
Efficient Route Selection for Drone-based Delivery

Under Time-varying Dynamics

Arindam Khanda∗, Federico Corò∗, Francesco Betti Sorbelli†, Cristina M. Pinotti†, and Sajal K. Das∗

∗ Department of Computer Science, Missouri University of Science and Technology, USA
† Department of Computer Science and Mathematics, University of Perugia, Italy

Email: ∗{akkcm, federico.coro, sdas}@mst.edu, †{francesco.bettisorbelli, cristina.pinotti}@unipg.it

Abstract—The use of drones can be a valuable solution for
the problem of delivering goods for many reasons. In fact, they
can be efficiently employed in time-critical situations when there
is a traffic jam on the roads, to serve customers in hard-to-
reach places, or simply to expand the business. However, due to
limited battery capacities and the fact that drones can serve a
single customer at a time, a drone-based delivery system (DBDS)
aims to minimize the drones’ energy usage for completing a route
from the depot to the customer and go back to the depot for new
deliveries. In general, the shortest delivery route could not be the
optimal choice since external factors like the wind (which varies
with time) can affect energy consumption. Previous work has
mainly considered simplified DBDSs assuming architectures with
a single drone and with static costs on paths. Moreover, in these
non-centralized architectures, the drones themselves compute the
routes on the fly employing their onboard processing resources,
making this choice costly. In this paper we develop a centralized
system for computing energy-efficient time-varying routes for
drones in a multi-depot multi-drone delivery system. Specifically,
we propose a novel centralized parallel algorithm called Parallel
Shortest Route Update (PSRU) that, over time, updates the
drones’ delivery routes avoiding the whole recomputation from
scratch. A comprehensive evaluation proves that PSRU is up to
4.5x faster than the state-of-the-art algorithms.

Index Terms—Drone, Dynamic graph, Parallel algorithm, GPU

I. INTRODUCTION

Due to their versatility, Unmanned Aerial Vehicles (UAVs),

or simply drones, can be efficiently used in a wide variety

of applications including, but not limited to, surveillance

service [1], localization [2], monitoring [3], precision agri-

culture [4], search and rescue [5]. Recently, this growing

interest is particularly emphasized in the context of drone-

based delivery systems (DBDSs) [6], [7]. With the usage of

UAVs, a delivery system can be more effective and efficient

due to various advantages of UAVs such as their capability to

deliver in hard-to-reach places or to overcome possible traffic

jam congestion on roads. Compared with the traditional truck-

based delivery system, drones are faster as they can fly over

small buildings and directly fly on straight lines shortening the

traveled distance, and can easily traverse difficult terrain. On

the other hand, there are several challenges to be addressed

while relying on a DBDS, summarized as follows:

• Energy constraints: Drones are powered by limited ca-

pacity batteries whose energy consumption depends on

the delivery route for performing a complete back and

forth from the depot to the customers. Also, such energy

requirement for a fixed route is not generally constant and

changes due to various external dynamics like wind [8].

• Payload constraints: Drones have a maximum payload

mass when carrying packages to customers. The con-

sumed energy for delivering also depends on the actual

payload. Moreover, due to technical constraints, a drone

can deliver a single package at a time [9].

• Limited communication range: Drones have limited com-

munication range which in turn impacts the maximum

distance that they can go from the depot [10].

• Limited computation resource: For reducing the total

mass, drones have limited onboard computation resources

which heavily affects their capabilities in performing

local high-demanding tasks [10].

In a DBDS, the delivery cost can be expressed in different

metrics like distance to travel, time of flight, or energy con-

sumed, which basically are sides of the same coin. However, in

this paper, we take into consideration the energy consumption

when computing efficient routes. In the real world, the drone’s

energy consumed not only depends on static parameters such

as the drone’s speed and mass but also depends on external

dynamics like the current global wind [11]. Indeed, a tailwind

can help a drone to fly through the air since it guarantees

less energy to cut the air, whereas a headwind increases its

energy usage [12]. Notice that, the wind characteristics like

strength and direction can dynamically change over time.

Therefore, given a drone’s route, the actual energy usage can

be different from the expected one since the delivery route

comprises time-varying paths which in turn depend on various

time-dependent variables. Moreover, the delivery drones are

potentially small flying devices with limited computational

resources. Thus assigning additional burdens (e.g., locally

computing dynamic routes on the fly) can eventually speed up

their energy consumption reducing the total flight autonomy.

The DBDS can be abstracted using a graph whose vertices

are the locations (depots, customers), and the edges, which

are also labeled with a cost (weight) in terms of energy,

are the connections among locations. When dealing with

dynamic costs on edges, the DBDS can be modeled using

temporal graphs whose edges’ weights change from time to

time [6], while the set of vertices remains untouched. In order

to analyze temporal graphs, traditional methods work with

several snapshots of the temporal graph taken at different

437

2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

978-1-6654-4935-9/21/$31.00 ©2021 IEEE
DOI 10.1109/MASS52906.2021.00061

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

time instances, and then invoke classical algorithms for static

graphs (e.g., shortest path) on them. However, if at any sub-

sequent snapshot it would be possible to exploit the previous

graph properties (history) for computing routes, the required

resources can be significantly reduced in terms of both space

and time [13], [14]. In this paper, we devise a centralized

DBDS that relies on a novel parallel algorithm called Parallel

Shortest Route Update (PSRU) for efficiently computing time-

varying delivery routes in a multi-depot multi-drone delivery

model. Such computations are done by a centralized server

and selectively sent to the proper delivery drones.

The major contributions of this paper are as follows.

• We devise a centralized DBDS which is in charge of

efficiently computing the delivery routes for drones when

external dynamics affect the drone’s energy consumption.

These routes are then transferred to the drones.

• We propose a novel parallel algorithm called PSRU to

determine the shortest delivery route in temporal graphs.

• We implement PSRU using NVIDIA GPU architecture

and prove its efficacy and efficiency by comparing it with

state-of-the-art techniques.

The paper is organized as follows. Section II reviews related

work and Section III describes the DBDS model. Section IV

proposes our novel approach to efficient route selection. Sec-

tion V designs a parallel algorithm for DBDS while Section VI

evaluates the performance. Section VII offers conclusions.

II. RELATED WORK

In this section we propose current techniques in a DBDS

scenario. First, we discuss various dynamics that can affect the

cost of flying, and then we argue about the existing algorithms

for choosing the shortest routes for delivery.

A. Dynamics Affecting Drone-based Delivery

In [6], the Mission-Feasibility Problem is investigated for

a DBDS in varying global wind conditions. One offline and

two online algorithms are proposed for finding energy-efficient

routes. The offline one, performed by the server, considers

the initial graph snapshot when computing the Single Source

Shortest Path (SSSP); while the online ones, locally computed

by the drones, consider the dynamicity of the graph recom-

puting the delivery routes from scratch.

The cost of performing deliveries using drones in an energy-

constrained scenario not only depends on the global wind but

also on other parameters like the drone’s speed, altitude, and

payload that can affect the energy consumption [15], [16].

The problem of supplying multiple relief packages using a

fleet of identical drones in a disaster scenario is considered

in [17]. The proposed solution is not very restrictive about

energy constraints and considers additional recharge stations

on the route, allowing drones to recharge their batteries.

The mission planning problems for drones under weather

uncertainty are studied in [8]. The mathematical formulation

considers the demand of goods at the delivery point, collision

avoidance, and customer satisfaction along with factors like

wind conditions and ground speed of the drones. In [7],

the authors deal with the problem of finding a suitable

depot’s location in a mixed landscape scenario (formed by

two contiguous areas, each with a different metric), aimed

at minimizing the overall drone’s delivery distance from the

depot and all possible customers in the area. For a more

general approach, see [18].

B. Algorithms for Finding Delivery Paths

The success of the DBDS depends on the considered system

model and the algorithms for calculating the delivery routes. In

an energy-constrained scenario, the delivery cost is considered

to be the energy required to deliver a package from the depot

to the customer and, go back. Therefore, this routing problem

can be easily converted into multiple instances of SSSP in

which a drone serves a single customer at a time, and the

weights of the routes are the costs in terms of energy.

A high-performance graph library, Gunrock [19], provides

a data-centric abstraction on a set of vertices or edges pro-

viding a three-step architecture (advance, filter, and compute)

to compute SSSP on GPUs. However, their algorithm only

focuses on static graphs. In [20], a GPU implementation of

the Bellman-Ford shortest path algorithm is proposed. This

algorithm exploits dynamic parallelism, a feature of modern

Kepler GPU. A detailed study on the performance of various

algorithms on graphs including SSSP on temporal graphs,

different multi-core architectures, and GPU accelerators, is

proposed in [21]. A dynamic incremental and decremental

SSSP algorithm is implemented using JavaScript in [22].

However, the results in this paper show that the algorithm

performs well only if the number of changed edges is less

than 10%. A parallel algorithm template for updating SSSP

in large-scale dynamic networks is proposed in [23]. This

paper deals with generic undirected graphs and empirically

shows good scalability. The authors claim that the template

is computing-architecture independent, and they also provide

two implementations, one for shared memory, and another for

NVIDIA GPU architecture. The proposed algorithm first finds

the affected subgraph due to change in the network and then

updates the shortest distance of the affected vertices. In this

paper, we adopt a similar approach for updating the shortest

delivery route for our DBDS in time-varying dynamics.

In a recent work in [24] the authors implement the Bellman-

Ford algorithm using parallel hypergraph algorithms, while

others [25] provide two implementations of ∆–stepping al-

gorithm on static graphs in shared multi-core memory archi-

tecture. A shared-memory-based amorphous data-parallelism

programming model, Galois [26], provides an implementation

of Dijkstra’s algorithm. It supports priority scheduling and

processes on active elements comprised of a subset of vertices.

In a distributed platform, a software named Havoqgt [27]

can compute SSSP. Both Galois and Havoqgt do not have

any support for dynamic networks. Srinivasan et al. [28]

propose the first shared-memory algorithm for updating SSSP

on dynamic networks, and implemented it using OpenMP.

A Spark-based implementation to update SSSP on dynamic

networks is reported in [29].

438

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

III. SYSTEM MODEL

In this paper, we consider a DBDS that includes multi-

ple depots each capable of simultaneously serving multiple

customers with the help of multiple drones. The objective

is to efficiently determine the minimum drone’s energy cost

routes in order to increase the total number of successful

deliveries. Specifically, we aim to find a suitable route for

drones that start from the depot, go up to the customers,

and then return to the depot. The cost of such routes also

depends on external dynamics, and drones need to recompute

their routes accordingly. However, when pursuing this goal,

we consider drones with minimal computation power. For

this goal, we develop a centralized system for all drones

associated with many depots to dynamically compute (and

quickly recompute) minimum cost delivery routes, where the

drone’s energy consumption on the edges is time-dependent.

Fig. 1. A DBDS scenario where multiple drones are delivering items from
multiple depots. WCUs are measuring the time varying dynamics and sending
data to a central server, which is analyzing the data and controlling every
delivery by sending instructions to drones.

As said before, the DBDS can be influenced by external

factors like the global wind, which in turn affects the actual

drone’s energy consumption. When the energy consumption

changes, the drone’s routes also vary accordingly, and so the

system should be efficient in recalculating these routes. An

illustration of our proposed DBDS is depicted in Figure 1. In

this multi-depot multi-drone system, the Wind Control Units

(WCUs) are capable to measure wind characteristics (i.e.,

strength and direction) to be periodically sent to the centralized

server for further analysis. With the help of these data, the

server performs some analysis in order to find the updated

drones’ routes which are then sent to them when they are

currently performing a delivery task. So, instead of relying

on the onboard drone’s computation, this model delegates

the computational tasks to the central server. Also, the last-

mile deliveries associated with many depots can be planned,

monitored, and efficiently executed from a centralized vertex.

Assumptions: In our proposed model, the following assump-

tions are taken into account: (i) All delivery orders and

customer locations are known in advance; (ii) All possible

paths between a depot and a customer are known; (iii) All

drones are identical; (iv) A drone is assumed to serve a single

customer at a time as it can carry a single item due to the

payload constraints; (v) A drone returns back to its starting

depot after the delivery is performed; (vi) All drones are fully

charged when they start for their deliveries and can recharge

or swap a new battery only after returning to the depot.

A. Dynamic Graph Model

We can consider the entire DBDS as a dynamic graph whose

topology remains the same while the weight of the edges

changes over time. Let G = (V,E; t, ωt) be a graph where

V = V D ∪ V W ∪ V C is the set of vertices and V D, V W ,

and V C denote the set of depots, WCUs, and customers,

respectively; E is the set of directed edges among pair of

vertices; t ≥ 0 is the discrete current time instance; and

ωt : E → R
+ is a temporal weight function that associates

edges (u, v) ∈ E with a drone’s cost in terms of energy

required ωt(u, v) for flying from vertex u to vertex v at time

t. Notice that G is not a complete graph as there can be no

flying path available between two vertices due to obstructions

or flying restrictions. The traveling cost is time-dependent as

it depends on several time-varying dynamics including wind

characteristics, flying restrictions, and drone-flying parameters,

as already discussed in Section II-A.

The energy required for a trip from a depot vertex u ∈
V D to a customer vertex v ∈ V C is equal to the sum of

all edges’ weights on the path from u to v, plus the costs

from v to u for going back to the depot. As the total mass

(drone itself plus its payload) affects the energy usage, under

the same flight conditions, and the hypothesis of no wind,

the drone requires more energy to fly from the depot to the

customer (with payload) than from the customer to the depot

(without payload). Therefore, let GF be the forward graph

whose edges’ weights denote the cost of flying when a payload

is present, and similarly, let GR be the return graph whose

edges’ weights denote the cost of flying without a payload.

GF is used to find a route from the depot to the customers,

and similarly, GR is considered to find the return route from

the customers to the depot. We assume that the total number of

depots is fixed, and each of them has a fixed number of drones.

So, it is possible to generate delivery graphs GF and GR where

only the customers’ vertices and the associated edges change

depending on the customers’ location. Let wi ∈ V D be the

vertex that represents the ith depot in the area with 1 ≤ i ≤ k,

where k is the total number of depots. Since we assume that

two depots are geographically far enough, each depot can be

considered independent from the others and, therefore, also

439

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

the customers to be served. Therefore, for each depot i we

define a subgraph Gi ⊆ G such that G1 ∪ . . . ∪ Gk = G
and Gi ∩ Gj = ∅, for i 	= j. Moreover, for each Gi ⊆ G
there are mi drones for performing deliveries from wi. Let

Πi = {π1
i , . . . , π

mi

i } be the set of actual drones that fly in Gi.

IV. DELIVERY GRAPH BASED ROUTE SELECTION

In this section, we propose the PreProcessing (PP) algorithm

(sketched in Algorithm 1) that creates the initial single source

delivery graphs GF and GR so that the SSSP update algorithm

can be efficiently applied in the following.

A. Initial Delivery Graph Preparation

Since by design our algorithm makes changes to the edges

of already visited vertices, possible conflicts (on routes) be-

tween different drones can arise. To avoid overlapping routes,

we replicate the graph Gi for mi times, and considering these

as separate graphs G1
i , . . . , G

mi

i , where each of them can

be used by a single drone to serve a single customer at a

time. Analogously, for each jth copy of Gi, i.e., Gj
i , we also

consider its duplicated depot vertex wj
i , with 1 ≤ j ≤ mi.

Moreover, after this duplication, a graph Gj
i can be only used

by drone πj
i in our algorithm. As each of these graphs can

serve only a single customer at a time, the algorithm adds a

dummy customer vertex γj
i in each of these graphs. Finally,

GF is prepared by considering a dummy source vertex s, and

connecting it to all the depot vertices wj
i with an edge with

weight zero. Similarly, GR is prepared by considering another

dummy source vertex sR, and connecting it to all the dummy

customer vertices γj
i with edge weight zero. Hence, GF and

GR become single-sourced (s and sR, respectively), but they

are not connected yet as the actual edges related to customer

vertices are not known at this stage.

B. Customer Dependent Delivery Graph

The number of actual customers and their locations (at ver-

tices) vary depending on the delivery order. The preprocessing

algorithm generates the actual delivery graphs by modifying

GF and GR while considering the delivery order. For each

Gi ⊆ G there are zi customers to be served by the drones.

Let Ci = {c1i , . . . , c
zi
i } be the set of actual customer vertices

to be served from depot wi such that the customer cxi is

served before the customer cyi , with x < y. At any time

instance, a depot wi has the capacity to serve mi customers,

since mi is the number of available drones in Gi. Therefore,

the algorithm first selects mi customer vertices from Ci and

replaces the dummy customer vertices in GF and GR by the

actual customers. All the associated edges of the customer

vertices are also added in both GF and GR. Now, GF and

GR become single source connected graphs. After this first

delivery graph generation, the rest of the customers can be

later accommodated in the graph when some drone becomes

available after the first round of deliveries (e.g., a customer cji
with j > mi). The edge weights of the initial delivery graphs

are assigned depending on the considered system model and

the value of associated time-varying factors at the initial time.

Algorithm 1: PreProcessing

1 Initialize GF and GR with a single vertex s and sR, resp.
2 for i ∈ 1, . . . , k do
3 for j ∈ 1, . . . ,mi do

4 Duplicate Gi creating G
j
i whose depot is w

j
i

5 Add γ
j
i in G

j
i

6 GF ← GF ∪G
j
i

7 Add edge (s, wj
i) in GF with 0 weight

8 GR ← GR ∪G
j
i

9 Add edge (sR, γj
i) in GR with 0 weight

10 for i ∈ 1, . . . , k do
11 for j ∈ 1, . . . , zi do

12 Wait for a drone and assign it to customer c
j
i

13 In both GF and GR, γ
j
i ← c

j
i

14 Add associated edges of c
j
i in both GF and GR

15 SSSP(GF , s)

C. Initial Shortest Delivery Route Computation

In the delivery graph GF the drones start their deliveries

from the depot, and the objective is to find all the shortest

routes from such depot to the customers at the initial time.

We can use any state-of-the-art parallel SSSP algorithm for

computing the initial shortest routes from a source s to all

customers. Since the weights of all the edges from s to any

other depot vertex are zero, the shortest route from s to cji
always goes through wj

i , and the path is actually the shortest

path from wj
i to cji .

Example: In Figure 2a, we show how the DBDS introduced in

Figure 1, can be modeled as a connected single-source delivery

graph GF . In that graph, the yellow vertex s is the dummy

source vertex, the blue vertices are the depots, and the green

vertices are the customers. It can be observed that Depot 1

has two drones, and hence there are two copies related to this

depot, while Depot 2 has only a single drone, and hence there

is no replication. Only the customer vertices and their related

edges are different in these subgraphs. Interestingly, the initial

shortest delivery routes are shown with red color.

V. THE NOVEL PSRU ALGORITHM

In this section, we propose a novel algorithm called Parallel

Shortest Route Update (PSRU) for updating SSSP in parallel

for DBDS under time-varying dynamics.

We avoid recomputing the delivery routes from scratch, and

we also store the last SSSP information in a tree structure

named SSSP tree similar to the approach proposed by Khanda

et al. in [23]. Here, the SSSP tree is rooted at the source vertex

that maintains i) the shortest distance of every vertex from the

source, and ii) a parent-child relationship among vertices.

Given the graph G = (V,E; t, ωt), let Tt be the SSSP tree

of G at time t (e.g., Figure 3b shows an SSSP tree of the

graph shown in Figure 3a). Let ∆Et be the set of changed

edges from time steps t−1 to t due to time-varying dynamics

reported by the WCUs. ∆Et consists of both the set of inserted

edges It and deleted edges Dt which have been changed from

440

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

(a) Graph model related to DBDS. Dummy vertex
s is added to make the graph single source.

(b) A wrong approach. (c) Right approach.

Fig. 2. Effect of drone’s location on shortest delivery route: the drone π1

2
moves from w1

2
to v1

2,1 at time t − 1 (b)–(c), and Dt =

{(v1
1,2, v

1

1,3, 2), (v
2

1,2, v
2

1,3, 2), (w
1

2
, v1

2,2, 4), (v
1

2,1, v
1

2,4, 5)}, It = {(v1
1,2, v

1

1,3, 5), (v
2

1,2, v
2

1,3, 5), (w
1

2
, v1

2,2, 1), (v
1

2,1, v
1

2,4, 3)}.

time steps t− 1 to t, such that ∆Et = It ∪Dt. Generally, in

dynamic graphs edges between vertices can be added, changed

(weight), and deleted. For simplicity, in PSRU, we only focus

on edge addition and deletion since a change of weight can

be done by combining a deletion first and addition then. The

objective is to efficiently find the shortest delivery routes by

computing the SSSP tree Tt at time t based on the structure

and edge weights of the previous SSSP tree Tt−1 and ∆Et.

Data Structures: We build the SSSP tree by storing the parent

of each vertex in a vector P , and the shortest distance of each

vertex from the source in a vector D. Moreover, for additional

information about vertices, we use three more vectors of length

|V |, specifically, τ which captures whether a vertex is already

traversed by a drone or not, αD which captures whether a

vertex has been affected due to deletion, and αC which checks

whether a vertex has been affected by any changed edge.

In the following, we discuss the details of the PSRU

algorithm which can be used for both GF and GR to efficiently

find the updated shortest routes. To keep the simplicity of the

notations, we use only G in PSRU.

A. Proposed Parallel Shortest Route Update Algorithm

The PSRU algorithm (sketched in Algorithm 2) consists of

three steps that are detailed in the following.

Step 1 – Preparation of effective changed edges: After the

preprocessing phase is performed, the changed edges only

consider the time-varying dynamics sensed and reported by

the WCUs. However, also the current drone’s location can

significantly impact the shortest delivery routes. Hence, if an

SSSP is computed without considering the drone’s location,

erroneous results can be provided. For instance, an erroneous

SSSP update (just by considering ∆E) is shown in Figure 2b.

Here, the updated SSSP does not go through the vertex v12,1

which is the current location of the drone π1
2 , and therefore the

shortest delivery route for such a drone cannot be provided.

Hence, we have to add a few constraints in order to ensure that

the updated SSSP also considers the drone’s current location.

Notice that we do not use each drone’s location as source

vertex for computing SSSP because PSRU uses the same

single-source delivery graph structure for all the deliveries to

compute the shortest route in parallel.

This first step prepares the effective set of changed edges

∆Ē = D̄t ∪ Īt. If a drone moves from u to v at time t− 1, or

reaches v at time t, then the algorithm changes the weight

of the edge (u, v) to 0, and sets the weight of the other

outgoing edges (u, n) to +∞ for each n ∈ Adj(u), n 	= v,

in order to enforce the updated SSSP to visit v. Particularly,

the edge (u, v) is added in Īt, and all the edges (u, n) are

added in D̄t for deletion (Lines 5–7). Figure 2c illustrates how

these restrictions can help to find the correct updated shortest

delivery route. It can be observed that, due to the enforced

restrictions, a changed edge (u, v) ∈ ∆E can impact the SSSP

tree only when no endpoint of this edge is already traversed.

Therefore, the algorithm finds out the effective edges from ∆E
which can impact the SSSP adding them in ∆Ē (Lines 8–11).

Step 2 – Identification of affected subgraphs: In this step,

the affected edges are parallelly processed evaluating first the

edges in D̄t (also for identifying the affected vertices for

deletion), and second the edges in Īt.
Processing of D̄t: For each directed edge (u, v) ∈ D̄t, the

algorithm first checks if this edge was part of Tt−1, since

a non-SSSP tree edge deletion does not affect the shortest

distance of any vertex, and hence this kind of edges require

no further processing. Therefore, if the edge (u, v) belongs to

Tt−1, only the shortest distance of v can be affected since u
is the parent of v, and (u, v) is a directed edge. The algorithm

441

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An example of updating SSSP tree.

then sets D[v] ← ∞ and P[v] ← ∅, making the vertex v,

now disconnected from the parent tree. To indicate that v is

affected by deletion, αD[v] and αC [v] are changed to true
(Line 17), and the weight of the edge (u, v) is updated to ∞ in

the updated delivery graph (Line 27). Since v is disconnected,

also the subtree rooted at v will be disconnected. Therefore,

the algorithm updates the distance of the vertices descendant

from v to ∞ and sets αC to true for each of them (Line 23).

Processing of Īt: The insertion of an edge (u, v) ∈ Īt can

affect the SSSP tree only when D[v] > D[u] + ωt(u, v). If

such an edge (u, v) satisfies this condition, D[v] is updated

to D[u] + ωt(u, v), P[v] is updated to u, and αC [v] is set to

Algorithm 2: Parallel Shortest Route Update

1 Step 1 effectiveCE(G, Tt−1, ∆Et, τ):
2 foreach drone πi parallelly do
3 if πi travels from u to v at t− 1 then
4 τ [u] ← true

5 Add (u, v) in Īt with weight 0 for insertion
6 for each neighbor n of u and n �= v do

7 Add (u, n) in D̄t with weight ωt−1(u, n)
for edge deletion

8 foreach edge (u, v) ∈ It parallelly do

9 if τ [u] �= true∧ τ [v] �= true then Add (u, y) in Īt

10 foreach edge (u, v) ∈ Dt parallelly do

11 if τ [u] �= true∧ τ [v] �= true then Add (u,v) in D̄t

12 ∆Ēt ← D̄t ∪ Īt
13 return ∆Ēt

14 Step 2 findAffected(G, Tt−1, ∆Ēt, P , D):

15 foreach edge (u, v) ∈ D̄t parallelly do
16 if (u, v) ∈ Tt−1 then
17 D[v] ← ∞,P[v] ← ∅, αD[v] = αC [v] ← true

18 Change weight of (u, v) to ∞ in G

19 while αD has true values do
20 foreach vertex v∈V s.t. αD[v]= true parallelly do
21 αD[v] ← false
22 forall vertex c, where c is child of v in Tt−1 do
23 D[c]←∞,P[c]←∅, αD[c]= αC [c]← true

24 foreach edge (u, v) ∈ Īt parallelly do
25 if D[v] > D[u] + ωt(u, v) then
26 D[v]←D[u]+ωt(u, v),P[v] ← u, αC [v] ← true

27 Change weight of (u, v) to ωt(u, v) in G

28 return αC

29 Step 3 updateAffected(G, Tt−1, D, P , αC):
30 while αC has true values do
31 foreach vertex v ∈ V s.t. αC [v]= true parallelly do
32 αC [v] ← false
33 for edge (v, n), with n ∈ V, (v, n) ∈ E do
34 if D[n] > D[v] + ωt(v, n) then
35 D[n] ← D[v] + ωt(v, n)
36 P[n] ← v; αC [n] ← true

37 for edge (n, v), with n ∈ V, (n, v) ∈ E do
38 if D[v] > D[n] + ωt(n, v) then
39 D[v] ← D[n] + ωt(n, v)
40 P[v] ← n; αC [v] ← true

true to indicate that the vertex v is affected (Line 26). For

each edge (u, v) ∈ Īt, the weight is changed to ωt(u, v) in G.

Therefore, at the end of Step 2, G becomes (E ∪ Īt) \ D̄t.

Step 3 – Update on affected subgraph: The last step per-

forms a visit of all the affected vertices for both deletion and

insertion marked by αC and updates their shortest distances

as well. For each marked vertex v and its outgoing edges

(v, n), if the distance D[n] is shortened by visiting v, then

the distance of n is updated to D[v] + ωt(v, n). Also P[n] is

set to v. On the other hand, i.e., if D[v] > D[n] + ωt(n, v),

442

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

then D[v] is updated, and P[v] is updated to n as well. The

algorithm then iteratively proceeds tending at decreasing the

distance of the vertices. Hence, the process always converges

and occurs when there is no vertex left whose distance can be

updated. Eventually, the algorithm returns an updated SSSP

tree Tt after Step 3.

The PSRU adapts the SSSP update algorithm (proposed

in [23]) for individual drones. Therefore, the correctness of

the SSSP update algorithm on the graph related to each drone

(starting at the drone’s current location) is preserved. For our

DBDS, multiple SSSP starting at the drone’s current location

are connected using directed edges with weight zero coming

from dummy source vertex. Therefore correctness is preserved

cumulatively for the whole system.

Example: Figure 3 illustrates an example of SSSP update

relatively to the subgraph identified by the vertices s, w1
2 ,

v12,1, . . . , v
1
2,4, and c12 in Figure 2a (which came from Depot 2

of Figure 1). The effective set of change edges ∆Ē is prepared

using Dt and It mentioned in Figure 2 and by considering

that the drone π1
2 has recently moved from vertex w1

2 to v12,1.

For simplicity, in this illustration, we only show a part of

the whole delivery graph. The D values are shown in red,

while the affected vertices at each step are shown in light red.

Figures 3(c–g) show the steps of the PSRU algorithm.

B. Complexity and Speedup Analysis

This section analyzes the computational complexity and

speedup of our parallel algorithm.

Theorem 1. For p number of processing units and d di-

ameter of the graph, the time complexity of PSRU is Tp =
O (|∆E|/p) +O (dχδavg/p+ d).

Proof. For Step 1, each changed edge can be processed in

parallel requiring O(|∆E|/p) time. For Step 2, each changed

edge in D̄t and Īt is processed in parallel taking O(|∆Ē|/p) ≈
O(|∆E|/p) time. For disconnecting the descendants of the

deletion affected vertices, in each iteration, the algorithm

visits the neighbors of each affected vertex, and only if a

neighbor is the child of an affected vertex, the neighbor is

disconnected and marked as affected. Therefore, the work at

this stage is proportional to the degree of affected vertices. If

χD vertices are affected by processing edge deletion and δavg
is the average degree of vertices, then the time required for

each iteration is O(χDδavg/p) and the maximum number of

iterations required is the diameter of the graph d. Hence, the

time complexity for Step 2 is O(dχDδavg/p+ d), where the

last term d comes from the fact that at least constant time has

to be paid for each iteration.

Similar to the last part of Step 2, in Step 3 the algorithm

visits the neighbors of the affected vertices in each iteration

and marks a new set of vertices as affected after updating

their distance. Therefore, similarly to Step 2 time complexity,

the total time required for Step 3 will be O(dχδavg/p + d)
where χ is considered as the number of affected vertices

(sum of both deletion affected and insertion affected) at each

iteration in Step 3. Therefore, overall time complexity of

the algorithm is Tp = O (|∆E|/p) + O (dχDδavg/p+ d) +
O (dχδavg/p+ d) ≈ O (|∆E|/p) +O (dχδavg/p+ d).

Space Complexity: The preprocessing phase duplicates the

graph Gi, related to a depot wi, into mi copies requiring

O(mi(|Vi| + |Ei|)) space, where Vi and Ei are the sets of

vertices and edges in Gi, respectively. However, our main

algorithm works on SSSP trees processing edges only when

these actually belong to an SSSP tree. Therefore, instead of

relying on copies of graphs, it is enough to duplicate for

mi times only the initial SSSP tree associated with Gi and

store the adjacency list of Gi only once. Therefore, the space

requirement related to a single depot is O((mi + 1)|Vi| +
|Ei|) = O(mi|Vi| + |Ei|). Overall space requirement will

consider the graphs related to all k depots and it will be sum

over i of O(mi|Vi|+ |Ei|).
For instance, let T j

i be an SSSP tree associated with Gi and

drone πj
i . Notice that, the adjacency list of Gi becomes shared

with all SSSP trees T j
i , where j = 1, . . . ,mi. Hence, we

cannot directly change the weight of an edge to 0 if traversed

by a drone in Gi. To work around this issue, we need to follow

the below steps:

(i) An already traversed edge should be updated with weight

0 directly in the related SSSP tree, without updating it in

Gi. For example, if a drone πj
i moves from u to v in Gi,

ω(u, v) = 0 in T j
i while no change is required in Gi.

(ii) A new Boolean array τ ji is required to track if a vertex

in Gi is traversed by πj
i . Here τ = ∪k

i=1 ∪
mi

j=1 τ
j
i .

(iii) Insertion/deletion or usage of an edge (x, y) in the

algorithm should be avoided for a specific SSSP tree T j
i if

any endpoint of this edge is already traversed by πj
i . For

instance, deletion/insertion of edge (u, n) ∈ ∆E should

be avoided in T j
i if τ ji [u] is true. However, this edge

addition/deletion should be updated in Gi.

Speedup: The speedup is defined as the ratio between the

time TA,1 of a sequential algorithm A and the time TA,p of

the same algorithm performed in parallel with p processors.

Therefore, in our case speedup can be written as:

Sp =
O(|∆E|) +O(dχδavg + d)

O(|∆E|
p

) +O(
dχδavg

p
+ d)

(1)

This equation indicates that the speedup becomes optimal if
|∆E|+(dχδavg)

p
dominates the diameter d, which means number

of changed edges |∆E|+ dχδavg is at least dp.

We note that the computational complexity and the speedup

of our algorithm depend on the diameter d of the graph. In

this regard, since our approach can be applied to any delivery

network, we may consider random graphs and give a few

examples of bounds. In the case of Barabàsi and Albert process

in which vertices are sequentially added to the graph with

a probability proportional to its degree, it was proven that

d = logn
log logn

[30]. In the case of sparse random graph, in which

vertices are added to the graph with a given fixed probability

ρ, then d = logn
log(nρ) [31].

443

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE EVALUATION

We implemented our PSRU algorithm using NVIDIA

CUDA C++ language and evaluated its performance on an

NVIDIA Tesla V100 GPU (80 streaming multiprocessors)

with 32GB memory whose host processor is a Dual 32 core

AMD EPYC 7452. In this massively parallel GPU architecture,

we use 1024 Compute Unified Device Architecture (CUDA)

threads per thread-block. In our implementation, we assign

each changed edge to each thread, and for iterative operations

on affected vertices, we assign each of them to a thread.

To evaluate the performance of PSRU in terms of execution

time and scalabilty, we consider several networks (datasets).

Networks are reported in Table I showing also their number

of vertices and edges. We decided to use these datasets to

consider scenarios when a large delivery company uses our

algorithm, on a centralized server, to calculate all the possible

deliveries in the area. In this scenario, it is reasonable to

consider millions of changes to the weights of the edges due

to the meteorological change. Therefore, is important to have

algorithms to be able to calculate online, and therefore quickly,

the possible paths of all drones.

To prove the efficacy of PSRU, we compare it against, to

the best of our knowledge, the fastest parallel algorithm in the

literature. This compared GPU-based algorithm is an imple-

mentation provided by the Gunrock [19] library. Differently

from us, Gunrock computes from scratch the graph updates

after every change.

TABLE I
USED NETWORKS FOR COMPARING THE ALGORITHMS.

Network Name Alias Ref Num. of Vertices Num. of Edges

roadNet-PA DS3 [32] 1,087,562 1,541,514

graph500-scale23-ef16 DS4 [32] 4,606,315 258,503,995

RMAT24 G DS5 [33] 16,777,215 134,511,383

A. Execution Time Comparison

In Figure 4, we start evaluating the performance of PSRU on

a realistic dataset (DT3, see Table I) considered as a delivery

graph. To inject dynamicity in the graph, we randomly insert

and delete edges as a batch of edge updates. In this time-

varying graph, we find out the shortest paths from the source

vertex 0 and record the execution time for performing the

updates for each batch of changes.

In order to understand the goodness of our technique, we

consider different mixes of edge deletions and insertions. If a

batch of edge updates has a total of changed edges ∆E, we

vary the percentage of edge deletions (25%, 50%, and 75%)

of the total ∆E. Specifically, we have three possible combina-

tions, i.e., more insertions (25%), more deletions (75%), and

perfectly balanced (50%). In the evaluation, we vary the total

number of changed edges from 10,000 to 100,000 and use the

three aforementioned edge deletions percentages. The number

of iterations in Step 2 and Step 3 of PSRU depends on the

location of the change in the graph, and the total execution

time depends on the total number of affected vertices. As we

generate the changed edges randomly, the execution time in

our evaluation is dependent on the graph topology, and the

batch of changed edges. Finally, each scenario is run five times

and the average is taken.

In Figure 4a, we report the execution time of PSRU applied

on DS3. In general, the time required for updating all the

edges is approximately 100ms on average. In particular, one

can observe the small increase of time when the number

of changed edges increases. In Figure 4b, we compare the

performance among PSRU and Gunrock. Specifically, we

report the ratio of the execution time taken by Gunrock divided

by PSRU. We highlight that our implementation outperforms

that of Gunrock since this ratio is always larger than 1.0 (the

average ratio is 2), which means that PSRU is faster than

Gunrock in terms of execution time.

(a) Execution time. (b) Execution time ratio.

Fig. 4. Performance analysis on DS3. (a) execution time of PSRU on different
batches, and (b) execution time ratio among PSRU and Gunrock.

B. Scalability Comparison

To evaluate the scalability of PSRU, we use two large scale

graphs as input (DS4 and DS5, see Table I). Here, we vary

the size of the batches considering 50 and 100 million change

edges. As before, we balance the percentage of deletions and

insertions using the same percentages.

(a) Execution time (b) Execution time ratio

Fig. 5. Execution time and performance comparison for large scale graphs
when ∆E = 50, 100 millions.

Figure 5 shows the performance on large-scale instances.

Figure 5a highlights the execution time of PSRU showing

that the maximum reported execution time is about 1.2s even

when the input is very large. Interestingly, even though the

DS5 graph has more vertices than DS4, the execution time

of DS4 is larger than the DS5 since the DS4 graph is denser

than the DS5 graph in terms of edges. Finally, we compare

the execution time ratio among PSRU and Gunrock. Overall,

PSRU outperforms Gunrock (up to 4.5×) on large instances.

444

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

In this paper, we devise a centralized DBDS for a multi-

drone multi-depot architecture, and present PSRU, a parallel

shortest delivery route update algorithm for efficiently comput-

ing the drones’ delivery routes under time-varying dynamics,

such as wind. We implement our proposed algorithm on

GPUs and comprehensively test its performance on large-

scale inputs for evaluating the execution time and scalability.

The performance of PSRU outperforms the state-of-the-art

implementation provided by Gunrock. In future work, we

would like to change the system model allowing drones to

start and finish missions to different depots. It would be also

interesting to investigate the presence of rechargeable stations

inside the delivery area in order to prolong the lifetime of

drones, especially in case of unexpected battery drainage.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CNS-

1818942, OAC-1725755, OAC-2104078, and SCC-1952045;

and also partially supported by ”HALY-ID” project funded by

the European Union’s Horizon 2020 under grant agreement

ICT-AGRI-FOOD no. 862665, no. 862671, and from MIPAAF.

REFERENCES

[1] I. Bisio, C. Garibotto, F. Lavagetto et al., “Blind detection: Advanced
techniques for wifi-based drone surveillance,” IEEE Trans. on Vehicular

Technology, vol. 68, no. 1, pp. 938–946, 2018.

[2] F. Betti Sorbelli, C. M. Pinotti, S. Silvestri, and S. K. Das, “Measurement
errors in range-based localization algorithms for UAVs: Analysis and
experimentation,” IEEE Trans. on Mobile Computing, to appear, 2021.

[3] A. Khochare, Y. Simmhan, F. B. Sorbelli, and S. K. Das, “Heuristic
algorithms for co-scheduling of edge analytics and routes for UAV fleet
missions,” in IEEE INFOCOM, 2021.

[4] D. Murugan, A. Garg, and D. Singh, “Development of an adaptive
approach for precision agriculture monitoring with drone and satellite
data,” IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 10, no. 12, pp. 5322–5328, 2017.

[5] T. Calamoneri and F. Corò, “A realistic model for rescue operations
after an earthquake,” in 16th ACM Symposium on QoS and Security for

Wireless and Mobile Networks, 2020, pp. 123–126.

[6] F. B. Sorbelli, F. Corò, S. K. Das, and C. M. Pinotti, “Energy-constrained
delivery of goods with drones under varying wind conditions,” IEEE

Transactions on Intelligent Transportation Systems, to appear, 2021.

[7] L. Bartoli, F. B. Sorbelli, F. Corò, C. M. Pinotti, and A. Shende,
“Exact and approximate drone warehouse for a mixed landscape de-
livery system,” in IEEE International Conference on Smart Computing

(SMARTCOMP), 2019, pp. 266–273.

[8] A. Thibbotuwawa, G. Bocewicz, P. Nielsen, and B. Z., “Planning deliv-
eries with UAV routing under weather forecast and energy consumption
constraints,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 820–825, 2019.

[9] S. Sawadsitang, D. Niyato, P. S. Tan, P. Wang, and S. Nutanong, “Multi-
objective optimization for drone delivery,” in IEEE 90th Vehicular

Technology Conference (VTC2019-Fall), 2019, pp. 1–5.

[10] W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen, “Drone assisted
vehicular networks: Architecture, challenges and opportunities,” IEEE

Network, vol. 32, no. 3, pp. 130–137, 2018.

[11] M.-h. Hwang, H.-R. Cha, and S. Y. Jung, “Practical endurance estimation
for minimizing energy consumption of multirotor unmanned aerial
vehicles,” Energies, vol. 11, no. 9, p. 2221, 2018.

[12] T. Nguyen and T. Au, “Extending range of delivery drones by ex-
ploratory learning of energy models.” in AAMAS, 2017, pp. 1658–1660.

[13] S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick, “A
shared-memory parallel algorithm for updating single-source shortest
paths in large dynamic networks,” in IEEE 25th International Confer-

ence on High Performance Computing, 2018, pp. 245–254.

[14] S. Srinivasan, S. Pollard, S. K. Das, B. Norris, and S. Bhowmick, “A
shared-memory algorithm for updating tree-based properties of large
dynamic networks,” IEEE Transactions on Big Data, to appear, 2021.

[15] C. Di Franco and G. Buttazzo, “Energy-aware coverage path planning
of uavs,” in IEEE Int Conf on Autonomous Robot Systems and Compe-

titions, 2015, pp. 111–117.
[16] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle

routing problems for drone delivery,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70–85, 2016.
[17] B. Rabta, C. Wankmüller, and G. Reiner, “A drone fleet model for last-

mile distribution in disaster relief operations,” International Journal of

Disaster Risk Reduction, vol. 28, pp. 107–112, 2018.
[18] F. Betti Sorbelli, F. Corò, C. M. Pinotti, and A. Shende, “Automated

picking system employing a drone,” in 15th IEEE Int. Conf. on Dis-

tributed Computing in Sensor Systems (DCOSS), 2019, pp. 633–640.
[19] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,

“Gunrock: A high-performance graph processing library on the gpu,” in
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2016, pp. 1–12.
[20] F. Busato and N. Bombieri, “An efficient implementation of the bellman-

ford algorithm for kepler gpu architectures,” IEEE Trans. Parallel and

Distributed Systems, vol. 27, no. 8, pp. 2222–2233, 2015.
[21] A. Rehman, M. Ahmad, and O. Khan, “Exploring accelerator and paral-

lel graph algorithmic choices for temporal graphs,” in 11th International

Workshop on Programming Models and Applications for Multicores and

Manycores, 2020, pp. 1–10.
[22] A. Ingole and R. Nasre, “Dynamic shortest paths using javascript

on GPUs,” in IEEE 22nd Int Conf on High-Performance Computing

(HiPC), 2015, pp. 1–5.
[23] A. Khanda, S. Srinivasan, S. Bhowmick, B. Norris, and S. K. Das,

“A parallel algorithm template for updating single-source shortest paths
in large-scale dynamic networks,” IEEE Transactions on Parallel and

Distributed Systems, 2021.
[24] J. Shun, “Practical parallel hypergraph algorithms,” in 25th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 232–249.

[25] E. Duriakova, D. Ajwani, and N. Hurley, “Engineering a parallel δ-
stepping algorithm,” in IEEE Int. Conf. on Big Data, 2019, pp. 609–616.

[26] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in 24th ACM Symposium on Operating Systems

Principles, 2013, pp. 456–471.
[27] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of

scale free graphs at extreme scale with vertex delegates,” in Int. Conf.

for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 549–559.

[28] S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick, “A
shared-memory parallel algorithm for updating single-source shortest
paths in large dynamic networks,” in 25th IEEE Int. Conf. on High

Performance Computing (HiPC), 2018, pp. 245–254.
[29] S. Riazi, S. Srinivasan, S. K. Das, S. Bhowmick, and B. Norris, “Single-

source shortest path tree for big dynamic graphs,” in IEEE International

Conference on Big Data, 2018, pp. 4054–4062.
[30] B. Bollobás and O. Riordan, “The diameter of a scale-free random

graph,” Comb., vol. 24, no. 1, pp. 5–34, 2004.
[31] F. Chung and L. Lu, “The diameter of sparse random graphs,” Adv. Appl.

Math., vol. 26, no. 4, pp. 257–279, 2001.
[32] R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” in AAAI, 2015.
[33] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communi-

cations, vol. 29, no. 9, pp. 1765 –1775, October 2011.

445

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

