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ABSTRACT Since drones are powered by limited capacity batteries, they are

forced to recharge the battery again after each trip to a customer.
Also, the energy requirement for a fixed route can vary due to
various external dynamics like wind [9, 24]. Drones can carry a

Rapid technological developments in autonomous unmanned aerial
vehicles (or drones) could soon lead to their large-scale implemen-

tation in the last-mile delivery of products. However, drones have a

number of problems such as limited energy budget, limited carrying maximum payload mass to customers, and the consumed energy
for delivering also depends on the actual payload. Due to technical

constraints, a drone can deliver a single package at a time [18].
Therefore, in a simple drone-based delivery system a drone picks
up the package from a warehouse, delivers it to a customer, and then
returns to the warehouse again before the next delivery. Drones can
serve a limited area due to their limited communication range [19].

capacity, etc. On the other hand, trucks have a larger carrying capac-
ity, but they cannot reach all the places easily. Intriguingly, last-mile
delivery cooperation between drones and trucks can synergistically
improve delivery efficiency.

In this paper, we present a drone-truck co-operated delivery
framework under time-varying dynamics. Our framework mini-
mizes the total delivery time while considering low energy con- Drone-truck cooperation can address some of these challenges
sumption as the secondary objective. The empirical results support directly as a truck can carry several packages and can be used as a

our claim and show that our algorithm can help to complete the mobile charging station. However, a drone-truck co-operated deliv-
ery system (DTCDS) requires coordination between the drones and

the truck. An energy and time-efficient solution to deliver all the
CCS CONCEPTS items in such a system becomes more complex under time-varying
dynamics as the time of traveling a fixed distance becomes vari-
able. More specifically, road traffic can affect the truck’s movement
whereas the wind speed and direction can significantly impact the

deliveries time efficiently and saves energy.

« Computing methodologies — Distributed algorithms.
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o To the best of our knowledge, we are the first to consider
time-varying dynamics in a DTCDS scenario. Due to the
time-dependent parameters travel time for both truck and
drone becomes unpredictable, and efficient route selection
becomes complex.

1 INTRODUCTION

Drones can be used in a plethora of applications including, but e We devise a distributed delivery setup, where each drone

not limited to, monitoring [11], localization [1], surveillance ser- and truck recompute their route independently under time-

vice [2], precision agriculture [15], search and rescue [5], package varying dynamics, and synchronization between any drone

delivery [9, 21]. Compared with the truck-based delivery system, a and the truck is formulated by message passing.

drone can deliver more efficiently due to various advantages such e We present a greedy algorithm to minimize total delivery

as its capability to deliver in hard-to-reach places or overcome time by reducing the waiting time for the truck to gather the

traffic congestion on roads. However, there are several challenges drones returning after delivery.

involved in a drone-based delivery system, summarized as follows. e As a secondary objective our proposed algorithm minimizes
the energy consumption of the drones without increasing
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2 RELATED WORK

This section first reviews the literature related to the problem of
delivering packages with the help of trucks and drones. Then it
discusses the dynamics that can affect the delivery. As the shortest
path algorithm is the core of our delivery route computation, recent
parallel approaches for computing it are also reviewed.

Drone-Truck Cooperated Delivery: The DTCDS scenario was first
investigated in [13] where the authors considered both the vehicle
and one single drone to perform deliveries. A similar approach is
studied for multiple drones in [7, 14].

In [6], a greedy heuristic is proposed where the approach first
finds a solution for the truck only, and then it greedily builds sub-
paths for the drones by removing some deliveries from the truck to
reduce the overall time. In [17], the authors consider that the truck
has less speed than the drones due to traffic congestion and pro-
posed an optimal mixed-integer linear programming formulation
based on timely synchronizing. A hybrid approach is presented
in [25], where the authors propose to simultaneously employ trucks,
truck-carried drones, and independent drones to construct a more
efficient delivery system.

In [3], the authors consider a predefined route for the truck,
and the problem is to optimize the planning of the drone’s flights
to/from the truck while serving customers. The goal is to determine
the launch and meeting points between drones and trucks. However,
they do not assume a battery constraint for drones and their goal
is to reduce the total time difference between the start and end of a
delivery sequence. A multi-drone scheduling problem in a similar
delivery model is introduced in [20]. The authors devise an optimal
Integer Linear Programming model and propose multiple greedy
heuristic algorithms to solve the problem. In our paper, we also
consider that the route for the truck is predefined. However, we do
not focus on the scheduling problem. Rather we consider dynamic
delivery routes and minimize the total delivery time by reducing
wait time for the truck.

Dynamics Affecting Drone-based Delivery: In [21], the authors
investigate the Mission-Feasibility Problem for a drone-based de-
livery system (DBDS) in varying global wind conditions. A drone’s
relative speed and estimated energy consumption in different wind
speeds and directions are computed to find the feasibility of a de-
livery in this paper. Delivery route computation in a centralized
DBDS is proposed in [9]. The authors assume a model where all the
computations are done at a centralized server and updated instruc-
tion is sent to the drones to complete the deliveries efficiently. The
mission planning problems for drones under weather uncertainty
are studied in [24]. The mathematical formulation considers the
demand of goods at the delivery point, collision avoidance, and
customer satisfaction along with factors like wind conditions and
ground speed of the drones.

Algorithms for Finding Delivery Paths: If the delivery area is
modeled as a graph where edge weights are energy requirements to
travel from one endpoint to another, then the Single Source Shortest
Path (SSSP) problem provides the most energy-efficient route.

A high-performance parallel graph library, Gunrock [26] pro-
vides a data-centric abstraction on a set of vertices or edges and uses
a three-step architecture (advance, filter, and compute) to compute
SSSP on GPUs. Their algorithm only focuses on static graphs. In [4],
a GPU implementation of the Bellman-Ford shortest path algorithm
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is proposed. This algorithm exploits dynamic parallelism. A detailed
study on the performance of various algorithms on graphs includ-
ing SSSP on temporal graphs, different multi-core architectures,
and GPU accelerators, is proposed in [16].

A dynamic incremental and decremental SSSP algorithm is im-
plemented using JavaScript in [8]. However, the results in this
paper show that the algorithm performs well only if the number
of changed edges is less than 10%. Srinivasan et al. [23] propose
the first shared-memory algorithm for updating SSSP on dynamic
networks, and implemented it using OpenMP. A parallel algorithm
template for updating SSSP in large-scale dynamic networks is
proposed in [10]. The authors deal with generic undirected graphs
and present a computing-architecture independent solution. We
use a similar approach to update delivery routes efficiently under
time-varying dynamics.

3 SYSTEM MODEL

Let A be the 2-D delivery area representing our last-mile delivery
scenario. Let / € A be the depot from where the deliveries start. At
the depot, a truck is in charge of transporting a fleet of m drones
Q0=q1,..-.9m.

The truck does not perform deliveries; it only carries the drones
within A. Let p; be a road segment connecting two rest areas A;
and Aj41, where j = 0,...,rand A = {A4,...,4,} C A. The truck
leaves the depot ¢ visiting the first rest area A; along the road
segment py = E, then the next endpoint A, along the segment
p1 = 122, and so on, up to the last endpoint A,, and eventually
going back to the depot . These segments make a closed path

(cycle) C formed by the sequence of endpoints Ao, A1,. .., Ar, Ar41
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Figure 1: A Drone-Truck cooperated delivery system

Depot

Let D = {61,...,0n} C A be the customers’ locations to be
served by the drones. For a set of deliveries, the path for the truck is
fixed. However, an efficient delivery path for a drone can be affected
at the time of flying due to time-varying dynamics such as wind
speed/direction. Therefore, for each drone, we consider having a
weighted dynamic graph G = (V, E, w), where the set of nodes V
consists of the set of deliveries D, a set of wind control units, and
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the set of rest areas on the truck path. Figure 1 shows a DTCDS,
where the truck follows the black route and two drones follow their
delivery paths marked in blue.

The edge weights can be the time to fly from one endpoint of
an edge to another or the energy consumption to fly the same. The
relationship between time and energy is not linear due to factors
like wind direction, wind speed, and path direction. Therefore, an
energy-efficient path may not be the most time-efficient path. De-
pending on the edge weight we consider GT and GF are the graphs
where edge weights are the time to fly and energy requirement
respectively. Let tl.T (resp. tlE) be the time when a drone starting
from a fixed 5{“ reaches 51R after completing the delivery 6;, by
following the most time-efficient path (resp. energy-efficient path).
tl.T and tlE can be initialized by finding the shortest path in GT and
GE respectively. However, the shortest path can be updated at the
flying time due to the time-varying factors changing edge weights
in the graph.
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Figure 2: Truck has a fixed path starting from the depot. A
drone should have two graphs GF and G for each delivery.

A drone’s delivery is performed by planning a sub-flight in G.
Specifically, the drones take off (with a package), deliver packages to
the customers, and return to the rendezvous locations with the truck
again. For each customer’s location &;, let 5iL and 51R be respectively
the launch point and rendezvous point of the drone. Therefore, the
sub-flight for the drone will be a path either in GE or GT from
5{“ to &;, and a path from J; to (SIR. Let a drone can take off or
return to the truck only when the truck is at a rest area. Therefore,
5{“, 5? € A. Figure 2 shows the delivery graphs stored in the truck
and the drones. Each drone stores both GT and GE, whereas the
truck stores only the fixed road-map to complete the deliveries.

Note that in our problem we consider knowing in advance the
set of deliveries D and the set of launch points 5{“ for each delivery
i, however, since the graph is dynamic, we are considering that
the paths that each drone has to take and the rendezvous points
with the truck are not known in advance. When both the truck and
the drone arrive at 55, the truck gathers again the drones and they
continue to travel up to point A,41. The time spent by the truck at
each rest area to gather the drones can be considered as waiting
time. Let the tentative waiting time at A; be ;. Let the truck starts
from a rest area A; at 7; tentatively and 7~ = {70, 71, ..., 7} Initially,
it can be computed by finding a tentative speed of the truck and a
fixed waiting time at each rest area. W.l.o.g., we can consider that
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the truck reaches the depot at 7,41. Note that, to save time, the
truck does not travel back and forth for picking up the drones.

Problem formulation: In our scenario, the truck leaves the
depot with a series of assigned deliveries and returns to the depot
after completing all deliveries. We define the total delivery time as
the difference between the time the drone reaches the depot after
making all the deliveries, and the time the truck leaves the depot
for delivery. The primary objective of this paper is to minimize
such total delivery time. Formally, we intend to minimize O; =
(741 — 10) = Z;zo((travel time of pj) + w;). Note that, as the
route for the truck is fixed, and traffic is uncertain, only w; can be
modified to effectively minimize O;. Thus, our first objective is to
minimize the waiting time.

Our secondary objective is to minimize the energy consumption
of the drones without increasing the total delivery time. If a set of
drones are gathered at a rest area A, then the truck’s waiting time
is dependent on the last drone’s arrival time. An energy-efficient
route takes more or equal time compared to the most time-efficient
route. Therefore, a drone can save energy without increasing the
truck’s waiting time, if it follows the energy-efficient path and still
can return to the truck before the arrival of the last drone.

4 DRONE-TRUCK COOPERATION
FRAMEWORK

Here we present a three-step drone-truck cooperation framework
to minimize the total delivery time. The first step is the preprocess-
ing stage, which estimates the delivery route for each customer
assuming a static wind condition. The next step is executed at each
drone, where the assigned delivery route is updated when time-
varying dynamics affect the traveling time. The first two steps try
to minimize the drone’s energy consumption also. The last step
considers the road traffic and drones’ traveling time to adjust the
truck’s waiting time.

4.1 Pre-Processing

We assume that all the customers to serve are known before start-
ing the delivery. So, before starting the actual delivery it can be
estimated how many drones are required at a time and from where
the drones can be launched. A drone completes a trip (known as
forward trip) from a rest area (launching point 5iL) to the customer’s
location §; and a trip (known as backward trip) from &; to another
rest area (rendezvous point 55). Let up be a dummy source vertex
added in G in such a way that all the rest areas are connected to ug
with edge weight zero. Let this modified graph be GT*. Now if the
SSSP is computed from u to J;, the second vertex in this shortest
route provides the rest area (Let A;,) from where a drone can be
launched to serve §; with the least amount of time. Additionally,
the path length or distance (Let dh provides the estimated time
required for forward trip (See Algorithm 1 Line 2).

Backward trip time (Let dz) to return a rest area Ay, (u < y <
r + 1) can be estimated by finding shortest path from §; to all
these rest areas. Any classic SSSP algorithm can be used for this
purpose. The total delivery time of a DTCDS can be minimized
when the total waiting time of the truck to gather the drones is
minimized. Therefore, we can choose a rest area A, such that the
time gap between the drone’s reaching time and 7, is minimized or
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v = argminy(|ty — (7, + al + dZ)|). The time tiT, when the drone
reaches A, can be computed by adding the forward and backward
time with the launching time instance 7. If tl.T is greater than 7,
then the truck needs to wait for the drone to return and 7, should
be updated (Algorithm 1 Line 8).

Algorithm 1: PreProcess (GT*,GE, D, T)

1foriel...ndo
2 Compute SSSP on GT* to find 5{“ (Let Ay) and shortest

route distance df from 1, to &;.

3 Compute shortest path distances dZ from &; to all rest
area Ay suchthatu <y <r+1.

4 v <—argminy(|ry—(Tu+df+dZ)|)

5 | SRy

6 tl.T — Ty + al + dg

7 if tl.T > 1, then

8 L Ty tiT

9 Compute tf by finding shortest path from A, to d;, and
shortest path from §; to 4, on GE.

10 if tlE < 175 then
11 L 8;.mode «— E

12 else
13 L 8;j.mode «— T

// Energy efficient

// Time efficient

Next, using any SSSP algorithm, tf can be computed by fixing
the launching point at A, and rendezvous point at A, in GE. As tf
denotes the time when the drone reaches its rendezvous point by
following the most energy-efficient route, a drone is preferred to
follow the energy-efficient route unless tlE is greater than 7. There-
fore, at the end of the pre-processing stage, either energy-efficient
mode E or time-efficient mode T is assigned for each delivery ;.
More specifically, the mode parameter determines if the energy-
efficient route will be followed instead of the time-efficient route
while delivering a package.

4.2 Dynamic Route Selection at Drone

It has been observed that in a dynamic network, updating a SSSP
takes less time than recomputing it from scratch in case of change in
network topology [10]. A dynamic shortest path update algorithm
considers a set of change edges A = Ins, Del (Ins be the inserted
edges and Del are the deleted edges) as input and finds out the
affected subgraph using a tree structure known as SSSP tree. Then
the algorithm updates the distance of the affected vertices using
an iterative shortest path computation. The SSSP update algorithm
can be used to find the updated shortest path length from a source
vertex us to destination vertex uy. The overview of parallel SSSP
update is shown in Algorithm 2.

In our DTCDS, we consider the edge weights change in both GT
and GF due to changes in wind characteristics. All such changes can
be tracked by the wind control units distributed over the delivery
area A, and the changed edge weights can be broadcasted to the
drones [9]. Let AT (resp. AF) be the set of changes in GT (resp. GE).
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Algorithm 2: RouteUpdate(us, ug, G, A)

/* Stepl: Find affected vertices */
1 for each change edge (u,v) € A in parallel do
2 Find affected endpoint x € u,v such that distance of x is

changed due to A.
3 Add x in a set of affected vertices Aff.

/* Step2: Update distance of affected vertices
and their neighbors iteratively
4 while Aff is not empty do
5 for vertex x € Af f in parallel do
6 Update distance of x by finding a path through a
neighbor in updated G, such that the distance of x
from ug decreases.

*/

7 If the distance of x or its any neighbor x, gets an
updated distance, add the vertex to Aff.

8 Return the updated shortest route from ug to u .

So, the drones receive a set of changes A,y = {AT AEY as input to
compute the updated delivery route.

Algorithm 3: DynamicDroneRoute(A 57, GT, GE, 65)

/* Drone’s current location loc, assigned

delivery 6y, and current time tpow */
1 if new Ay received then
2 routef —RouteUpdate (loc, 5,5, GE, AE)
3 routel «—RouteUpdate (loc, 5)15, GT AT
4 tf — thowt time to travel routef
5 t; — thow+ time to travel route!
/* Let 8R =2, */

s if t£ > 7, then

7 if tI <7, then
8 L Sy.mode — T // Time efficient
9 else

10 L Send (4, tz ) to the Truck

A drone serving 8y can use Algorithm 2 on GF and GT to find the
updated rendezvous time tf and t; respectively. Let the rendezvous
point be A, for the drone. We aim to minimize the energy usage of
a drone whenever possible without increasing the truck’s waiting
time. Therefore, an energy-efficient mode is the natural choice
unless specified otherwise by the pre-processing step or t£ becomes
greater than z,,. In case t£ and I both become greater than ,, the
drone uses time-efficient route and informs the truck about the
updated rendezvous time t]. The drone sends a tuple consisting
of the rendezvous point and updated rendezvous time to the truck
(See Algorithm 3).

4.3 Computation at Truck

The truck’s trip can be affected by (i) the road traffic, and (ii) the
wait time to gather the drones. When a truck is on p;, but unable to
reach the next rest area A4 at the pre-estimated time 71, then the
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Algorithm 4: ComputeAtTruck(7, A)

/* Truck’s current location loc, and current time

thow */
1 if loc lies on pj and tyow > 7j+1 then
2 Estimate 7j;1 using traffic movement and road distance
to cover.

3 Updateall 7y for j <x <r+1in 7.
4 | Broadcast 7 to all drones.

5 if a message (A}, t) received from a drone then
6 if 7; < t then

7 Tj t
8 Update all 7y for j < x <r+1in 7.
9 Broadcast 7 to all drones.

truck recomputes the new estimated 741 considering the current
traffic and distance to cover. An update on 741 requires update on
all next elements 7, € 7, (j < x < r + 1). This step can be done in
parallel threads in constant time and broadcasted to all the drones.
When a drone fails to return to its rendezvous point A, on or before
Ty, it informs the truck about the new rendezvous time. The informa-
tion exchange is one-to-one and consists of a tuple only. The truck
updates 7, all next entries in 7 and broadcasts 7~ (Algorithm 4).

Complexity Analysis: Let GT or GF have V' vertices and &
edges. Then, the shortest paths during the pre-processing step can
be computed in O(V+& log(V)) time by using a Dijkstra’s shortest
path algorithm. The argmin computation (Line 4 in Algorithm 1)
requires O(r) time. Therefore, for n deliveries, the pre-processing
step takes total O(n(V + Elog(V) +r)) time.

The dynamic route selection performed by the drone uses an
existing shortest path update algorithm [10] which takes time
O(|Al/p) + O(Dye/p + D). Here, p is the number of processing
units (or available threads) in a drone, y is the number of affected
vertices at each iteration in Step 2 of Algorithm 2, o and D are
the average degree and diameter of the graph. Computation at the
truck level mainly involves updating 7~ in case of varying traffic or
change in a drone’s rendezvous time: thus O(|A|).

Communication: Algorithm 3 involves only point to point com-
munication between a drone and the truck and the cost for each
communication is O(I + p/B), where [ is latency, p is the message
size and B is the bandwidth. As the drone sends only a tuple with
two values p is very less and the communication time becomes
insignificant. The truck may need to broadcast the updated 7 to
all the drones and it requires O((I + pt/B)log(m + 1)) time.

5 EXPERIMENTAL EVALUATION

To implement a realistic delivery map, we use TataNld network [12]
and generate a bi-directional weighted graph using the provided
latitude and longitude of the nodes. Then we scale down the edge
weight i.e., the distance such that any delivery trip for a drone be-
comes 5 Kilometre or less. A few fixed vertices are considered as rest
areas and others are considered as potential customers’ locations.
A drone flying model and varying wind model are implemented as
mentioned in [22].
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5.1 Delivery Time and Energy Consumption

In our first experiment, we increase the total number of deliver-
ies from 10 to 100 and observe the total delivery time and energy
consumption by the drones. We repeat each experiment 50 times
and select the customers’ locations randomly. We consider four
delivery models, which are 1) prePath: Drone follows the delivery
path pre-estimated at pre-processing stage considering a fixed wind
condition, 2) TPath: All drones follow the most time-efficient de-
livery path under varying wind, 3) EPath: All drones follow the
most energy-efficient delivery path under varying wind, 4) dyn-
Path: Drones follow our proposed algorithm to change their delivery
mode (Energy- and Time-efficient) under varying wind condition.

Delivery Time

$1.00
N
©
IS
3099 m
[}
E
E‘0.98
2
E 097 —— prePath —— EPath
© TPath —— dynPath
e
20 40 60 80 100

No. of deliveries

(a) Total Delivery Time. TPath and dynPath values over-

lapped
Energy Consumption
5 1.00
3
S
£
S
Z 0.99
3
? /\/\
[0}
©0.98 —— prePath —— EPath
L TPath —— dynPath
20 40 60 80 100

No. of deliveries
(b) Energy Consumption by Drones.

Figure 3: Performance analysis of DTCDS. (a) Total delivery
time, (b) Total energy consumption by the drones. Ratios
with respect to prePath values are shown along the Y-axis.

Figure 3a shows the total delivery time for all delivery models.
We divide the total delivery time in each model by the prePath model
delivery time to get normalized results. Overlapping of TPath and
dynPath delivery times in the plot indicates that the dynPath model
takes the minimum delivery time similar to the TPath delivery time.

Figure 3b shows that the energy consumption of dynPath model
is higher than the most energy efficient model i.e., EPath. However,
the dynPath model uses much less energy than the TPath model to
complete the deliveries. Therefore, the empirical results show that
the dynPath model satisfies our objective of minimizing the total
delivery time while reducing the energy consumption.

5.2 Experiment on Delivery Modes
As a delivery can be completed by following either time efficient
mode (Let T-mode) or energy efficient mode (Let E-mode), in this
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experiment we observe the total number of deliveries completed in
each of these modes. The TPath and EPath model accomplish all the
deliveries in T-mode and E-mode respectively. However, for a set
of deliveries the prePath and dynPath models may use both T-mode
and E-mode. The prePath model decides the mode of delivery at
preprocessing stage and does not change the mode under varying
wind conditions. On the other hand, the dynPath model can change
a delivery mode at the time of actual delivery.

Different Delivery Modes

.§ 100 e  E-mode prePath :
o o  T-mode prePath H H
% 75 e E-mode dynPath )
° T-mode dynPath H : .
el 4 i 1 H
g H e 2
£ 50 i P
c F ]
[ L ) i : H
9] H
5 25 : AR
G H . H 4

. ® ) *
2 o ¢ °

20 40 60 80 100

Total deliveries

Figure 4: Deliveries performed in different modes.

In Figure 4, along Y-axis we vary the number of total deliveries
and along X-axis we present the number of deliveries following each
delivery mode. The plot shows that compared to prePath model,
dynPath uses more E-mode deliveries, which means dynPath model
saves more energy to complete the same number of total deliveries.
It can be noticed that in some cases the number of deliveries fol-
lowing T-mode becomes zero in dynPath model. It may occur due
to two reasons: 1) when there is no alternative route to complete
the delivery, 2) when the delivery time by following the energy
efficient route and the time efficient route becomes the same.

6 CONCLUSIONS

In this paper, we devise a DTCDS, where each drone and truck
update their route independently under time-varying dynamics and
each drone synchronizes with the truck by short message passing.
We present a greedy three-step drone-truck cooperation framework
that minimizes the total delivery time. Our algorithm also reduces
the energy consumption of drones as a secondary objective.

Currently, the truck always waits for the drones to return. In
future work, it would be interesting to assume the truck waits for a
fixed duration at each rest area and the drone meets to some next
rest area if it cannot reach the pre-estimated rendezvous point on
time. This problem can be solved using an approximation algorithm
if a drone’s energy budget is fixed.
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