2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 978-1-6654-4935-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/MASS52906.2021.00061

2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

Efficient Route Selection for Drone-based Delivery
Under Time-varying Dynamics

Arindam Khanda*, Federico Coro*, Francesco Betti SorbelliT, Cristina M. PinottiT, and Sajal K. Das*
* Department of Computer Science, Missouri University of Science and Technology, USA
 Department of Computer Science and Mathematics, University of Perugia, Italy
Email: *{akkcm, federico.coro, sdas} @mst.edu, f{francesco.bettisorbelli, cristina.pinotti} @unipg.it

Abstract—The use of drones can be a valuable solution for
the problem of delivering goods for many reasons. In fact, they
can be efficiently employed in time-critical situations when there
is a traffic jam on the roads, to serve customers in hard-to-
reach places, or simply to expand the business. However, due to
limited battery capacities and the fact that drones can serve a
single customer at a time, a drone-based delivery system (DBDS)
aims to minimize the drones’ energy usage for completing a route
from the depot to the customer and go back to the depot for new
deliveries. In general, the shortest delivery route could not be the
optimal choice since external factors like the wind (which varies
with time) can affect energy consumption. Previous work has
mainly considered simplified DBDSs assuming architectures with
a single drone and with static costs on paths. Moreover, in these
non-centralized architectures, the drones themselves compute the
routes on the fly employing their onboard processing resources,
making this choice costly. In this paper we develop a centralized
system for computing energy-efficient time-varying routes for
drones in a multi-depot multi-drone delivery system. Specifically,
we propose a novel centralized parallel algorithm called Parallel
Shortest Route Update (PSRU) that, over time, updates the
drones’ delivery routes avoiding the whole recomputation from
scratch. A comprehensive evaluation proves that PSRU is up to
4.5x faster than the state-of-the-art algorithms.

Index Terms—Drone, Dynamic graph, Parallel algorithm, GPU

I. INTRODUCTION

Due to their versatility, Unmanned Aerial Vehicles (UAVs),
or simply drones, can be efficiently used in a wide variety
of applications including, but not limited to, surveillance
service [1], localization [2], monitoring [3], precision agri-
culture [4], search and rescue [5]. Recently, this growing
interest is particularly emphasized in the context of drone-
based delivery systems (DBDSs) [6], [7]. With the usage of
UAVs, a delivery system can be more effective and efficient
due to various advantages of UAVs such as their capability to
deliver in hard-to-reach places or to overcome possible traffic
jam congestion on roads. Compared with the traditional truck-
based delivery system, drones are faster as they can fly over
small buildings and directly fly on straight lines shortening the
traveled distance, and can easily traverse difficult terrain. On
the other hand, there are several challenges to be addressed
while relying on a DBDS, summarized as follows:

o Energy constraints: Drones are powered by limited ca-
pacity batteries whose energy consumption depends on
the delivery route for performing a complete back and
forth from the depot to the customers. Also, such energy

requirement for a fixed route is not generally constant and
changes due to various external dynamics like wind [8].

e Payload constraints: Drones have a maximum payload
mass when carrying packages to customers. The con-
sumed energy for delivering also depends on the actual
payload. Moreover, due to technical constraints, a drone
can deliver a single package at a time [9].

o Limited communication range: Drones have limited com-
munication range which in turn impacts the maximum
distance that they can go from the depot [10].

o Limited computation resource: For reducing the total
mass, drones have limited onboard computation resources
which heavily affects their capabilities in performing
local high-demanding tasks [10].

In a DBDS, the delivery cost can be expressed in different
metrics like distance to travel, time of flight, or energy con-
sumed, which basically are sides of the same coin. However, in
this paper, we take into consideration the energy consumption
when computing efficient routes. In the real world, the drone’s
energy consumed not only depends on static parameters such
as the drone’s speed and mass but also depends on external
dynamics like the current global wind [11]. Indeed, a tailwind
can help a drone to fly through the air since it guarantees
less energy to cut the air, whereas a headwind increases its
energy usage [12]. Notice that, the wind characteristics like
strength and direction can dynamically change over time.
Therefore, given a drone’s route, the actual energy usage can
be different from the expected one since the delivery route
comprises time-varying paths which in turn depend on various
time-dependent variables. Moreover, the delivery drones are
potentially small flying devices with limited computational
resources. Thus assigning additional burdens (e.g., locally
computing dynamic routes on the fly) can eventually speed up
their energy consumption reducing the total flight autonomy.

The DBDS can be abstracted using a graph whose vertices
are the locations (depots, customers), and the edges, which
are also labeled with a cost (weight) in terms of energy,
are the connections among locations. When dealing with
dynamic costs on edges, the DBDS can be modeled using
temporal graphs whose edges’ weights change from time to
time [6], while the set of vertices remains untouched. In order
to analyze temporal graphs, traditional methods work with
several snapshots of the temporal graph taken at different

978-1-6654-4935-9/21/$31.00 ©2021 IEEE 437
DOI 10.1109/MASS52906.2021.00061

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

time instances, and then invoke classical algorithms for static
graphs (e.g., shortest path) on them. However, if at any sub-
sequent snapshot it would be possible to exploit the previous
graph properties (history) for computing routes, the required
resources can be significantly reduced in terms of both space
and time [13], [14]. In this paper, we devise a centralized
DBDS that relies on a novel parallel algorithm called Parallel
Shortest Route Update (PSRU) for efficiently computing time-
varying delivery routes in a multi-depot multi-drone delivery
model. Such computations are done by a centralized server
and selectively sent to the proper delivery drones.
The major contributions of this paper are as follows.

o We devise a centralized DBDS which is in charge of
efficiently computing the delivery routes for drones when
external dynamics affect the drone’s energy consumption.
These routes are then transferred to the drones.

We propose a novel parallel algorithm called PSRU to
determine the shortest delivery route in temporal graphs.
We implement PSRU using NVIDIA GPU architecture
and prove its efficacy and efficiency by comparing it with
state-of-the-art techniques.

The paper is organized as follows. Section II reviews related
work and Section III describes the DBDS model. Section IV
proposes our novel approach to efficient route selection. Sec-
tion V designs a parallel algorithm for DBDS while Section VI
evaluates the performance. Section VII offers conclusions.

II. RELATED WORK

In this section we propose current techniques in a DBDS
scenario. First, we discuss various dynamics that can affect the
cost of flying, and then we argue about the existing algorithms
for choosing the shortest routes for delivery.

A. Dynamics Affecting Drone-based Delivery

In [6], the Mission-Feasibility Problem is investigated for
a DBDS in varying global wind conditions. One offline and
two online algorithms are proposed for finding energy-efficient
routes. The offline one, performed by the server, considers
the initial graph snapshot when computing the Single Source
Shortest Path (SSSP); while the online ones, locally computed
by the drones, consider the dynamicity of the graph recom-
puting the delivery routes from scratch.

The cost of performing deliveries using drones in an energy-
constrained scenario not only depends on the global wind but
also on other parameters like the drone’s speed, altitude, and
payload that can affect the energy consumption [15], [16].
The problem of supplying multiple relief packages using a
fleet of identical drones in a disaster scenario is considered
in [17]. The proposed solution is not very restrictive about
energy constraints and considers additional recharge stations
on the route, allowing drones to recharge their batteries.

The mission planning problems for drones under weather
uncertainty are studied in [8]. The mathematical formulation
considers the demand of goods at the delivery point, collision
avoidance, and customer satisfaction along with factors like
wind conditions and ground speed of the drones. In [7],

438

the authors deal with the problem of finding a suitable
depot’s location in a mixed landscape scenario (formed by
two contiguous areas, each with a different metric), aimed
at minimizing the overall drone’s delivery distance from the
depot and all possible customers in the area. For a more
general approach, see [18].

B. Algorithms for Finding Delivery Paths

The success of the DBDS depends on the considered system
model and the algorithms for calculating the delivery routes. In
an energy-constrained scenario, the delivery cost is considered
to be the energy required to deliver a package from the depot
to the customer and, go back. Therefore, this routing problem
can be easily converted into multiple instances of SSSP in
which a drone serves a single customer at a time, and the
weights of the routes are the costs in terms of energy.

A high-performance graph library, Gunrock [19], provides
a data-centric abstraction on a set of vertices or edges pro-
viding a three-step architecture (advance, filter, and compute)
to compute SSSP on GPUs. However, their algorithm only
focuses on static graphs. In [20], a GPU implementation of
the Bellman-Ford shortest path algorithm is proposed. This
algorithm exploits dynamic parallelism, a feature of modern
Kepler GPU. A detailed study on the performance of various
algorithms on graphs including SSSP on temporal graphs,
different multi-core architectures, and GPU accelerators, is
proposed in [21]. A dynamic incremental and decremental
SSSP algorithm is implemented using JavaScript in [22].
However, the results in this paper show that the algorithm
performs well only if the number of changed edges is less
than 10%. A parallel algorithm template for updating SSSP
in large-scale dynamic networks is proposed in [23]. This
paper deals with generic undirected graphs and empirically
shows good scalability. The authors claim that the template
is computing-architecture independent, and they also provide
two implementations, one for shared memory, and another for
NVIDIA GPU architecture. The proposed algorithm first finds
the affected subgraph due to change in the network and then
updates the shortest distance of the affected vertices. In this
paper, we adopt a similar approach for updating the shortest
delivery route for our DBDS in time-varying dynamics.

In a recent work in [24] the authors implement the Bellman-
Ford algorithm using parallel hypergraph algorithms, while
others [25] provide two implementations of A-stepping al-
gorithm on static graphs in shared multi-core memory archi-
tecture. A shared-memory-based amorphous data-parallelism
programming model, Galois [26], provides an implementation
of Dijkstra’s algorithm. It supports priority scheduling and
processes on active elements comprised of a subset of vertices.
In a distributed platform, a software named Havoqgt [27]
can compute SSSP. Both Galois and Havoqgt do not have
any support for dynamic networks. Srinivasan et al. [28]
propose the first shared-memory algorithm for updating SSSP
on dynamic networks, and implemented it using OpenMP.
A Spark-based implementation to update SSSP on dynamic
networks is reported in [29].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

III. SYSTEM MODEL

In this paper, we consider a DBDS that includes multi-
ple depots each capable of simultaneously serving multiple
customers with the help of multiple drones. The objective
is to efficiently determine the minimum drone’s energy cost
routes in order to increase the total number of successful
deliveries. Specifically, we aim to find a suitable route for
drones that start from the depot, go up to the customers,
and then return to the depot. The cost of such routes also
depends on external dynamics, and drones need to recompute
their routes accordingly. However, when pursuing this goal,
we consider drones with minimal computation power. For
this goal, we develop a centralized system for all drones
associated with many depots to dynamically compute (and
quickly recompute) minimum cost delivery routes, where the
drone’s energy consumption on the edges is time-dependent.

Flih

Customer 2

Flich

Customer 3

Depot 2

o @
WwcCu

Fig. 1. A DBDS scenario where multiple drones are delivering items from
multiple depots. WCUs are measuring the time varying dynamics and sending
data to a central server, which is analyzing the data and controlling every
delivery by sending instructions to drones.

As said before, the DBDS can be influenced by external
factors like the global wind, which in turn affects the actual
drone’s energy consumption. When the energy consumption
changes, the drone’s routes also vary accordingly, and so the
system should be efficient in recalculating these routes. An
illustration of our proposed DBDS is depicted in Figure 1. In
this multi-depot multi-drone system, the Wind Control Units
(WCUs) are capable to measure wind characteristics (i.e.,
strength and direction) to be periodically sent to the centralized
server for further analysis. With the help of these data, the
server performs some analysis in order to find the updated
drones’ routes which are then sent to them when they are
currently performing a delivery task. So, instead of relying

439

on the onboard drone’s computation, this model delegates
the computational tasks to the central server. Also, the last-
mile deliveries associated with many depots can be planned,
monitored, and efficiently executed from a centralized vertex.

Assumptions: In our proposed model, the following assump-
tions are taken into account: (i) All delivery orders and
customer locations are known in advance; (ii) All possible
paths between a depot and a customer are known; (iii) All
drones are identical; (iv) A drone is assumed to serve a single
customer at a time as it can carry a single item due to the
payload constraints; (v) A drone returns back to its starting
depot after the delivery is performed; (vi) All drones are fully
charged when they start for their deliveries and can recharge
or swap a new battery only after returning to the depot.

A. Dynamic Graph Model

We can consider the entire DBDS as a dynamic graph whose
topology remains the same while the weight of the edges
changes over time. Let G = (V, E;t,w;) be a graph where
V = VP UVW UVC is the set of vertices and VP, VW,
and VC denote the set of depots, WCUs, and customers,
respectively; F is the set of directed edges among pair of
vertices; ¢ > 0 is the discrete current time instance; and
wy : E — RT is a temporal weight function that associates
edges (u,v) € E with a drone’s cost in terms of energy
required wy(u, v) for flying from vertex u to vertex v at time
t. Notice that G is not a complete graph as there can be no
flying path available between two vertices due to obstructions
or flying restrictions. The traveling cost is time-dependent as
it depends on several time-varying dynamics including wind
characteristics, flying restrictions, and drone-flying parameters,
as already discussed in Section II-A.

The energy required for a trip from a depot vertex u €
VP to a customer vertex v € V¢ is equal to the sum of
all edges’ weights on the path from v to v, plus the costs
from v to uw for going back to the depot. As the total mass
(drone itself plus its payload) affects the energy usage, under
the same flight conditions, and the hypothesis of no wind,
the drone requires more energy to fly from the depot to the
customer (with payload) than from the customer to the depot
(without payload). Therefore, let GT' be the forward graph
whose edges’ weights denote the cost of flying when a payload
is present, and similarly, let GE be the return graph whose
edges’ weights denote the cost of flying without a payload.
GT is used to find a route from the depot to the customers,
and similarly, G™ is considered to find the return route from
the customers to the depot. We assume that the total number of
depots is fixed, and each of them has a fixed number of drones.
So, it is possible to generate delivery graphs G and G® where
only the customers’ vertices and the associated edges change
depending on the customers’ location. Let w; € V' be the
vertex that represents the ith depot in the area with 1 < i < k,
where £k is the total number of depots. Since we assume that
two depots are geographically far enough, each depot can be
considered independent from the others and, therefore, also

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

the customers to be served. Therefore, for each depot ¢ we
define a subgraph GG; C G such that Gy U... UG = G
and G; N G; = @, for ¢ # j. Moreover, for each G; C G
there are m; drones for performing deliveries from w;. Let
II; = {m},..., 7"} be the set of actual drones that fly in G;.

IV. DELIVERY GRAPH BASED ROUTE SELECTION

In this section, we propose the PreProcessing (PP) algorithm
(sketched in Algorithm 1) that creates the initial single source
delivery graphs GT" and G® so that the SSSP update algorithm
can be efficiently applied in the following.

A. Initial Delivery Graph Preparation

Since by design our algorithm makes changes to the edges
of already visited vertices, possible conflicts (on routes) be-
tween different drones can arise. To avoid overlapping routes,
we replicate the graph G; for m; times, and considering these
as separate graphs G},...,G[", where each of them can
be used by a single drone to serve a single customer at a
time. Analogously, for each jth copy of G, e, Gg, we also
consider its duplicated depot vertex wf with 1 < j < m;.
Moreover, after this duplication, a graph G7 can be only used
by drone 7 in our algorithm. As each of these graphs can
serve only a single customer at a time, the algorithm adds a
dummy customer vertex y; in each of these graphs. Finally,
G7F is prepared by considering a dummy source vertex s, and
connecting it to all the depot vertices w] with an edge with
weight zero. Similarly, GT is prepared by considering another
dummy source vertex s, and connecting it to all the dummy
customer vertices] with edge weight zero. Hence, G and
GT become single-sourced (s and s*, respectively), but they
are not connected yet as the actual edges related to customer
vertices are not known at this stage.

B. Customer Dependent Delivery Graph

The number of actual customers and their locations (at ver-
tices) vary depending on the delivery order. The preprocessing
algorithm generates the actual delivery graphs by modifying
G and GF while considering the delivery order. For each
G; C G there are z; customers to be served by the drones.
Let C; = {c},...,ci'} be the set of actual customer vertices
to be served from depot w; such that the customer cf is
served before the customer ¢/, with < y. At any time
instance, a depot w; has the capacity to serve m; customers,
since m; is the number of available drones in GG;. Therefore,
the algorithm first selects m; customer vertices from C; and
replaces the dummy customer vertices in GF' and G by the
actual customers. All the associated edges of the customer
vertices are also added in both GF and GE. Now, G¥ and
G become single source connected graphs. After this first
delivery graph generation, the rest of the customers can be
later accommodated in the graph when some drone becomes
available after the first round of deliveries (e.g., a customer CZ
with j > m;). The edge weights of the initial delivery graphs
are assigned depending on the considered system model and
the value of associated time-varying factors at the initial time.

440

Algorithm 1: PreProcessing

1 Initialize G¥ and G with a single vertex s and s%, resp.
2 foriel,....kdo

3 for je€1,...,m; do

4 Duplicate G; creating G? whose depot is w?
5 Add ~7 in GJ

6 G« afua?

7 Add edge (s,w?) in G* with 0 weight

8 GR—Glua?

9 Add edge (s7,~7) in GF with 0 weight

10 foriel,... kdo

11 for j€1,...,z do

12 Wait for a drone and assign it to customer ¢
13 In both G¥ and G¥, ~7 « ¢!

14 Add associated edges of ¢/ in both G and G
15 SSSP(GT, s)

C. Initial Shortest Delivery Route Computation

In the delivery graph G¥ the drones start their deliveries
from the depot, and the objective is to find all the shortest
routes from such depot to the customers at the initial time.
We can use any state-of-the-art parallel SSSP algorithm for
computing the initial shortest routes from a source s to all
customers. Since the weights of all the edges from s to any
other depot vertex are zero, the shortest route from s to cf
always goes through w], and the path is actually the shortest
path from w] to ¢!.

Example: In Figure 2a, we show how the DBDS introduced in
Figure 1, can be modeled as a connected single-source delivery
graph G¥. In that graph, the yellow vertex s is the dummy
source vertex, the blue vertices are the depots, and the green
vertices are the customers. It can be observed that Depot 1
has two drones, and hence there are two copies related to this
depot, while Depot 2 has only a single drone, and hence there
is no replication. Only the customer vertices and their related
edges are different in these subgraphs. Interestingly, the initial
shortest delivery routes are shown with red color.

V. THE NOVEL PSRU ALGORITHM

In this section, we propose a novel algorithm called Parallel
Shortest Route Update (PSRU) for updating SSSP in parallel
for DBDS under time-varying dynamics.

We avoid recomputing the delivery routes from scratch, and
we also store the last SSSP information in a tree structure
named SSSP tree similar to the approach proposed by Khanda
et al. in [23]. Here, the SSSP tree is rooted at the source vertex
that maintains 1) the shortest distance of every vertex from the
source, and ii) a parent-child relationship among vertices.

Given the graph G = (V, E;t,w;), let T; be the SSSP tree
of G at time t (e.g., Figure 3b shows an SSSP tree of the
graph shown in Figure 3a). Let AE; be the set of changed
edges from time steps ¢t — 1 to ¢ due to time-varying dynamics
reported by the WCUs. AE; consists of both the set of inserted
edges I; and deleted edges D; which have been changed from

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

(a) Graph model related to DBDS. Dummy vertex
s is added to make the graph single source.

Fig. 2.

(b) A wrong approach.

Effect of drone’s location on shortest delivery route: the drone w5 moves from wi to v}, at time ¢ — 1 (b)~(c), and D

Already
Traversed

(c) Right approach.

1

{(”}727 Uigv 2), (vigv Uigv 2), (w%7 v%727 4), (9%717 9%747 5 It = {(Uin vigv 5), (Uiz: Uigv 5), (wévv%gv 1), (U%J,U%A, 3)}

time steps t — 1 to ¢, such that AE; = I; U D;. Generally, in
dynamic graphs edges between vertices can be added, changed
(weight), and deleted. For simplicity, in PSRU, we only focus
on edge addition and deletion since a change of weight can
be done by combining a deletion first and addition then. The
objective is to efficiently find the shortest delivery routes by
computing the SSSP tree T} at time ¢ based on the structure
and edge weights of the previous SSSP tree T;_; and AE;.

Data Structures: We build the SSSP tree by storing the parent
of each vertex in a vector P, and the shortest distance of each
vertex from the source in a vector D. Moreover, for additional
information about vertices, we use three more vectors of length
|V|, specifically, 7 which captures whether a vertex is already
traversed by a drone or not, vp which captures whether a
vertex has been affected due to deletion, and ov which checks
whether a vertex has been affected by any changed edge.

In the following, we discuss the details of the PSRU
algorithm which can be used for both GF" and GF to efficiently
find the updated shortest routes. To keep the simplicity of the
notations, we use only GG in PSRU.

A. Proposed Parallel Shortest Route Update Algorithm

The PSRU algorithm (sketched in Algorithm 2) consists of
three steps that are detailed in the following.

Step 1 — Preparation of effective changed edges: After the
preprocessing phase is performed, the changed edges only
consider the time-varying dynamics sensed and reported by
the WCUs. However, also the current drone’s location can
significantly impact the shortest delivery routes. Hence, if an
SSSP is computed without considering the drone’s location,
erroneous results can be provided. For instance, an erroneous
SSSP update (just by considering AF)) is shown in Figure 2b.
Here, the updated SSSP does not go through the vertex v3 ;

441

which is the current location of the drone w%, and therefore the
shortest delivery route for such a drone cannot be provided.
Hence, we have to add a few constraints in order to ensure that
the updated SSSP also considers the drone’s current location.
Notice that we do not use each drone’s location as source
vertex for computing SSSP because PSRU uses the same
single-source delivery graph structure for all the deliveries to
compute the shortest route in parallel.

This first step prepares the effective set of changed edges
AE = D,UI,. If a drone moves from w to v at time ¢ — 1, or
reaches v at time ¢, then the algorithm changes the weight
of the edge (u,v) to 0, and sets the weight of the other
outgoing edges (u,n) to +oo for each n € Adj(u),n # v,
in order to enforce the updated SSSP to visit v. Particularly,
the edge (u,v) is added in I, and all the edges (u,n) are
added in D, for deletion (Lines 5-7). Figure 2c illustrates how
these restrictions can help to find the correct updated shortest
delivery route. It can be observed that, due to the enforced
restrictions, a changed edge (u,v) € AFE can impact the SSSP
tree only when no endpoint of this edge is already traversed.
Therefore, the algorithm finds out the effective edges from AFE
which can impact the SSSP adding them in AE (Lines 8—11).

Step 2 - Identification of affected subgraphs: In this step,
the affected edges are parallelly processed evaluating first the
edges in D; (also for identifying the affected vertices for
deletion), and second the edges in I;.

Processing of Dy: For each directed edge (u,v) € Dy, the
algorithm first checks if this edge was part of T;_;, since
a non-SSSP tree edge deletion does not affect the shortest
distance of any vertex, and hence this kind of edges require
no further processing. Therefore, if the edge (u,v) belongs to
Ti—1, only the shortest distance of v can be affected since u
is the parent of v, and (u,v) is a directed edge. The algorithm

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

b. SSSP tree at t-1

@ = {wf, v, 4), .., (v}, v24.5)}
I ={w?, v3,,0), ..., (v}, v4,3)}

a. Original Graph

AE

7 7
@) =)

c. Processing Edge Deletion in parallel d. Disconnecting sub -graph under

deletion affected vertices

g. Updated SSSP tree

Fig. 3. An example of updating SSSP tree.

then sets D[v] « oo and Plv] < &, making the vertex v,
now disconnected from the parent tree. To indicate that v is
affected by deletion, ap[v] and ac[v] are changed to true
(Line 17), and the weight of the edge (u,v) is updated to oo in
the updated delivery graph (Line 27). Since v is disconnected,
also the subtree rooted at v will be disconnected. Therefore,
the algorithm updates the distance of the vertices descendant
from v to oo and sets o to true for each of them (Line 23).

Processing of I;: The insertion of an edge (u,v) € I; can
affect the SSSP tree only when D[v] > Dlu] + w(u,v). If
such an edge (u,v) satisfies this condition, D[v] is updated
to Dlu] + w(u, v), P[v] is updated to u, and a[v] is set to

Algorithm 2: Parallel Shortest Route Update

1 Step 1 effectiveCE (G, Ti—1, AF:, T):
foreach drone m; parallelly do
if 7, travels from w to v at t — 1 then

T(u] < true

Add (u,v) in I with weight 0 for insertion

for each neighbor n of u and n # v do

Add (u,n) in D; with weight w;_1(u,n)
for edge deletion

U 7 B N

8 foreach edge (u,v) € I parallelly do

9 | if 7[u] # true A T[v] # true then Add (u,y) in I
10 foreach edge (u,v) € Dy parallelly do _
1 | if 7[u] # true AT[v] # true then Add (u,v) in D,
12 AE_t < D__t U I_t

13 | return AE;

14 Step 2 findAffected (G, Ty_1, AE;, P, D):
15 foreach edge (u,v) € Dy parallelly do

16 if (u,v) € Ti—1 then

17 | Dlv] + o0, Plv] - &, ap(v] = ac[v] « true
18 | Change weight of (u,v) to coin G

19 while ap has true values do

20 foreach vertex vEV s.t. ap[v]=true parallelly do
21 aplv] < false

22 forall vertex ¢, where c is child of v in Ty—1 do
23 | Dlc]¢o0,Pld]« @, apld= acld +true
2 foreach edge (u,v) € I, parallelly do

25 if D[v] > D[u| + w:(u,v) then

26 | Dlv]«DluHw:(u,v), P[v] = u, aclv] < true
27 | Change weight of (u,v) to wi(u,v) in G

28 | return ac

29 Step 3 updateAffected (G, Ti—1, D, P, ac):

30 while a¢c has true values do

31 foreach vertex v € V s.t. ac[v]|=true parallelly do
32 ac(v] « false

33 for edge (v,n), withn € V,(v,n) € E do

34 if D[n] > D[v] + w¢(v,n) then

35 Din] + D[v] + wi(v,n)

36 Pln] < v; ac[n] < true

37 for edge (n,v), with n € V,(n,v) € E do

38 if D[v] > Dln] + we(n,v) then

39 Dlv] < Dn] + wt(n,v)

40 Plv] < n; acv] « true

true to indicate tha} the vertex v is affected (Line 26). For
each edge (u,v) € Iy, the weight is changed to w;(u,v) in G.
Therefore, at the end of Step 2, G becomes (E U I}) \ D;.

Step 3 — Update on affected subgraph: The last step per-
forms a visit of all the affected vertices for both deletion and
insertion marked by o and updates their shortest distances
as well. For each marked vertex v and its outgoing edges
(v,m), if the distance D[n] is shortened by visiting v, then
the distance of n is updated to D[v] + w:(v,n). Also P[n] is
set to v. On the other hand, i.e., if D[v] > D[n] + wi(n,v),

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

then D[v] is updated, and P[v] is updated to n as well. The
algorithm then iteratively proceeds tending at decreasing the
distance of the vertices. Hence, the process always converges
and occurs when there is no vertex left whose distance can be
updated. Eventually, the algorithm returns an updated SSSP
tree T} after Step 3.

The PSRU adapts the SSSP update algorithm (proposed
in [23]) for individual drones. Therefore, the correctness of
the SSSP update algorithm on the graph related to each drone
(starting at the drone’s current location) is preserved. For our
DBDS, multiple SSSP starting at the drone’s current location
are connected using directed edges with weight zero coming
from dummy source vertex. Therefore correctness is preserved
cumulatively for the whole system.

Example: Figure 3 illustrates an example of SSSP update
relatively to the subgraph identified by the vertices s, w3,
v% 1ye- 1)2 4> and ¢} in Figure 2a (which came from Depot 2
of Flgure 1) The effective set of change edges AF is prepared
using D; and I; mentioned in Figure 2 and by considering
that the drone 71 has recently moved from vertex wi to va ;.
For simplicity, in this illustration, we only show a part of
the whole delivery graph. The D values are shown in red,
while the affected vertices at each step are shown in light red.
Figures 3(c—g) show the steps of the PSRU algorithm.

B. Complexity and Speedup Analysis

This section analyzes the computational complexity and
speedup of our parallel algorithm.

Theorem 1. For p number of processing units and d di-
ameter of the graph, the time complexity of PSRU is T, =
O (|AE|/p) + O (dxBavg/p + d).

Proof. For Step 1, each changed edge can be processed in
parallel requiring O(|AE|/p) time. For Step 2, each changed
edge in D, and I; is processed in parallel taking O(|AE|/p) ~
O(]AE|/p) time. For disconnecting the descendants of the
deletion affected vertices, in each iteration, the algorithm
visits the neighbors of each affected vertex, and only if a
neighbor is the child of an affected vertex, the neighbor is
disconnected and marked as affected. Therefore, the work at
this stage is proportional to the degree of affected vertices. If
X p vertices are affected by processing edge deletion and J4.,¢
is the average degree of vertices, then the time required for
each iteration is O(Xpdavg/p) and the maximum number of
iterations required is the diameter of the graph d. Hence, the
time complexity for Step 2 is O(dxpdavg/p + d), where the
last term d comes from the fact that at least constant time has
to be paid for each iteration.

Similar to the last part of Step 2, in Step 3 the algorithm
visits the neighbors of the affected vertices in each iteration
and marks a new set of vertices as affected after updating
their distance. Therefore, similarly to Step 2 time complexity,
the total time required for Step 3 will be O(dxdqvy/p + d)
where y is considered as the number of affected vertices
(sum of both deletion affected and insertion affected) at each

443

iteration in Step 3. Therefore, overall time complexity of
the algorithm is T, = O (JAE|/p) + O (dXpOavg/p + d) +
O (dxbavg/p + d) = O (JAE|/p) + O (dX0qvy/p+d). O

Space Complexity: The preprocessing phase duplicates the

graph G, related to a depot w;, into m; copies requiring

O(m;(|Vi| + |E;|)) space, where V; and E; are the sets of

vertices and edges in G, respectively. However, our main

algorithm works on SSSP trees processing edges only when
these actually belong to an SSSP tree. Therefore, instead of
relying on copies of graphs, it is enough to duplicate for

m; times only the initial SSSP tree associated with GG; and

store the adjacency list of G; only once. Therefore, the space

requirement related to a single depot is O((m; + 1)|V;| +

|Ei]) = O(m;|Vi| + |E;|). Overall space requirement will

consider the graphs related to all & depots and it will be sum

over i of O(m;|V;| + | E;l).

For instance, let Tij be an SSSP tree associated with G; and
drone 7Tf-. Notice that, the adjacency list of G; becomes shared
with all SSSP trees Ti], where j = 1,...,m;. Hence, we
cannot directly change the weight of an edge to 0 if traversed
by a drone in GG;. To work around this issue, we need to follow
the below steps:

(i) An already traversed edge should be updated with weight
0 directly in the related SSSP tree without updating it in
G;. For example, if a drone 7T moves from u to v in G,
w(u,v) =0 in Tf whlle_ no change is required in G;.

(i) A new Boolean array T is required to track if a vertex
in G; is traversed by 7rf Here 7= Uj_, U, 7.

(iii) Insertion/deletion or usage of an edge (x,y) in the
algorithm should be avoided for a specific SSSP tree_TiJ if
any endpoint of this edge is already traversed by 7. For
instance, deletion/insertion of edge (u,n) € AE should
be avoided in 77 if 77[u] is true. However, this edge
addition/deletion should be updated in G;.

Speedup: The speedup is defined as the ratio between the
time T4, of a sequential algorithm A and the time T4, of
the same algorithm performed in parallel with p processors.
Therefore, in our case speedup can be written as:

O(JAE]) + O(dxbavg + d)
OIS +O(2= +d)

This equation indicates that the speedup becomes optimal if
M dominates the diameter d, which means number
of changed edges |AE| + dxdauvg is at least dp.

We note that the computational complexity and the speedup
of our algorithm depend on the diameter d of the graph. In
this regard, since our approach can be applied to any delivery
network, we may consider random graphs and give a few
examples of bounds. In the case of Barabasi and Albert process
in which vertices are sequentially added to the graph with
a probability proportional to its degree, it was proven that
d= 1olg?1go gn [30]. In the case of sparse random graph, in which
vertices are added to the graph with a given fixed probability

1
p, then d = log(gn"m [31].

(D

p =

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE EVALUATION

We implemented our PSRU algorithm using NVIDIA
CUDA C++ language and evaluated its performance on an
NVIDIA Tesla V100 GPU (80 streaming multiprocessors)
with 32GB memory whose host processor is a Dual 32 core
AMD EPYC 7452. In this massively parallel GPU architecture,
we use 1024 Compute Unified Device Architecture (CUDA)
threads per thread-block. In our implementation, we assign
each changed edge to each thread, and for iterative operations
on affected vertices, we assign each of them to a thread.

To evaluate the performance of PSRU in terms of execution
time and scalabilty, we consider several networks (datasets).
Networks are reported in Table I showing also their number
of vertices and edges. We decided to use these datasets to
consider scenarios when a large delivery company uses our
algorithm, on a centralized server, to calculate all the possible
deliveries in the area. In this scenario, it is reasonable to
consider millions of changes to the weights of the edges due
to the meteorological change. Therefore, is important to have
algorithms to be able to calculate online, and therefore quickly,
the possible paths of all drones.

To prove the efficacy of PSRU, we compare it against, to
the best of our knowledge, the fastest parallel algorithm in the
literature. This compared GPU-based algorithm is an imple-
mentation provided by the Gunrock [19] library. Differently
from us, Gunrock computes from scratch the graph updates
after every change.

TABLE I
USED NETWORKS FOR COMPARING THE ALGORITHMS.

Network Name Alias Ref Num. of Vertices ~ Num. of Edges
roadNet-PA DS3 [32] 1,087,562 1,541,514
graph500-scale23-ef16 ~ DS4 [32] 4,606,315 258,503,995
RMAT24_G DS5 [33] 16,777,215 134,511,383

A. Execution Time Comparison

In Figure 4, we start evaluating the performance of PSRU on
a realistic dataset (DT3, see Table I) considered as a delivery
graph. To inject dynamicity in the graph, we randomly insert
and delete edges as a batch of edge updates. In this time-
varying graph, we find out the shortest paths from the source
vertex 0 and record the execution time for performing the
updates for each batch of changes.

In order to understand the goodness of our technique, we
consider different mixes of edge deletions and insertions. If a
batch of edge updates has a total of changed edges AFE, we
vary the percentage of edge deletions (25%, 50%, and 75%)
of the total AFE. Specifically, we have three possible combina-
tions, i.e., more insertions (25%), more deletions (75%), and
perfectly balanced (50%). In the evaluation, we vary the total
number of changed edges from 10,000 to 100,000 and use the
three aforementioned edge deletions percentages. The number
of iterations in Step 2 and Step 3 of PSRU depends on the
location of the change in the graph, and the total execution
time depends on the total number of affected vertices. As we
generate the changed edges randomly, the execution time in

444

our evaluation is dependent on the graph topology, and the
batch of changed edges. Finally, each scenario is run five times
and the average is taken.

In Figure 4a, we report the execution time of PSRU applied
on DS3. In general, the time required for updating all the
edges is approximately 100ms on average. In particular, one
can observe the small increase of time when the number
of changed edges increases. In Figure 4b, we compare the
performance among PSRU and Gunrock. Specifically, we
report the ratio of the execution time taken by Gunrock divided
by PSRU. We highlight that our implementation outperforms
that of Gunrock since this ratio is always larger than 1.0 (the
average ratio is 2), which means that PSRU is faster than

Gunrock in terms of execution time.

.5
0.5 ‘
. 25 = 50 - 75
O MEs mEe - -- 0.0 EEE EEE NN SEE SEE S e

- 25 . 50
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
AE (in k) AE (in k)

]
o
N}

1=}
S
N

~
o
Ratio
o

o
S

Execution Time (in ms)
o

N
o

(a) Execution time. (b) Execution time ratio.

Fig. 4. Performance analysis on DS3. (a) execution time of PSRU on different
batches, and (b) execution time ratio among PSRU and Gunrock.

B. Scalability Comparison

To evaluate the scalability of PSRU, we use two large scale
graphs as input (DS4 and DSS, see Table I). Here, we vary
the size of the batches considering 50 and 100 million change
edges. As before, we balance the percentage of deletions and
insertions using the same percentages.

4
I 3
I II ll- l._
Del % Del
- 50 - 25 -_— 50 | 75
o

- 25
DS4 100 DS5 50 DS5_100 DS4.50 DS4_ 100 DSS 50 DS5_100
Dataset Dataset

1200

Execution Times (in ms)

5 o ® B

s 3 3 3

8 8 38 &
Rallo

n
1=
S

0 —
DS4_50

(a) Execution time (b) Execution time ratio

Fig. 5. Execution time and performance comparison for large scale graphs
when AE = 50, 100 millions.

Figure 5 shows the performance on large-scale instances.
Figure 5a highlights the execution time of PSRU showing
that the maximum reported execution time is about 1.2s even
when the input is very large. Interestingly, even though the
DS5 graph has more vertices than DS4, the execution time
of DS4 is larger than the DSS5 since the DS4 graph is denser
than the DS5 graph in terms of edges. Finally, we compare
the execution time ratio among PSRU and Gunrock. Overall,
PSRU outperforms Gunrock (up to 4.5x) on large instances.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

In this paper, we devise a centralized DBDS for a multi-
drone multi-depot architecture, and present PSRU, a parallel
shortest delivery route update algorithm for efficiently comput-
ing the drones’ delivery routes under time-varying dynamics,
such as wind. We implement our proposed algorithm on
GPUs and comprehensively test its performance on large-
scale inputs for evaluating the execution time and scalability.
The performance of PSRU outperforms the state-of-the-art
implementation provided by Gunrock. In future work, we
would like to change the system model allowing drones to
start and finish missions to different depots. It would be also
interesting to investigate the presence of rechargeable stations
inside the delivery area in order to prolong the lifetime of
drones, especially in case of unexpected battery drainage.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CNS-
1818942, OAC-1725755, OAC-2104078, and SCC-1952045;
and also partially supported by "THALY-ID” project funded by
the European Union’s Horizon 2020 under grant agreement
ICT-AGRI-FOOD no. 862665, no. 862671, and from MIPAAF.

REFERENCES
[1] 1. Bisio, C. Garibotto, F. Lavagetto ef al., “Blind detection: Advanced
techniques for wifi-based drone surveillance,” IEEE Trans. on Vehicular
Technology, vol. 68, no. 1, pp. 938-946, 2018.
F. Betti Sorbelli, C. M. Pinotti, S. Silvestri, and S. K. Das, “Measurement
errors in range-based localization algorithms for UAVs: Analysis and
experimentation,” IEEE Trans. on Mobile Computing, to appear, 2021.
A. Khochare, Y. Simmhan, F. B. Sorbelli, and S. K. Das, “Heuristic
algorithms for co-scheduling of edge analytics and routes for UAV fleet
missions,” in IEEE INFOCOM, 2021.
D. Murugan, A. Garg, and D. Singh, “Development of an adaptive
approach for precision agriculture monitoring with drone and satellite
data,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 10, no. 12, pp. 5322-5328, 2017.
T. Calamoneri and F. Coro, “A realistic model for rescue operations
after an earthquake,” in 16th ACM Symposium on QoS and Security for
Wireless and Mobile Networks, 2020, pp. 123-126.
E. B. Sorbelli, F. Coro, S. K. Das, and C. M. Pinotti, “Energy-constrained
delivery of goods with drones under varying wind conditions,” /IEEE
Transactions on Intelligent Transportation Systems, to appear, 2021.
L. Bartoli, F. B. Sorbelli, F. Cord, C. M. Pinotti, and A. Shende,
“Exact and approximate drone warehouse for a mixed landscape de-
livery system,” in IEEE International Conference on Smart Computing
(SMARTCOMP), 2019, pp. 266-273.
A. Thibbotuwawa, G. Bocewicz, P. Nielsen, and B. Z., “Planning deliv-
eries with UAV routing under weather forecast and energy consumption
constraints,” IFAC-PapersOnlLine, vol. 52, no. 13, pp. 820-825, 2019.
S. Sawadsitang, D. Niyato, P. S. Tan, P. Wang, and S. Nutanong, “Multi-
objective optimization for drone delivery,” in IEEE 90th Vehicular
Technology Conference (VIC2019-Fall), 2019, pp. 1-5.
W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen, “Drone assisted
vehicular networks: Architecture, challenges and opportunities,” I[EEE
Network, vol. 32, no. 3, pp. 130-137, 2018.
M.-h. Hwang, H.-R. Cha, and S. Y. Jung, “Practical endurance estimation
for minimizing energy consumption of multirotor unmanned aerial
vehicles,” Energies, vol. 11, no. 9, p. 2221, 2018.
T. Nguyen and T. Au, “Extending range of delivery drones by ex-
ploratory learning of energy models.” in AAMAS, 2017, pp. 1658-1660.
S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick, “A
shared-memory parallel algorithm for updating single-source shortest
paths in large dynamic networks,” in IEEE 25th International Confer-
ence on High Performance Computing, 2018, pp. 245-254.

[2

(3]

(91

[10]

[11]

[12]

[13]

445

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

S. Srinivasan, S. Pollard, S. K. Das, B. Norris, and S. Bhowmick, “A
shared-memory algorithm for updating tree-based properties of large
dynamic networks,” IEEE Transactions on Big Data, to appear, 2021.
C. Di Franco and G. Buttazzo, “Energy-aware coverage path planning
of vavs,” in IEEE Int Conf on Autonomous Robot Systems and Compe-
titions, 2015, pp. 111-117.

K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70-85, 2016.

B. Rabta, C. Wankmiiller, and G. Reiner, “A drone fleet model for last-
mile distribution in disaster relief operations,” International Journal of
Disaster Risk Reduction, vol. 28, pp. 107-112, 2018.

F. Betti Sorbelli, F. Cord, C. M. Pinotti, and A. Shende, “Automated
picking system employing a drone,” in I5th IEEE Int. Conf. on Dis-
tributed Computing in Sensor Systems (DCOSS), 2019, pp. 633-640.
Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2016, pp. 1-12.

F. Busato and N. Bombieri, “An efficient implementation of the bellman-
ford algorithm for kepler gpu architectures,” IEEE Trans. Parallel and
Distributed Systems, vol. 27, no. 8, pp. 2222-2233, 2015.

A. Rehman, M. Ahmad, and O. Khan, “Exploring accelerator and paral-
lel graph algorithmic choices for temporal graphs,” in /1th International
Workshop on Programming Models and Applications for Multicores and
Manycores, 2020, pp. 1-10.

A. Ingole and R. Nasre, “Dynamic shortest paths using javascript
on GPUs,” in IEEE 22nd Int Conf on High-Performance Computing
(HiPC), 2015, pp. 1-5.

A. Khanda, S. Srinivasan, S. Bhowmick, B. Norris, and S. K. Das,
“A parallel algorithm template for updating single-source shortest paths
in large-scale dynamic networks,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

J. Shun, “Practical parallel hypergraph algorithms,” in 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 232-249.

E. Duriakova, D. Ajwani, and N. Hurley, “Engineering a parallel §-
stepping algorithm,” in JEEE Int. Conf. on Big Data, 2019, pp. 609-616.
D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in 24th ACM Symposium on Operating Systems
Principles, 2013, pp. 456471.

R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in Int. Conf.

for High Performance Computing, Networking, Storage and Analysis,

2014, pp. 549-559.

S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick, “A
shared-memory parallel algorithm for updating single-source shortest
paths in large dynamic networks,” in 25th IEEE Int. Conf. on High
Performance Computing (HiPC), 2018, pp. 245-254.

S. Riazi, S. Srinivasan, S. K. Das, S. Bhowmick, and B. Norris, “Single-
source shortest path tree for big dynamic graphs,” in IEEE International
Conference on Big Data, 2018, pp. 4054-4062.

B. Bollobas and O. Riordan, “The diameter of a scale-free random
graph,” Comb., vol. 24, no. 1, pp. 5-34, 2004.

F. Chung and L. Lu, “The diameter of sparse random graphs,” Adv. Appl.
Math., vol. 26, no. 4, pp. 257-279, 2001.

R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI 2015.

S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE Journal on Selected Areas in Communi-
cations, vol. 29, no. 9, pp. 1765 —1775, October 2011.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:33:29 UTC from IEEE Xplore. Restrictions apply.

