
Drone-Truck Cooperated Delivery Under Time Varying Dynamics

Arindam Khanda
akkcm@mst.edu

Missouri University of Science and

Technology

Rolla, MO, USA

Federico Corò
federico.coro@mst.edu

Missouri University of Science and

Technology

Rolla, MO, USA

Sajal K. Das
sdas@mst.edu

Missouri University of Science and

Technology

Rolla, MO, USA

ABSTRACT

Rapid technological developments in autonomous unmanned aerial

vehicles (or drones) could soon lead to their large-scale implemen-

tation in the last-mile delivery of products. However, drones have a

number of problems such as limited energy budget, limited carrying

capacity, etc. On the other hand, trucks have a larger carrying capac-

ity, but they cannot reach all the places easily. Intriguingly, last-mile

delivery cooperation between drones and trucks can synergistically

improve delivery e�ciency.

In this paper, we present a drone-truck co-operated delivery

framework under time-varying dynamics. Our framework mini-

mizes the total delivery time while considering low energy con-

sumption as the secondary objective. The empirical results support

our claim and show that our algorithm can help to complete the

deliveries time e�ciently and saves energy.
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1 INTRODUCTION

Drones can be used in a plethora of applications including, but

not limited to, monitoring [11], localization [1], surveillance ser-

vice [2], precision agriculture [15], search and rescue [5], package

delivery [9, 21]. Compared with the truck-based delivery system, a

drone can deliver more e�ciently due to various advantages such

as its capability to deliver in hard-to-reach places or overcome

tra�c congestion on roads. However, there are several challenges

involved in a drone-based delivery system, summarized as follows.
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Since drones are powered by limited capacity batteries, they are

forced to recharge the battery again after each trip to a customer.

Also, the energy requirement for a �xed route can vary due to

various external dynamics like wind [9, 24]. Drones can carry a

maximum payload mass to customers, and the consumed energy

for delivering also depends on the actual payload. Due to technical

constraints, a drone can deliver a single package at a time [18].

Therefore, in a simple drone-based delivery system a drone picks

up the package from awarehouse, delivers it to a customer, and then

returns to the warehouse again before the next delivery. Drones can

serve a limited area due to their limited communication range [19].

Drone-truck cooperation can address some of these challenges

directly as a truck can carry several packages and can be used as a

mobile charging station. However, a drone-truck co-operated deliv-

ery system (DTCDS) requires coordination between the drones and

the truck. An energy and time-e�cient solution to deliver all the

items in such a system becomes more complex under time-varying

dynamics as the time of traveling a �xed distance becomes vari-

able. More speci�cally, road tra�c can a�ect the truck’s movement

whereas the wind speed and direction can signi�cantly impact the

�ying duration of a drone to traverse a �xed distance. In our paper,

we will consider as a time-varying dynamic factor for the drone

the wind, in particular, we will use the relative speed and energy

consumption model (under varying wind) presented in [21].

The major contributions of this paper are as follows.

• To the best of our knowledge, we are the �rst to consider

time-varying dynamics in a DTCDS scenario. Due to the

time-dependent parameters travel time for both truck and

drone becomes unpredictable, and e�cient route selection

becomes complex.

• We devise a distributed delivery setup, where each drone

and truck recompute their route independently under time-

varying dynamics, and synchronization between any drone

and the truck is formulated by message passing.

• We present a greedy algorithm to minimize total delivery

time by reducing the waiting time for the truck to gather the

drones returning after delivery.

• As a secondary objective our proposed algorithm minimizes

the energy consumption of the drones without increasing

the total delivery time.

The rest of the paper is structured as follows. Section 2 surveys

the related works. In Section 3, we devise a drone-truck co-operated

delivery system. We present our drone-truck cooperation frame-

work to minimize the delivery time in Section 4. Section 5 shows

the experimental results. Finally, Section 6 concludes the paper and

o�ers future directions.
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2 RELATEDWORK

This section �rst reviews the literature related to the problem of

delivering packages with the help of trucks and drones. Then it

discusses the dynamics that can a�ect the delivery. As the shortest

path algorithm is the core of our delivery route computation, recent

parallel approaches for computing it are also reviewed.
Drone-Truck Cooperated Delivery: The DTCDS scenario was �rst

investigated in [13] where the authors considered both the vehicle

and one single drone to perform deliveries. A similar approach is

studied for multiple drones in [7, 14].

In [6], a greedy heuristic is proposed where the approach �rst

�nds a solution for the truck only, and then it greedily builds sub-

paths for the drones by removing some deliveries from the truck to

reduce the overall time. In [17], the authors consider that the truck

has less speed than the drones due to tra�c congestion and pro-

posed an optimal mixed-integer linear programming formulation

based on timely synchronizing. A hybrid approach is presented

in [25], where the authors propose to simultaneously employ trucks,

truck-carried drones, and independent drones to construct a more

e�cient delivery system.

In [3], the authors consider a prede�ned route for the truck,

and the problem is to optimize the planning of the drone’s �ights

to/from the truck while serving customers. The goal is to determine

the launch andmeeting points between drones and trucks. However,

they do not assume a battery constraint for drones and their goal

is to reduce the total time di�erence between the start and end of a

delivery sequence. A multi-drone scheduling problem in a similar

delivery model is introduced in [20]. The authors devise an optimal

Integer Linear Programming model and propose multiple greedy

heuristic algorithms to solve the problem. In our paper, we also

consider that the route for the truck is prede�ned. However, we do

not focus on the scheduling problem. Rather we consider dynamic

delivery routes and minimize the total delivery time by reducing

wait time for the truck.
Dynamics A�ecting Drone-based Delivery: In [21], the authors

investigate the Mission-Feasibility Problem for a drone-based de-

livery system (DBDS) in varying global wind conditions. A drone’s

relative speed and estimated energy consumption in di�erent wind

speeds and directions are computed to �nd the feasibility of a de-

livery in this paper. Delivery route computation in a centralized

DBDS is proposed in [9]. The authors assume a model where all the

computations are done at a centralized server and updated instruc-

tion is sent to the drones to complete the deliveries e�ciently. The

mission planning problems for drones under weather uncertainty

are studied in [24]. The mathematical formulation considers the

demand of goods at the delivery point, collision avoidance, and

customer satisfaction along with factors like wind conditions and

ground speed of the drones.
Algorithms for Finding Delivery Paths: If the delivery area is

modeled as a graph where edge weights are energy requirements to

travel from one endpoint to another, then the Single Source Shortest

Path (SSSP) problem provides the most energy-e�cient route.

A high-performance parallel graph library, Gunrock [26] pro-

vides a data-centric abstraction on a set of vertices or edges and uses

a three-step architecture (advance, �lter, and compute) to compute

SSSP on GPUs. Their algorithm only focuses on static graphs. In [4],

a GPU implementation of the Bellman-Ford shortest path algorithm

is proposed. This algorithm exploits dynamic parallelism. A detailed

study on the performance of various algorithms on graphs includ-

ing SSSP on temporal graphs, di�erent multi-core architectures,

and GPU accelerators, is proposed in [16].

A dynamic incremental and decremental SSSP algorithm is im-

plemented using JavaScript in [8]. However, the results in this

paper show that the algorithm performs well only if the number

of changed edges is less than 10%. Srinivasan et al. [23] propose

the �rst shared-memory algorithm for updating SSSP on dynamic

networks, and implemented it using OpenMP. A parallel algorithm

template for updating SSSP in large-scale dynamic networks is

proposed in [10]. The authors deal with generic undirected graphs

and present a computing-architecture independent solution. We

use a similar approach to update delivery routes e�ciently under

time-varying dynamics.

3 SYSTEM MODEL

Let � be the 2-D delivery area representing our last-mile delivery

scenario. Letk ∈ � be the depot from where the deliveries start. At

the depot, a truck is in charge of transporting a �eet of< drones

& = @1, . . . , @< .

The truck does not perform deliveries; it only carries the drones

within �. Let d 9 be a road segment connecting two rest areas _ 9
and _ 9+1, where 9 = 0, . . . , A and Λ = {_1, . . . , _A } ⊂ �. The truck

leaves the depot k visiting the �rst rest area _1 along the road

segment d0 = k_1, then the next endpoint _2 along the segment

d1 = _1_2, and so on, up to the last endpoint _A , and eventually

going back to the depot k . These segments make a closed path

(cycle) � formed by the sequence of endpoints _0, _1, . . . , _A , _A+1
such that _0 = _A+1 = k
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Figure 1: A Drone-Truck cooperated delivery system

Let � = {X1, . . . , X=} ⊂ � be the customers’ locations to be

served by the drones. For a set of deliveries, the path for the truck is

�xed. However, an e�cient delivery path for a drone can be a�ected

at the time of �ying due to time-varying dynamics such as wind

speed/direction. Therefore, for each drone, we consider having a

weighted dynamic graph � = (+ , �,F), where the set of nodes +

consists of the set of deliveries � , a set of wind control units, and
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the set of rest areas on the truck path. Figure 1 shows a DTCDS,

where the truck follows the black route and two drones follow their

delivery paths marked in blue.

The edge weights can be the time to �y from one endpoint of

an edge to another or the energy consumption to �y the same. The

relationship between time and energy is not linear due to factors

like wind direction, wind speed, and path direction. Therefore, an

energy-e�cient path may not be the most time-e�cient path. De-

pending on the edge weight we consider�) and�� are the graphs

where edge weights are the time to �y and energy requirement

respectively. Let C)8 (resp. C�8 ) be the time when a drone starting

from a �xed X!8 reaches X'8 after completing the delivery X8 , by

following the most time-e�cient path (resp. energy-e�cient path).

C)8 and C�8 can be initialized by �nding the shortest path in �) and

�� respectively. However, the shortest path can be updated at the

�ying time due to the time-varying factors changing edge weights

in the graph.

�0 �1 �2 �3�4�5�6�7

��� �0 �1 �3�2 �4 �5 ����� �10 �8�9 �7�6�7
�5

�7 �10 �9�8 �7�6�2 GT

GE

Roadmap

Figure 2: Truck has a �xed path starting from the depot. A

drone should have two graphs �� and �) for each delivery.

A drone’s delivery is performed by planning a sub-�ight in � .

Speci�cally, the drones take o� (with a package), deliver packages to

the customers, and return to the rendezvous locations with the truck

again. For each customer’s location X8 , let X
!
8 and X'8 be respectively

the launch point and rendezvous point of the drone. Therefore, the

sub-�ight for the drone will be a path either in �� or �) from

X!8 to X8 , and a path from X8 to X'8 . Let a drone can take o� or

return to the truck only when the truck is at a rest area. Therefore,

X!8 , X
'
8 ∈ Λ. Figure 2 shows the delivery graphs stored in the truck

and the drones. Each drone stores both �) and �� , whereas the

truck stores only the �xed road-map to complete the deliveries.

Note that in our problem we consider knowing in advance the

set of deliveries � and the set of launch points X!8 for each delivery

8 , however, since the graph is dynamic, we are considering that

the paths that each drone has to take and the rendezvous points

with the truck are not known in advance. When both the truck and

the drone arrive at X'8 , the truck gathers again the drones and they

continue to travel up to point _A+1. The time spent by the truck at

each rest area to gather the drones can be considered as waiting

time. Let the tentative waiting time at _ 9 be l 9 . Let the truck starts

from a rest area _ 9 at g 9 tentatively and T = {g0, g1, . . . , gA }. Initially,

it can be computed by �nding a tentative speed of the truck and a

�xed waiting time at each rest area. W.l.o.g., we can consider that

the truck reaches the depot at gA+1. Note that, to save time, the

truck does not travel back and forth for picking up the drones.

Problem formulation: In our scenario, the truck leaves the

depot with a series of assigned deliveries and returns to the depot

after completing all deliveries. We de�ne the total delivery time as

the di�erence between the time the drone reaches the depot after

making all the deliveries, and the time the truck leaves the depot

for delivery. The primary objective of this paper is to minimize

such total delivery time. Formally, we intend to minimize $1 =

(gA+1 − g0) =
∑A

9=0 ((travel time of d 9 ) + l 9 ). Note that, as the

route for the truck is �xed, and tra�c is uncertain, only l 9 can be

modi�ed to e�ectively minimize $1. Thus, our �rst objective is to

minimize the waiting time.

Our secondary objective is to minimize the energy consumption

of the drones without increasing the total delivery time. If a set of

drones are gathered at a rest area _ 9 , then the truck’s waiting time

is dependent on the last drone’s arrival time. An energy-e�cient

route takes more or equal time compared to the most time-e�cient

route. Therefore, a drone can save energy without increasing the

truck’s waiting time, if it follows the energy-e�cient path and still

can return to the truck before the arrival of the last drone.

4 DRONE-TRUCK COOPERATION
FRAMEWORK

Here we present a three-step drone-truck cooperation framework

to minimize the total delivery time. The �rst step is the preprocess-

ing stage, which estimates the delivery route for each customer

assuming a static wind condition. The next step is executed at each

drone, where the assigned delivery route is updated when time-

varying dynamics a�ect the traveling time. The �rst two steps try

to minimize the drone’s energy consumption also. The last step

considers the road tra�c and drones’ traveling time to adjust the

truck’s waiting time.

4.1 Pre-Processing

We assume that all the customers to serve are known before start-

ing the delivery. So, before starting the actual delivery it can be

estimated how many drones are required at a time and from where

the drones can be launched. A drone completes a trip (known as

forward trip) from a rest area (launching point X!8 ) to the customer’s

location X8 and a trip (known as backward trip) from X8 to another

rest area (rendezvous point X'8 ). Let D0 be a dummy source vertex

added in�) in such a way that all the rest areas are connected toD0
with edge weight zero. Let this modi�ed graph be �) ∗. Now if the

SSSP is computed from D0 to X8 , the second vertex in this shortest

route provides the rest area (Let _D ) from where a drone can be

launched to serve X8 with the least amount of time. Additionally,

the path length or distance (Let 3 5 ) provides the estimated time

required for forward trip (See Algorithm 1 Line 2).

Backward trip time (Let 31~ ) to return a rest area _~ , (D ≤ ~ ≤

A + 1) can be estimated by �nding shortest path from X8 to all

these rest areas. Any classic SSSP algorithm can be used for this

purpose. The total delivery time of a DTCDS can be minimized

when the total waiting time of the truck to gather the drones is

minimized. Therefore, we can choose a rest area _E such that the

time gap between the drone’s reaching time and gE is minimized or
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E = 0A6<8=~ ( |g~ − (gD + 3
5 + 31~) |). The time C)8 , when the drone

reaches _E can be computed by adding the forward and backward

time with the launching time instance gD . If C
)
8 is greater than gE ,

then the truck needs to wait for the drone to return and gE should

be updated (Algorithm 1 Line 8).

Algorithm 1: PreProcess (�) ∗,�� , �,T )

1 for 8 ∈ 1 . . . = do

2 Compute SSSP on �) ∗ to �nd X!8 (Let _D ) and shortest

route distance 3 5 from _D to X8 .

3 Compute shortest path distances 31~ from X8 to all rest

area _~ such that D ≤ ~ ≤ A + 1.

4 E ← 0A6<8=~ ( |g~ − (gD + 3
5 + 31~) |)

5 X'8 ← _E

6 C)8 ← gD + 3
5 + 31E

7 if C)8 > gE then

8 gE ← C)8

9 Compute C�8 by �nding shortest path from _D to X8 , and

shortest path from X8 to _E on �
� .

10 if C�8 < gE then

11 X8 .<>34 ← � // Energy efficient

12 else

13 X8 .<>34 ← ) // Time efficient

Next, using any SSSP algorithm, C�8 can be computed by �xing

the launching point at _D and rendezvous point at _E in �
� . As C�8

denotes the time when the drone reaches its rendezvous point by

following the most energy-e�cient route, a drone is preferred to

follow the energy-e�cient route unless C�8 is greater than gE . There-

fore, at the end of the pre-processing stage, either energy-e�cient

mode � or time-e�cient mode ) is assigned for each delivery X8 .

More speci�cally, the mode parameter determines if the energy-

e�cient route will be followed instead of the time-e�cient route

while delivering a package.

4.2 Dynamic Route Selection at Drone

It has been observed that in a dynamic network, updating a SSSP

takes less time than recomputing it from scratch in case of change in

network topology [10]. A dynamic shortest path update algorithm

considers a set of change edges � = �=B, �4; (�=B be the inserted

edges and �4; are the deleted edges) as input and �nds out the

a�ected subgraph using a tree structure known as SSSP tree. Then

the algorithm updates the distance of the a�ected vertices using

an iterative shortest path computation. The SSSP update algorithm

can be used to �nd the updated shortest path length from a source

vertex DB to destination vertex D3 . The overview of parallel SSSP

update is shown in Algorithm 2.

In our DTCDS, we consider the edge weights change in both�)

and�� due to changes in wind characteristics. All such changes can

be tracked by the wind control units distributed over the delivery

area �, and the changed edge weights can be broadcasted to the

drones [9]. Let �) (resp. �� ) be the set of changes in�) (resp.�� ).

Algorithm 2: RouteUpdate(DB , D3 ,�,�)

/* Step1: Find affected vertices */

1 for each change edge (D, E) ∈ � in parallel do

2 Find a�ected endpoint G ∈ D, E such that distance of G is

changed due to �.

3 Add G in a set of a�ected vertices �5 5 .

/* Step2: Update distance of affected vertices

and their neighbors iteratively */

4 while �5 5 is not empty do

5 for vertex G ∈ �5 5 in parallel do

6 Update distance of G by �nding a path through a

neighbor in updated � , such that the distance of G

from DB decreases.

7 If the distance of G or its any neighbor G= gets an

updated distance, add the vertex to �5 5 .

8 Return the updated shortest route from DB to D3 .

So, the drones receive a set of changes �0;; = {�
) ,�� } as input to

compute the updated delivery route.

Algorithm 3: DynamicDroneRoute(�0;; ,�
) ,�� , XG )

/* Drone’s current location ;>2, assigned

delivery XG, and current time C=>F */

1 if new �0;; received then

2 A>DC4� ←RouteUpdate (;>2, X'G ,�
� ,�� )

3 A>DC4) ←RouteUpdate (;>2, X'G ,�
) ,�) )

4 C�G ← C=>F+ time to travel A>DC4�

5 C)G ← C=>F+ time to travel A>DC4)

/* Let X'G = _E */

6 if C�G > gE then

7 if C)G ≤ gE then

8 XG .<>34 ← ) // Time efficient

9 else

10 Send (_E, C
)
G ) to the Truck

A drone serving XG can use Algorithm 2 on�� and�) to �nd the

updated rendezvous time C�G and C)G respectively. Let the rendezvous

point be _E for the drone. We aim to minimize the energy usage of

a drone whenever possible without increasing the truck’s waiting

time. Therefore, an energy-e�cient mode is the natural choice

unless speci�ed otherwise by the pre-processing step or C�G becomes

greater than gE . In case C�G and C)G both become greater than gE , the

drone uses time-e�cient route and informs the truck about the

updated rendezvous time C)G . The drone sends a tuple consisting

of the rendezvous point and updated rendezvous time to the truck

(See Algorithm 3).

4.3 Computation at Truck

The truck’s trip can be a�ected by (i) the road tra�c, and (ii) the

wait time to gather the drones. When a truck is on d 9 , but unable to

reach the next rest area _ 9+1 at the pre-estimated time g 9+1, then the
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Algorithm 4: ComputeAtTruck(T ,Λ)

/* Truck’s current location ;>2, and current time

C=>F */

1 if ;>2 lies on d 9 and C=>F > g 9+1 then

2 Estimate g 9+1 using tra�c movement and road distance

to cover.

3 Update all gG for 9 < G < A + 1 in T .

4 Broadcast T to all drones.

5 if a message (_ 9 , C ) received from a drone then

6 if g 9 < C then

7 g 9 ← C

8 Update all gG for 9 < G < A + 1 in T .

9 Broadcast T to all drones.

truck recomputes the new estimated g 9+1 considering the current

tra�c and distance to cover. An update on g 9+1 requires update on

all next elements gG ∈ T , ( 9 < G < A + 1). This step can be done in

parallel threads in constant time and broadcasted to all the drones.

When a drone fails to return to its rendezvous point _E on or before

gE , it informs the truck about the new rendezvous time. The informa-

tion exchange is one-to-one and consists of a tuple only. The truck

updates gE , all next entries in T and broadcasts T (Algorithm 4).

Complexity Analysis: Let �) or �� have V vertices and E

edges. Then, the shortest paths during the pre-processing step can

be computed in$ (V+E log(V)) time by using a Dijkstra’s shortest

path algorithm. The argmin computation (Line 4 in Algorithm 1)

requires $ (A ) time. Therefore, for = deliveries, the pre-processing

step takes total $ (=(V + E log(V) + A )) time.

The dynamic route selection performed by the drone uses an

existing shortest path update algorithm [10] which takes time

$ ( |�|/?) +$ (Djr/? + D). Here, ? is the number of processing

units (or available threads) in a drone, j is the number of a�ected

vertices at each iteration in Step 2 of Algorithm 2, r and D are

the average degree and diameter of the graph. Computation at the

truck level mainly involves updating T in case of varying tra�c or

change in a drone’s rendezvous time: thus $ ( |Λ|).

Communication: Algorithm 3 involves only point to point com-

munication between a drone and the truck and the cost for each

communication is $ (; + `/�), where ; is latency, ` is the message

size and � is the bandwidth. As the drone sends only a tuple with

two values ` is very less and the communication time becomes

insigni�cant. The truck may need to broadcast the updated T to

all the drones and it requires $ ((; + `/�);>6(< + 1)) time.

5 EXPERIMENTAL EVALUATION

To implement a realistic delivery map, we use TataNld network [12]

and generate a bi-directional weighted graph using the provided

latitude and longitude of the nodes. Then we scale down the edge

weight i.e., the distance such that any delivery trip for a drone be-

comes 5 Kilometre or less. A few �xed vertices are considered as rest

areas and others are considered as potential customers’ locations.

A drone �ying model and varying wind model are implemented as

mentioned in [22].

5.1 Delivery Time and Energy Consumption

In our �rst experiment, we increase the total number of deliver-

ies from 10 to 100 and observe the total delivery time and energy

consumption by the drones. We repeat each experiment 50 times

and select the customers’ locations randomly. We consider four

delivery models, which are 1) prePath: Drone follows the delivery

path pre-estimated at pre-processing stage considering a �xed wind

condition, 2) TPath: All drones follow the most time-e�cient de-

livery path under varying wind, 3) EPath: All drones follow the

most energy-e�cient delivery path under varying wind, 4) dyn-

Path:Drones follow our proposed algorithm to change their delivery

mode (Energy- and Time-e�cient) under varying wind condition.
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Figure 3: Performance analysis of DTCDS. (a) Total delivery

time, (b) Total energy consumption by the drones. Ratios

with respect to prePath values are shown along the Y-axis.

Figure 3a shows the total delivery time for all delivery models.

We divide the total delivery time in eachmodel by the prePathmodel

delivery time to get normalized results. Overlapping of TPath and

dynPath delivery times in the plot indicates that the dynPath model

takes the minimum delivery time similar to the TPath delivery time.

Figure 3b shows that the energy consumption of dynPath model

is higher than the most energy e�cient model i.e., EPath. However,

the dynPath model uses much less energy than the TPath model to

complete the deliveries. Therefore, the empirical results show that

the dynPath model satis�es our objective of minimizing the total

delivery time while reducing the energy consumption.

5.2 Experiment on Delivery Modes
As a delivery can be completed by following either time e�cient

mode (Let T-mode) or energy e�cient mode (Let E-mode), in this
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experiment we observe the total number of deliveries completed in

each of these modes. The TPath and EPathmodel accomplish all the

deliveries in T-mode and E-mode respectively. However, for a set

of deliveries the prePath and dynPath models may use both T-mode

and E-mode. The prePath model decides the mode of delivery at

preprocessing stage and does not change the mode under varying

wind conditions. On the other hand, the dynPath model can change

a delivery mode at the time of actual delivery.

20 40 60 80 100
Total deliveries

0

25

50

75

100

N
o.

 o
f d

iff
er

en
t m

od
e 

de
liv

er
ie

s

Different Delivery Modes
E-mode prePath
T-mode prePath
E-mode dynPath
T-mode dynPath

Figure 4: Deliveries performed in di�erent modes.

In Figure 4, along Y-axis we vary the number of total deliveries

and along X-axis we present the number of deliveries following each

delivery mode. The plot shows that compared to prePath model,

dynPath uses more E-mode deliveries, which means dynPath model

saves more energy to complete the same number of total deliveries.

It can be noticed that in some cases the number of deliveries fol-

lowing T-mode becomes zero in dynPath model. It may occur due

to two reasons: 1) when there is no alternative route to complete

the delivery, 2) when the delivery time by following the energy

e�cient route and the time e�cient route becomes the same.

6 CONCLUSIONS

In this paper, we devise a DTCDS, where each drone and truck

update their route independently under time-varying dynamics and

each drone synchronizes with the truck by short message passing.

We present a greedy three-step drone-truck cooperation framework

that minimizes the total delivery time. Our algorithm also reduces

the energy consumption of drones as a secondary objective.

Currently, the truck always waits for the drones to return. In

future work, it would be interesting to assume the truck waits for a

�xed duration at each rest area and the drone meets to some next

rest area if it cannot reach the pre-estimated rendezvous point on

time. This problem can be solved using an approximation algorithm

if a drone’s energy budget is �xed.
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