956 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

CoMCLOUD: Virtual Machine Coalition
for Multi-Tier Applications Over Multi-Cloud
Environments

Sourav Kanti Addya
Bishakh Chandra Ghosh
Soumya K. Ghosh

, Senior Member, IEEE, Anurag Satpathy™, Member, IEEE,
, Student Member, IEEE, Sandip Chakraborty ™, Member, IEEE,
, Senior Member, IEEE, and Sajal K. Das

, Fellow, IEEE

Abstract—Applications hosted in commercial clouds are typically multi-tier and comprise multiple tightly coupled virtual machines (VMs).
Service providers (SPs) cater to the users using VM instances with different configurations and pricing depending on the location of the data
center (DC) hosting the VMs. However, selecting VMs to host multi-tier applications is challenging due to the trade-off between cost and
quality of service (QoS) depending on the placement of VMs. This paper proposes a multi-cloud broker model called CoMCLOUDto selecta
sub-optimal VM coalition for multi-tier applications from an SP with minimum coalition pricing and maximum QoS. To strike a trade-off
between the cost and QoS, we use an ant-colony-based optimization technique. The overall service selection game is modeled as a first-
price sealed-bid auction aimed at maximizing the overall revenue of SPs. Further, as the hosted VMs often face demand spikes, we present
a parallel migration strategy to migrate VMs with minimum disruption time. Detailed experiments show that our approach can improve the
federation profit up to 23% at the expense of increased latency of approximately 15%, compared to the baselines.

Index Terms—Cloud computing, data center, virtual machine, migration, ant colony optimization, game theory

1 INTRODUCTION

HE majority of the commercial cloud service providers

(SPs) use region-based pricing for infrastructure-as-a-ser-
vice (IaaS) provisioning by offering virtual machine (VM)
prices depending on the location of the server [1], [2]. The
price depends on the costs associated with the local data-cen-
ter (DC) management, electricity, hardware pricing, etc. For
example, the typical prices of hosting a VM of different con-
figurations at three SPs (Microsoft Azure, Amazon EC2, and
Google cloud) are shown in Table 1 for disparate regions as
of June 2019. It is evident from the table that the prices of

o Sourav Kanti Addya is with the Department of Computer Science & Engi-
neering, National Institute of Technology Karnatak, Surathkal, Karnataka
575025, India. E-mail: kanti.sourav@gmail.com.

o Anurag Satpathy is with the Department of Computer Science & Engi-
neering, National Institute of Technology, Rourkela, Odisha 769008,
India. E-mail: anurag.satpathy@gmail.com.

o Bishakh Chandra Ghosh, Sandip Chakraborty, and Soumya K. Ghosh are
with the Department of Computer Science & Engineering, Indian Institute
of Technology, Kharagpur, West Bengal 721302, India.

E-mail: {ghoshbishakh, sandipchkrabortyj@gmail.com, skg@iitkgp.ac.in.

o Sajal K. Das is with the Department of Computer Science, Missouri Uni-
versity of Science and Technology, Rolla, MO 65409 USA, and also with
the VAJRA Faculty, IIT Kharagpur, West Bengal 721302, India.

E-mail: sdas@mst.edu.

Manuscript received 23 April 2020; revised 5 August 2021; accepted 9 Octo-
ber 2021. Date of publication 26 October 2021; date of current version 8
March 2023.

The authors are grateful to the editor and anonymous reviewers for insightful
comments which helped us improve the technical quality and presentation of
the manuscript significantly. The work of S. K. Das was partially supported by
the NSF under Grants OAC-2104078 and OAC-1725755.

(Corresponding author: Sourav Kanti Addya.)

Recommended for acceptance by Y. Yang.

Digital Object Identifier no. 10.1109/TCC.2021.3122445

VMs depend on the DC region hosting the VM, even if the
configurations remain the same. Assuring cost minimization
and quality of service (QoS) together at the same time is diffi-
cult for large SPs like Azure of EC2, as they follow a user-
centric approach where the end-user decides the target
server [3]. On the other hand, small SPs and cloud exchanges
like OnApp [4] or Red Hat OpenShift face challenges in
selecting the minimum-cost DC to satisfy the QoS of users, as
they follow an SP-centric approach where the SPs dynami-
cally select the target server.

The existing literature [5], [6], [7], [8], [9] rely on the
concept of cloud federation, where multiple SPs (mostly
the small SP) come to a federation level agreement (FLA)
for IaaS provisioning for the end-users by sharing their
resources while optimizing the total cost of operation. A
cloud broker typically manages a cloud federation. The
broker receives the end-users application requests and
allocates resources to the cloud SPs by optimizing the cost
and the application QoS. The commercial cloud exchanges
like OnApp [4], Arjuna’s Agility Framework [10], and EGI
Federated Cloud [11] are based on this principle. How-
ever, the existing broker-based services ideally work on a
single VM, whereas many cloud applications are multi-
tier. For example, a typical cloud-based web server follows
three tiers: (i) Application tier hosting the business logic, (ii)
Web tier hosting the presentation layer, and (iii) Database
tier hosting the data layer [12]. Different layers are
deployed over different VMs with disparate configura-
tions and variable memory access patterns to ensure suffi-
cient fault tolerance and ease of maintenance. Moreover, as
Fig. 1 shows, the VMs often communicate with each other
and serve the users.

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to:

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 957

TABLE 1
Region Based VM Pricing for Three SPs as of June 2019
Type Region 1 Region2 Region3 Region 4
Category Central US India west Sydney Tokyo
(VM) (3/hr) (3/hr) (3/hr) (3/hr)
Microsoft Azure
t1 (A1) 0.012 0.014 0.015 0.015
ts (A2) 0.048 0.054 0.059 0.059
t3 (A3) 0.023 0.027 0.029 0.029
ty (A4) 0.094 0.11 0.12 0.12
Amazon EC2
t1 (Small) 0.023 0.0248 0.0292 0.0304
ty Medium) 0.0464 0.0496 0.0584 0.0608
ts (Large) 0.0928 0.0992 0.1168 0.1216
t, (2Exlarge) 0.3712 0.3968 0.4672 0.4864
Google Cloud

t; (Standard-1) 0.0475 0.057 0.0674 0.061
ty (Standard-2) 0.0950 0.1141 0.1348 0.122
t3 (Standard-3) 0.19 0.2282 0.2697 0.244
t4 (Standard-4) 0.38 0.4564 0.5393 0.488

Challenges. Hosting multi-tier applications over the broker-
based federated cloud has the following research challenges.

(1) As different VMs of a multi-tier application have
varying requirements in terms of VM instances, a single DC
under an SP may not be able to serve all the VMs. However,
placing different VMs at different DCs may cause VM dis-
persion when the DCs are geographically separated [13].
Typically, the VMs in a multi-tier application needs to com-
municate with each other, implying an adverse impact on
the performance due to VM dispersion. As a consequence,
the objective of selecting the target SP for placing a multi-
tier application is multi-criteria in nature. Two different
parameters need to be optimized simultaneously — (i) the
cost of hosting VMs, and (ii) VM dispersion cost (inter-VM
communication latency).

(2) The cloud broker (CB) may not be the best candidate
to run the above optimization requiring DC-level informa-
tion, as the CB maintains only SP level and federation-
related information. Maintaining DC level information has
a significant overhead for the CB as the information like DC
load changes very frequently. Therefore, the SPs must col-
lectively solve the optimization in a decentralized platform.

(3) A federated cloud should maximize the profit of SPs
and incentivize them to be part of the federation. Achieving
this is challenging when the decision-making is decentral-
ized without involving the CB.

(4) The hosted VMs often face increased demands and
spikes [14]. The inability to meet such needs can have harm-
ful impacts on service quality and application performance.
Increased resource demand by the VMs can trigger VM
migration, thereby necessitating developing a suitable VM
migration strategy.

Our Contributions. This paper proposes a novel multi-
cloud broker model, called CoMCLOUD, that aids the users
in VM selection for multi-tier applications. While CoM-
CLOUD follows a broker-centric approach for cloud federa-
tion, the CB is only responsible for collecting user application

requests and initiating the allocation process by bundling
issouri University of Science and

echnology. Downloaded on September 04,2025 at 21:30:04 UTC from

_ Web
1 |server 1

=5 559

Server

} b

Server - |Server
- -

APP 1 (2 VMs) APP 2 (3 VMs)

APP 3 (4 VMs)

APP 4 (4 VMs)

Fig. 1. Multi-tier applications: Every tier is deployed on a different VM;
the VMs communicate with each other to provide end services.

them into batches. The allocation process executes in a dis-
tributed fashion. Every SP first computes the pricing for opti-
mal service coalition (a set of VMs hosted in different DCs
following the placement criteria) for a multi-tier application
request. In CoMCLOUD, the price calculation for optimal ser-
vice coalition is modeled as a bi-objective optimization,
which we solve using a meta-heuristic based on Ant Colony
Optimization (ACO).

Based on the pricing for optimal service coalition of a
multi-tier application over an SP, the interactions among
the SPs for resource allocation and VM placement are mod-
eled using a first-price sealed-bid auction game, called a ser-
vice coalition selection game. The motivation behind the
auction game is attributed to the fact that different VMs
have variable pricing. It requires considerable effort to
determine the accurate valuation of an SP for hosting a
multi-tier application. Further, the first-price sealed-bid auc-
tion is selected because of its transparency; in other words,
one cannot manipulate the final price as the winner pays
the amount equal to his bid. The service coalition selection
game considers the previously mentioned challenges of
hosting a multi-tier application over federated clouds. CoM-
CLOUD also considers the dynamic workload of VMs after
deployment, thus incorporating a dynamic VM migration
strategy for multi-tier applications while maintaining the
performance objectives. We have implemented CoMCLOUD
using CloudSim 3.0 simulator [15]. Experimental results
show that our proposed model can reduce the aggregate
price but may sometimes lead to slightly higher latency due
to VM dispersion. Nevertheless, the latency in CoMCLOUD
shows to be upper bounded by a threshold. More precisely,
CoMCLOUD is able to improve the federation profit by ~
23% at the expense of increased latency of approximately <
15% compared to the best-performing baseline technique.

This work is the first that aims to optimize the cost and
latency of placing multi-tier applications across different
DCs for different SPs to the best of our knowledge. A pre-
liminary version of this work was published in a conference
[16] where we proposed a basic framework for modeling
the interactions among SPs for hosting multi-tier applica-
tions over a federated cloud. The current journal version is
a significant extension that provides the end-to-end frame-
work with extensive experimental evaluation and perfor-
mance comparison with the baselines.

The rest of the paper is organized as follows. Section 2
reviews relevant literature while Section 3 provides an over-
view of CoMCLOUD architecture. Section 4 describes the
procedure for selecting the optimal service coalition and
Section 5 presents the service coalition selection game. The
Migration procedure for multi-tier apﬁ)lications is explored

EEE Xplore. Restrictions apply.

958 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

TABLE 2
Comparison of Different Approaches and CoMCLOUD

Work
Liet al. [7]

N. Samaan [5]
Mashayekhy et al. [6]
Konstanteli et al. [17]

Rubio-Montero et al. [18]
Pillai and Rao [19]
Quarati et al. [20]

Mei et al. [11]

Nesmachnow et al. [21]

Larumbe and Sanso [22]

CoMCLOUD

NN 3| x| x| | x| x| x| %| x| Communication Latency|
| X[3| X[x| x| x| x| x| %| x| Multi-Tier App Support

NN XN %[%] N N[x| x| x| VM Provisioning Cost

N[x| %] x| N[x| %[N N\[Y| Service Provider Profit

N[X% x| x| x| x| N[N \|{| Federation Profit
| X[3| X[x| x| x| x| x| %| x| VM Migration
N x| x| x| x| N[x| x| x| %|%| VM Coalition
N x| NN N %] x| x| x| x| x| Broker Profit

NN S} SN Y S]] %S QoS

in Section 6 while the performance evaluation of CoM-
CLOUD is presented in Section 7. A overall discussion on
the CoMCLOUD is presented in Section 8. Finally, Section 9
concludes the paper with directions of future research.

2 RELATED WORKS

This section reviews the relevant literature on resource pro-
visioning over multi-cloud architecture from two different
aspects — federation-centric and broker-centric.

Federation-Centric Approaches. The works in this category
have focused on various aspects of cloud federation, such as
profit maximization, resource allocation, resource sharing,
etc. In [7], the authors have presented a double auction-based
mechanism for inter-cloud VM trading and scheduling in a
cloud federation. A novel model has been proposed in [5] for
capacity sharing in a federation of cloud infrastructure ser-
vice providers. The interactions among the SPs are modeled
as a repetitive game of VM outsourcing to offer all unused
capacity in the spot market. A game theory-based cloud fed-
eration model is proposed in [6] to enhance the SPs” dynamic
resources to fulfill user’s demands. Konstanteli et al. [17] pro-
posed a federated approach among SPs to allocate resources
for dynamic services in a virtualized setup. On the other
hand, Rubio-Montero et al. [18] presented a framework for
distributed computation in federated clouds supporting
multi-environment and fair-sharing for several users execut-
ing legacy applications. Furthermore, a game theory-based
resource allocation model has been proposed in [19] through
coalition formation among cloud SPs. Following the central-
ized broker-based federation architecture, various commer-
cial prototypes (e.g., OnApp [4], Arjuna’s Agility framework
[10]) have been developed cloud federation for better utiliza-
tion of laaS resources.

Broker-Centric Approaches. Apart from the federation-cen-
tric architecture, several works in the literature also talk about
broker-based multi-cloud systems. In [20], a hybrid cloud-
broker (CB) is proposed to allocate services to private resour-
ces or public clouds; if the service is executed on private
resources, the revenue of the CB is the sum of the brokering
service price and resource provisioning price; otherwise,
the CB receives only the brokering service price, while the

]

Cloud Broker

-

Cloud Service Provider (SP1)

Cloud Service Provider (SPn)

Fig. 2. CoMCLOUD architecture: A multi-cloud broker system.

resource provisioning price is paid to the public clouds.
In [11], a broker-centric architecture is proposed to minimize
the cost incurred by short-term users. The broker rents
reserved instances with discounted prices and rents them to
short-term users with smaller billing time units (BTU) at a sig-
nificantly low price. The authors in [21] proposed a new kind
of broker for cloud computing, whose business relies on out-
sourcing VMs to its customers. More specifically, the broker
owns several reserved instances of different VMs from several
cloud providers and offers them to its customers on demand.
Finally, an energy-aware VM placing broker is proposed
in [22] to minimize the operational expenditures while
respecting constraints on the QoS, power consumption, and
CO, emissions.

From the above discussions, it is evident that federated
cloud architecture and multi-cloud broker based platforms
have been investigated in the existing literature, and commer-
cial systems have been developed to cater to the end-users for
cost optimization purpose. However, existing studies mostly
look into the profit maximization for the broker while ensur-
ing the end-users’ budgetary constraints. The overall objective
of CoMCLOUD is to maximize the revenue of the SPs in the
federation with an adequate allocation of user applications
requests satisfying their resource demands. Table 2 provides
a comparative analysis of the literature based on different cri-
teria for multi-cloud broker architecture.

3 COMCLOUD ARCHITECTURE

This section provides an overview of the CoMCLOUD sys-
tem architecture and its functionalities (see Fig. 2).

3.1 Federation Architecture in COMCLOUD

CoMCLOUD follows a broker-based architecture where appli-
cation requests from the end-users arrive at the CB which ini-
tiates the resource reservation process. The SPs register
themselves with the CB. However, in contrast to typical bro-
ker-based multi-cloud models, the CB in CoMCLOUD does
not directly take part in the resource reservation decision,

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 959

thereby maintaining the trust in the system. In CoMCLOUD,
we consider that every SP has multiple DCs with different
resource availability. A complete allocation of a multi-tier
application depends on successfully deploying the corre-
sponding VMs over the DCs. We assume that a single SP han-
dles an application, although various VMs corresponding to
that application may be deployed under different DCs of the
SP. Consequently, we design and solve the following two
decision problems in CoMCLOUD.

1) The CB initiates scheduling application requests
among the SPs. These may be multi-tier in nature and
therefore may require multiple VMs with different
resource requirements. Such requirement is batched
together and a single SP handles it completely. An
application request’s allocation among the SPs must
(1) satisfy the resource demands of the VMs, (ii) maxi-
mize the incentives for the SP, (iii) bound the VM dis-
persion within a limit, and (iv) maximize the revenue
of the federation structure.

2) After an SP agrees to serve an application, the VMs
corresponding to it is allocated over the DCs under
that SP. Furthermore, to accommodate new applica-
tions, fast migration of VMs with minimum service
interruption needs to be ensured. The VM allocation
and migration among the DCs of an SP must (i) mini-
mize the communication latency among the VMs of a
multi-tier application and (ii)) maximize the migra-
tion bandwidth for fast VM migration.

Next, we provide an overview of CoMCLOUD architec-

ture to address the above decision problems.

3.2 CoMCLOUD Functionalities

Let B = {SP;, SP,, ..., SP;} be a broker with | number of
SPs. An SP, denoted as SP; = {DCi7 DC%, e DC;}, consists
of p geographically distributed DCs under SP;. For different
SPs, the value of p may be different, thus providing hetero-
geneity to our architecture. Any DCI 1 < j < p, has m hosts
represented as H = {7—[1 Hm} Each host Hk has its
own capacity (Hk ’) in terms of CPU memory, dlsk etc.
(where C denotes any dimension). Here, the capacity
denotes the current available capacity of the host. In our
model, we consider different VM instances and their vari-
able pricing (based on their location) for different SPs as
shown in Table 1. We assume that multi-tier application
requests in a cloud data center arrive at the CB, B, in
batches [23] following a Poisson distribution [24] with expo-
nentially distributed service times. The CB processes the
incoming applications in batches. If n number of SPs are
registered with the CB, it fetches at most n application
requests from the arrival queue and broadcasts them among
the SPs. The CoMCLOUD federation then executes the fol-
lowing four steps.

Determine a Feasible Service Coalition at each SP for Every
Application Request. Once an SP; receives the set of applica-
tion requests, it processes them individually to determine
whether it can meet the resource demands of the VMs corre-
sponding to that request. Let U/, be such an application with
a VM instance request set, U, = {uq , q ;- uf}, where ul’
is an instance of a VM type requlred to host the application
U,. In this model, we assume that a multi-tier application can

Authorlzed licensed use limited to: Missouri University of Science and Technology. Downloaded on

demand a maximum of one instance of a VM type [12]. CoM-
CLOUD can cater to the multiple instance requests. How-
ever, to keep the modeling simple, we restrict an application
to one instance of a VM type. If SP; wants to bid for an appli-
cation U, it needs to determine a feasible service coalition by
selecting a set of DCs under it that can host a VM of each
instance type requested by U/,. Formally, a feasible service
coalition is defined as follows.

Definition 1 (Feasible Service Coalition). Each application
Uy has a corresponding VM instance request set U; = {u
uff, ..., ulf}. A feasible service coalition at SP; with the set
of DCS 873 ={DC}, DC;, .. DCZ} is defined as the set of

tuples {(u;", DCl> Vu” €Uy, HDCI € SP;} where DC‘ has

capacity to host u“

Extract Optimal Service Coalition at each SP for Bidding a
Application Request. In CoMCLOUD, every SP bids for an
application for which it can find out a feasible service coali-
tion. To bid for an application U, an SP; calculates its reve-
nue R(U,) which is a function of the total price for hosting
the instance types U = {uq , q et uflg} over the DCs
under SP, correspondmg to an optimal service coalition.
Among all the feasible service coalitions for an application
U, over SP;, an optimal service coalition is defined as one
for which the total price for hosting the services is mini-
mized, and the VM dispersion is minimum, i.e., the entire
communication latency among all the VMs corresponding
to the instance types under /; is minimum.

We show that determining an optimal service coalition is
NP-hard; also, it is a bi-objective decision-making problem
where the solution space follows a Pareto-optimal frontier.
To this end, CoMCLOUD solves this problem with the help
of an Ant Colony Optimization (ACO) based meta-heuristic, as
detailed in Section 4. The revenue corresponding to this opti-
mal service coalition is used in the next step to bid for the
application U,.

Allocate Application Requests Among the Bidding SPs. The aim
is to find out an allocation of applications among the SPs using
a decentralized approach. The overall service selection,
referred to as service coalition selection game (see Section 5), is
formulated as first price sealed bid auction game to attain effi-
cient allocation. In this auction game, the objective is to maxi-
mize the total overall revenue of the federation. The game
converges with an allocation for the current batch among SPs.
This result is then communicated to the CB, B for accountabil-
ity and meeting the FLA. The service coalition selection game is
detailed in Section 5.

Handle Dynamic Workloads of VMs. Based on a parallel
migration strategy (see Section 6), CoMCLOUD supports
VM migration for handling dynamic workload at VMs for
multi-tier applications to ensure minimum migration over-
head (in terms of migration time). This strategy allows the
SPs to dynamically provision resources for the VMs with
minimum interruption of services.

4 SELECTION OF OPTIMAL SERVICE COALITION

As mentioned earlier, the CoMCLOUD broker B forwards
the application requests in batches to the SPs. To bid for
applications, the SPs, in turn, compute individual revenues
of the optimal coalition for each. An efficient coalition takes

eptember 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

960 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

care of end-user’s preferences, such as: (1) ensure that requi-
site VMs for applications are provisioned, (2) minimize the
price for provisioning VMs under multi-tier applications
depending on the hosting price at different DCs under the
SP, and (3) minimize the VM dispersion for ensuring mini-
mum latency for inter-VM communications. Let us first for-
mally define the constraints for finding an efficient service
coalition and formulate an optimization problem that yields
the above three objectives.

4.1 Constraints

The constraints corresponding to a feasible service coalition
are as follows.

4.1.1 Completeness of Allocation

A VM V¢, corresponds to an instance u;" of w-tier of a multi-
tier application request U,. Here, w € {ap, wb,db} corre-
sponds to a specific tier from the set of tiers comprising
application (ap), web (wb), and database (db) for a multi-tier
application [25]. Let 7 (V?;,DC;-) be an indicator variable
defined as follows

I(V;’f,,DC?) _J1 If DC; .undcr SP; can host V;‘;'
& J 0 otherwise
(1)

Let Vy, be the set of requisite VM instances for application
U,. Then, the following condition defines the completeness
of allocation

|VUH|: Z min(l, Z I(V?}DC;))~ 2

W2 eV VDC§.GS'}31-

Here |.| denotes the cardinality of the set. The above con-
straints indicate that SP; is eligible to host the application
U, only if it can support all the instances under U/;.

4.1.2 DC Capacity Constraint

To place a VM of type t1 on the kth host at the jth DC, the fol-
lowing constraint needs to be satisfied. Note that the assign-
ment of VMs to servers is independent of the tier to which
it corresponds and is entirely dependent on the resource
availability

11.C k.C
Uy < Hj

3
VC € {CPU, memory};

tx s
qu € L{q,

where HYC refers to the available capacity of some host H;‘f
of DC; along a dimension. This constraint guarantees that
the host where the VM is instantiated has enough resources
along all dimensions.

4.2 Objectives for Optimal Service Coalition
The optimal service coalition is expressed as a bi-objective
optimization problem as follows.

4.2.1 Objective 1: Minimizing VM Dispersion

Although the VMs supporting the applications are instanti-
ated under the same SP, they might reside in different DCs

under that SP. Consequently, CoMCLOUD may place the
VMs on separate DCs for cost savings which may lead to
increased inter-VM communication latency for executing
the applications. Therefore, we first model the inter-VM
communication latency, one of the significant components
for optimal service coalition. We first introduce a [U;| x |U;]
communication matrix My, for a multi-tier application U/,,.
An entry m,, . € My, with a value of 1 indicates a communi-
cation dependency between VMs V)" and V7 such that
w,w* € {ap, wb,db}, and is set to 0 otherwise. Note that the
entries in My, are user-dependent and can vary from one
application to another based on the defined architectural
constraints. For simplicity, we ignore the type of VMs as
they have no impact on the latency. Let ®°[y, 2] denote the
average communication latency between VMs V" and V" such
that m,. =1 and they are placed on the same DC; this is
indeed the minimum average latency for inter-VM communi-
cation over an SP. However, to utilize the price difference at
different DCs, CoMCLOUD may also place the VMs on sepa-
rate DCs, leading to higher communication overhead due to
the bottleneck bandwidth connecting the DCs. Let [y, 2]
be the average communication latency between V; and 1%
such that m, . = 1 and they are placed on two different DCs,
DCi and DCQ, under the same SP;. Let Qf,f’ denote a feasible
service coalition for the application U/, over SP;. Considering
multiple VMs under a multi-tier application ¢, the aggregate
latency (AL) experienced bX U, over SP; due to VM dispersion
over a service coalition QZ(I" is expressed as follows

Ve Ave

SP; $,d
A(Q“q) = Z Z (qj(@ [y7 Z] - q)()[y’ Z]) X My,
YV§ U \ne" eu;
(4)
For optimal service coalition for an application ¢, over SP;,

NPT . . " SP!
the objective is to obtain a feasible coalition Q, * such that
SP|
A(Qy,") is minimum among all possible feasible service

coalitions.

4.2.2 Objective 2: Minimizing the Price for VM Hosting

Let @{/ denote the price for placing V;’ over DC;. For a feasi-
ble coalition Qf,f" of U, over SP;, the total price for hosting
the service is given as follows
SP, j

v = Y, @l (5)

’ SP;
(vy.DC;)eQy]

4.2.3 Bi-Objective Optimization for Optimal Service
Coalition

Let (Cf;f" bet the set of all feasible service coalitions for the
application U, over SF;. Summarizing the objectives and the
constraints discussed above, the optimal service coalition
problem can be expressed as follows. Egs. (6a) and (6b) repre-
sent the overall objective of CoMCLOUD, i.e., minimization
of latency and cost for hosting multi-tier applications. Con-
straint 6¢c enforces the coalition generated by CoMCLOUD
must belong to the set of feasible allocations and should be
able to allocated all VMs of a multi-tier application. Con-
straint 6d makes sure that an individual VM can only be
hosted on a server if it has sufficient resources across different

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Missouri

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 961

dimensions, i.e., CPU and memory. Finally, (6e) and (6f)
depict the feasible set of values of the variables

. sp;
fin A(Qy,") (6a)
VQuq eCMq
. SVPl
sl gp \P(Quq) (6b)
vk
st VO el
Vigl= 3 min (1, 3 I(V:;,Dc;i)) (6c)
WaEVuy vDCiesP,
t.c kC
u, " <H; (6d)
VC € {CPU, memory}; Vuﬁf‘ eu, (6e)
Vk e {1,2,...,[H}|}; Vo € {ap, wb,db}; (6f)

Next, we show that the above objectives under the con-
straints is a hard problem to solve using a polynomial time
algorithm.

Theorem 1. The optimal service coalition problem for multi-tier
applications is N'P-hard.

Proof. We first show that the Bin Packing Problem [26] is poly-
nomial-time reducible to the optimal service coalition
problem. The Bin Packing Problem is defined as follows:
Given a set of bins By, Bs..3,, of same size W, and a list of
objects o1, 0, .., 0, with sizes ay, as, .., a, respectively, find
the smallest K partition (minimize K) B; U .. U By of the
objects, such that ZO,EBJ- a; < Wior all j=1,..,K.Inorder
to reduce the Bin Packing Problem to the optimal service
coalition problem, we map each bin B; to a data center DC;
of the service provider SP;. Consider each data center has
only one host H} with capacity H}'C =W (only one-
dimensional capacity). Each item o; is mapped to u//,
which is a requested VM instance type of U;. Now, we set
D[y, 2] < ®D[y, 2] V combinations of y,z and DCy, DCy.
That is, the average communication latency between any
two VMs will always be less in case they are placed in the
same DC, compared to when they are placed in different
DCs. For simplicity, we assume @[y, 2] = 0 and @[y, 2] =
1 V combinations of y,z and DCs, DCy.

We also simplify the optimization problem to mini-
mize only the aggregate latency A(Q;fi) of a feasible ser-
vice coalition QZZ}', for application ¢,. So the threshold for
the total cost of the service coalition is set to W (Qf,?) = 0.

It is evident from the chosen values of ®°[y,z] and

®*I[y, 2] that in order to minimize the aggregate latency
A(Qif"), more VMs need to be placed in the same DC.
Therefore, the optimal solution will place all the requested
VMs using the least number of DCs possible so that the
aggregate latency is as low as possible. This behavior
results in an optimal solution with a minimum number of
DCs, which corresponds to the optimal solution with a
minimum number of bins in the Bin Packing Problem.

The reduction is possible in polynomial time by
mapping each bin, and each object to DCs and the
requested VM instance tgpe, respectively. The overall

niversity of Science and Technology. Downloaded on Septemb

Fig. 3. Construction graph for ant-colony based solution.

time complexity is O(p) + O(g), where p is the number
of bins, and g is the number of objects.

As the Bin Packing problem is known to be AP-hard
[26], we can conclude that the optimal service coalition
problem for multi-tier applications is A’P-Hard. O

Now it is possible to derive a Pareto-optimal frontier for
solving the optimal service coalition problem, as the VM dis-
persion may arise when minimizing the value of ¥(.). On the
other hand, minimizing A(.) may yield a solution that is not
optimized in terms of ¥(.). An example can be a situation
when the minimum-priced DC can host only a subset of the
VMs under U. Therefore, we develop a meta-heuristic based
on ACO, where the value of ¥(.) is minimized while keeping
the value of A(.) within a pre-defined threshold. The thresh-
old value depends on the tolerable latency for an application
and is considered as an additional parameter in CoM-
CLOUD. The details follow in the following subsection.

4.3 A Meta-Heuristic Based Solution

In order to map the optimal coalition selection problem
to the ACO problem, we define a construction graph
GEon(NCer, L") as shown in Fig. 3. The assignment of VMs
to DCs at different times are represented as tuples (V;, DC;)
in the graph indicating that DC; has sufficient resources to
place the VM, V;’. The link between any two vertices in the
graph indicates the likelihood that an artificial ant would
move from one to another. This likelihood is computed
based on two factors: heuristic information and pheromone
trails. The former indicates the partial contribution of each
movement towards the objective function, whereas the lat-
ter guides the ants towards a better solution. The nest of the
ants is denoted by a start vertex, the food, and an end ver-
tex. A trail from the start vertex to the end vertex corre-
sponds to a feasible solution, i.e., mapping all VMs.

4.3.1 Initializing the Pheromone Trail
The initial pheromone trail t° is calculated as
1
0

TS+ AS) @

T

where S is the initial solution generated by the following
policy. We sort the DCs based on their price and then place
the maximum possible VMs in the minimum priced DC, fol-
lowed by the second minimum priced DC, and so on.

4.3.2 Computation of the Heuristic Information

e . ve oL
The heuristic information, represented by 7 , indicates the

. o1 . J
desirability of V¢ to move to DC;. This can be calculated as
er 64,2025 at 21:30:04 dTC from IEEE Xplore. Restrictions apply.

962 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Ve 1 1

Npc, = 5 w* .y :
e ey ed) @
q
(v pey)egy

The above equation indicates that the affinity of V; towards
DC; is inverse of the price to host V‘” over DC;, and the overall
latency for communicating with other VMs of U, such that
v my. € My,, m,. = 1and are in the feasible coahtlon Qu

4.3.3 Computation of the Pheromone Trail

Every ant contributes to the local pheromone trail as follows.
It updates the local pheromone for the incoming edge of a
vertex corresponding to the tuple (V;, DC;) by indicating its
contribution for visiting that node. Let w;. denote the local
pheromone evaporation rate. Then the local pheromone
f((svg) e for placing V;’ over DC; at iteration § is updated as

’(3);&1) DC]') + Mie X TO' (9)

Yo

t?VZ’,DCj) = (1 - /’LI(’,)T

Additionally, the global pheromone trail for every incoming
edge of the tuple (V;, DC;) is updated periodically, depend-
ing on the affinity of the previous solution towards a new
solution in every iteration §. Let S’ be the solution obtained
in iteration §, and u, be the evaporation rate of the global
pheromone. Then the global pheromone trail 7° is computed
as

T =(1—)T Ll : 1
T) A) o

Finally, the total pheromone contribution of an incoming
edge corresponding to the tuple (V;,DC;) at iteration § is
calculated as

T?v;,@g) = T?vg,pc]) +T". 11

4.3.4 An lterative Execution to Find Out the Optimal
Solution

The iterative execution of ACO for optimal coalition forma-
tion works as follows. Every iteration is considered as an ant
traversing from the start vertex to the end vertex by visiting a
path in the construction graph depending on the heuristic
information and pheromone trails across the edges of the path.
At the beginning of every iteration 8, the value of 77 (vo.pc;) 18
updated for every incoming edge corresponding to the tuple
(V,,DC;). Initiating from the start vertex, a path in the con-
struction graph is selected by every ant as follows. Consider
an ant already visited the tuple (V;, DC;). Next, the task is to
select DCy such that it can move from (V,,DC;) to
(Vy 1, DCy > indicating that the next VM Vy ',1 can be placed at

DCy. Let Q.- be the set of DCs where V‘”H can be placed

ensuring the constraint in Eq. (6d). DC; is selected based on
the following equation

arg maxpe,, cQ,,, . W if r<m
Dey = Any random DC , € va otherwise’ (12)
where W = ﬂanJijvL(l—ﬂ)xTw* 0 < B < land

0 <79 < 1aretwoh er—parameters, and ro9 is a random

number between 0 and 1. This introduces randomness in
every iteration so that the maximum solution paths are vis-
ited. The solution converges at iteration § when (7° — 7°7!) <
e where ¢ is a threshold indicating no significant change in the
global pheromone contribution in two successive iterations.
We obtain (near)-optimal service coalition once the ACO
terminates.

4.3.5 Working of Meta Heuristics Solution

To illustrate the working of the meta-heuristic ACO, we
refer to the traveling salesman problem (TSP), were given a
set of interconnected cities; a salesman needs to find the
shortest route visiting every city exactly once. As TSP is
polynomial-time unsolvable, Dorigo et al. [27] discussed an
ACO-based solution where artificial agents called ants
placed at a start city visit a new city (vertex in a graph) in
every iteration to build a global solution. While constructing
the solutions, artificial ants show cooperative behavior by
exchanging information via pheromone deposited on graph
edges. Analogous to the TSP and referring to the construc-
tion graph in Fig. 3, we describe the working of ACO as fol-
lows: (1) artificial ants are placed at the start vertex, (2) at
every iteration, each ant traverses a new vertex in the con-
struction graph proceeding towards the end vertex. Each
vertex traversed depicts an assignment of a VM of a multi-
tier application. (3) After repeated such traversals, as an ant
reaches the end vertex, it terminates its traversal. The nodes
traversed in the path of an ant denote a feasible allocation
for VMs of the multi-tier application. The detailed working
of ACO can be found in [27].

5 SERVICE COALITION SELECTION GAME

Once the price for the optimal service coalition is decided by
the SPs, the SP executes the service coalition selection game
to allocate the application requests among themselves. A
game-theoretic approach is used to obtain a stable allocation
avoiding the broker, so that the SPs are satisfied with their
respective allocations from which they have no incentive to
deviate. Consequently, our objective is to maximize the rev-
enue of the federation.

A game typically comprises of conceivable strategies of
each player and corresponding payoffs [28]. For an applica-
tion request to be placed in its own DCs, an SP can impose
some strategy. The more the number of applications an SP
can allocate, the more profit it can gain. CoOMCLOUD models
the service coalition selection game as a First Price Auc-
tion [29], [30]. The motivation behind a bidding-based allo-
cation even after the valuation of individual VMs is due to
the fact that it is arduous to determine the valuation for a
distributed allocation of a group of VMs across different
providers with variable pricing. Hence, a first price sealed
bid auction strategy finds the actual valuation of a given ser-
vice comprising a multi-tier application.

For every SP, the bid value is obtained from the most
optimal coalition Qu " and is decided by individual pro-
viders. Given First Price Auction, the set of bids from all
participating SPs are given by

= (@) (13)

(@), @]

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 963

5.1 Bidding Mechanism

The Service Coalition Selection Game must ensure that each
SP’s bids are kept secret from the other SPs. Even after the
completion of the auction, the bids should be kept secret
until the result is revealed. At the same time, the auction
result must be trusted and accepted by each of the partici-
pating SPs. In our CloudSim implementation for CoM-
CLOUD (see Section 7), this bidding process is carried out
by the CB as a trusted third-party auctioneer. However, to
further ensure the trustworthiness of the system, the entire
bidding mechanism in CoMCLOUD can be implemented in
a decentralized process without relying on any single
trusted entity such as the CB. Such distributed implementa-
tion of the bidding process will reduce dependency on the
CB while increasing democracy among SPs without affect-
ing the service coalition selection game. In Section 8 (Point
4), we discuss one such decentralized implementation based
on blockchain, using Hyperledger Fabric [31].

5.2 Payoff Calculation

Given the above (real) bid sequence in Eq. (13), let SP; be the
winner with its bid ‘I’(Qu "), which includes the cost for
placement of VMs and the proflt value for SP. Therefore, the
payoff is \I’(Qflf) (Q}Z), where Y(-) is the deployment
cost of SP; for placing U, application request in its DCs.
Formally,

Definition 2 (Payoff). The payoff function P; for the player SP;
in the game associated with first price auction can be defined as
P,(W) = {‘I’(szf’) — T(Qif‘) if i= argsmaz R4

0 otherwise

where 'V is the vector of bids.

If the following three conditions are satisfied, the service
coalition game with bids W attains Nash Equilibrium [32].

1) (QZP) < \P(QZP) i.e., no overbidding condition.

2) mingy, (@uq) > (Qu, ', ie. , sufficient high bid offered
by the winner.

3 Y@ SP') 7 min 4 (Qu "), i.e,, no more than one
player submitted the same bid as SB,.

Theorem 2. If the proposed game model with players’ valuation
(deployment cost) is T(Q{j?), then ¥ is always in Nash Equi-
librium (NE) iff ¥ i = argsmax V.

Proof.

1) If T(Qflp) > \If(Ql‘jp) then the payoff of player
SP;is negatlve as he bids more than his valuation,
and it can be increased to 0 if the bid of SP; is
T(Qf,f"). Hence, the player’s incentive is to reduce
his bid.

D) I ming, T(Q") > ¥(Qy,), then the player SP

> T(QZP') can be a wmner whose bid is in the

open interval (‘P(QM), (Qu ")), and conse-
quently his utility can be 1mpr0ved Hence, this sit-
uation incentivizes the players to deviate from
their b1d and disturbs the stablhty of the allocation,
3 If ‘I’(QM) > ming (Qu "), then the player SP,;

can bld with an 1ncrement in the open interval

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:

(maxy 'V (QZP'), (Qu). Hence, the players

have an incentive to deviate from their initial bid,

yet maximizing their utility (i.e., revenue).
Therefore, by contradiction, we have shown that ¥ is
not in NE if any of the above three conditions (1) to (3) is
violated. Let us now consider that if any bid ¥ holds all
three conditions, then player SP; is the winner with non-
negative payoff. On the other hand, the payoff of player
SPy is 0 iff he bids more but violates condition (2). There-
fore, his payoff must be negative and ¥ is in NE. 0

In a single broker multi-cloud SP scenario, the SPs, the
users and the broker have their own individual preferences.
The SPs want to host maximum number of applications,
thus resulting in the maximization of their profit while bal-
ancing the overall investment. We have assumed that there
is no overbidding condition. The users, on the other hand,
have different QoS and price specifications. All such prefer-
ences have an impact on the broker’'s own preferences,
which leads to the stable multi-cloud broker system and its
responses. The revenue earned by an SP by hosting certain
applications can be calculated as

Rev; = Y W(@)) - (14)

VZI,IE SP;

Q).

Here, Rev; denotes the overall revenue of SP; for hosting
many user application. In the context of CoMCLOUD, the
revenue earned by individual SPs is the cost of hosting a
given set of a multi-tier applications. The revenue is calcu-
lated by excluding a fixed deployment cost from the overall
cost of hosting such applications. The primary agenda of
CoMCLOUD is to maximize the individual profit of service
providers while respecting the latency constraints of the
multi-tier applications. Furthermore, the maximization of
social welfare of CoMCLOUD architecture implies maximi-
zation of overall revenue, which in turn depends on the reve-
nue generated by the individual SPs for a fixed deployment
cost (maintenance cost + operational cost). This is adequately
captured by Eq. (14).

It is well established that in a first-price auction of a sin-
gle item, a Nash Equilibrium is always efficient. Thus both
the Price of Anarchy (PoA) and the Price of Stability (PoS) are
always 1.

5.2.1 Working of Service Coalition Selection Game

The service coalition game outputs a sub-optimal assignment
for multi-tier applications over a Geo-distributed infrastruc-
ture. It proceeds as follows: (1) as soon as a multi-tier applica-
tion request arrives, it is broadcast to all the registered SPs.
(2) SPs having enough resources construct a sub-optimal allo-
cation plan for VMs that best suit the objectives. This optimal
solution (coalition of VMs) is obtained using ACO. (3) After
each SP obtains the allocation, it quotes its price as a bid to
the cloud broker. Note that the SPs distributively calculate
their prices. (4) Once a broker receives all price quotations, a
first price sealed bid auction is conducted by the broker. The
SPs that quotes the highest price emerges as the winner of the
auction. This implies the winner hosts that particular multi-
tier application. The remaining players wait for the next
application, and the entire process is repeated.

0:04 UTC from IEEE Xplore. Restrictions apply.

964 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

6 MIGRATION FOR MULTI-TIER APPLICATIONS

The VMs supporting multi-tier applications may become
overloaded due to the demand spikes or increased require-
ments [14] [33]. The SPs can respond to the demand spikes of
VMs in two ways, i.e., (1) horizontal scaling and (2) vertical
scaling. In the former strategy, more VMs are instantiated to
deal with the excess demand, whereas the latter scale up
resources of individual VMs facing additional demand. In
CoMCLOUD, we prefer to vertically scale the resources
owing to the following: (1) management of VMs is simpler,
(2) lower maintenance costs, (3) minimum/no changes to the
implementation, and (4) reduces communication dependen-
cies as less VMs are instantiated. However, in some situa-
tions, the servers hosting the VMs may not have the
resources to deal with excess demands, thereby requiring
relocating of VMs. VM migration provides with seamless
relocation of VMs, hence addressing this issue [34]. Migrat-
ing a VM involves copying the disk, the memory images,
and the CPU state; a live migration enables the VMs to con-
tinue execution during the migration process [35], [36].
Important parameters dictating the performance of any
migration technique are migration time and application down-
time [24]. The migration time refers to the total duration of
migration, while the downtime is when the running applica-
tion within the VM is suspended. In CoMCLOUD, we use
pre-copy-based live migration [37], in which the migration
time for a VM involves a disk copy phase followed by an iter-
ative memory-copy phase. The obvious option to reduce the
migration overheads is to conduct VM migrations in parallel.
Further, multi-tier applications cannot resume their normal
execution until all VMs have been successfully migrated.
Therefore, the migration strategy works in two phases: first,
we determine the most feasible path to conduct migration,
i.e., the one with the highest residual bandwidth; second, we
perform multiple such migrations.

The VM image is generally copied in a single round, and
the memory of the VMs is copied iteratively over several
rounds [38]. Egs. (15) and (16) denote the disk and memory
migration times, respectively. Let @ denote the set of all over-
loaded VMs in a multi-tier application, and let n,,,, indicate
the maximum number of pre-copy rounds. We also define
Vimi and V" as the image and memory of a VM V? to be
migrated. For simplicity of notations, we ignore the tier at
which the VM is operating as it has no relevance in the
migration process. Let £, denote the migration bandwidth
available for the VM V,,. Additionally, let dr, and V! respec-
tively refer to the ratio of dirtying rate to the transmission
rate and the memory threshold to stop the pre-copy rounds

.
T;,Lng = E—JL (]-5)
" Vz;,em 1— dr:itr(w)#—l
™ = ra T . (16)

The number of iterations n;,(x) for parallel migration of
a VM is derived as follows

nir(x) = min(ﬂogd,.w(vth "], nmax); 0 < dry < 1.

my m

1n)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on Septem

Hence, the total migration time for migrating all VMs in O is
defined as

T),, = max (T +T.). (18)

mig — mem
9 YVneo

The downtime of a single VM is the time taken by the stop-
and-copy phase of the memory pre-copy phase added with
an intrinsic delay T, taken to resume the execution at the
destination. Hence, the downtime for migrating a single
VM is calculated as

mem
™ _ Vm

down — ,Cf drzm(m) + T”"

(19)

Downtime for migrating VMs in the overloaded set is calcu-
lated as the difference between the downtime of the VM
that is last to complete its migration to the one suspended at
the very first. It is derived as follows:

max (T3 —T,). (20)

m) _ 7
down down
YWin €0

doum = Join (T
In CoMCLOUD, the VM migration works in the following
way. For an overloaded VM, V,,, we first try to assign the
additional resource on the same server where the VM was
initially assigned. If the initial server is incapable of provid-
ing additional resources, we migrate the VM to another
server that satisfies the updated resource demands. In order
to migrate V,,,, we determine a path pj, € py,,, where py,, is
the set of all possible end-to-end paths to migrate V,,. The
available end-to-end migration bandwidth can be computed
as follows:

L. = min (e,). (21)

eyezr{)m

Finally, we select the path with the highest available migra-
tion bandwidth, £, that is set as follows:

L, = max (L.). (22)

By, €Dy,

Since VMs of multi-tier applications experience demand
spikes, a parallel migration strategy enables COMCLOUD to
reconfigure the VMs with minimum service degradation by
reducing the migration time and the service downtime.

7 PERFORMANCE EVALUATION

We have implemented the CoMCLOUD architecture and
VM allocation strategy at the CB using CloudSim 3.0 simu-
lator [15]. The readers can find the source code for imple-
mentation at [39]. The details are presented in this section,
along with experimental results.

7.1 Simulation Environment
Table 3 summarizes the parameters used for simulation. As
mentioned in Section 1, we used four different VM instances
and their respective pricing models from Amazon EC2 [40],
Microsoft Azure [41], and Google Cloud [42]. Table 4 sum-
marizes the configurations used in our analysis.

The multi-tier applications are generated randomly as per
Table 6. For simulation, we have considered 3 SPs, each hav-
ing 4 DCs reg)resenting four different regions (see Table 1).

er 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 965

TABLE 3 TABLE 5
Simulation Parameters Host Configuration Used in Simulation
SI. No. Category Value MIPS Rating Pes RAM Disk Size VMM
1 Number of cloudlets 250 100000 16 32GB 1TB Xen
2 Cloudlet Length 40000 125000 16 32GB 800 TB Xen
2 Input File size 500 Bytes 135000 32 64 GB 1.5TB Xen
3 Output File Size 500 Bytes
4 Number of Hosts 500
5 Number of APPS 50 - 250
TABLE 6
Application Set Configuration Used in Simulation
TABLE 4 Application ID ty ty t3 ty
VM Type Configurations Used in Simulation [40], [41], [42] APP1 v X v v
APP2 X 4 v X
Sl. No. Category(VM) Core RAM(GB) APP3 v v X v
Microsoft Azure
1 t (A1) 1 2 modeling the arrival using a Poisson process is threefold
2 t2 (A2) 2 4 [24]: First, the multi-tier application requests generally
3 t3 (A3) 4 8 arrive one at a time. Second, the probability that a multi-tier
4 ta (A4) 8 16 application request arrives at any time is independent of
Amazon EC2 when other application requests come. Third, the likelihood
1 t; (Small) 1 2 that a multi-tier request arrives at a given time is indepen-
2 t; (Medium) 2 4 dent of the time. Moreover, these properties make Poisson
3 t3 (Large) 2 8 distribution an apt choice for modeling the arrival of multi-
4 ts X Large) 4 16 tier application requests [44]. The appearance of applica-
Google cloud tions at the broker closely resembles real-world setups such
1 ¢, (Standard-1) 1 3.75 as supermarkets, banks, telephone exchanges, customer ser-
2 t, (Standard-2) 2 75 vice call centers, and other retail establishments and are
3 t3 (Standard-4) 4 15 also modeled using Poisson distribution.
4 t4 (Standard-8) 8 30

Each DC has a fat-tree topology [24] generated using the
BRITE topology generator [43]. The Top of the Rack (ToR)
links (connecting the servers and switches) are set to be 1
Gbps links, and the switch to switch (both aggregate and
core) links are set to a capacity of 10 Gbps. The interconnect
links between different DCs are assumed to be high capacity
40 Gbps links. Each DC under an SP comprises 32 physical
servers. The physical servers are chosen randomly from a
pool of three configurations as shown in Table 5.

A multi-tier application request consists of multiple VM
instance types. The instance-wise composition of such
applications is neither made public by SPs nor is readily
available in the literature. Therefore, we consider applica-
tions as shown in Table 6 with different VM instances in our
simulation set up to approximate the real-world closely.
These VM instance configuration and pricing are according
to the real-world setting as defined in Tables 1 and 4 and
are made public by different SPs.

The dirty memory threshold for stopping the per-copy
iteration is set at 0.1 times the VM size. The ratio of dirtying
rate to the transmission rate, i.e., r of each VM, is generated
following a uniform distribution in the range of U [0,1]. The
maximum number of iterations n,., to prematurely stop
the pre-copy rounds is set to 8. The fraction of overloaded
VMs is set to 40% per application. Finally, we considered 50
to 250 applications at an interval of 50 per observation. We
also assume that the appearance of applications at the bro-
ker queue follows a Poisson distribution. The reason for

7.2 The Baseline Algorithms

To compare the performance of CoMCLOUD, we consider a
modified version of the heuristic-based algorithm due to Sun
et al. [24] (referred to as VDC(modi)) and Metwally et al. [1]
(referred to as Metwally) as baselines. The authors in [24]
aimed to reduce the virtual data center (VDC) re-embedding
cost considering the cost of hosting VMs on the servers and
virtual links over the substrate paths. For comparison, we
consider only the VM embedding cost while embedding the
VDCs, and ignore the virtual link mapping cost as a parame-
ter for evaluation. The remaining constraints on the virtual
links, such as the delay and capacity, are considered in our
mapping.

On the other hand, the authors in [1] aimed at maximizing
the revenue of geo-distributed DCs for hosting IaaS requests
(in the form of VDCs) using a double auction strategy. To
compare its performance with CoMCLOUD, we make slight
modifications to the proposal; similar to VDC(modi), we
ignore the virtual link mapping cost, and only focus on the
VM mapping. We consider each VM as an individual entity
in the auction and its bid corresponds directly to the number
of resources requested.

For comparative evaluation of our proposed CoM-
CLOUD approach against the baselines, the total cost and
average latency are considered as the performance metrics.

7.3 Experimental Results

The performance of CoOMCLOUD is evaluated from three dif-
ferent perspectives: (1) ability to schedule different multi-tier

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

966 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

-0~ SP1(CoMCLOUD)
1201 -3 spa(vDC(modi)) P 4

T SP1(Metwally) s NS
—A— SP2(COMCLOUD)
A~ SP2(VDC(modi))
A~ SP2(Metwally)
80 ~O- SP3(CoMCLOUD) A,

- SP3(VDC(modi))

O+ SP3(Metwally)

60

Applications Placed

0 50 100 150 200 250
Number of Applications processd

Fig. 4. Applications placed versus processed.

applications; (2) trade-off between the revenue and latency
incurred in hosting multiple applications; and (3) necessity
of parallel migration strategy under demand spikes and
increased resource demands.

7.3.1 CoMCLOUD Performances

Fig. 4 shows the relationship between the number of appli-
cations placed versus the number of applications processed
over the three SPs. It is observed from the plots that the
majority of applications are hosted at SP, and SP, for both
the baselines. This assignment can be attributed to the fact
that SP; and SP, charge were less for different VM instance
types as observed from Table 1. Though CoMCLOUD facili-
tates a more distributed placement of VMs, it generates a
higher aggregate revenue in comparison with the baselines
as can be inferred from Fig. 5a. However, the increased rev-
enue comes at the cost of a marginal increase in average
latency, as illustrated in Fig. 5b.

Moreover, Table 1 demonstrates that the difference in
price for the same VM instance type at different geographical
locations is less for SP; and SP, in comparison with SP,
implying a large number of applications is hosted at SP, and
SP;. However, for the VDC(modi) baseline approach, a
greedy selection of DCs based on a lower price, the DCs hav-
ing lower costs are filled up first for hosting different applica-
tions. On the other hand, the Metwally baseline shows
similar behavior as VDC(modi). This behavior is attributed
to the fact that users set their bids (assuming truthful bid-
ding) as per Table 1 and they get assigned to the DCs with
minimum cost till the capacity is not exhausted.

CoMCLOUD can achieve a more balanced placement of
applications. Table 8 shows the average utilization of resources
(CPU and memory) for four different DCs at each of the three
SPs. The utilization of resources is highlighted in Table 8. We

mE CoMCLOUD
1001] VDC(modi)
[Metwally

3501 —— CoMCLOUD
300{ —2— VDC(modi)
Metwally

Total Federation Revenue($)

150 200 250

50
50 100 150 200 250 o
Number of Applications processd

Applications processed

(a) (b)

Fig. 5. (a) Total revenue($) versus Applications processed; (b) Total aver-
age latency versus applications processed.

TABLE 7
Comparison With Optimal Solution
Total Revenue (3) Total Avg Latency (ms)
Applications 10 20 30 10 20 30
CoMCLOUD Optimal 6.14 1243 18.81 244 489 7.33
CoMCLOUD 414 713 1197 757 1537 21.72
VDC(modi) 188 356 581 189 379 6.17
Metwally 245 491 736 3.1 6.19 9.23

can observe that CoMCLOUD achieves a more load-balanced
placement as compared to the baseline algorithms, which suf-
fer in starvation (highlighted in red) during load distribution.
Finally, we also compare CoMCLOUD’s meta-heuristic
solution and other baseline algorithms with an exhaustive
search based optimal solution implementation of CoMCLOUD
(source code :[39]) for small test cases. The results in Table 7
depicts the total federation revenue, and total average latency
for hosting 10, 20, and 30 multi-tier application requests. CoM-
CLOUD achieves near-optimal revenue compared to all other
baseline techniques. However, considering the total average
latency CoMCLOUD suffers. This behavior is because for the
small test cases considered, both baseline algorithms, i.e.,
VDC(modi) and Metwally, place the VMs of multi-tier appli-
cations on the same DCs, leading to reduced communication
latency while hampering revenue. The difference between the
latency subsequently decreases for test cases with more appli-
cations as the DCs have limited resources, thereby forcing a
dispersed allocation, and this behavior is captured in Fig. 5b.

7.3.2 Revenue and Latency Trade-Off

Next, we analyze the revenue and the QoS (here, average
latency). The overall performance of CoMCLOUD in compari-
son with the baselines is displayed in Fig. 5. In particular,
Figs. 5a and 5b show the overall revenue and average latency
across the DCs for hosting 50-250 applications obtained by all
three SPs. We observe that the overall revenue is higher for the
proposed CoMCLOUD model, but the latency suffers slightly
as compared to the baselines. However, the latency increases
as the VMs are dispersed to minimize the aggregate cost. The
VDC(modi) and Metwally approach end up placing the VMs
on the same DCs. Thus, the aggregate latency remains lower
as compared to CoMCLOUD, similar to the baselines.

As discussed earlier, COMCLOUD maintains a trade-off
between the revenue and latency, providing a Pareto-opti-
mal solution. Figs. 6a and 6b are Pareto graphs for hosting
50 and 100 applications, respectively, on the cloud. It shows
the trade-off between the latency and revenue (aggregate
cost) incurred for hosting 50 and 150 applications.

Finally, we observe the rate of convergence of CoM-
CLOUD in Fig. 7, which shows the efficiency concerning the
number of iterations. Efficiency is calculated by combining
the effects of the cost and latency for placing 50, 150, and
250 applications. This combination is a linear summation of
the reciprocal of aggregate cost and aggregate latency for
hosting such applications. We observe from the plot that the
convergence rate of COMCLOUD is good, and it quickly con-
verges to an optimal solution (close to 375 iterations). More-
over, Figs. 4 and 5a demonstrate that although maximum
number of applications have been hosted on SP;, the

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS 967
TABLE 8
Utilization (%) in Different DCs
APPs DC1 DC2 DC3 DC4
Metwally [VDC(modi) | CoMCLOUD | Metwally | VDC(modi) | CoMCLOUD | Metwally | VDC(modi) | CoMCLOUD | Metwally | VDC(modi) | CoMCLOUD

SP1

50 92.66 98.37 21.34 54.59 55.33 19.74 9.66

100 89.37 97.88 3.58 69.37 96.36 30.86 57.36

150 94.33 99.12 51.56 87.39 98.56 48.36 84.14

200 93.58 98.65 79.89 91.25 98.77 75.68 88.7

250 95.46 99.1 88.25 93.66 96.11 78.36 88.9
SP2

50 36.55 16.35 11.25 14.56

100 18.36 26.57 10.32 25.66

150 38.369 96.38 28.65 33.78 23.54

200 47.19 97.21 32.35 26.36 98.36 28.36

250 96.53 98.67 90.6 90.16 97.78 80.7
SP3

aggregate revenue is actually less. It implies that maximum
VMs hosted on SP; incur a lesser cost.

7.3.3 Migration Performance

Figs. 8a and 8b show the migration time and downtime,
respectively, for migrating overloaded VMs for different
number of applications. We use serial and parallel migra-
tion strategies for VMs associated with a given application.
Migrating VMs implies finding a suitable path from the
source to the destination DC, shared by the migrating VMs
belonging to the same application. Serial migration means
each VM will individually get the total share of the residual
bandwidth for migration. In contrast, in parallel migration,
the residual bandwidth is shared among all migrating VMs
of the application. A parallel migration strategy is more
suitable for multi-tier applications as it incurs minimum ser-
vice disruption (in terms of downtime) [24].

025 sp1 0.035 —a SP1
@ —0— SP2 30'030 —— SP2
Eo2 —o— SP3 aE"I —o- SP3
g £ 0025
Eoaus = o2
5 2°
3010 @ 0015
2 I
8 3
O o0s 50010
So >
< < 0.005

0.00

01 02 03 04 05 06 07 08 09 005 010 015 020 025 030 035

Revenue (3$) Revenue ($)

(a) (b)

Fig. 6. (a) Average latency versus revenue for 50 apps; (b) Average
latency versus revenue for 100 apps.

—— 50 APPs
—— 150 APPs
—— 250 APPs

Efficiency

T T T T
200 300 400 500
Number of iterations

T
0 100 600

Fig. 7. Convergence rate.

It is observed from Fig. 8b that the average downtime is
high for serial migration due to fewer pre-copy iterations,
which is observed from Fig. 9. It leads to a higher amount of
memory copied in the stop-and-copy phase, increasing the
downtime. Furthermore, Fig. 8 exhibits that the increase in
the downtime for serial migration is so high that it nega-
tively impacts the average migration time.

8 DISCUSSION

It is evident that CoMCLOUD successfully implements all
key functionalities required in a broker-based multi-cloud
environment with some specialized features. In this section,
the salient features of the proposed CoMCLOUD architec-
ture are presented concisely.

(1) Reduced Dependency on CB. To maintain the trust, the
CB in CoMCLOUD does not actively take part in the
resource assignment. In contrast, in a typical broker-based
multi-cloud model, all placement decisions are taken by the
CB. In CoMCLOUD the CB only takes care of a few things
that include: maintaining log register for SPs, initiating
resource reservation process, and acting as a gateway for
in/out bound application requests.

(2) Geo-Separated VM Coalition. In contrast to traditional
broker based multi-cloud model, CoMCLOUD allows SPs to
form coalition to host inter dependent VMs for servicing a
multi-tier application request in a Geo-distributed setting.
Geo-separated DCs across the globe for an SP supports this
VM coalition. This unique feature of CoMCLOUD helps in
achieving a load-balanced architecture for an SP. This feature

2
3
3

3 Parallel
[Serial

M ke

100 150 200 250
Number of Applications Number of Applications

(a) (b)

Fig. 8. (a) Migration time for migrating different number of applications;
(b) Downtime for migrating different number of applications.

3 Parallel
[Serial

1441

100 150 200 250

1000

2 o 0w
g &8 &8
AVG Downtime (Sec)

AVG Migration Time (Sec)
N
3
8

el el

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

968 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

7 =3 Parallel |
| 3 serial

AVG No of iterations
o N W B U O N ®

:

50 100 150 200 250
Number of Applications

Fig. 9. Number of iterations for different number of applications.

also prevents a single point failure for a multi-tier applica-
tion requests.

(3) Democracy of SPs. In CoMCLOUD, as dependency on CB
is reduced, democracy among SPs is increased. The SPs can
independently calculate the VM coalition price, and placement
decisions are at the SP’s disposal. Each SP can use meta-heuris-
tics based on ACO based on its parameter setting for this opti-
mal decision. After deciding the optimal price and coalition,
each SP can participate in a first-price sealed-bid auction game
with their strategy (cost) to maximize their payoff.

(4) Decentralized Bidding Mechanism. Towards eliminating
centralization and dependence on CB, a blockchain-based
decentralized bidding mechanism can be implemented for the
Service Coalition Selection Game. Blockchain-based techniques
are effective in designing decentralized cloud federations [45],
where the individual SPs carry out the placement decisions
through smart contracts. The entire auction process of the Ser-
vice Coalition Selection Game in CoMCLOUD can be carried
over a blockchain network, in two phases: sealed bidding phase,
and revealing phase through smart contracts as follows.

In the sealed bidding phase, each participating SP; submits

its bid to the blockchain by submitting only the signed crypto-
graphic hash of its actual bid value. Therefore, SP; submits
< Hash(‘l’(@f,a)) > 5gp, Where Hash(.) denotes the crypto-
graphic hash function and <.>g4, denotes the message
signed by the private key of SP,. Once committed, this signed
hash cannot be changed due to the immutable property of the
blockchain distributed ledger. By using cryptographic hash
functions to hash the bids, we can ensure that the actual bid
cannot be determined by any other SPs within the limited
duration of the bidding phase. On the other hand, committing
the bids on the blockchain ensures that these are public to all
the participants and cannot be changed in future. Lastly, the
signature is required for authentication and non-repudiation.

In the revealing phase, each SP,; reveals its bid by posting
the actual bid value <‘I’(QZ§’))>ogp, on the blockchain. This

bid is only valid if its hash matches the hash of the bid
posted in the bidding phase. Thus, as all the SPs reveal their
bids, each participant can determine the auction winner
individually and then come to a consensus on the same. If
some SP refuses to reveal its actual bid, it is simply ignored,
implying it cannot be the winner.

The SP that bids the highest wins the auction and hosts the
multi-tier application. The entire bidding mechanism can
be implemented as a permissioned blockchain using smart
contracts. Since the system is a closed one comprising only SPs
in a federation, a permissioned blockchain is preferred as it
offers higher throughput and lower transaction commitment

latency [46]. The bidding protocol can be implemented using
Hyperledger Fabric platform [31] with chaincodes (smart con-
tracts) for (i.) initializing an auction, (ii.) bidding on an existing
auction, (iii.) revealing bids, (iv.) computing validating results
of an auction. Every auction, when initiated, will have its initia-
tion time and auction duration (a fixed parameter) within which
all bids have to be placed. All transactions (i.e., initiate, bid,
reveal) will go through Hyperledger Fabric’s endorsement
policy-based consensus protocol having endorsements of the
majority of the participants in a federation. This ensures the
immutable property of the blockchain, which is essential for
the bidding mechanism.

(56) Migration to Handle a Sudden Load Spikes. As all coali-
tions in CoMCLOUD host multiple dependent VMs which
are often exposed to demand spikes, hardware failures etc.
Therefore in any such scenario a migration protocol is put
in place that help is seamless movement of a VM from one
server/DC to another server/DC within a SP. These move-
ments can have deleterious impacts on the service availabil-
ity, hence a live migration based parallel migration is used
in CoMCLOUD, to reduce migration overheads and provide
services with minimal interruption.

(6) Performance Comparison. To sum up, we discuss the per-
formance of CoMCLOUD against the baselines considering
CPU and memory intensiveness. With regards to CPU usage,
Sun et al. [24] consumes the maximum CPU as it performs
exhaustive comparisons. However, comparing CoMCLOUD
and Metwally et al. [1], CoMCLOUD consumes more CPU
resources as its based on ACO meta-heuristic which involves
more computations in comparison to the double auction
game. Considering memory usage the relationship is similar
as the approach of Sun et al. involves the exhaustive storage
of all solutions, which are later compared to obtain the best
solution. In CoMCLOUD, we use a separate construction
graph that adds to the memory used. CoMCLOUD consumes
more CPU and memory resources in comparison to Met-
wally et al. [1]. Although CoMCLOUD performs better than
Metwally et al. considering revenue but suffers from higher
latency in hosting multi-tier applications.

(7) Asymptotic Analysis. Here, we discuss the asymptotic
bounds of techniques used for comparison.

(i.) CoMCLOUD: The running time of CoMCLOUD com-
prises the meta-heuristic ant-colony-optimization (ACO) local
to individual SPs followed by a centralized bidding process at
the broker. Computing the asymptotic time complexity of
ACO is extremely challenging and is still an open problem as
shown by the findings of [47] [48]. Although efforts have been
made to estimate the time complexity of ACO, they roughly
approximate the behavior of ACO and are not applicable for
all scenarios. Moreover, different variants of ACO adds to the
complexity of such analysis. The closest finding that resem-
bles the overall working of the ACO meta-heuristic in CoM-
CLOUD is provided by [49]. The time complexity of ACO is
dependent on the number of iterations executed to reach a
sub-optimal solution. It is computed to be in the O(J mn® *
logn)), where p is the evaporation rate, n and m are the num-
ber of vertices and edges of a directed-cyclic graph (DAG)
[49]. Note that we exclude the impact of the heuristic infor-
mation in the analysis as it makes it even more challenging.
Considering CoMCLOUD, the overall problem of placing a
multi-tier apglication is represented in the form of a DAG

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

ADDYA ET AL.: COMCLOUD: VIRTUAL MACHINE COALITION FOR MULTI-TIER APPLICATIONS OVER MULTI-CLOUD ENVIRONMENTS

G (N L) (refer to Fig. 3 at Page-6). The number of ver-
tices of G is computed to be p * ¢ + 2, where p is the average
number of data centers (DCs) at a service provider (SP), and ¢
is the average number of virtual machines (VMs) correspond-
ing to a multi-tier application. Two additional vertices are
added depicting the start and endpoints. The number of edges
at the first level and the last level connecting the start vertex
and end vertex is p, whereas, at the intermediate levels, the
number of links at each level is p>. Hence, the total number of
edges in the graphis 2p + (¢ — 1)p*. Therefore, the total time in
reaching a sub-optimal assignment for a multi-tier application
given the eligibility of / SPs to host the given application is O(1 *
% *2p+ (¢ — 1)p? * (qp)2 x log(gp)). Therefore, for n number of
multi-tier applications the total asymptotic time complexity of
ACO is O(n * I * % % 2p + (¢ — 1)p? * (qv)** log(qp)). Followed
by ACO, a first-price-sealed bid auction is conducted in O(n)
time. Therefore, the overall time complexity of CoMCLOUD is
O(n * Ix L 2p + (q — 1)p? * (qp)” * log(gp)) + O(n)

(ii.) Metwally et al. [1]: The asymptotic time complexity is
O(nx k) + O(n), where n is the total number of multi-tier
applications and & is the number of SPs. The first term depicts
the time complexity of performing a match between the appli-
cation and the regional coordinator (RC) using a double auc-
tion. The second term depicts the time incurred in matching
rejected applications from the first step using a single auction.

(iii.) VDC (modi) [24]: Tt has a time complexity O(n * k!),
where n is the number of multi-tier applications and k is the
number of DCs. The mapping procedure for each multi-tier
application consumes O(k!), as it exhaustively selects the
least cost mapping by considering all possible mapping of
VMs onto DCs.

9 CONCLUSION

In this paper, we proposed a framework called CoMCLOUD
for multi-tier VM placements in a multi-cloud federation.
Each eligible SP locally computes the most optimal coalition
of VMs using an ant colony optimization (ACO) meta-heu-
ristic that optimizes two distinct user-centric parameters,
i.e., hosting cost and inter-VM communication latency. Sim-
ulation results demonstrate that the proposed approach can
generate higher federation revenue and achieve a decent
trade-off between the cost of hosting an application and its
QoS in terms of latency. Additionally in CoMCLOUD, we
implemented a parallel migration strategy to migrate over-
loaded VMs of multi-tier applications with minimum impact
on the services in terms of degradation time.

As a future work, we plan to extend the model to host
multi-tier applications in a federated SP environment. More-
over, to eliminate the pitfalls of a centralized bidding archi-
tecture, we also aim to extend the bidding model to a
decentralized blockchain-based secure framework.

REFERENCES

[11 K. Metwally, A. Jarray, and A. Karmouch, “A distributed auction-
based framework for scalable IaaS provisioning in geo-data cen-
ters,” IEEE Trans. Cloud Comput., vol. 8, no. 3, pp. 647-659, Third
Quarter 2018.

[2] M. Tortonesi and L. Foschini, “Business-driven service placement
for highly dynamic and distributed cloud systems,” IEEE Trans.
Cloud Comput., vol. 6, no. 4, pp. 977-990, Fourth Quarter 2018.

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

969

A. Amokrane, R. Langar, M. F. Zhani, R. Boutaba, and G. Pujolle,
“Greenslater: On satisfying green SLAs in distributed clouds,” IEEE
Trans. Netw. Service Manag., vol. 12, no. 3, pp. 363-376, Sep. 2015.
Onapp-Federation. Accessed: Aug. 4, 2021. [Online]. Available:
https:/ /onapp.com/federation

N. Samaan, “A novel economic sharing model in a federation of
selfish cloud providers,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 1, pp. 12-21, Jan. 2014.

L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in
the sky: Formation game and mechanism,” IEEE Trans. Cloud
Comput., vol. 3,no. 1, pp- 14-27, First Quarter 2015.

H.Li, C. Wu, Z. Li, and F. C. M. Lau, “Virtual machine trading in a
federation of clouds: Individual profit and social welfare maxi-
mization,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1827-1840,
Jun. 2016.

L. Mashayekhy, M. M. Nejad, and D. Grosu, “A trust-aware mech-
anism for cloud federation formation,” IEEE Trans. Cloud Comput.,
2019, doi: 10.1109/TCC.2019.2911831.

U. Ahmed, I. Raza, and S. A. Hussain, “Trust evaluation in cross-
cloud federation: Survey and requirement analysis,” ACM Com-
put. Surv., vol. 52, no. 1, 2019, Art. no. 19.

Arjuna’s Agility framework. Accessed: Aug. 4, 2021. [Online].
Available: http:/ /www.arjuna.com/federation

J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for
cloud brokers in cloud computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 1, pp. 190-203, Jan. 2018.

H. Liu and B. He, “VMbuddies: Coordinating live migration of
multi-tier applications in cloud environments,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 26, no. 4, pp. 1192-1205, Apr. 2015.

A. Atrey, G. V. Seghbroeck, H. Mora, F. D. Turck, and B. Volck-
aert, “SpeCH: A scalable framework for data placement of data-
intensive services in geo-distributed clouds,” J. Netw. Comput.
Appl., vol. 142, pp. 1-14, 2019.

V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu,
and S. Banerjee, “Application-aware virtual machine migration
in data centers,” in Proc. IEEE INFOCOM, 2011, pp. 66-70.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw. Pract. Experience, vol. 41, no. 1, pp. 23-50,
Jan. 2011.

S. K. Addya, A. Satpathy, S. Chakraborty, and S. K. Ghosh,
“Optimal VM coalition for multi-tier applications over multi-
cloud broker environments,” in Proc. 11th Int. Conf. Commun. Syst.
Netw., 2019, pp. 141-148.

K. Konstanteli, T. Cucinotta, K. Psychas, and T. A. Varvarigou,
“Elastic admission control for federated cloud services,” IEEE Trans.
Cloud Comput., vol. 2, no. 3, pp. 348-361, Third Quarter 2014.

A. Rubio-Montero, E. Huedo, and R. Mayo-Garcia, “Scheduling
multiple virtual environments in cloud federations for distributed
calculations,” Future Gener. Comput. Syst., vol. 74, pp. 90-103, 2016.
P. S. Pillai and S. Rao, “Resource allocation in cloud computing
using the uncertainty principle of game theory,” IEEE Syst. J.,
vol. 10, no. 2, pp. 637-648, Jun. 2016.

A. Quarati, A. Clematis, A. Galizia, and D. D’Agostino, “Hybrid
clouds brokering: Business opportunities, QoS and energy-saving
issues,” Simul. Model. Pract. Theory, vol. 39, pp. 121-134, 2013.

S. Nesmachnow, S. Iturriaga, and B. Dorronsoro, “Efficient heuris-
tics for profit optimization of virtual cloud brokers,” IEEE Comput.
Intell. Mag., vol. 10, no. 1, pp. 3343, Feb. 2015.

F. Larumbe and B. Sanso, “Green cloud broker: On-line dynamic
virtual machine placement across multiple cloud providers,” in
Proc. 5th IEEE Int. Conf. Cloud Netw., 2016, pp. 119-125.

J. Panneerselvam, L. Liu, N. Antonopoulos, and Y. Bo, “Workload
analysis for the scope of user demand prediction model evalua-
tions in cloud environments,” in Proc. IEEE/ACM 7th Int. Conf.
Utility Cloud Comput., 2014, pp. 883-889.

G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration
for multiple correlated virtual machines in cloud-based data
centers,” IEEE Trans. Services Comput., vol. 11, no. 2, pp. 279-291,
Mar./Apr. 2018.

J. N. Khasnabish, M. F. Mithani, and S. Rao, “Tier-centric resource
allocation in multi-tier cloud systems,” IEEE Trans. Cloud Comput.,
vol. 5, no. 3, pp. 576-589, Third Quarter 2017.

“Bin-Packing,” Comb. Optim.: Theory Algorithms, Berlin, Heidel-
berg: Springer, 2006, pp. 426—441. [Online]. Available: https://
doi.org/10.1007 /3-540-29297-7_18, doi: 10.1007 /3-540-29297-7_18.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

970

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]
[43]
[44]

[45]

[46]

[471

[48]

[49]

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:30:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimiza-
tion by a colony of cooperating agents,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 26, no. 1, pp. 29-41, Feb. 1996.

R. Gibbons, “A primer in game theory,” Birmingham, U.K.: Har-
vester Wheatsheaf, 1992.

C. A. Holt Jr, “Competitive bidding for contracts under alternative
auction procedures,” J. Political Economy, vol. 88, no. 3, pp. 433-445,
1980.

K. R. Apt, “A primer on strategic games,” CoRR, 2011. [Online].
Available: http:/ /arxiv.org/abs/1102.0203

E. Androulaki et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proc. 13th EuroSys
Conf., 2018, pp. 1-15. [Online]. Available: https:/ /doi.org/10.1145/
3190508.3190538

K. R. Apt. Lecture notes: Strategic games. Accessed: Aug. 4, 2021.
[Online]. Available: https:/ /homepages.cwi.nl/~apt/stra/

Y.S. Patel, A. Page, M. Nagdev, A. Choubey, R. Misra, and S. K. Das,
“On demand clock synchronization for live VM migration in dis-
tributed cloud data centers,” J. Parallel Distrib. Comput., vol. 138,
pp- 15-31, 2020.

W. Zhang, S. Han, H. He, and H. Chen, “Network-aware virtual
machine migration in an overcommitted cloud,” Future Gener.
Comput. Syst., vol. 76, pp. 428-442, 2017.

U. Mandal, P. Chowdhury, M. Tornatore, C. U. Martel, and B.
Mukherjee, “Bandwidth provisioning for virtual machine migra-
tion in cloud: Strategy and application,” IEEE Trans. Cloud Com-
put., vol. 6, no. 4, pp. 967-976, Fourth Quarter 2018.

H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” IEEE Trans. Cloud Com-
put., vol. 7, no. 4, pp. 1168-1182, Fourth Quarter 2018.

F. Callegati and W. Cerroni, “Live migration of virtualized edge
networks: Analytical modeling and performance evaluation,” in
Proc. IEEE SDN Future Netw. Services, 2013, pp. 1-6.

M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba,
“CQNCR: Optimal VM migration planning in cloud data centers,”
in Proc. IFIP Netw. Conf., 2014, pp. 1-9.

Comcloud source code. Accessed: Aug. 4, 2021. [Online]. Avail-
able: https://github.com/souravaddya/CoMCLOUD

Amazon EC2, VM Configuration and Pricing. Sep. 2018. [Online].
Available: https:/ /aws.amazon.com/ec2/pricing/on-demand /
Microsoft Azure, VM Configuration and Pricing, Sep. 2018.
[Online]. Available: https:/ /azure.microsoft.com/en-in/pricing/
details/virtual-machines/linux/

Google cloud, VM Configuration and Pricing, Sep. 2018. [Online].
Available: https://cloud.google.com/compute/pricing

Accessed: Aug. 4, 2021. [Online]. Available: https://www.cs.bu.
edu/brite/

J. Sztrik et al., “Basic queueing theory,” Univ. Debrecen, Fac. Inform.,
vol. 193, pp. 6067, 2012.

B. C. Ghosh, T. Bhartia, S. K. Addya, and S. Chakraborty, “Leveraging
public-private blockchain interoperability for closed consortium inter-
facing,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1-10.

S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong,
“Performance analysis of private blockchain platforms in varying
workloads,” in Proc. 26th Int. Conf. Comput. Commun. Netw, 2017,
pp. 1-6.

F. Neumann and C. Witt, “Runtime analysis of a simple ant col-
ony optimization algorithm,” in Proc. Int. Symp. Algorithms Com-
put., 2006, pp. 618-627.

Y. Zhou, “Runtime analysis of an ant colony optimization algo-
rithm for tsp instances,” IEEE Trans. Evol. Comput., vol. 13, no. 5,
pp- 1083-1092, Oct. 2009.

N. Attiratanasunthron and J. Fakcharoenphol, “A running time anal-
ysis of an ant colony optimization algorithm for shortest paths in
directed acyclic graphs,” Inf. Process. Lett., vol. 105, no. 3, pp. 88-92,
2008.

Sourav Kanti Addya (Senior Member, |EEE)
received the PhD degree in CSE from NIT Rourkela,
India and worked as a postdoctoral fellow with the
Department of CSE, IIT Kharagpur, India. He is cur-
rently an assistant professor with the Department of
CSE, NITK Surathkal, India. His research interests
include Cloud System, Serverless computing, 10T,
Blockchain. He is a Member of the ACM.

.

sively in these areas. He is the editor-in-chief or Elsevier’'s Pervasive and
Mobile Computing journal, and associate editor of IEEE Transactions on
Mobile Computing, IEEE Transactions on Dependable and Secure Com-
puting, and ACM Transactions on Sensor Networks, among others.

Anurag Satpathy (Member, |IEEE) received the
BTech degree in information technology from HIT
Bhubaneswar, India, in 2014, and MTech degree
in CSE from BIT Mesra, Ranchi, India, in 2017.
He is currently a research scholar with the
Department of Computer Science and Engineer-
ing, NIT Rourkela, India. His research interests
includes cloud computing, Internet of Things, and
distributed systems.

Bishakh Chandra Ghosh (Student Member,
IEEE) received the BTech degree in information
technology from NIT Durgapur, India. He is a doc-
toral research student in CSE at IIT Kharagpur.
His research interests includes cloud computing,
blockchain and distributed systems.

Sandip Chakraborty (Member, IEEE) received
the PhD degree in CSE from IIT Guwahati. Cur-
rently, he is an associate professor in CSE with
IIT Kharagpur. He is working as an area editor of
Elsevier's Ad Hoc Networks and Pervasive and
Mobile Computing journals. His research inter-
ests include the intersections of computer sys-
tems, distributed systems and human conputer
interaction.

Soumya K. Ghosh (Senior Member, IEEE)
received the PhD degree in CSE from the IIT,
Kharagpur. Currently, he is currently a professor
with the Department of CSE, IIT Kharagpur. Prior
to joining IIT Kharagpur, he was at the ISRO in
the area of satellite remote sensing and GIS. His
research interests include cloud computing, spa-
tial data science, and loT.

Sajal K. Das (Fellow, IEEE) is currently a profes-
sor of computer science and daniel st. clair
endowed chair with the Missouri University of Sci-
ence and Technology, Rolla. His research inter-
ests include wireless and sensor networks,
mobile and pervasive computing, cyber-physical
systems and loT, smart environments (smart city,
smary grid, smart health, smart agriculture), par-
allel and cloud computing, mobile crowdsensing,
cybersecurity, biological and social networks, and
applied game theory. He has published exten-

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

