ). Since TRNs are signed networks (see Section 2.3.2), the sequence of +/−
signs classioes a FFL into two categories of coherent or incoherent having diferent roles in
the information now.

Deonition 1. A FFL is called coherent if the direct efect of the general TF S on the efector
operon T , has the same sign as the indirect efect through the specioc TF I . Incoherent FFLs
have the opposite signs for the two diferent paths.

While calculating this indirect efect of activation (+) and inhibition (−), we apply the
mathematics rule of product of two signs: The product of like-signs (+ and +; − and −)
yields a net positive result, while the product of unlike signs (+ and −) yields a net negative
output. This leads to 8 types of FFLs: four belonging to coherent and incoherent types each
(see Figure 9).
The FFL has two input signals, the inducers, S1 and S2, which are molecules that activate

or inhibit the activity of S and I (Figure 8(b) (left)). Coherent or incoherent FFL motifs have
specioc information-processing roles by regulating the activation of target gene T , deoned
in terms of the time (called response time) it takes a gene product (i.e., protein) to reach its
steady-state level [50]. Incoherent FFLs act as accelerators, i.e., they provide a mechanism
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Fig. 9. Coherent and incoherent feed forward loop motifs.

Fig. 10. Motifs in TRN. Top Lev: Dense overlapping regulon; top right: bi fan; botom lev: simple input

module; botom right: auto-regulation.

for speeding up the responses ofT , whereas the coherent FFLs lead to delay in the response
of target T when compared against direct regulation (shown in Figure 8(b) (right)).
Abundance of FFL in TRN: As per three-tier topology, TRNs permit links between tiers

1 → 2, 1 → 3, 2 → 2, and 2 → 3 (see Figure 7(a)). Thus, FFLs exist among tiers 1 → 2 → 2,
1 → 2 → 3, 2 → 2 → 2, and 2 → 2 → 3. As per FANMOD, of 455, 152 3-node subgraphs
enumerated in human TRN, approximately 5, 850 motifs are FFLs or motifs possessing FFLs
as building blocks.

(2) Dense overlapping regulons (DORs) constitute a set of regulating genes Si and target
genes Ti set in the form of a bipartite graph. They are called dense because they are occur
in cascades or layers as depicted in Figure 10 (top left). DORs are responsible for a number
of biological functions like carbon utilization, growth and stress response [37]. We often
consider a 4-node substructure of DOR, called bi fan, as a standalone motif (Figure 10 (top
right)).
Abundance of bi fan in TRN:As per FANMOD, of 43, 995, 531 4-node subgraphs enumerated

in human TRN, approximately 132, 481motifs are bi fans or possess bi fans as building blocks.
(3) Single InputModules (SIMs) has a single regulating TF S that regulates a number of genes

Ti [61, 62]. Its key property is that all the target genes are either activated or all are repressed.
The regulator TF S , called hub in Section 3.2.1, also regulates itself. As shown in Figure 10
(bottom left), regulator S has a self-loop. SIM causes the collective expression of multiple
genes, although the regulator may have varying activation threshold for diferent targets.

(4) Auto-regulation: When a gene binds its own promoter (Figure 10 (bottom right)) and
activates itself we call it positive auto-regulation, and when it represses itself it is called
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Table 6. FFL Count and Average Clustering Coeficient of (Undirected) TRN and Corresponding E-R

Random Graphs (R-) of the Same Graph Density

E. coli R-E.coli S. cerevisiae R-S. cerevisiae human R-human Mouse R-Mouse

FFL 4798 18 4115 30 5850 23 2714 29
ACC 0.2110 0.0033 0.0830 0.0015 0.1200 0.0017 0.0970 0.0026

negative auto-regulation [63]. Simulations on Boolean network models (see Section 2.2.2)
show that robustness and stability of TRN correlates with frequency of auto-regulation
in the network [64]. E. coli, S. cerevisiae, human, and mouse have 110, 0, 24, and 28
auto-regulation motifs, respectively.

3.2.5 High Clustering Tendency. We argue that the abundance of motifs in TRNs is a conse-
quence of its tendency to form dense, tightly knit groups, called clusters. The clustering tendency
of any node u in an undirected graph H is measured in terms of its clustering coeocient, given by

CC (H ,u) =




0, if δ (u) < 2
2×t (u )

δ (u )×(δ (u )−1) , otherwise
. (7)

In the above equation t (u) is the number of triangles node u participates in and δ (u) is its degree.
The average clustering coeocient (ACC) of H is given by

ACC (H ) =
1

|V (H ) |

∑

u ∈V (H )

CC (G,u). (8)

Equation (7) suggests thatACC is directly proportional to the number of triangles in an undirected
graph.

Relationship between motif abundance and clustering: Table 6 shows that ACC of TRN is over
80 times that of Erdös-Rényi (E-R) random graphs2 of same order and roughly same graph den-
sity. This high ACC of TRN is commensurate with its FFL motif abundance. Note that the motifs
(primarily the FFLs and bi fans) do not appear in isolation; they form dense clusters [66–68]. In-
vestigation on the E. coli TRN topology indicate that there are 42 FFLs, that form six FFL motif
clusters. Similarly, 208 bi fan motifs participate into two clusters. Table 6 shows that in addition to
ACC , the number of FFL motifs in TRNs are signiocantly higher than their random counterparts.

3.2.6 TF-gene Regulation. We have discussed in Section 2.3.2 that TRNs are signed networks,
i.e., the edges carry positive or negative weights implying activation or inhibitory TF/TF or TF/
target gene regulation. However, the information of the edge signs is not complete. The number of
+, −, and unknown edge signs summarized in Table 7 play a key role in a bio-inspired networking
solution (discussed in Section 5.4). Note that the edge signs for S. cerevisiae TRN is not available.

The signed regulation of the genes by TFs results in a dynamic and self-regulating system, where
the expression of a single gene is determined by several regulating entities. We show in Section 5.4
that this property serves as a reference point for energy-eocient communication among IoT
devices.

3.2.7 Preferential Atachment Growth Model. We have discussed in Section 3.2.1 that TRNs
have a scale free out-degree distribution. One approach to construct such networks is to employ

2The Erdös- Rényi random graph is creating a set of isolated nodes and connecting each pair of nodes by an edge with a
prespecioed probability p [65].
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Table 7. Percentage of Positive (P), Negative (N),

and Unknown (U) Edges in TRN

TRN type P N U

E. coli 53.20 41.10 5.50
S. cerevisiae − − −
human 33.51 20.45 46.03
Mouse 40.28 19.18 40.52

Fig. 11. (a) Number of connected components in random vs. targeted node failures. (b) Size of largest con-

nected components in random vs. targeted node failures.

a preferential attachment growth model, wherein when a new node is inducted into a network, it
prefers to get attached to a node that has high degree of connectivity [39].

As a consequence to preferential attachment the hub nodes, the preferred candidates of attach-
ment for a new node, tend to acquire more and more links as the network grows. The probability
of addition of an edge between a new node and an existing node of u of degree ku could be linear

to the degree of node (i.e., p (u) = ku∑
v∈V kv

) or nonlinear (i.e., p (u) = k
γ
u∑

v∈V k
γ
v
). In the past, there

have been eforts to study the motif distribution of TRN with randomized networks generated
by linear and nonlinear preferential attachment approaches [67, 69]. The FFL motif abundance of
preferential attachment-based topologies has been shown to be comparable to that of E. coli TRN.

3.2.8 Robustness Against Random Node Failure. Robustness of a biological system is typically
deoned as the ability of the organism to retain its characteristic traits (called phenotype) in the face
of genetic change (i.e., mutation) [70]. In our context, network robustness is deoned in terms of its
ability to withstand component failures (see Section 1). We discuss in Section 3.2.1 that the TRNs
exhibit scale free out-degree distribution—a property that makes them inherently resilient to the
failure of random nodes, yet particularly vulnerable to the failure of hub nodes [71, 72].

Reason: The targeted failure or removal of the hub nodes in tiers 1 and 2 of the three-tier topology
is likely to knock of the majority of the poorly connected tier 3 nodes. Conversely, over 65% of
TRN nodes reside in tier 3. Nodes randomly picked for removal are highly likely to belong to tier
3, and their removal should not afect the overall connectivity of the TRN [33]. To demonstrate
this, we take a cue from the known measures of network robustness [73, 74] and carry out a
simple experiment wherein we knock of 0.1–1% (1) randomly chosen nodes in human TRN and
(2) targeted nodes chosen with likelihood equal to their degree. Figures 11(a) and (b) shows that
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the targeted node failure results in the network fragmenting into higher number of components as
well as lower size of largest connected component as compared to an E-R random network. This
property motivates the design of bio-inspired wireless networks that are robust against random
failures.

4 METRICS

In this section, we discuss the diferent metrics that are mostly derived from the graph proper-
ties of TRN. Speciocally, the concepts of node motif-based centrality (Section 4.1), motif clustering

coeocient (Section 4.4) and motif clustering diversity (Section 4.5) are based on the presence of
and interconnections among the FFL motifs introduced earlier in Section 3.2.4. Similarly, the aver-
age shortest path (Section 4.2) is founded upon the TF-gene interactions in signed transcriptional
networks discussed in Section 3.2.6.

4.1 Node Motif-based Centrality

We deone FFL motifs in Section 1. A FFL motif is mathematically represented as an ordered triplet
of three nodes u, v and w such that there exists a direct edge (u,w ) and an indirect path p =

{u,v,w }. For example, in Figure 8(a), nodes 1, 3, and 2 forms an FFL. The existence of an FFL motif
between three nodes u, v andw can be denoted by an indicator variableM as follows:

M(u,v,w ) =




1, if (u,v ), (v,w ), (u,w ) ∈ E (G )

0, otherwise
. (9)

In Figure 8(a),M(1, 3, 2) = 1, whereasM(1, 3, 4) = 0.

Deonition 2. FFLmotif centrality of any nodeu (or edge (u,v )), δ (u) (or δ ((u,v ))), is the number
of FFL motifs it participates in.

In Figure 8(a), δ (1) = 2 and δ ((1, 2)) = 2.

Roles of nodes in motif centrality: Koschützki et al. showed that motif centrality of a node is clas-
sioed into roles A, B, and C (marked blue in Figure 8(a)) [75]. Given nodes u, v and w , such that
M(u,v,w ) = 1, the general TF u is role A, specioc TF v is role B and regulated genew is roleC . In
Figure 8(a), for the FFL motif (highlighted in blue), nodes 1, 4, and 2 play the roles of A, B, and C ,
respectively.

(1) Role A motif centrality is the number of FFLs where node u is the master regulator, i.e.,
δA (u) = |{M(u,v,w ) : u,v,w ∈ V }|

(2) Role B motif centrality is the number of FFLs where u is the intermediate regulator, i.e.,
δB (u) = |{M(v,u,w ) : u,v,w ∈ V }|

(3) Role C motif centrality is the number of FFLs where u is the regulated node, i.e., δC (u) =
|{M(v,w,u) : u,v,w ∈ V }|

Finally, the FFL motif centrality of node u is the sum of its role A, B, and C motif centralities, i.e.,
δ (u) = δA (u) + δB (u) + δC (u)

Alternative communication pathways: Our experiments in Reference [76] reveal that FFL motifs
play a signiocant role in the information now across tier 1 to tier 3 in TRN. To better under-
stand this role of FFL motif, it is imperative to discuss the concept of simple and independent

paths.
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Fig. 12. Human TRN. (a) PC vs. node motif centrality δ . (b) IPC vs node motif centrality δ .

Deonition 3. Simple path is one in which no node is visited more than once. Two paths between
a node pair are called independent if they contain no common nodes except source and destination
nodes.

In graph G in Figure 8(a), p1 = {1, 3, 2} and p2 = {1, 4, 2} are independent paths from node 1 to 2.

Deonition 4. Path centrality (PC) of a node is the number of simple paths between all pair of
nodes that the given node intercepts. Similarly, (vertex) independent path centrality (IPC) of a
node is the number of independent paths between all node pairs that the given node intercepts.

The procedure for the calculation of IPC is discussed in Reference [76]. Each FFL possesses a
direct path connecting node S to nodeT (marked in green in Figure 8(a)), and an indirect path via
I (marked in red). The profusion of FFLs in a TRN has the following efects on its topology [76]:

(1) Robustness due to independent paths: According to Menger’s theorem on vertex connectivity,
the minimum number of vertices whose removal disconnects two nodes is equal to the max-
imum number of pairwise vertex-independent paths between them [77]. In Figure 8(a), at
least two nodes (3 and 4) must be removed to disconnect 1 and 2. Since the FFLmotif contains
two independent paths connecting nodes S andT , the abundance of FFLs clusters (as shown
in Table 6) ensures graph robustness in TRNs by ofering multiple alternative pathways.

(2) Increase in shortest path length: Node or link failures may increase the shortest path length
between pairs of existing nodes or render them unreachable from one another. In case of
FFLs, the failure of direct links between source S and targetT causes the shortest path length
between S andT to increase only by a single hop. Thus, the abundance of FFLs makes TRNs
resilient by minimizing the increase in shortest path length during node or link failures.

To demonstrate the role of FFL motifs in forming robust pathways of signal propagation between
tier 1 to tier 3 in TRN, we plot IPC and PC against node motif centrality δ for all nodes from the
human TRN. We apply nonlinear regression to obtain best ot lines from the scatter plot.
Figure 12(a) shows that PC and δ of TRN nodes are correlated, suggesting that FFLs participate

in communication pathways in human TRN. Analogously, Figure 12(b) depicts the correlation be-
tween IPC and δ , implying that FFL motifs are responsible for rendering graph robustness to TRN,
by creating vertex-independent paths (i.e., alternative pathways) between tiers 1 and 3. Wireless
networks prone to failures where information may be time-sensitive (such as delay tolerant net-
works as discussed later in Section 5.3) attempt to preserve high node motif-based centrality

(NMC) nodes. The abundance of FFL motifs translates to uninterrupted and timely information
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exchange as a result of the multiplicity of communication pathways despite component failures
as well as low latency ofered by FFLs.

4.2 Average Shortest Path between TFs and Genes

Recall that deд+ (u), deд− (u) denote the in- and out-degree of a node u ∈ V , and Equation (6) is
employed to calculate the average shortest path between tier 1 to tier 3 nodes in TRN. Abdelzaher
attempted to test the correctness of the statement: The average shortest path for TRNs is among the

smallest compared to networks with same in- and out-degree distributions and the same or less FFL

count [78].

Problem statement: Given any networkG of an in-degree distributionDin
= {din1 ,din2 , . . . ,dinn }, out-

degree distribution Dout
= {dout1 ,d

out
2 , . . . ,d

out
n }, an embedded FFL motif abundanceM (G ) and an

average shortest path Z among pairs of P , obtain an optimal network G0, such that Din
O
= Din ,

Dout
O
= Dout and Z is minimum.

The problem of determining the optimal network topology led to the following optimization:

Min

f∑

l=1

n∑

i�j

Y l
i j , (10)

n∑

j=1

Y l
i j −

n∑

j=1

Y l
ji =





1 if i ∈ t1
−1 if i ∈ t3
0 Otherwise

, (11)

xii = 0 ∀i ∈ V , (12)

n∑

j=1

xi j = d
out
i ∀i ∈ V , (13)

n∑

j=1

x ji = d
in
i ∀i ∈ V , (14)

∑

i�j�k

yi jk ≤ M (G ), (15)

xi j + x jk + xik ≤ 2 + yi jk , (16)

xi j ,yi jk ,Y
l
i j ∈ {0, 1}. (17)

Description: Y l
i j is an indicator variable suggesting that edge (i, j ) is part of the shortest path be-

tween a source node s and a destination node t , deoned as follows:

Y l
i j =





1 if (i, j ) belongs in the shortest path between nodes u and v

0 otherwise
. (18)

(1) The objective (Equation (10)) is tominimize the expression
∑n

i�j Y
l
i j . The fact that the shortest

path across all node pairs is considered, the objective is guaranteed by summing over all f

possible node pairs (
∑f

l=1).
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(2) Constraint 11 encodes the shortest path between the tier 1 nodes (t1) and tier 3 nodes (t3).
The expression

∑n
j=1 Y

l
i j −
∑n

j=1 Y
l
ji (a) = 1 if node i ∈ t1 and it has shortest path to genes

j; (b) = −1 if node i ∈ t3 and it has incoming edges from TFs j; (c) = 0 if node i ∈ t3 is an
intermediary between a TF and gene and has a shortest path edge entering and leaving it.

(3) In Constraint 12, variable xi j = 1 if there exists a directed edge between nodes i and j. Con-
straint 12 eliminates self-loops in the optimized topology. Equalities (13) and (14) ensure that
the in- and out-degree distributions of the original and optimized topologies are identical.

(4) Here variable yi jk = 1 if there is a FFL motif between nodes i, j, and k . Constraint 15 en-
sures that the number of FFLs in the optimized graph does not exceed those in the original
topology.

(5) There exists a FFL motif between nodes i, j and k only when there exists edges (i, j ), (j,k ),
and (i,k ) (i.e., xi j = 1,x jk = 1 and xik = 1). This condition is enforced by Constraint 16.

(6) Constraint 17 stipulates that that the variables xi j ,yi jk ,Y l
i j are integers.

Randomized TRN: The authors generate randomized TRN by repeatedly selecting node pairs with
uniform randomness from the set of possible pairwise combinations between distinct TRN nodes,
and drawing a directed edge between them and excluding this node-pair from the set of available
pairs, until the necessary graph density is reached. The goal is to compare the shortest path of TRN
(ZT ), randomized TRN (ZR ) to that of the optimized topology (ZO ), using the following formula:

δ =
Z − ZO

Z
. (19)

Here Z can be replaced by both ZR and ZT . Evidently, δ = 0 indicates that the corresponding
topology exhibits a perfectly optimal shortest path. Experimental results (not shown here) suggest
that the subgraphs sampled from E. coli TRN topology possess a signiocantly smaller δ than their
randomized counterparts [79], implying that it is naturally optimized for shortest paths.

4.3 Network Eficiency

We discuss in Section 3.2.2 TRNs possess low graph density, where a large number of node pairs
are unreachable from one another. For any node pair u,v ∈ V , we use d (u,v ) = ∞ to suggest that
v is not reachable from u, which would make the average shortest path across all node pairs un-
deoned. Literature on TRN uses an alternative measure of shortest path, based on harmonic mean
of shortest paths, called network eociency [66, 81]. Speciocally, for any directed graphG (V ,E), it
is given by

E = 1

ρ

∑

u,v ∈V

1

d (u,v )
. (20)

Here (i) ρ = |V | × ( |V | − 1) and d (u,v ) is the shortest path length between any node pair u,v ∈ V .
It is worth mentioning here that the abundance of FFL motifs result in short paths connecting the
TFs to the genes (shown above in Section 4.2). We discuss in Section 5 that wireless sensor net-
works as well as IoT networks mimicking the TRN topology also possess naturally optimized (and
signiocantly shorter) communication path lengths manifested as improved network eociency.

4.4 Motif Clustering Coeficient

Themotif clustering coeocient represents the amount of overlap in terms of shared nodes between
all pairs of a particular set of (undirected) triangular motifs in a network [80]. Given that any pair
of motifs can share 1 or 2 nodes, the motif clustering coeocient is then given by

Mc =
Sc

Tc
. (21)
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Fig. 13. Examples of three topologies with increasing motif clustering coeficient (redrawn from Refer-

ence [80]).

Fig. 14. Twelve types in MCD (redrawn from Reference [80]).

Here Sc is the total number of shared nodes between all pairs of motif and Tc is the total possible
number of shared nodes for all triangular motif pairs. Figure 13 shows three graphs with increasing
Mc .

4.5 Motif Clustering Diversity

For any node, one can extract all FFL motifs that contain the selected node as a member. For each
pair of FFL motifs that share at least one node, it is possible to create 12 possible conogurations
(shown in Figure 14).Motif clustering diversity (MCD) is deoned as the number of distinct motif

clustering types (i.e., conogurations) that a node takes part in. Its value ranges between 0 and 12 [80].
Gorochowski et al. report several nodes that exhibit high MCD act as global regulators controlling
information now resulting in the transcription of several target genes in TRNs. We discuss in Sec-
tion 6.4 that metrics like motif clustering coeocient and diversity are being actively considered to
quantify the eocient information dissemination achieved by TRNs. This may motivate the design
of routing strategies that rely on directing bulk of the network traoc through nodes participating
in motif structures.

5 APPLICATION OF TRN IN BIO-INSPIRED NETWORKING

The graph properties (see Section 3) and metrics (see Section 4) make TRN an ideal template for
the design of the following smart network architectures: (1) WSN that monitor environmental
conditions such as temperature, sound, winds, pressure, motion, pollutants, and so on, and pass
the data via multiple hops to a repository for aggregation and analysis; (2) DRN comprising
energy-constrained smartphones and laptops (possessed by mobile survivors) and a gateway fog
node called the CC; (3) IoT IoT-Net, where IoT devices, capable of sensing and actuation, report
time-sensitive data directly to a cloud platform; (4) edge centric IoT network that allow participants
with smart devices to collect data in response to advertised events and report them to the server
via fog devices. Table 8 summarizes the implications of the topological properties of TRNs on
the aforementioned wireless networks. This section is dedicated to the approaches in existing
literature that employ TRNs to design robust, energy-eocient, and distributed networking
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Table 8. Network Implications of TRN Graph Properties (Discussed in Section 3)

Graph property Network implications

Scale free distribution Robust against random node failures
Low graph density Energy eociency

Small world property Low communication latency
FFL motif abundance Seamless network connectivity/rapid information spreader
TF-gene regulation Distributed energy-level regulation

Preferential attachment Existence of hubs

solutions. In Table 9, we categorize each work w.r.t. the TRN property, network type, and the
performance measures used to analyze them. We close this section with a comment on the
drawbacks and overheads of the schemes.

Performance measures: The works discussed hereafter consider the following performance
measures:

• Packet delivery ratio (PDR) measured as the ratio of the number of unique data/event
packets delivered at the sink/base station to the total number of packets generated/sensed
by the sensing devices.
• Latency is the average delay (in seconds or number of hops) incurred in delivering the mes-
sages from the edge sensors to the sink/base station.
• Energy eociency gauges the network lifetime in terms of the percentage of alive or active
devices or the average residual energy of devices over a period of time.
• Robustness to hub node failure is gauged as the number of devices that are disconnected from
a network topology by the failure of certain network components due to energy depletion
or hardware faults.
• Energy level or energy state that dictates the energy consumption rate of a device that
regulates its instantaneous data/event sampling rate. Inspired by the concept of the
activator-inhibitor systems modeled using the nonlinear diferential equations (where cells
undergo state transition based on rules that factor in their proximity with neighboring
cells [82]), the proposed methods allow nodes to determine their states based on the inputs
from neighbors states. This results in distributed mechanisms to achieve uniform utilization
of resources (like energy).
• Quality and quantity of events sensed (qNq) is a joint measure for quality (qt ) and
quantity (nt ) of event data collected by an IoT device in time epoch t , calculated as
σ · nt + (1 − σ ) · qt , where quality of events is proportional to the instantaneous event
sampling rate of the device and σ is the weighing factor lying between 0 and 1.

5.1 Wireless Sensor Networks

WSNs constitute devices that monitor physical and environmental conditions. The challenges
of communication failures, storage and computation and energy limitations are traditionally
built into the functioning of WSNs [103]. The paradigm of TRN-inspired WSNs is part of recent
eforts to infuse computational intelligence from biological systems and make WSNs robust
against failures, energy aware and adaptive to environmental vagaries [104, 105]. Let us consider
a homogeneous WSN graph Gw = (Vw ,Ew ) where Vw and Ew are the set of nodes and edges
representing the sensors and the bidirectional links between the sensors, respectively. An edge
(u,v ) exists in the WSN if and only if sensors u and v are in communication range. The authors
have drawn the following parallels between TRN and WSN:
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Table 9. Classification of the Works on the Application of TRN-based Bio-Inspired Networking on the

Basis of TRN, Properties of TRN, Network Type, and Performance Measures

Networks
Graph Properties WSN DTN Self-organized IoT-Net Edge Computing
Small world shortest path [33, 83] [84, 85] [86]
Low graph density [33, 83] [84, 85] [87] [86]
Preferential attachment [33, 83, 88]
TF-gene interaction [89, 90] [91–93] [87, 94, 95]
Motifs clustering [33, 83, 96–101] [84, 85] [102] [86]
Robustness [33, 83, 96–100] [84, 85] [102] [87, 95] [86]
Performance measures PDR, latency,

robust
PDR,
energy,
robust

Neighbor
regulation

Neighbor
regulation,
energy, qNq

energy eociency,
robustness

• The genes are capable of mutual interaction and regulation of their neighbours’ inputs (refer
to discussion on activator-inhibitor systems in section on performance measures). Similarly,
the sensor nodes can communicate with each other and exchange vital information.
• The robustness of TRN against random failures (see Section 3.2.8) could be extrapolated to
tackle possible component failures.
• TRN exhibit the small world property (see Section 3.2.3) that can lead to low latency in data
transfer from prespecioed source to sink nodes.

5.1.1 TRN-WSN Mapping Strategy. Nazi et al. proposed a mapping strategy that transfers the
graph attributes of TRN graphs to an already deployed WSN topology [94, 96–100]. The idea
behind this strategy is to generate a sparser (i.e., low graph density) yet robust WSN topology,
called mapped WSN, that preserves the topological properties of TRN. The authors propose a
mapping function (discussed below) to ond a one-to-one correspondence between the TFs/genes
and WSN nodes.

Mapping function: TRN-based mapping generates mapped WSN topology Gm
w (Vm

w ,E
m
w ) based on

a one-to-one mapping function ρ : Gm
w → Gд , where Gm

w (Vm
w ,E

m
w ) is a directed graph, such that

Vm
w ⊂ Vw and Emw ⊂ Ew . Directed edge (u,v ) ∈ Emw exists if and only if there exists a directed path
between ρ (u) and ρ (v ) in Gд . Note that as a pre-processing step to the mapping algorithm each
edge in input WSN is assigned a weight ω representing the degree of interference, calculated as

ω (u,v ) =




1.0 − A(u,v )

2πr 2 , if d < 2r

1, otherwise
.

Here r is the sensing range, d and A represents the normalized area subject to interference
between nodes u and v separated by a distance d , calculated asA(u,v ) = 2r 2cos−1 d

2r −
d
2

√
4r 2 − d2.

Note that ω (u,v ) = 1 indicates maximum separation and therefore minimum interference.

Illustrative Example: As shown in Figure 15(a) and (b), the list of TRN node and IoT device labels
are annotated by their normalized pageranks [106]. The algorithm processes the list of TRN
nodes and sensor devices in the non-increasing order of their pageranks; it orst maps the highest
ranking sensor device 1 into TRN node c . Since 0 is the next highest ranked device having an
edge with mapped device 1 is 0, it gets mapped to the next highest ranked TRN node д (neighbor
of gene c). Similarly, device 2 is mapped to TRN node b. The next highest ranking device 4 shares
edges with mapped devices 0 and 1. It is mapped to TRN node e , which has paths to corresponding
mapped TRN nodes д and c . Note that the communication links inherit the direction of data
forwarding from the direction of paths between corresponding mapped TRN nodes, resulting in
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Fig. 15. Working of the mapping algorithm.

Fig. 16. Before edge rewiring. Nodes marked in red have in-degree 1 and are loosely connected, (b) aver

edge rewiring: All tier 2 and 3 nodes have in-degree 2.

a directed graph mapped WSN. The last sensor device 3 is mapped to TRN node a, because the
latter interacts directly with b. The onal mapped WSN topology is illustrated in Figure 15(c).

Experiments: The authors carried out simulation experiments on OMNET Castalia simulator [107]
for the topology of S. cerevisiae TRN. The performance of bio-inspired (or mapped) WSNs were
compared against k-connected and E-R random topologies. Bio-inspiredWSNs not only preserved
high number of FFL motifs (discussed in Section 4.1 to be responsible for robustness of TRNs), but
also exhibited higher PDR and energy eociency, and low packet loss due to interference, low
latency.

5.1.2 Topological Enhancement by Edge Rewiring. Bradford discussed that the topological simi-
larity between co-functional networks of genes and scale free topologies make them good ots for
wireless sensor networks [88]. However, recall from our discussion in Section 4.1, TRNs, like scale
free topologies, are vulnerable to failure of hubs. Roy et al. exploited the three-tier topology of
TRN (introduced Section 3) to propose an edge rewiring mechanism to remedy this vulnerability,
while preserving its other essential topological properties [33, 83]. Given original TRN (GO ), the
proposed approach unfolds in two stages: (a) edge addition and (b) edge deletion.

Edge addition: This step ensures that every tier 2 and 3 node loosely connected to tier 1 and 2 nodes
(marked in red in Figure 16(a)) connects with at least 2 nodes from tiers 1 and 2. This step is based
on the preferential attachment growth model (see Section 3.2.7), where a directed edge (u,v ) is
added between a tier 1 or 2 node u (preferentially selected based on out-degree) and a tier 2 or 3
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node v with degree less than 2. This process continues until all tier 2 and 3 nodes have in-degree
at least 2 (i.e., 2-connectivity). The TRN generated by edge addition is called augmented TRN GA.

Edge deletion: In this step edges are removed from augmented TRN from GA to ensure that the
number of edges in original and rewired TRNs are the same, while the 2-connectivity property is
intact in the onal rewired TRN (Figure 16(b)). Edge deletion is formulated as a nonlinear optimiza-

tion problemwith the objective (Expression 22) of preserving the in-degree distribution of original
TRN (GO ) by minimizing the squared error between the in-degree distribution ofGO (denoted by
∆O
I
) and GM (denoted by ∆M

I
), with obtainability (discussed below) as one of the constraints,

arдmin

∆M
I
(3:)

md∑

i=3

( f Mi − f Oi )2, (22)

s .t .

md∑

i=0

f Mi × i =
md∑

i=0

f Oi × i, (23)

f A2 +

md∑

i=3

( f Ai − f Mi ) = f M2 , (24)

f Mi ≤ f Ai ∀i = 3, 4, . . . ,md . (25)

• In objective function (expression 22) the indexing on the summation starts at 3, to ensure
that all tier 2 and 3 nodes have in-degree of at least 2. This optimization returns ∆M

I
(3 :) =

f M3 , f
M
4 , . . . , f

M
md

, which is later utilized to determine the exact number of edges with the
lowest edge FFL centrality (see Section 4.1) to be removed of nodes with in-degree i .
• Given any directed graph G (V ,E), |E | = ∑md

i=0 fi × i , Constraint 23 ensures that the number
of edges in original and rewired TRNs GO and GM are the same.
• Constraint 24 guarantees a property called obtainability introduced in this work, by virtue
of which ∆M

I
returned by optimization is a valid in-degree distribution obtainable from GA;

Constraint 25 deones the bounds for the degree distribution curve of rewired TRNs.

Experiments: The authors attempt to preserve and enhance the topological robustness of E. coli
and S. cerevisiae TRNs by retaining properties (like small world, scale free out-degree distribution,
FFL motif abundance, and so on, discussed in Section 3) in rewired TRNs. To this end, the article
presents greedy and dynamic edge deletion heuristics that follow the strategy to remove edges with
the lowest FFL motif centrality. WSN topologies are realized by reversing the edge directions of
rewired TRNs, such that the hubs nodes, possessing high out-degree (see Section 3.2.1), now have
high in-degree and act as data sinks. The rewired TRN-based WSNs exhibit lower vulnerability to
failure of hubs, high network eociency and PDR as compared to original TRN- and E-R random
graph-based WSNs.

5.1.3 Energy Balancing Node Scheduling. Byun et al. proposed a TRN-based mechanism for
autonomous scheduling of sensor. The scheduling approach is based on the principle that TFs
produce genes, which in turn dynamically regulate the production or suppression of TFs. The
authors employ the following ordinary diferential equation–based relationship (see Section 2.2.1)
to show the above TF-gene interaction:

dдi

dt
= λддi + αд f (pi ), (26)

dpi

dt
= λppi + αpдi . (27)
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Here дi is the expression level of gene i and pi is the concentration of protein i . γд and γp are the
decay rates of mRNA and protein concentration, respectively; αд and αp are the synthesis rates of
mRNA and protein concentration, respectively, and f (x ) is a sigmoid function.
This work models the ON-OFF cycle of sensor devices on the basis of the principles of local TF-

gene interaction (see Section 3.2.6). The scheduling is controlled by two parameters: (1) protein
concentration P mapped to actuator variable, and (2) mRNA concentrationM mapped to internal
states. Speciocally, each device producesM contingent upon its own P-level and difusesM among
its neighbor devices. Each neighbor device now regulates its P-level on the basis of M-levels of
neighbors and a target P-level p∗. The instantaneous P-value determines the probability of the de-
vice operating in ON state. Simulation experiments performed onMATLAB show that this method
attains adaptive, balanced energy consumption, while achieving application specioc goals [89].

5.1.4 Sensor Network Deployment. Das et al. applied the dynamic interaction among the
TFs/genes in TRNs in the deployment of sensor nodes, with the specioc goal to maximize the
coverage while minimizing energy overhead by reducing the number of active sensors [90]. This
TRN-based solution to solve the sensor network coverage problem is a viable distributed solu-
tion alternative to the existing centralized multi-objective formulations such as NSGA-II [108] and
FSGA [109]. Here, each sensor is modeled as a gene, which acquires active state if the correspond-
ing gene expression value is high. The proposed TRN controller ensures that sensors covering
larger sensing regions possess high expression values; also since any two adjacent sensors may
have a high degree of overlap, the controller deactivates one of the sensors in the interest of energy
eociency.

5.1.5 Sink Selection Strategy. Kamapantula et al. argue that data transmission time in WSN
relies greatly on the selection of sink nodes [101]. They compare two sink selection strategies: (i)
a highest degree and (ii) FFL motif-centrality based (see Section 4.1) to show that both strategies
pick the candidate as sink, because hub nodes, by virtue of their connectivity, participate in many
FFLs.

5.2 Self-organizing Networks

Self-organizing networks (SONs) are networks where the entities coordinate with each other
to form a system that adapts to achieve a goal more eociently [110, 111]. In wireless network,
self-organization may help achieve broad tasks (like sharing of processing and communication
resources, adaptive behavior with information processing and dissemination), or specioc tasks
like target tracking and surveillance [112]. Analogous to genes that encode rules controlling the
protein production, sensors can possess controllers that specify rules for activation of themselves
aswell as their neighbors. A key feature of SONs is the emergence of new behaviors as a consequence
of self-organization.

5.2.1 Self Organized Sensing. El-Mawass et al. conceived a self-organized sensing system in-
spired from TRNs, capable of operating in a distributed manner without the need for manual con-
oguration [91]. Each sensor node can have two distinct states ON and OFF . Its state is decided
dynamically based on the environment and its ability to contribute to network functioning. A sen-
sor node that is in OFF state wakes up intermittently to determine whether to stay ON or OFF .
The authors represent a simplioed controller as a genome (i.e., sequence of genes), where each
gene is a system rule controlled by input and output protein signals generated by other genes.

Proteins: Modeled on TF-gene regulation (see Section 3.2.6), proteins serve as activation or in-
hibitory signals that regulate gene expression. Below is the functional role of the input and output
proteins.
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• Sensory Proteins: It indicates the overlap of transmission zone between a sensor and its neigh-
bour and also, the total amount of energy that is remaining in the neighbour sensors.
• Difusion Protein: It indicates the remaining energy in the sensor node.
• Actioner Protein: It determines whether the sensor should be ON or OFF. The sensor is kept
ON only when its value of concentration exceeds a certain threshold.
• Intern proteins: It regulates the sensory-protein actuator relations.

Every gene has an output function that is a collective result of the input protein concentrations.
Each sensor node has two associated properties: coverage range (within which the sensor is able to
detect events) and radio transmission range. The system also takes into consideration the energy
consumption for every sensor node due to sampling, processing and communication.

Experiments: The authors carry out simulation experiments on MATLAB to illustrate how the sys-
tem achieves high energy eociency by self-organization and mutual coordination among sensors.
Initially, 50% nodes are active. The emergent behavior observed in this SON is as follow: over time,
there is a collective drain of the energy in active sensors that soon become inactive; subsequently
the inactive sensors are gradually activated to carry out the sensing activities.

5.2.2 Underwater Robot Controller. Taylor et al. [92] have utilized a TRN inspiration to design
decentralized controllers for underwater robots (called hydrons), which would achieve tasks
by mutual coordination. Additionally, the emergent property of this system is its robustness,
self-repairing capability, adaptability and inclusion of the TRN properties in the autonomous
controllers.

Hydron: Each hydron is a sphere with an impeller and nozzle for sucking and expelling water,
syringe to vary the relative density of Hydron by altering the amount of water in the internal
chamber and proteins for mutual regulation. There are interface sites on the surface of the
Hydron, equipped with optical transmitter and receivers. Like in Reference [91], the controller
for each hydron is modeled as a genome (for encoding information about genes) and a cytoplasm
(possessing proteins located at interface sites). Each gene, when expressed, produces a specioc
type of protein.

Genome and Protein: The authors deone a sequence of genes that encode genetic information;
genes, when expressed, produce proteins, which may control the expression of other genes and
serve as interfaces between the hydrons and the environment through difusion.

Experiments: The article uses genetic algorithm to evolve the TRN controllers and guide them to
accomplish a task of forming groups in coordination. The results show that the robots achieve
high otness in group formation, evaluated as negative of mean square distance from the group
centroid.

5.2.3 Target Tracking Application. Markham and Trigoni [93] proposed a novel scalable and
network of automated, self-organizing sensors. Their work is based on the premise that a sensor,
like a living cell, maintains its own protein level (assumed to be discrete). Again, the proteins
serve as means for inter-node communication. The nodes adjust their sampling rates, based on
local parameters and information from neighbour nodes. The authors applied this system in the
design of target tracking application, where each sensor node monitors the location of the target
in its proximity and autonomously decides, based on certain user specioed constraints, whether to
track the target. Jin et al. presented a similar two-step multi-robot target tracking system [113]. For
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each device, proteins represent internal parameters regulated by neighbor devices or the presence
of target in the vicinity, guiding them to the target on a path free from obstacle.

5.2.4 Mobile Sensor Networks. Meng et al. designed self-organizing mobile sensor networks
using transcriptional networks [102]. Unlike prior studies attempting to retain TRN topologies,
Meng showed that evolutionary algorithms can be leveraged to organize the nodes in a manner
that motif structures are preserved and the networks are demonstrably robust to environmental
adversities.

5.3 Delay Tolerant Networks

Delay Tolerant Networks (DTNs) are networks where connectivity is intermittent and not end-
to-end, resulting in higher communication delays [114]. We consider a class of DTNs, termed
DRNs, consisting of smart handheld devices of survivors and rescue workers in the absence of
a primary infrastructure in the aftermath of a natural disaster (see Section 1). The information
nowing among the survivor nodes and coordination center in the setting of a disaster is context
specioc, failure prone and time sensitive [4, 115]. Thus, DRNs represent a class of DTNs that ofer
low delay as well as uninterrupted service despite component failures. Shah et al. conceived a
TRN-inspired DRN, bio-inspired disaster response network (Bio-DRN), that exhibits (1) high
network lifetime (i.e., energy-eocient) and (2) robustness against component failures for seamless
communication [84, 85].

Inspiration: Given any input DRN topology comprising survivors, responders and CCs, the authors
formulate the Bio-DRN construction as an Integer Linear Programming optimization problem,
with the objective to ond a common subgraph of the DRN and TRN topologies, while preserv-
ing the graph properties of TRN, particularly low graph density (see Section 3.2.2) and FFL motif

abundance (see Section 3.2.4). The energy consumption of a certain node in DTNs has been shown
to be quantioable by the number of forwarding links it shares in the network [85, 116]; hence low
graph density ensures fewer communication links, which translates into fewer message replica-
tions and forwarding resulting in energy-eocient DRN. Also, high FFL motif abundance renders
alternative communication pathways, thereby improving the robustness against node failures (see
Section 4.1).

Approach: Shah et al. [84, 85] showed that the Bio-DRN construction problem is NP-Hard and
proposed a heuristic that exploits the topological similarity between TRN and DRN. Speciocally,
analogous to the three-tier topological characterization of TRN (see Section 3), DRN nodes can be
classioed into three tiers based on functional roles: tier 1 contains the unique CC; tier 2 comprises
the set of points of interest and volunteers; and tier 3 contains the set of survivors (Figure 17(a)
and (b)). The proposed heuristic generates a subgraph of TRN with the maximum FFL motifs,
called reference TRN, that subsequently acts as a template for Bio-DRN construction. The proposed
heuristic employs Blondel’s node similarity [117] to perform one-to-one mapping between similar
nodes of same tiers in reference TRN and DRN; the resultant subgraph of DRN is termed Bio-DRN.

Experiments: Experiments on a map of a real-disaster prone region, Bhaktapur, Nepal shows
that Bio-DRN retains the topological properties of TRN, exhibiting a steady tradeof between
energy eociency and network robustness against node failures, while ensuring high PDR and
low latency.

5.4 IoT-Net

An IoT-Net consists of smart devices, deployed over urban spaces in smart cities, possessing
the ability to sense events, communicate, process and store event data. Like in case of WSN, an
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Fig. 17. Bio-DRNmapping heuristic. (a) DRN three-tier structure based on the functional role. (b) TRN three

tier structure (redrawn from Reference [84]).

IoT-Net can be represented as a graph topology where a link exists between two devices if they are
within the (wireless) communication range of one another. Like most communication networks,
IoT-Nets demand uninterrupted sensing and data dissemination over long durations [118]. Given
that IoT devices are energy constrained, Roy-Ghosh et al. proposed a TRN-based data collection
framework, called bioSmartSense, that enables energy-eocient and qNq-aware data sensing and
reporting for sustainable IoT-based smart city applications [87].

Inspiration: The authors draw a parallel between the energy level of IoT devices (which controls its
data sampling rate) and the expression level of genes that dictates the quantity of proteins produced
to meet cellular requirements and enable sustainability of organism [11, 119]. Similar to the TF-
gene regulation, the article proposes that IoT devices shall regulate self and neighbor device energy
levels. (Note that the self-regulation of a device’s energy level is analogous to self-regulation motif
as discussed in Section 3.2.4). Speciocally, we know from Section 3.2.6 that the TF-gene interactions
are directed edges that have positive or negative signs (see Figure 6 (left)). bioSmartSense mimics
the signed TF-gene interaction TRN, and positive or negative directed link (u,v ) implies that an IoT
deviceu will increase or decrease the energy level of its neighbor devicev . Higher energy level of a
device guarantees higher higher sampling rate (and higher data accuracy) at the expense of energy.

Approach: bioSmartSense transfers the edge signs of TRN to IoT-Net by utilizing the TRN-based
mapping (see Section 5.1.1). Subsequently, IoT devices conserve energy by regulating energy lev-
els of one another based on TF-gene regulation. Furthermore, keeping in mind that several devices
may sense the same event at a given time, bioSmartSense attempts to conserve energy by restrict-
ing redundancy while reporting event data to a centralized application platform called the base
station. To this end, it generates a graph transformation of IoT-Net where two nodes share an undi-
rected edge if they have sensed at least one common event over a prespecioed time interval. From
the transformed graph, redundancy in event reporting is minimized through a heuristic for max-
imum weighted independent set [120] that selects a subset of nodes exhibiting the highest qNq

metric (see section on performance measures) and having no overlap in events sensed. This ap-
proach is extensible to incorporate heterogeneous device varying in sensing capacities and energy
consumption rates, signal attenuation with distance, and event priority levels [95].

Experiments: Extensive simulation performed on customized simulator (implemented on Python
SimPy library [121]) show that bioSmartSense framework exhibits higher energy eociency
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and qNq as compared with those of a state-of-the-art data collection approach for smart city
applications.

5.5 Edge-centric IoT Platform

We discuss in Section 1 that edge-IoT networking is a result of the increasing computational
capabilities at the edge [122]. This paradigm, characterized by decentralized cloud, more process-
ing at the edge and reduced waiting time, is challenged by issues of reliable connectivity and
energy [123]. It is clear that edge devices are still not as memory, processing and energy-eocient
as the centralized count. In a traditional mobile crowdsensing (MCS) setting, mobile users in
possession of handheld devices sense task of diferent events (of traoc, environment, etc.) and
forward data via energy-constrained fog nodes to the base station in a multihop fashion. Roy et al.
conceive a scalable TRN-based collaborative data transfer framework over fog computing plat-
forms [86] that utilizes agglomerative hierarchical clustering [124] to identify regions of densely
connected fog devices. It applies the TRN-based mapping strategy (discussed in Section 5.1.1) to
each cluster to design sparse yet robust backbone fog topologies. bioMCS dynamically identioes
fog nodes of high otness as gateways (1) device residual energy and (2) connectivity and ot mobile
nodes as owners of mobile user groups on the basis of (1) residual energy and (2) promptness
in carrying out sensing and reporting tasks. Finally, the sensed event data is transferred by the
mobile peers to base station via mobile group owners, fog and gateway fog nodes. bioMCS exhibits
higher energy eociency, robustness against fog node failure, task data load balancing across fog
nodes over traditional MCS platforms.

Comparison, drawbacks and overheads. Approaches for the generation of sparse yet robust
WSNs by employing mapping with TRN topologies [33, 83, 96–100] are centralized strategies,
where the network administrator must have the global view of the WSN topology; moreover,
they assume that the sensor nodes are static. Similarly, the design of Bio-DRN is based on the
assumption that the input DRN topology largely remains steady over time [84]. The CC, the most
well-connected entity in the original DRN topology, observes the topology over time and invokes
the Bio-DRN topology construction algorithm. Knowledge of the entire topology may be a strong
assumption and limitation in large dynamic network scenarios. These approaches outperform k-

connected and E-R random topology-based networks in terms of PDR, latency and energy eociency,
under conditions of node and link failure.
Let us now turn to the semi-centralized strategies: (1) data collection in fog computing platform

(bioMCS) [86]—where the urban space is partitioned into dense clusters of fog devices and the TRN-
based mapping is employed on each cluster by time-varying cluster heads called gateway fogs
and (2) IoT-based data collection framework (called bioSmartSense) for smart cities [87, 95], where
the sensors regulate their internal parameters based on the messages received from the neighbor
devices. These approaches still rely on TRNmapping to construct the network backbone, but allow
the devices to regulate internal device parameters (such as energy levels) by communicating with
neighbors. These approaches exhibit comparable data delivery rate as state-of-the-art smart city
application [125] and a signiocant improvement in energy eociency. In fact, they are similar to
ant colony optimization (discussed in Section 1), where ants gradually learn the eocient routes
to the food source. However, unlike the explore and exploit strategy of ant colony, they avoid
performance uncertainty by leveraging the reliable optimized protein-gene connectivity of TRN.
Contrast the above techniques with the bio-inspired self-organized target tracking applica-

tion [93] or sensor energy state scheduling [89]. Similarly, References [92, 113] follow a decen-
tralized approach of modulating system parameters based on feedback from neighbor devices and
location of target being tracked. Despite being distributed, these approaches entail energy through
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Fig. 18. Comparison of performance of WRP, E-TORA, and role Amotif centrality-based routing.

the exchange of control messages for neighbor device regulation. This regulation strategy, inspired
by the protein-gene regulation in TRN, is analogous to the triggering of an immune response by
detector nodes to achieve event sensing and reporting in the artiocial immune system-based com-
puting application (mentioned in Section 1). Overall, the exchange of additional control messages
help conserve overall network energy by eliminating redundancy in reported events as shown in
Reference [87].

6 FUTURE DIRECTIONS

In this section, we go over the unexplored areas of TRNs that can motivate new research directions
in the oelds of bio-inspired network protocols, communication and social network analysis.

6.1 Bio-inspired Routing Protocol

In Section 5.1, we discuss that TRNs serve as an efective template for the design of static WSN
topologies. TRN-based WSNs achieve topological robustness against node failures by maximizing
FFL motifs. Interestingly, our recent ondings reveal that FFL motif central nodes (i.e., nodes with
high participation of FFL motifs) are the most efective information forwarders in TRNs [126].
Based on these ondings, we plan to investigate the possibility of a dynamic bio-inspired rout-
ing protocols in WSN settings using node motif centrality (refer Section 4.1) as a metric for route
selection. Since in any given FFL, role A motif centrality creates two independent paths between
the general TF and target gene, we hypothesize that nodes with high role A FFL motif centrality
will potentially present several pathways between any source and sink node pairs in WSNs.

To verify our intuition, we devise a simple bio-inspired routing strategy (Bio) wherein each node
maintains information of the role A FFL motif centrality of the neighbor nodes and chooses the
node with highest role A motif centrality as its next hop. We compare this strategy with two
standard routing protocols, namely, (1)Wireless Routing Protocol (WRP) [127], which utilizes
shortest path-based schemes to calculate the minimum cost routes and (2) Energy-aware Tem-

porally Ordered Routing Algorithm (E-TORA) [128], which conserves energy by taking into
consideration the level of power of each node and avoids using nodes with low residual energy.
Our simulation experiment on a WSN of 50 nodes designed on a discrete event simulation en-
vironment of Python SimPy library [121] reveals that the PDR for WRP is the highest, followed
by Bio. This is because WRP follows the optimal path from source to sink (Figure 18(a)); how-
ever, with respect to the average delay in packet transfer, Bio greatly outperforms other strategies
in all three node failure conditions as it exhibits minimum hop count between source and sink
(Figure 18(b)). Initial experiments showing this tradeof (between PDR and delay) ofered by the
bio-inspired routing strategy motivate the design of novel dynamic routing strategies, particularly
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Fig. 19. Schematic representation of organization of motif central nodes within tier 2 of a TRN.

useful in wireless network operating under channel uncertainty due to interference, congestion
and dynamic topology. It is possible to design a unioed routing strategy—a combination ofWRP, E-
TORA and Bio—where weights can be tweaked to meet changing requirements, as seen in software
deoned networks [129]. For instance, if a low data delivery delay is preferred, role A nodes can
be preferred as next hops; conversely, the weight for WRP can be increased to meet data delivery
needs.

6.2 Hub and Spoke Architecture

The three-tier topology (see Section 3), which we have utilized to characterize the graph attributes
of TRN, can also help identify signiocant patterns in the organization among high NMC nodes. As
an experiment, we deone high NMC TRN nodes as nodes possessing FFL motif centrality δ > 100.
In Figure 19, we show a schematic where a few high NMC nodes in tier 2 (marked in blue) form
cliques among themselves while the other high NMC nodes (shown in green) are connected to
some (but not all) of the blue nodes. Note that both green and blue nodes are connected through
bidirectional edges leading to full duplex datanow. There exists a third type of node (shown in
yellow) that serve as intermediaries for information now between the blue nodes.
This arrangement among the high NMC tier 2 nodes is similar to a hub-and-spoke architecture,

where tier 2 NMC nodes form motif hubs (not to be confused with degree hubs mentioned in
Section 3.2.1) withmajority of the tier 1 and 3 nodes being directly connected to highNMCnodes in
tier 2 [126]. We intuit that in such an architecture, roleAmotif central nodes act as the information
spreaders, while the green nodes provide fault tolerance against failures of the blue nodes; our
investigation reveals that the yellow nodes, possessing role B motif centrality (see Section 4.1),
provide edge level fault tolerance by activating the indirect path of the FFL when the direct path
is congested or error prone. We believe that the organization of high NMC nodes as well as the
dynamic switching of traoc between role A and B nodes to achieve varying network goals can
explain the robustness of TRNs and further motivate the design of fault-tolerant communication
topologies.

6.3 Balanced and Unbalanced Triads

In Section 3.2.4, we discussed coherent and incoherent FFLs on the basis of the signs on directed
edges that can cause acceleration or delay in information now in TRN. It is noteworthy that this
coherence or incoherence resembles the idea of balanced and unbalanced triads in social networks.
A triad is deoned as a triplet of nodes connected by two edges (open triad) or three edges (closed

triad). In a signed network where positive and negative edges signify friendship (or trust) and
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enmity (or distrust) between a node pair, three edges in a balanced triad works on the following
principles: the friend of my friend is my friend, the friend of my enemy is my enemy, the enemy of

my friend is my enemy and the enemy of my enemy is my friend. Leskovec et al. studied the signed
interaction among the entities in social network to develop a theory that explains observed edge
signs and the underlying social mechanisms [130]. We intuit that the use of innuence difusion
mechanisms [131, 132] can help unravel specioc innuencial FFL motifs capable of amplifying or
dampening spread of information in signed social and biological network topologies.

6.4 Design of Smart Topologies

The oeld of bio-inspired networking hinges upon the idea that biological networks are intrinsically
capable of optimizing several disparate network goals such as seamless information now, low de-
lay, near-optimal resource utilization, and so on, in a dynamic noise- and error-prone environment.
In Section 4.2, we elucidate that TRNs have been proven to be naturally optimized for average
shortest path between TFs and genes. We intuit that exploring the average shortest path apropos
to FFL motif centrality may yield new insights into the topological robustness of TRNs. This is
because not only are FFL motifs closely linked to TRN robustness (as shown in Section 4.1), but
Gorochowski et al. showed that the clustering tendency of FFL motifs, gauged using metrics such
as motif clustering coeocient (refer Section 4.4) and motif clustering diversity (refer Section 4.5),
are key to their information-theoretic and functional roles in TRNs [80]. Taking a cue from [80],
network analysis on how smaller motifs such as feed forward loops organize themselves to form
higher-order motifs can shed light on the exact role of motifs in achieving eocient information dis-
semination. Furthermore, one can design a joint optimization problem (similar to the formulation
explained in Section 4.2) on several weighted versions of TRN subgraphs, by assigning a weight
on each edge that equals its reciprocal FFL edge motif centrality. If this modioed TRN exhibit a
still lower δ than its randomized and original TRN counterpart, then it stands to reason that smart
network topologies can be realized by pushing the bulk of the data packets along the high FFL
motif central nodes and links.

7 CONCLUSION

In this article, we surveyed the structure and topology of the TRNs in light of its myriad graph
properties such as scale free out-degree distribution, low graph density, small world property, cluster-
ing tendency and motif abundance, TF-gene regulation, preferential attachment, robustness against
random node failure, and so on. This study is substantiated with some experimental results on hu-
man TRN. We then delineated the network science-based metrics, such as motif (1) centrality, (2)
clustering coeocient, and (3) clustering diversity, protein-gene path length and network eociency,
that are either derived from or help explain the above graph properties.Wemathematically demon-
strate how these metrics enable TRN topologies in achieving optimized communication between
the proteins and genes with low delay despite component failures or perturbation to gene coding
sequences. Finally, we perform a comprehensive study of the applications of TRNs in the design
of smart networking solutions in the areas of WSN, DTN, self-organizing networks, IoT-Nets and
edge computing platforms. We concluded the article with a vision of the specioc unexplored facets
of TRNs that may further inspire new directions in the design of tangible social and communica-
tion network architectures and protocols, such as unioed routing mechanisms capable of adapting
to varying data delivery, delay, and energy requirements.
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