nature catalysis

Review Article

https://doi.org/10.1038/s41929-022-00909-w

Machine learning-enabled retrobiosynthesis

of molecules

Received: 30 May 2022

Accepted: 22 December 2022

Tianhao Yu'??, Aashutosh Girish Boob"?**, Michael J. Volk"**, Xuan Liu"%3,
Haiyang Cui"?® & Huimin Zhao ®'%*%#

Published online: 16 February 2023

% Check for updates

Retrobiosynthesis provides an effective and sustainable approach to
producing functional molecules. The past few decades have witnessed a

rapid expansion of biosynthetic approaches. With the recent advances
indata-driven sciences, machine learning (ML) is enriching the
retrobiosynthesis design toolbox and being applied to each step of the
synthesis design workflow, including retrosynthesis planning, enzyme
identification and engineering, and pathway optimization. The ability tolearn
from existing knowledge, recognize complex patterns and generalize to the
unknown has made ML a promising solution to biological problems. In this
Review, we summarize the recent progress in the development of ML models
for assisting with molecular synthesis. We highlight the key advantages

of ML-based biosynthesis design methods and discuss the challenges and
outlook for the further development of ML-based approaches.

Functional molecules play a critical role in addressing many of the
problems facing society today, suchas energy, sustainability and health.
Moreover, the synthesis of large and complex molecules with multiple
stereocentres remains a great challenge. To address this challenge, both
chemo- and biocatalysis have been explored extensively'. Compared
with chemical catalysts, enzymes usually pose several advantages,
including high catalytic activity and selectivity, as well as the ability to
performreactions under mild conditions. Thus, enzymes are often pref-
erable in chemo-, regio- or stereoselective reactions? and can achieve
more sustainable production processes on laboratory and industrial
scales®. Although many studies have successfully applied enzymes
in large-scale organic synthesis*, biocatalysts still have limitations in
routine synthetic reactions’. Even though many enzyme sequences
areavailable in various databases, for example, UniProt®, only a small
fraction have been annotated due to difficulties in experimental char-
acterization’. The collected substrate scope in enzymatic databases is
alsolimited, which raises challenges for the design of retrobiosynthesis
planningtoolsandthe selection of the corresponding enzymesinthe
designed biosynthetic pathways.

Various machine learning (ML) models have been proposed to
address these limitations. Generally, the ML models can be divided

into two categories: supervised and unsupervised. Supervised ML
models use labelled datasets such as enzyme-function pairs to train
an ML modelinabiological context. They learnrelationships between
input samples and labels and generalize them to make predictions
for unlabelled inputs. Such models have been designed to assist the
learning of reaction rules and enzyme engineering to improve char-
acteristics such as activity, stability and substrate specificity®". By
contrast, unsupervised ML models take unlabelled datasets as input.
They extract and recognize complex features and patterns frominput
information alone. Such models have enabled the exploration of the
existing protein universe and have assisted in enzyme design efforts™".

In this Review, we discuss how ML is enabling the realization of
synthesis of molecules by accelerating the retrobiosynthesis workflow,
including retrosynthesis planning, enzyme identification and selec-
tion, and the engineering of enzymes and pathways (Fig. 1). Finally,
we provide asummary of standardized databases for readers who are
interested in developing ML models.

Retrosynthesis planning
With the ever-increasing number of synthetic biology tools", it has
become possible to engineer biochemical pathways to synthesize
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Fig.1| Anoverview of an ML-enabled retrobiosynthesis workflow. The design
of target molecule synthesis can be initiated by proposing pathways using
retrobiosynthesis planning tools. If enzymes are missing from the proposed
pathway, ML can assist in the identification and selection of potential enzymes to
catalyse the proposed reaction. In the case where the wild-type enzyme requires
furtherimprovement, ML can guide the enzyme engineering campaign. Finally,
ML canalso accelerate the optimization process for the production of molecules
invivo orinvitro. Tasks that sit within the beige box can be ML-enabled.

molecules with complex stereochemistry and wide structural diver-
sity™>'°. However, difficulties lie in synthesizing molecules for which
the routes are unknown and in decreasing pathway complexity while
increasing yields. Recently, insights have been drawn from the use of
ML inorganic chemistry to guide efforts to predict biosynthetic path-
ways'®. Here we discuss the principles of applying ML to retrosynthesis
planning tools*'*”” and provide a detailed comparison of template-free
and template-based methods'®?° with an emphasis on checking reac-
tion feasibility” and novel pathway discovery.

Aretrobiosynthesis-based pathway design workflow can be gen-
eralized into three modules (Fig. 2): reaction database, precursor
inference approach and pathway search. The first module includes
the enzymatic reaction corpus and methods for translating reactions
into a machine-readable language. The second module deduces the
biosynthetic pathway of a target molecule by template-based and/
or template-free approaches. The template-based approach infers
precursors by matching reaction templates and finding disconnec-
tion sites, while the template-free approach predicts precursors
using a trained ML model without predefined reaction templates.
In the third module, the ranked precursors are checked by terminat-
ing conditions, such as commercial availability or presence in the
microbial strain of choice®. If the precursor satisfies one of the ter-
minating conditions, the system outputs the synthetic pathway. Oth-
erwise, the model iteratively uses the precursor as input to search for
its precursors.

Most of the existing retrobiosynthesis tools are template-based,
using reaction templatesin areverse manner to obtain precursors. For
example, novoStoic extracts a set of reaction rules from the MetRxn
dataset based on the reaction centre'’, and RetroPath2.0 extracts reac-
tion rules from MetaNetX based on atom-neighbourhood hopping®.
While automatically extracting reactionrules fromareaction database
may cause rule sets to become redundant, Finnigan et al. developed
RetroBioCat using expertly encoded reaction rules consisting of 99
reaction templates's, However, these template-based tools ignore the
effect of long-range substituents on thereaction centre. Additionally,
reaction rules that are too specific or too general will lead to the pre-
dicted routes being overly conservative or unrealistic, respectively,
thereby necessitating laborious and time-consuming optimization
by experts.

By contrast, template-free retrosynthesis tools use a database
of reactions to train an ML model to predict precursors by inputting
amolecule of interest. The formulation of the task is to translate a
molecule (input) into another molecule (precursor), which is similar
toawidely studied task inthe computer science community known as
natural language processing (NLP). One of the powerful models applied
tolanguage translation tasks in NLP, sequence-to-sequence (Seq2Seq)
approaches, is widely used in retrosynthesis due to the ease of rep-
resenting molecules in text form using a simplified molecular-input
line-entry system (SMILES)*. Therefore, using the SMILES of the target
moleculetoinfer the SMILES of precursors can be treated as amachine
translation problem. Although the Seq2Seq method has achieved
remarkable success in chemical retrosynthesis, it is not advisable to
directly apply it to retrobiosynthesis. Unlike chemical reaction data-
bases containing several hundred thousand reactions, the relatively
small number of enzymatic reactions, around two orders of magni-
tude smaller’, will more likely lead to overfitting. Zheng et al. devel-
oped BioNavi-NP to address this issue by combining 62,000 natural
product-like organicreactions and 33,000 biochemical reactions'®. The
expanded dataset enhanced the performance of their single-step pre-
diction model, and the accuracy is substantially improved compared
withusing the two datasets separately. Similarly, Probst et al. developed
atemplate-free retrobiosynthesis tool that uses a curated enzymatic
reaction dataset, named ECREACT, consisting of 62,000 enzymatic
reactions and the US Patent Office (USPTO) dataset consisting of one
million organic chemical reactions to train a molecular transformer
using multi-task transfer learning (Fig. 3)°. In their tool, enzymatic
reactions from ECREACT and chemical reactions from USPTO are split
intoreactants and products. Thereactants for enzymatic reactions are
associated with the reaction Enzyme Commission (EC) number. Then
their SMILES are tokenized using a method in which each character is
represented by atoken. A prefix letter (v, uort)isadded toeach EClevel
(1,2 or 3) during tokenization. The forward prediction uses reactants
withan EC number asinputand products as output, and the backward
prediction goes in the opposite direction. Transfer learning divides a
batch into two parts based on the assigned weight to determine the
number ofinputs from ECREACT and the number of inputs from USPTO
inthe batch, and they are trained simultaneously using a transformer
model®. This approach can compensate for the relatively small datasets
of enzymatic reactions that do not provide enough information for
models to learn general chemistry and SMILES grammar. As a result,
the forward-reaction prediction model achieved a top-1accuracy of
49.6%, and the backward retrosynthetic prediction model achieved a
top-1single-step round-trip accuracy (the percentage of precursor sets
leading to theinitial target molecule when the forward model evaluates
the precursor sets) 0f 39.6%.

Besides adopting ML for precursor inference, ML can also be
usedinother modules of the retrobiosynthesis-based pathway design
workflow, such as molecule representation, reaction feasibility check,
precursor ranking and heuristic pathway search. Molecule representa-
tions determine how to encode reactionsinadatabase and can play an
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Fig.2| A conceptualized pathway design workflow based ona
retrobiosynthesis tool. The enzymatic reaction corpusis represented by a
machine-readable descriptor, such as SMILES, fingerprints, graphs and feature
vectors. Reaction rule sets consist of reaction templates from either manual

Synthetic
pathway
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curation or automatic extraction, while an ML algorithm uses the reaction corpus
to train a prediction model. Then the pathway search algorithm builds synthetic
pathways by iterating precursors predicted by inference approaches and ranked
by ascoring function until a precursor satisfies the terminating conditions.

important role in how the ML model is formulated to solve the retro-
biosynthesis task. Inaddition to using SMILES to represent molecules,
molecular fingerprints, graphs and feature vectors have also been used
for retrosynthesis, and will soon find their way to retrobiosynthesis.
Molecular fingerprints represent a molecule in vector format based
onits fragments/substructure. Hasic et al. developed a template-free
fingerprint-based approach for retrosynthesis using a neural network
to predict the disconnection sites and suggest the chemical transfor-
mations?*. A molecular graph represents a molecule with nodes cor-
respondingto atoms and edges corresponding to atom-atombonds.
Byidentifying synthetic building blocks of atarget molecule, Somnath
etal.builtagraph-based, semi-template-based model that transforms
building blocks into valid reactants®. Molecular feature vectors, also
known as embeddings, represent molecules as dense vectors with an
ML model and can benefit a wide range of downstream tasks, such as
retrosynthesis, drug discovery and molecule generation®. One exam-
pleisavariational autoencoder (VAE), which can project molecules or
chemical reactions to a latent space”*®. According to this method, an
enzymaticreaction could be regarded as a difference vector between
the main substrate and the main productin thelatent chemical space”.
Therefore, the forward and backward reaction predictions can be
simplified to simpler vector operations.

One particular disadvantage associated with the predictions made
by ML models is that they may contain thermodynamically unstable
structures, syntax errors in SMILES or unfeasible reactions, while the
template-based retrobiosynthesis tools are more likely to infer the
stable structure of precursors through the breaking and formation
of chemical bonds. Such disadvantages directly affect the accuracy

and reliability of ML-based retrobiosynthesis tools. Therefore, it is
necessary to incorporate a filter module to detect and rectify these
errors®.Inaddition, the synthetic complexity and reaction feasibility
can serve as a scoring function to rank precursors and facilitate ret-
rosynthesis tools to find optimum synthetic pathways. Synthetic com-
plexity score (SCScore) learnt from a reaction corpus is an ML-based
scoring function that evaluates the difficulty of synthesizing a mol-
ecule®. For template-based approaches, an ML model learnt from
a pair of a product and its corresponding template can predict and
rank the best templates given a target molecule®. In terms of reac-
tion feasibility, Deep learning-based Reaction Feasibility Checker
(DeepRFC) of reactant pairs evaluates the feasibility of enzymatic
reactions, providing an efficient means to classify reaction feasibility?'.
Chemical similarity between predicted reactants and reactants of an
existing reaction can also be used as a potential metric of reaction
feasibility®. If the ML model of the precursor inference approach
includes bothaforward and backward prediction model, the prediction
results can use a metric related to the forward confidence of precur-
sors to rank’2. These prioritized results can be adopted by a heuristic
searchalgorithmto find retrosynthetic pathways. For example, Monte
Carlo tree search (MCTS), which consists of selection, expansion,
simulation and backpropagation, can be used to effectively perform
synthesis planning™*. Additionally, retrosynthetic pathway search
algorithms can also apply beam search (for example, hypergraph
exploration strategy®’), which considers multiple best options based on
beamsize to expand the pathway search tree, and A*search (for exam-
ple, Retro* (ref. **)), which is a best-first search that expands the most
promising precursor.
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Fig.3 | Multi-task transfer learning for retrobiosynthesis. Enzymatic reactions
from ECREACT and chemical reactions from USPTO are used to train two
molecular transformers. Reactions are represented by SMILES and tokenized
SMILES, in which each token is separated by a space, are used for model input.
The forward prediction model predicts reaction products based oninput

reactants with EC number, while the backward prediction model predicts
reactants for a given product. In the transfer learning process, a transformer
uses the batch based on the given weights of the ECREACT and USPTO inputs for
training. The output of the transformer is detokenized to obtain the result.

Enzyme identification and selection

After aretrobiosynthesis route has been proposed, enzymes need to
beidentified and selected to fill the missing links between each step of
the pathway. In the case where such enzymes are missing from the enzy-
matic databases, ML models have been developed to predict enzyme
functions, reactivities and other properties, aiming to accelerate the
identification and selection process.

Prediction of enzyme classification numbers
The ECnumberis ahierarchical classification system of enzymes based
on the enzymatic reactions that they catalyse. It consists of four lev-
els, separated by periods, where each subsequent level is a subclass
of the previous level. The EC number is a useful scheme for enzyme
identification and is often included as part of the output from ret-
robiosynthesis planning tools. Accurately identifying enzymes with
the desired activity is essential to retrobiosynthesis planning. Sev-
eral databases have been developed that offer EC number look-up, yet
compared with uncharacterized sequence space, only asmall portion
have been reliably labelled. Many methods have been developed to
predict the function of unlabelled sequences. Automatic annotation
toolsare often used to assign enzyme functions to unknown sequences
based on sequence or signature similarity to a known enzyme. Com-
mon tools for detecting similarity include the basic local alignment
search tool (BLAST) or hidden Markov models (HMMs)*¢. However,
similarity-based methods may failwhen detecting remote homologues
and do not always generate robust predictions”. In fact, one-third of
bacterial protein sequencesstill cannot be labelled by such methods?.
Recently, ML-based methods have been reported to predict EC num-
bers. Compared with traditional methods, ML-based methods not
only make predictions based onsequence similarity, but canalsoinfer
additional features outside of the similarity to homologues®. The two
approaches are compared in Fig. 4.

Protelnfer, a state-of-the-art model, is a dilated convolutional
neural network (CNN) that infers functional annotations from protein

sequences*’. Theimplementation of adilated CNNinstead of aregular
CNNenablesthe neural network to explore alonger region of the input
amino acid sequences. The model is trained on an annotated enzyme
dataset curated from the Swiss-Prot database®. The model canachieve
a high prediction accuracy even when predicting the fourth level of
the EC number. Moreover, the model can link function with specific
sequence regions. Protelnfer is offered as a web tool where users can
make rapid predictions and visualize results. Another representative
work, DeepEC, is a hybrid approach combining both ML and alignment
designed by Ryu et al.””. The ML portion of DeepEC consists of three
CNNs predicting enzyme or non-enzyme, EC number up to the third
digitand EC number up to the fourth digit, respectively. The alignment
portion of DeepEC canbe used complementarily to CNNs and is respon-
sible for giving output when the results of the CNNs are inconsistent.

Although ML models have had tremendous success in predicting
EC numbers, the apparent accuracy of ML models alone cannot achieve
the same performance as sequence alignment methods. However,
Protelnfer has shown that ML models can learn different information
from sequence alignment methods. The advantage of ML methods
liesin their ability to detect enzymes with low sequence similarity but
high functional similarity. A popular approach is to combine both an
ML model and sequence alignment as an ensemble model to harvest
the merits of both, as demonstrated by both DeepEC* and Protelnfer.
One potential reason for the accuracy bottleneck might be the imbal-
anced distribution of EC numbers. Some EC numbers encompass
thousands of enzymes, whereas others only encompass one or two
characterized enzymes. The biased dataset particularly hinders the
learning of under-represented EC numbers. A potential solution to
thisissue is to use a contrastive learning framework as demonstrated
by Heinzinger et al.*.

Prediction of enzyme-substrate specificity and promiscuity
Identifying a proper enzyme for each catalytic step proposed by
aretrobiosynthesis tool is critical to the development of a feasible
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Fig. 4| Similarity- and ML-based EC number prediction tools. Similarity-based
methods align the query sequence with alarge known database and identify

the closest sequence based on sequence, motif or domain similarity, and assign
the EC number accordingly. ML-based methods use known databases to train

classification models tasked to infer and predict the EC numbers of unknown
sequences. Both Protelnfer and DeepEC have demonstrated that similarity-based
methods can misannotate enzymes that can be correctly identified by

ML models.

biosynthetic pathway for a target molecule. Although known for their
high specificity, enzymes can exhibit promiscuity, referring to their
ability to catalyse reactions with non-native substrates or exhibit
new reactivity. Therefore, knowing the substrate specificity of target
enzymesis desirable. Inthe past, enzyme selection was often based on
similarity search in databases*>**, Although it remains a challenging
task for ageneric ML model to make substrate specificity predictions
for all enzymes, some recent studies have demonstrated predictive
capability on asmaller scale or for family-wide enzymes. For example,
Visani et al. framed the promiscuity prediction task as a multi-label
classification problem**. As promiscuity implies that enzymes possess
multiple functions, a multi-label classification model is well suited to
the job as it can take a protein sequence as an input and output one
or more EC classes. The model can predict which of 983 distinct EC
numbers are likely to interact with a given query molecule. The ML
model is trained on enzyme-substrate data pairs and it outperforms
similarity-based methods. Although the model does not link substrates
to enzyme sequences directly, it demonstrates that using enzyme
inhibitors as negative training data can boost the model’s accuracy.
Goldman et al. modelled enzyme-substrate compatibility as a pro-
tein-compound interaction task. The study included several families
of enzymes covering between 1,000 and 36,000 enzyme-substrate
pairs. Although the authors reported that the joint model with both
substrate and enzyme failed to outperformsingle-tasked models using
only substrates or only enzyme sequences, the ML model still outper-
formed the k-nearest neighbours baseline model*. More recently,
Xuetal. designed animproved substrate encoding and enabled amore
accurate substrate specificity*.

Prediction of other enzyme parameters

Enzyme characteristics such as solubility, turnover rate and optimum
temperature are important parameters for the synthesis of functional
molecules. Predicting these parametersinsilico can greatly decrease
the experimental efforts required for screening or improving these
parameters. Many recent studies have used ML models to predict
protein solubility and stability. Compared with traditional methods
thatrely on energy calculations and phylogenetic analysis, ML models
are flexible, require no understanding of the mechanistic principles
and produce results almost instantaneously”. For example, SoluProt
predicts protein expression and solubility in Escherichia coli using
sequence information*®. The model is trained using the TargetTrack
database with the gradient-boosting ML technique. The model achieves
almost 60% accuracy, astested on anindependent testing dataset. ML

models are also used to predict the optimal temperature for enzyme
activity. Li et al. developed a tool called TOME that predicts the opti-
mum temperature of enzymes from features extracted from enzyme
sequences. The model’s accuracy outperformed that of the estimate
obtained by using the optimal growth temperature of organisms, a
commonly used method for estimating the stability of enzymes®. In
addition, ML models have been developed to predict other properties,
such as localization®**, enzyme loading and yield*, kinetics®, and
protein-ligand interactions’".

Enzyme engineering

Oncethe biosynthetic pathway has been completely identified insilico,
enzymes are expressed to synthesize the functional molecules. How-
ever, to increase the titre, rate and yield of the desired molecule, or
when thereaction conditions or substrate is not native to the wild-type
enzyme, enzymes are engineered by exploring the sequence-func-
tion landscape. In this section we summarize two major ML-based
approaches for designing variants with improved characteristics and
novel attributes.

ML-guided directed evolution
Asapowerful protein engineeringtool, directed evolution accelerates
the process of protein evolution and has been demonstrated to be valu-
able for increasing the catalytic activity and efficiency of enzymes™.
The two iterative steps of directed evolution consist of creating a
diverse variant library and screening/selecting the library to obtain
variants with improved phenotype. However, the enzyme sequence
landscape is enormous and using directed evolution to explore all
possible mutants is impossible. Moreover, exploration typically fol-
lows a greedy search strategy where only the most improved variants
of each cycle are selected as parents for the next cycle. The limitation
ofagreedysearchis thatit does not guarantee finding the global opti-
mum and infactit has a high tendency to be trapped in local optima®.
To address these limitations, ML models are used to guide directed
evolution experiments, enabling efficient exploration of the sequence
landscape*°. Over the years, ML-guided directed evolution (MLDE)
workflow has evolved and now a complete workflow consists of repre-
senting proteins using embeddings obtained from a pretrained global
language model'>?, predicting fitness using deep learning® or low-N
models®**’, and exploring the fitness landscape using an optimization
model™ (Fig. 5). Wittmann et al. performed a comprehensive bench-
marking of the MLDE workflow in silico®®. They compared several
options foreach step ofthe MLDE, including unsupervised mutational
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Fig. 5| An overview of the MLDE workflow. a, The first step of the MLDE is to
obtain the quantitative fitness of a variant library using an experimental assay.
b, The obtained variant fitness data can then be used to train a regression model
using either acomplex neural network architecture or asimple linear regression
model. After the model has been trained, it can be used to predict the fitness of
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unscreened sequences insilico. ¢, Anew variant library is recommended on the
basis of the trained ML model. According to the prediction results, the variants
with high fitness are prioritized. These steps can be performed iteratively to
engineer variants with better activity, stability and so on.

effect predictors, methods for amino acid embedding, ML models
for the predictor and different evaluation metrics. This work offers a
general guideline on how to apply ML to guide the protein engineering
experiment starting with the wild type of the target protein.

Data-driven methods in general require a large amount of train-
ing data to be accurate. This is often challenging to obtain because
high-throughput screening assays may not be available. To address
this limitation, low-N ML models were developed to accommodate
situations where only few variant data are available. Notably, Hsu et al.
developed a low-N framework by combining assay-labelled data with
evolutionary information®’. The model embeds each variant’s amino
acid sequence with the inferred likelihood of its frequency among its
homologues augmented with one-hot encoding. To be specific, one-hot
encodingisan encoding scheme where eachamino acidis represented
by a combination of zeros and ones, and all the encoded numerical
representations are concatenated to obtain the representation of the
full protein sequence. The authors evaluated the model using 19 differ-
ent protein mutagenesis datasets; the results showed that the model
canreach aSpearman correlation of over 0.6 eveniftrained on only 48
training data points. The work also showed that the augmentation with
one-hot encoding improved the model’s accuracy.

Directed evolution relies on iterative rounds of library construc-
tion and screening>. Even with the assistance of ML, it is infeasible
to explore all possible variants. Therefore, an efficient method for
exploring the variant landscape is desirable to reduce the number of
iterations. To thisend, Greenhalgh etal. used a Gaussian regressor with
the upper confidence boundary (UCB) method toiteratively optimize
anacyl-ACP (acyl carrier protein) reductase forimproved fatty alcohol
production®. The UCBis a criterion that efficiently explores uncertain
regions and rapidly converges to optima. The authors used the UCB
to guide the design of the library for each round of experiments. The
experimental results showed that variants had a notable improvement
ineachiteration. Intenrounds of optimization, the engineered reduc-
tase leads to a fivefold increase in in vivo fatty acid production titre
compared with the starting point. Other adaptive learning methods
have also been explored in various MLDE studies and are discussed

elsewhere®.

ML for novel enzyme design

MLDE has shown tremendous success in improving enzyme param-
eters, such as activity, solubility and stability. However, most of the
directed evolution studies have only explored the local landscape.

Nature Catalysis | Volume 6 | February 2023 | 137-151

142


http://www.nature.com/natcatal

Review Article

https://doi.org/10.1038/s41929-022-00909-w

Variational autoencoder

Autoregessive models

Natural De novo

0 Pairwise distance 1

Sequence diversity

Fig. 6| Overview of the ML approaches for designing novel enzymes. Popular
deep learning frameworks, such as VAEs, generative adversarial networks and
autoregressive models, are trained on protein sequences or structures to learn
the underlying distribution and sample the sequence space to design distant

Sequence space

Novel folds

Generative adverserial networks

Model-guided design
*) A

P

Tailored loss

Novel function

functional variants, enzymes with novel folds and new functions. Model-guided
designis another approach that leverages ML-based protein structure prediction
models for designing enzymes with desired functional sites.

Recent progress in NLP has made it possible to generate functional
higher-order mutants with properties resembling those of the native
counterparts and even enzymes with novel folds and better attributes.
Furthermore, the unsupervised nature of NLP models makes them
highly desirablein protein engineering. Generally, there are two catego-
ries of ML models: deep generative models and model-guided design.

The initial work in the first category involved the use of a VAE,
a deep learning model that maps the training data to an underlying
Gaussian distribution. Using the flexibility of the VAE framework,
Hawkins-Hooker et al. created two models based on aligned and raw
sequence input. A multiple sequence alignment (MSA) VAE is con-
structed by using MSA as input, while an autoregressive (AR) VAE is a
hybrid model that generates functional luciferase-like oxidoreductases
with distant variants containing as many as 35 mutations®’. Repecka
et al. used generative adversarial networks (GAN) to design a func-
tional malate dehydrogenase with novel structural domains®’. One of
the tested variants contained 106 mutations, which corresponds to a

34% change in the protein sequence, thus establishing the approach
as a good starting point to test diverse, non-natural sequences for
protein engineering. A similar framework, GENhance, was developed
togenerate highly stable variants of the human angiotensin-converting
enzyme 2 protein from less stable variants®*. The model consists of
agenerator to sample novel sequences and a discriminator to rank
themaccordingto the attribute. It isimportant to note that such mod-
els have been specifically used to generate artificial proteins with a
single enzyme parameter such as reactivity or stability. Generative
models can also be exploited for the task of enhancing or changing
substrate scope. This has recently been demonstrated by training a
conditional VAE to design recombinases capable of excising the DNA
at novel target sites®. Machine translation models provide another
sucharchitecture to generate novel enzyme sequences conditioned on
the substrate.

Autoregressive models are another popular framework. These
models are trained to predict either the next possible amino acid aftera
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Fig.7|Reaction network optimization in vivo and in vitro. Pathway
engineering relies on the DBTL cycle to find improved variants. The cycle
isinitiated by the design (D) of experiment (DOE), variants are built (B) and
tested (T), and then learning (L) takes place where a predictive model estimates
how variants fall on the pathway fitness landscape. Predictive models can be

In vitro

In vivo

S

further improved with in vitro or in vivo context-specific data. These data create
opportunities for other prediction tasks, such as in vitro prediction of reaction
conditions and in vitro estimation of k.. The learn phase of the DBTL cycle
finishes with global optimization and recommendation of new pathway designs.

givensequence or the masked or perturbed amino acids in the remain-
ing protein sequence. Madani et al. developed a conditional language
model for de novo protein generation®. ProGen, a1.2 billion parameter
decoder-style transformer variant, can generate any artificial protein
of interest given the tag that specifies the protein metadata. During
the training, the model is prepended with metadata, such as protein
family, taxonomy and localization. Theidea wasinspired by the use of
input control tags to generate Englishsentences of a particular styleand
sentiment. The authors evaluated the model’s capabilities by testing
artificial enzymes generated with the ‘lysozymes’ tag: 72/100 proteins
expressed well through cell-free protein synthesis with sequence iden-
tity toany known natural proteinsin the range of 40-90%. Arandom set
of 90 well-expressed artificial proteins were further tested for activity
and 73% (66/90) were found to be functional and exhibited high levels
of lysozyme activity across families compared with 59% (53/90) of
their natural counterparts. Similarly, the state-of-the-art Generative
Pre-trained Transformer 2 (GPT2) model was adopted to learn the
language of proteins. ProtGPT2 trained on UniRef50, a clustering of
UniProt sequences with 50% identity, can generate non-natural pro-
tein sequences similar to natural ones®. The model can easily gener-
ate artificial proteins with versatile folds, multifaceted surfaces and
difficult-to-design de novo structures. The most remarkable feature of
ProtGPT2 s its ability to expand the sequence space of superfamilies
by sampling sequences from the dark proteome, the evolutionarily
unexplored regions of the protein space. Models trained on structural
information have also been reported in the literature to successfully
produce novel folds®®®,

By contrast, model-guided design uses structure prediction mod-
els such as RoseTTAfold” to create new-to-nature proteins. Anish-
chenko et al. developed the concept of protein hallucinations where
random amino acid sequences are optimized to fold into distinct
three-dimensional (3D) structures by iterative updating based on the
gradient of theloss or by Markov chain Monte Carlo sequence optimiza-
tion”. Recent work by Wang et al. further constrained the loss function
to generate candidates tailored with desired functional sites’.

Given the aforementioned examples, ML-guided novel protein
design canbe used to synthesize protein libraries with huge diversity,
novel folds and potentially novel functions to navigate the protein
landscape thoroughly (Fig. 6). Detailed reviews of the use of generative
models for protein design have recently been published”>”.

Pathway engineering

Once all of its component enzymes are identified, the target biosyn-
thetic pathway must be constructed in vitro or in vivo. To optimize its
functionin either setting, the pathway itselfis typically modelled along
with the surrounding environment, thatis, the cellular metabolismin
the case of in vivo and the reaction conditions in the case of in vitro
(Fig.7).Inthis section we will discuss and compare the implementation
of biosynthetic pathways in vitro and in vivo.

Invivo metabolic pathway optimization

In vivo pathway implementation is typically selected for fermenta-
tive processes to take advantage of cell machinery or to pursue a
sustainable synthesis process””°. Most knowledge-driven pathway
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optimization in vivo is performed with mechanistic models, specifi-
cally constraint-based models (CBMs) such as genome-scale models
(GEMs) or kinetic models””. High-dimensional omics data are typically
used as additional constraints for GEMs and their inclusion has created
the greatestimprovementsin terms of predicting cellular phenotypes
and chemical concentrations, but they are still neglected as tools for
in vivo pathway design and optimization. At present, the CBM para-
digmis not fully compatible with the modern deep learning paradigm
in that it is difficult to incorporate backpropagation for end-to-end
learning in GEMs and deep learning alone offers little explanatory
value for reaction mechanisms. Recently developed methods have
integrated CBM and deep learning models by connecting them in
series, with GEMs producing the input for the deep learning model or
vice versa’’”’,

A major scientific challenge in modelling metabolic reactions is
the estimationin vivo of the Michaelis—Menten kinetic parameters k.,
(the catalytic rate constant) and K, (the Michaelis constant) as they do
not typically correlate with in vitro measurements®’. Accurate predic-
tion of in vivo enzyme parameters would allow for more principled
design and engineering of microbial cell factories. Heckmann et al.
showed how a model trained on enzyme network context, enzyme
structure and enzyme biochemistry with a limited labelled dataset
of measured in vivo k., can be used to extrapolate to 3,000 in vivo
k., values, thereby allowing parameterization of an E. coli GEM. When
estimating gene expression, the authors showed that ML-extrapolated
k., values could improve log,,root mean squared error of gene expres-
sion prediction by 38% compared with 10% for medianimputedin vitro
k., values®. Another method for parameterizing GEMs uses the sub-
strate structure of metabolic enzymes and the enzyme sequence to
predictin vivo k. Li et al. used a combination of a graph neural net-
work to encode substrates and a CNN to encode proteins to predict
invivo k, (ref.>*). Model predictions were furtherimproved through
Bayesian learning from experimental data. Attention from the model
identified amino acid residues that affect enzyme activity, thereby
generating targets for protein engineering®. More fundamental work
aims toreconstruct the metabolism of under-characterized microbes,
which canthenbe used with the existing CBM framework for pathway
optimization'*2, While the reconstruction of metabolism using ML
isa promising application, mechanistic models must maintain a high
standard of integrity for them to be useful as in vivo pathway optimi-
zation tools®.

In terms of individual pathway optimization, the most common
techniques rely on the design of experiments, predictive modelling
and the recommendation of future designs. In 2019, HamediRad
etal.integrated an ML model with a robotic system to fully automate
the design-build-test-learn (DBTL) loop for pathway optimization
and used the resultant platform, named BioAutomata, to optimize
the biosynthetic pathway for lycopene production®*. Specifically,
aGaussian process predictive model and Bayesian optimization were
used to suggest the designs of future pathway variants and this plat-
formoutperformed random screening with the same number of path-
way variants by 77% while evaluating less than 1% of all the possible
pathway variants. Building on thisidea, Radiojevic et al. builtan Auto-
mated Recommendation Tool (ART) that uses an ensemble predictive
modelling approach followed by Bayesian optimization torank future
variants with an estimated probability distribution, quantifying the
uncertainty of prediction, which can help to assess the feasibility of
future wet-lab experiments®. A recent implementation of ART com-
bined a knowledge-driven approach using a GEM with a DBTL loop
to engineer tryptophan overproduction. The GEM helped to identify
promising gene targets to limit the experimental design space and ART
was used for DBTL optimization, which led to improvements of the
tryptophan titre by 74% and productivity by 43% compared with the
first DBTL cycle®. DBTL has also been applied to the overproduction
of violacein®, 1-dodecanol®® and monoterpenoids®’.

Invitro pathway optimization

In vitro enzymatic pathways, often called multistep or cascading
enzymaticreactions, can beimplemented for large-scale synthesis of
target molecules. Compared with in vivo synthesis, in vitro synthesis
benefits from a more controlled environment and fewer constraints,
for example, cell survival and energy maintenance, which can allow
greater conversion rates. Key design choices include a target synthe-
sis route, typically selected with retrobiosynthesis tools, choices of
enzymes, reaction conditions and process design. Enzyme cascades can
be performed sequentially, butideally they are performedin aone-pot
reaction to reduce the number of isolation steps. A one-pot reaction
faces challenges of inhibitory interactions’, incompatible reaction
conditions’ and enzyme promiscuity®. Traditionally, optimization
schemes have attempted to model system dynamics with mechanistic
models such as kinetic models or data-driven methods, for example,
support vector machine (SVM), Gaussian process or artificial neural
network (ANNs), and then suggest future variants with genetic algo-
rithms or Bayesian optimization®*°?. In a recent example, Wan et al.
used aquadratic SVM model trained on quantum chemistry reactivity
descriptors along with reaction conditions to predict the yield and
corresponding reaction conditions’. It is worth noting that many of
these approaches have largely ignored the representation of enzyme
structure, especially if proteins are no longer being engineered in the
DBTL pipeline. In principle, any of the reaction condition optimization
techniques used for organic synthesis can be used for biosynthesis
by representing enzymes with a categorical variable, similar to how
solvents are often represented as categorical variables for organic
synthesis’. There has been recent success in predicting organic syn-
thesis reaction conditions, including catalysts, solvents, reagents and
temperature®, but the limited data on biocatalytic reaction conditions
makes it difficult to adopt these methods in biocatalysis®.

While in vitro and in vivo optimization have traditionally been
performed separately, the lines are beginning to blur with cell-free
systems. In 2020, Karim et al. developed a system called iProbe that
uses the flexibility of the cell-free system to test acombinatorial design
space that wouldbeinfeasible to testinvivo’ . Fromtheinitial screening
of 120 pathway combinations, 43 pathways predicted from agroup of
ANNSs proved to give better performance than expert design. Pathways
optimized invitrowere then transformed in vivo, retaining the perfor-
mance with a Pearson correlation of 0.79, showing that under proper
conditions, the benefits of in vitro optimization can be ported to the
in vivo setting’. Furthermore, this method has been used to scale up
industrial fermentation of C, waste to yield acetone and isopropanol”.

Pathway inhibition

Another task of immediate interest to in vitro and in vivo optimiza-
tionis the prediction of compound-protein interactions (CPIs) and
protein-protein interactions (PPIs), which could be inhibitory to the
target biosynthetic pathways. The prediction of drug—proteininterac-
tions (DPIs) has attracted the most attention in CPI research because
DPImodels canbe used to identify inhibitory ligand binding. Common
tasks include the prediction of binding sites, protein-ligand bind-
ing affinity and protein-ligand binding conformation®*. Gainza et al.
learnt proteininteraction fingerprints with topological and chemical
features. The model generating the interaction fingerprint was com-
bined with an application-specific layer for various prediction tasks,
including active site classification and ligand or protein interaction
prediction”. In the in vivo setting, combinations of DPl and PPI data
have helped to identify important network effects’” and the toxicity
of new compounds®’. Counter to the idea that including all complex
interaction dataimproves performance, Goldman et al. demonstrated
that single-task models, deemed less generalizable, can outperform
more complex models that attempt to include all interaction data.
This result shows aneed for new representation learning methods for
extrapolation to unseen CPIs*.
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Table 1| List of databases commonly used to develop ML models for retrobiosynthesis

Classification Name Description Size Representative ML models
Enzymes UniProt® A comprehensive, high-quality and freely  ~120 million proteins with Protelnfer®, DeepEC¥, UniRep",
accessible resource of protein sequence  ~570,000 reviewed entries AlphaFold2™', RoseTTAfold’®, MSA
and functional information VAE®, AR VAE®, ProteinGAN®®,
ProGen®®, ProtGTP2%, CATHe™,
ECNet”’, DeeplLoc®® and 3DCNNs'*
EXPASyY-ENZYME'° Describes each type of characterized ~7,000 active entries
enzyme with the associated EC number
ExPASy-PROSITE™ Describes protein domains, familiesand ~ ~1,900 entries, ~1,300 patterns,
functional sites ~1,300 profiles and ~1,300
prorules
Protein Data Bank'*® Describes the 3D structures of proteins,  ~190,000 biological
nucleic acids and complex assemblies macromolecular structures
ProtaBank'' A central repository to store, query, ~7.7 million data points covering
analyse and share all types of protein 1.8 million protein variants and
design and protein engineering data 15,000 assays
ProtDataTherm'®? A database focusing on analysing and >14 million protein sequences
engineering protein thermostability
FireProtDB'*® A comprehensive and manually curated  ~6,700 mutants covering
database of protein stability information ~ ~242 proteins and ~16,000
for single mutants experiments
Substrates ChEBI™* A database and ontology containing ~60,000 fully annotated DeepCSeqSite'®, DELIA',
information on small chemical compounds Kalasanty'”®, DeepSurf'*® and
compounds of biological interest PUResNet™*°
HMDB'™*® A freely available database comprising ~217,000 compounds
detailed information on small-molecule
metabolites found in the human body
LMSD™*® A relational database encompassing ~47,000 unique lipid structures
structures and annotations of with 25,457 curated ones
biologically relevant lipids
SwissLipids'”’ An expert-curated resource of lipids ~780,000 lipid species and
and their biology providing biological ~7,000 distinct pieces
information on lipid and lipidomic
structures and metabolism
Reactions BRENDA'® A main enzyme and enzyme-ligand ~4.3 million data for ~84,000 EPP-HMCNF*, K, prediction'' and ki,
information system comprising disease enzymes belonging to ~7,600 prediction®
relevant data, enzyme sequences, 3D enzyme classes
structures, predicted enzyme locations
and genome annotations
Rhea'®® A comprehensive and non-redundant ~14,000 reactions with ~12,000
resource of expert-curated biochemical ~ unique compounds
reactions covering the reactions of all
EC numbers as well as thousands of
additional enzymatic reactions, transport
reactions and spontaneously occurring
reactions
BioCatNet"° A repository of sequence, structureand 12 enzyme families with ~55,000
biocatalytic experiments for a given sequences and ~2,000 3D
enzyme family structures
SABIO-RK'™ A curated database containing ~72,000 curated entries with
structured information on biochemical ~56,000 K|, data, ~53,000
reactions, kinetic rate equations with velocity constants and ~16,000
parameters and experimental conditions  inhibition constants
BKMS-react'%"? An integrated non-redundant ~41,000 reactions with EC
reaction database containing known numbers
enzyme-catalysed and spontaneous
reactions collected from BRENDA, KEGG,
MetaCyc and SABIO-RK
ECREACT® A simplified enzymatic reaction database ~62,000 reactions with EC
with EC numbers; the data were numbers
extracted from four databases,
namely Rhea, BRENDA, PathBank and
MetaNetX
Networks KEGG™ A knowledge database for ~16,000 enzymes with ~2,000 Metabolic Allele Classifier'®?,

systematic analysis of gene functions
linking genomic information with
higher-structured functional information

reactions

DeepRFC*, GC-ANN', RetroPath2.0%°,

BioNavi-NP'®, Evo-DoE™* and
feasible-metabolic-pathway
exploration”
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Table 1 (continued) | List of databases commonly used to develop ML models for retrobiosynthesis

Classification Name Description Size Representative ML models
enviPath™ A database and prediction system forthe  >1,500 microbial catabolic
microbial biotransformation of organic reactions and ~220
environmental contaminants biotransformation pathways
BiGG™ A knowledge base of genome-scale ~70 published genome-scale
metabolic network reconstructions metabolic networks
Reactome'® An open-source and peer-reviewed ~21,000 pathways covering 15
pathway database providing intuitive species and 88,000 proteins
bioinformatics tools for the visualization,
interpretation and analysis of pathway
knowledge
PathBank'” A comprehensive, visually rich database ~ ~110,000 machine-readable
providing a pathway for every protein pathways found in 10 model
and a map for every metabolite organisms
MetaCyc'® An evidence-based and richly curated >2,600 pathways
database of metabolic pathways and
enzymes from all domains of life
MetaNetX""® A website for accessing, analysing and

manipulating genome-scale metabolic
networks and biochemical pathways

Common databases used for ML model
development

The development of ML models relies on high-quality databases. As
briefly mentioned above and summarized in Table 1, a wide variety
of databases have been used to develop ML models for retrobiosyn-
thesis that contain information on enzyme sequences®'°°"'%, sub-
strates'**'”7, chemical reactions®'°*"'2, and metabolic pathways and/
or networks™ ™. However, most databases are not initially designed
to develop ML models and few have incorporated protein mutagenesis
data (anotable exceptionis Protabank'®), which is necessary to develop
ML models for enzyme engineering. Moreover, an ML-friendly database
needs to be actively maintained and should have comprehensive cover-
age, extensive annotation and evidence scores to ensure that the data
are of high quality and contain minimal false positives'””. Therefore,
there is a need to develop standardized databases by implementing
cross-comparison between databases to reduce redundant or incon-
sistentinformation, steady maintenance to capture the ever-growing
depth of biology, and easily accessible and user-friendly databases.

Future perspectives and conclusion

ML has made a great impact on every aspect of retrobiosynthesis,
including synthesis planning, enzyme selection and engineering, and
pathway optimization, bothin vitro andin vivo'°. However, opportuni-
ties still exist to further develop ML models for retrobiosynthesis. For
example, current retrosynthesis tools rarely consider both chemo-and
biocatalysis in the design of synthetic routes. Moreover, one of the
tougher challenges in the biosynthesis of a target molecule comes
from the missing links in the biosynthetic pathway predicted by ret-
robiosynthesis tools. The missing links can be patched by predicting
enzyme-substrateinteractions, whichmayindeed be challenging from
sequence information alone. With the recent development of protein
structure prediction tools, such as AlphaFold* and trRosettaFold”,
combined with catalyticsite prediction tools**'**, new ML models using
structural information could achieve the interpretation of enzyme-
substrate interactions. Alternatively, the use of semantically rich,
conditional language models to sample artificial protein sequences
for newreactions and further engineering using MLDE will potentially
pave the way for the successful design of desired enzymes. As of now,
theintegration of existing ML tools assists in GEM reconstruction, the
parameterization of GEMs for pathway simulation, the identification
of target amino acid residues in individual proteins for site-specific
mutagenesis, the identification of interfering small molecules and

DBTL optimization over acombination of pathways. The major pieces
supportinginvivo and in vitro biocatalytic vision are in place, and we
expect to see incremental improvements in isolated prediction tasks
and new efforts in model integration. Learning mappings between
theinvitro and in vivo settings would further expedite this vision. To
establish a comprehensive database for ML model development, the
scientificcommunity needs to continually develop a global collection
ofenzymes, reactions and pathways. There is much room forimprove-
ment in automatic data mining (for example, visualization mining in
figures and text mining for various information) and data reliability.
With the rapid emergence of ML models, a standardized benchmark-
ing database for model development, evaluation and validation is
needed. Aninitial effort in this direction has been made by Dallago
etal.,who designed Fitness Landscape Inference for Proteins (FLIP) to
benchmark ML models for protein engineering tasks'>’. Such a platform
enablesrapid scoring and assessment of models, and similar datasets
can be designed for other tasks, such as retrobiosynthesis planning.
As researchers continue to explore biocatalysts, ML will become an
irreplaceable tool with which to expand the boundary of molecule
synthesis.
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