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Machine learning-enabled retrobiosynthesis 
of molecules

Tianhao Yu1,2,3, Aashutosh Girish Boob1,2,4, Michael J. Volk1,2,4, Xuan Liu1,2,3, 
Haiyang Cui1,2,3 & Huimin Zhao    1,2,3,4 

Retrobiosynthesis provides an effective and sustainable approach to 
producing functional molecules. The past few decades have witnessed a 
rapid expansion of biosynthetic approaches. With the recent advances 
in data-driven sciences, machine learning (ML) is enriching the 
retrobiosynthesis design toolbox and being applied to each step of the 
synthesis design workflow, including retrosynthesis planning, enzyme 
identification and engineering, and pathway optimization. The ability to learn 
from existing knowledge, recognize complex patterns and generalize to the 
unknown has made ML a promising solution to biological problems. In this 
Review, we summarize the recent progress in the development of ML models 
for assisting with molecular synthesis. We highlight the key advantages 
of ML-based biosynthesis design methods and discuss the challenges and 
outlook for the further development of ML-based approaches.

Functional molecules play a critical role in addressing many of the 
problems facing society today, such as energy, sustainability and health. 
Moreover, the synthesis of large and complex molecules with multiple 
stereocentres remains a great challenge. To address this challenge, both 
chemo- and biocatalysis have been explored extensively1. Compared 
with chemical catalysts, enzymes usually pose several advantages, 
including high catalytic activity and selectivity, as well as the ability to 
perform reactions under mild conditions. Thus, enzymes are often pref-
erable in chemo-, regio- or stereoselective reactions2 and can achieve 
more sustainable production processes on laboratory and industrial 
scales3. Although many studies have successfully applied enzymes 
in large-scale organic synthesis4, biocatalysts still have limitations in 
routine synthetic reactions5. Even though many enzyme sequences 
are available in various databases, for example, UniProt6, only a small 
fraction have been annotated due to difficulties in experimental char-
acterization7. The collected substrate scope in enzymatic databases is 
also limited, which raises challenges for the design of retrobiosynthesis 
planning tools and the selection of the corresponding enzymes in the 
designed biosynthetic pathways.

Various machine learning (ML) models have been proposed to 
address these limitations. Generally, the ML models can be divided 

into two categories: supervised and unsupervised. Supervised ML 
models use labelled datasets such as enzyme–function pairs to train 
an ML model in a biological context. They learn relationships between 
input samples and labels and generalize them to make predictions 
for unlabelled inputs. Such models have been designed to assist the 
learning of reaction rules and enzyme engineering to improve char-
acteristics such as activity, stability and substrate specificity8–11. By 
contrast, unsupervised ML models take unlabelled datasets as input. 
They extract and recognize complex features and patterns from input 
information alone. Such models have enabled the exploration of the 
existing protein universe and have assisted in enzyme design efforts12,13.

In this Review, we discuss how ML is enabling the realization of 
synthesis of molecules by accelerating the retrobiosynthesis workflow, 
including retrosynthesis planning, enzyme identification and selec-
tion, and the engineering of enzymes and pathways (Fig. 1). Finally, 
we provide a summary of standardized databases for readers who are 
interested in developing ML models.

Retrosynthesis planning
With the ever-increasing number of synthetic biology tools14, it has 
become possible to engineer biochemical pathways to synthesize 

Received: 30 May 2022

Accepted: 22 December 2022

Published online: 16 February 2023

 Check for updates

1Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 2Carl R. Woese Institute 
for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 3NSF Molecule Maker Lab Institute, University of Illinois at 
Urbana-Champaign, Urbana, IL, USA. 4DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 
Urbana, IL, USA.  e-mail: zhao5@illinois.edu

http://www.nature.com/natcatal
https://doi.org/10.1038/s41929-022-00909-w
http://orcid.org/0000-0002-9069-6739
http://crossmark.crossref.org/dialog/?doi=10.1038/s41929-022-00909-w&domain=pdf
mailto:zhao5@illinois.edu


Nature Catalysis | Volume 6 | February 2023 | 137–151 138

Review Article https://doi.org/10.1038/s41929-022-00909-w

Most of the existing retrobiosynthesis tools are template-based, 
using reaction templates in a reverse manner to obtain precursors. For 
example, novoStoic extracts a set of reaction rules from the MetRxn 
dataset based on the reaction centre19, and RetroPath2.0 extracts reac-
tion rules from MetaNetX based on atom-neighbourhood hopping20. 
While automatically extracting reaction rules from a reaction database 
may cause rule sets to become redundant, Finnigan et al. developed 
RetroBioCat using expertly encoded reaction rules consisting of 99 
reaction templates18. However, these template-based tools ignore the 
effect of long-range substituents on the reaction centre. Additionally, 
reaction rules that are too specific or too general will lead to the pre-
dicted routes being overly conservative or unrealistic, respectively, 
thereby necessitating laborious and time-consuming optimization 
by experts.

By contrast, template-free retrosynthesis tools use a database 
of reactions to train an ML model to predict precursors by inputting 
a molecule of interest. The formulation of the task is to translate a 
molecule (input) into another molecule (precursor), which is similar 
to a widely studied task in the computer science community known as 
natural language processing (NLP). One of the powerful models applied 
to language translation tasks in NLP, sequence-to-sequence (Seq2Seq) 
approaches, is widely used in retrosynthesis due to the ease of rep-
resenting molecules in text form using a simplified molecular-input 
line-entry system (SMILES)22. Therefore, using the SMILES of the target 
molecule to infer the SMILES of precursors can be treated as a machine 
translation problem. Although the Seq2Seq method has achieved 
remarkable success in chemical retrosynthesis, it is not advisable to 
directly apply it to retrobiosynthesis. Unlike chemical reaction data-
bases containing several hundred thousand reactions, the relatively 
small number of enzymatic reactions, around two orders of magni-
tude smaller1, will more likely lead to overfitting. Zheng et al. devel-
oped BioNavi-NP to address this issue by combining 62,000 natural 
product-like organic reactions and 33,000 biochemical reactions16. The 
expanded dataset enhanced the performance of their single-step pre-
diction model, and the accuracy is substantially improved compared 
with using the two datasets separately. Similarly, Probst et al. developed 
a template-free retrobiosynthesis tool that uses a curated enzymatic 
reaction dataset, named ECREACT, consisting of 62,000 enzymatic 
reactions and the US Patent Office (USPTO) dataset consisting of one 
million organic chemical reactions to train a molecular transformer 
using multi-task transfer learning (Fig. 3)9. In their tool, enzymatic 
reactions from ECREACT and chemical reactions from USPTO are split 
into reactants and products. The reactants for enzymatic reactions are 
associated with the reaction Enzyme Commission (EC) number. Then 
their SMILES are tokenized using a method in which each character is 
represented by a token. A prefix letter (v, u or t) is added to each EC level 
(1, 2 or 3) during tokenization. The forward prediction uses reactants 
with an EC number as input and products as output, and the backward 
prediction goes in the opposite direction. Transfer learning divides a 
batch into two parts based on the assigned weight to determine the 
number of inputs from ECREACT and the number of inputs from USPTO 
in the batch, and they are trained simultaneously using a transformer 
model23. This approach can compensate for the relatively small datasets 
of enzymatic reactions that do not provide enough information for 
models to learn general chemistry and SMILES grammar. As a result, 
the forward-reaction prediction model achieved a top-1 accuracy of 
49.6%, and the backward retrosynthetic prediction model achieved a 
top-1 single-step round-trip accuracy (the percentage of precursor sets 
leading to the initial target molecule when the forward model evaluates 
the precursor sets) of 39.6%.

Besides adopting ML for precursor inference, ML can also be 
used in other modules of the retrobiosynthesis-based pathway design 
workflow, such as molecule representation, reaction feasibility check, 
precursor ranking and heuristic pathway search. Molecule representa-
tions determine how to encode reactions in a database and can play an 

molecules with complex stereochemistry and wide structural diver-
sity15,16. However, difficulties lie in synthesizing molecules for which 
the routes are unknown and in decreasing pathway complexity while 
increasing yields. Recently, insights have been drawn from the use of 
ML in organic chemistry to guide efforts to predict biosynthetic path-
ways16. Here we discuss the principles of applying ML to retrosynthesis 
planning tools9,16,17 and provide a detailed comparison of template-free 
and template-based methods18–20 with an emphasis on checking reac-
tion feasibility21 and novel pathway discovery.

A retrobiosynthesis-based pathway design workflow can be gen-
eralized into three modules (Fig. 2): reaction database, precursor 
inference approach and pathway search. The first module includes 
the enzymatic reaction corpus and methods for translating reactions 
into a machine-readable language. The second module deduces the 
biosynthetic pathway of a target molecule by template-based and/
or template-free approaches. The template-based approach infers 
precursors by matching reaction templates and finding disconnec-
tion sites, while the template-free approach predicts precursors 
using a trained ML model without predefined reaction templates. 
In the third module, the ranked precursors are checked by terminat-
ing conditions, such as commercial availability or presence in the 
microbial strain of choice15. If the precursor satisfies one of the ter-
minating conditions, the system outputs the synthetic pathway. Oth-
erwise, the model iteratively uses the precursor as input to search for  
its precursors.
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Fig. 1 | An overview of an ML-enabled retrobiosynthesis workflow. The design 
of target molecule synthesis can be initiated by proposing pathways using 
retrobiosynthesis planning tools. If enzymes are missing from the proposed 
pathway, ML can assist in the identification and selection of potential enzymes to 
catalyse the proposed reaction. In the case where the wild-type enzyme requires 
further improvement, ML can guide the enzyme engineering campaign. Finally, 
ML can also accelerate the optimization process for the production of molecules 
in vivo or in vitro. Tasks that sit within the beige box can be ML-enabled.
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important role in how the ML model is formulated to solve the retro-
biosynthesis task. In addition to using SMILES to represent molecules, 
molecular fingerprints, graphs and feature vectors have also been used 
for retrosynthesis, and will soon find their way to retrobiosynthesis. 
Molecular fingerprints represent a molecule in vector format based 
on its fragments/substructure. Hasic et al. developed a template-free 
fingerprint-based approach for retrosynthesis using a neural network 
to predict the disconnection sites and suggest the chemical transfor-
mations24. A molecular graph represents a molecule with nodes cor-
responding to atoms and edges corresponding to atom–atom bonds. 
By identifying synthetic building blocks of a target molecule, Somnath 
et al. built a graph-based, semi-template-based model that transforms 
building blocks into valid reactants25. Molecular feature vectors, also 
known as embeddings, represent molecules as dense vectors with an 
ML model and can benefit a wide range of downstream tasks, such as 
retrosynthesis, drug discovery and molecule generation26. One exam-
ple is a variational autoencoder (VAE), which can project molecules or 
chemical reactions to a latent space27,28. According to this method, an 
enzymatic reaction could be regarded as a difference vector between 
the main substrate and the main product in the latent chemical space17. 
Therefore, the forward and backward reaction predictions can be 
simplified to simpler vector operations.

One particular disadvantage associated with the predictions made 
by ML models is that they may contain thermodynamically unstable 
structures, syntax errors in SMILES or unfeasible reactions, while the 
template-based retrobiosynthesis tools are more likely to infer the 
stable structure of precursors through the breaking and formation 
of chemical bonds. Such disadvantages directly affect the accuracy 

and reliability of ML-based retrobiosynthesis tools. Therefore, it is 
necessary to incorporate a filter module to detect and rectify these 
errors29. In addition, the synthetic complexity and reaction feasibility 
can serve as a scoring function to rank precursors and facilitate ret-
rosynthesis tools to find optimum synthetic pathways. Synthetic com-
plexity score (SCScore) learnt from a reaction corpus is an ML-based 
scoring function that evaluates the difficulty of synthesizing a mol-
ecule30. For template-based approaches, an ML model learnt from 
a pair of a product and its corresponding template can predict and 
rank the best templates given a target molecule31. In terms of reac-
tion feasibility, Deep learning-based Reaction Feasibility Checker 
(DeepRFC) of reactant pairs evaluates the feasibility of enzymatic 
reactions, providing an efficient means to classify reaction feasibility21. 
Chemical similarity between predicted reactants and reactants of an 
existing reaction can also be used as a potential metric of reaction  
feasibility15. If the ML model of the precursor inference approach 
includes both a forward and backward prediction model, the prediction 
results can use a metric related to the forward confidence of precur-
sors to rank32. These prioritized results can be adopted by a heuristic 
search algorithm to find retrosynthetic pathways. For example, Monte 
Carlo tree search (MCTS), which consists of selection, expansion, 
simulation and backpropagation, can be used to effectively perform 
synthesis planning15,33. Additionally, retrosynthetic pathway search 
algorithms can also apply beam search (for example, hypergraph 
exploration strategy32), which considers multiple best options based on 
beam size to expand the pathway search tree, and A* search (for exam-
ple, Retro* (ref. 34)), which is a best-first search that expands the most  
promising precursor.
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Fig. 2 | A conceptualized pathway design workflow based on a 
retrobiosynthesis tool. The enzymatic reaction corpus is represented by a 
machine-readable descriptor, such as SMILES, fingerprints, graphs and feature 
vectors. Reaction rule sets consist of reaction templates from either manual 

curation or automatic extraction, while an ML algorithm uses the reaction corpus 
to train a prediction model. Then the pathway search algorithm builds synthetic 
pathways by iterating precursors predicted by inference approaches and ranked 
by a scoring function until a precursor satisfies the terminating conditions.
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Enzyme identification and selection
After a retrobiosynthesis route has been proposed, enzymes need to 
be identified and selected to fill the missing links between each step of 
the pathway. In the case where such enzymes are missing from the enzy-
matic databases, ML models have been developed to predict enzyme 
functions, reactivities and other properties, aiming to accelerate the 
identification and selection process.

Prediction of enzyme classification numbers
The EC number is a hierarchical classification system of enzymes based 
on the enzymatic reactions that they catalyse. It consists of four lev-
els, separated by periods, where each subsequent level is a subclass 
of the previous level. The EC number is a useful scheme for enzyme 
identification and is often included as part of the output from ret-
robiosynthesis planning tools. Accurately identifying enzymes with 
the desired activity is essential to retrobiosynthesis planning. Sev-
eral databases have been developed that offer EC number look-up, yet 
compared with uncharacterized sequence space, only a small portion 
have been reliably labelled. Many methods have been developed to 
predict the function of unlabelled sequences. Automatic annotation 
tools are often used to assign enzyme functions to unknown sequences 
based on sequence or signature similarity to a known enzyme. Com-
mon tools for detecting similarity include the basic local alignment 
search tool (BLAST) or hidden Markov models (HMMs)35,36. However, 
similarity-based methods may fail when detecting remote homologues 
and do not always generate robust predictions37. In fact, one-third of 
bacterial protein sequences still cannot be labelled by such methods38. 
Recently, ML-based methods have been reported to predict EC num-
bers. Compared with traditional methods, ML-based methods not 
only make predictions based on sequence similarity, but can also infer 
additional features outside of the similarity to homologues39. The two 
approaches are compared in Fig. 4.

ProteInfer, a state-of-the-art model, is a dilated convolutional 
neural network (CNN) that infers functional annotations from protein 

sequences40. The implementation of a dilated CNN instead of a regular 
CNN enables the neural network to explore a longer region of the input 
amino acid sequences. The model is trained on an annotated enzyme 
dataset curated from the Swiss-Prot database6. The model can achieve 
a high prediction accuracy even when predicting the fourth level of 
the EC number. Moreover, the model can link function with specific 
sequence regions. ProteInfer is offered as a web tool where users can 
make rapid predictions and visualize results. Another representative 
work, DeepEC, is a hybrid approach combining both ML and alignment 
designed by Ryu et al.37. The ML portion of DeepEC consists of three 
CNNs predicting enzyme or non-enzyme, EC number up to the third 
digit and EC number up to the fourth digit, respectively. The alignment 
portion of DeepEC can be used complementarily to CNNs and is respon-
sible for giving output when the results of the CNNs are inconsistent.

Although ML models have had tremendous success in predicting 
EC numbers, the apparent accuracy of ML models alone cannot achieve 
the same performance as sequence alignment methods. However, 
ProteInfer has shown that ML models can learn different information 
from sequence alignment methods. The advantage of ML methods 
lies in their ability to detect enzymes with low sequence similarity but 
high functional similarity. A popular approach is to combine both an 
ML model and sequence alignment as an ensemble model to harvest 
the merits of both, as demonstrated by both DeepEC37 and ProteInfer. 
One potential reason for the accuracy bottleneck might be the imbal-
anced distribution of EC numbers. Some EC numbers encompass 
thousands of enzymes, whereas others only encompass one or two 
characterized enzymes. The biased dataset particularly hinders the 
learning of under-represented EC numbers. A potential solution to 
this issue is to use a contrastive learning framework as demonstrated 
by Heinzinger et al.41.

Prediction of enzyme–substrate specificity and promiscuity
Identifying a proper enzyme for each catalytic step proposed by 
a retrobiosynthesis tool is critical to the development of a feasible 
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http://www.nature.com/natcatal


Nature Catalysis | Volume 6 | February 2023 | 137–151 141

Review Article https://doi.org/10.1038/s41929-022-00909-w

biosynthetic pathway for a target molecule. Although known for their 
high specificity, enzymes can exhibit promiscuity, referring to their 
ability to catalyse reactions with non-native substrates or exhibit 
new reactivity. Therefore, knowing the substrate specificity of target 
enzymes is desirable. In the past, enzyme selection was often based on 
similarity search in databases42,43. Although it remains a challenging 
task for a generic ML model to make substrate specificity predictions 
for all enzymes, some recent studies have demonstrated predictive 
capability on a smaller scale or for family-wide enzymes. For example, 
Visani et al. framed the promiscuity prediction task as a multi-label 
classification problem44. As promiscuity implies that enzymes possess 
multiple functions, a multi-label classification model is well suited to 
the job as it can take a protein sequence as an input and output one 
or more EC classes. The model can predict which of 983 distinct EC 
numbers are likely to interact with a given query molecule. The ML 
model is trained on enzyme–substrate data pairs and it outperforms 
similarity-based methods. Although the model does not link substrates 
to enzyme sequences directly, it demonstrates that using enzyme 
inhibitors as negative training data can boost the model’s accuracy. 
Goldman et al. modelled enzyme–substrate compatibility as a pro-
tein–compound interaction task. The study included several families 
of enzymes covering between 1,000 and 36,000 enzyme–substrate 
pairs. Although the authors reported that the joint model with both 
substrate and enzyme failed to outperform single-tasked models using 
only substrates or only enzyme sequences, the ML model still outper-
formed the k-nearest neighbours baseline model45. More recently,  
Xu et al. designed an improved substrate encoding and enabled a more 
accurate substrate specificity46.

Prediction of other enzyme parameters
Enzyme characteristics such as solubility, turnover rate and optimum 
temperature are important parameters for the synthesis of functional 
molecules. Predicting these parameters in silico can greatly decrease 
the experimental efforts required for screening or improving these 
parameters. Many recent studies have used ML models to predict 
protein solubility and stability. Compared with traditional methods 
that rely on energy calculations and phylogenetic analysis, ML models 
are flexible, require no understanding of the mechanistic principles 
and produce results almost instantaneously47. For example, SoluProt 
predicts protein expression and solubility in Escherichia coli using 
sequence information48. The model is trained using the TargetTrack 
database with the gradient-boosting ML technique. The model achieves 
almost 60% accuracy, as tested on an independent testing dataset. ML 

models are also used to predict the optimal temperature for enzyme 
activity. Li et al. developed a tool called TOME that predicts the opti-
mum temperature of enzymes from features extracted from enzyme 
sequences. The model’s accuracy outperformed that of the estimate 
obtained by using the optimal growth temperature of organisms, a 
commonly used method for estimating the stability of enzymes49. In 
addition, ML models have been developed to predict other properties, 
such as localization50,51, enzyme loading and yield52, kinetics53, and 
protein–ligand interactions54.

Enzyme engineering
Once the biosynthetic pathway has been completely identified in silico, 
enzymes are expressed to synthesize the functional molecules. How-
ever, to increase the titre, rate and yield of the desired molecule, or 
when the reaction conditions or substrate is not native to the wild-type 
enzyme, enzymes are engineered by exploring the sequence–func-
tion landscape. In this section we summarize two major ML-based 
approaches for designing variants with improved characteristics and 
novel attributes.

ML-guided directed evolution
As a powerful protein engineering tool, directed evolution accelerates 
the process of protein evolution and has been demonstrated to be valu-
able for increasing the catalytic activity and efficiency of enzymes55. 
The two iterative steps of directed evolution consist of creating a 
diverse variant library and screening/selecting the library to obtain 
variants with improved phenotype. However, the enzyme sequence 
landscape is enormous and using directed evolution to explore all 
possible mutants is impossible. Moreover, exploration typically fol-
lows a greedy search strategy where only the most improved variants 
of each cycle are selected as parents for the next cycle. The limitation 
of a greedy search is that it does not guarantee finding the global opti-
mum and in fact it has a high tendency to be trapped in local optima11.

To address these limitations, ML models are used to guide directed 
evolution experiments, enabling efficient exploration of the sequence 
landscape11,56. Over the years, ML-guided directed evolution (MLDE) 
workflow has evolved and now a complete workflow consists of repre-
senting proteins using embeddings obtained from a pretrained global 
language model12,13, predicting fitness using deep learning57 or low-N 
models58,59, and exploring the fitness landscape using an optimization 
model10 (Fig. 5). Wittmann et al. performed a comprehensive bench-
marking of the MLDE workflow in silico60. They compared several 
options for each step of the MLDE, including unsupervised mutational 
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effect predictors, methods for amino acid embedding, ML models 
for the predictor and different evaluation metrics. This work offers a 
general guideline on how to apply ML to guide the protein engineering 
experiment starting with the wild type of the target protein.

Data-driven methods in general require a large amount of train-
ing data to be accurate. This is often challenging to obtain because 
high-throughput screening assays may not be available. To address 
this limitation, low-N ML models were developed to accommodate 
situations where only few variant data are available. Notably, Hsu et al. 
developed a low-N framework by combining assay-labelled data with 
evolutionary information59. The model embeds each variant’s amino 
acid sequence with the inferred likelihood of its frequency among its 
homologues augmented with one-hot encoding. To be specific, one-hot 
encoding is an encoding scheme where each amino acid is represented 
by a combination of zeros and ones, and all the encoded numerical 
representations are concatenated to obtain the representation of the 
full protein sequence. The authors evaluated the model using 19 differ-
ent protein mutagenesis datasets; the results showed that the model 
can reach a Spearman correlation of over 0.6 even if trained on only 48 
training data points. The work also showed that the augmentation with 
one-hot encoding improved the model’s accuracy.

Directed evolution relies on iterative rounds of library construc-
tion and screening55. Even with the assistance of ML, it is infeasible 
to explore all possible variants. Therefore, an efficient method for 
exploring the variant landscape is desirable to reduce the number of 
iterations. To this end, Greenhalgh et al. used a Gaussian regressor with 
the upper confidence boundary (UCB) method to iteratively optimize 
an acyl-ACP (acyl carrier protein) reductase for improved fatty alcohol 
production61. The UCB is a criterion that efficiently explores uncertain 
regions and rapidly converges to optima. The authors used the UCB 
to guide the design of the library for each round of experiments. The 
experimental results showed that variants had a notable improvement 
in each iteration. In ten rounds of optimization, the engineered reduc-
tase leads to a fivefold increase in in vivo fatty acid production titre 
compared with the starting point. Other adaptive learning methods 
have also been explored in various MLDE studies and are discussed 
elsewhere10.

ML for novel enzyme design
MLDE has shown tremendous success in improving enzyme param-
eters, such as activity, solubility and stability. However, most of the 
directed evolution studies have only explored the local landscape. 
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unscreened sequences in silico. c, A new variant library is recommended on the 
basis of the trained ML model. According to the prediction results, the variants 
with high fitness are prioritized. These steps can be performed iteratively to 
engineer variants with better activity, stability and so on.
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Recent progress in NLP has made it possible to generate functional 
higher-order mutants with properties resembling those of the native 
counterparts and even enzymes with novel folds and better attributes. 
Furthermore, the unsupervised nature of NLP models makes them 
highly desirable in protein engineering. Generally, there are two catego-
ries of ML models: deep generative models and model-guided design.

The initial work in the first category involved the use of a VAE, 
a deep learning model that maps the training data to an underlying 
Gaussian distribution. Using the flexibility of the VAE framework, 
Hawkins-Hooker et al. created two models based on aligned and raw 
sequence input. A multiple sequence alignment (MSA) VAE is con-
structed by using MSA as input, while an autoregressive (AR) VAE is a 
hybrid model that generates functional luciferase-like oxidoreductases 
with distant variants containing as many as 35 mutations62. Repecka 
et al. used generative adversarial networks (GAN) to design a func-
tional malate dehydrogenase with novel structural domains63. One of 
the tested variants contained 106 mutations, which corresponds to a 

34% change in the protein sequence, thus establishing the approach 
as a good starting point to test diverse, non-natural sequences for 
protein engineering. A similar framework, GENhance, was developed 
to generate highly stable variants of the human angiotensin-converting 
enzyme 2 protein from less stable variants64. The model consists of 
a generator to sample novel sequences and a discriminator to rank 
them according to the attribute. It is important to note that such mod-
els have been specifically used to generate artificial proteins with a 
single enzyme parameter such as reactivity or stability. Generative 
models can also be exploited for the task of enhancing or changing 
substrate scope. This has recently been demonstrated by training a 
conditional VAE to design recombinases capable of excising the DNA 
at novel target sites65. Machine translation models provide another 
such architecture to generate novel enzyme sequences conditioned on  
the substrate.

Autoregressive models are another popular framework. These 
models are trained to predict either the next possible amino acid after a 
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Fig. 6 | Overview of the ML approaches for designing novel enzymes. Popular 
deep learning frameworks, such as VAEs, generative adversarial networks and 
autoregressive models, are trained on protein sequences or structures to learn 
the underlying distribution and sample the sequence space to design distant 

functional variants, enzymes with novel folds and new functions. Model-guided 
design is another approach that leverages ML-based protein structure prediction 
models for designing enzymes with desired functional sites.

http://www.nature.com/natcatal


Nature Catalysis | Volume 6 | February 2023 | 137–151 144

Review Article https://doi.org/10.1038/s41929-022-00909-w

given sequence or the masked or perturbed amino acids in the remain-
ing protein sequence. Madani et al. developed a conditional language 
model for de novo protein generation66. ProGen, a 1.2 billion parameter 
decoder-style transformer variant, can generate any artificial protein 
of interest given the tag that specifies the protein metadata. During 
the training, the model is prepended with metadata, such as protein 
family, taxonomy and localization. The idea was inspired by the use of 
input control tags to generate English sentences of a particular style and 
sentiment. The authors evaluated the model’s capabilities by testing 
artificial enzymes generated with the ‘lysozymes’ tag: 72/100 proteins 
expressed well through cell-free protein synthesis with sequence iden-
tity to any known natural proteins in the range of 40–90%. A random set 
of 90 well-expressed artificial proteins were further tested for activity 
and 73% (66/90) were found to be functional and exhibited high levels 
of lysozyme activity across families compared with 59% (53/90) of 
their natural counterparts. Similarly, the state-of-the-art Generative 
Pre-trained Transformer 2 (GPT2) model was adopted to learn the 
language of proteins. ProtGPT2 trained on UniRef50, a clustering of 
UniProt sequences with 50% identity, can generate non-natural pro-
tein sequences similar to natural ones67. The model can easily gener-
ate artificial proteins with versatile folds, multifaceted surfaces and 
difficult-to-design de novo structures. The most remarkable feature of 
ProtGPT2 is its ability to expand the sequence space of superfamilies 
by sampling sequences from the dark proteome, the evolutionarily 
unexplored regions of the protein space. Models trained on structural 
information have also been reported in the literature to successfully 
produce novel folds68,69.

By contrast, model-guided design uses structure prediction mod-
els such as RoseTTAfold70 to create new-to-nature proteins. Anish-
chenko et al. developed the concept of protein hallucinations where 
random amino acid sequences are optimized to fold into distinct 
three-dimensional (3D) structures by iterative updating based on the 
gradient of the loss or by Markov chain Monte Carlo sequence optimiza-
tion71. Recent work by Wang et al. further constrained the loss function 
to generate candidates tailored with desired functional sites72.

Given the aforementioned examples, ML-guided novel protein 
design can be used to synthesize protein libraries with huge diversity, 
novel folds and potentially novel functions to navigate the protein 
landscape thoroughly (Fig. 6). Detailed reviews of the use of generative 
models for protein design have recently been published73,74.

Pathway engineering
Once all of its component enzymes are identified, the target biosyn-
thetic pathway must be constructed in vitro or in vivo. To optimize its 
function in either setting, the pathway itself is typically modelled along 
with the surrounding environment, that is, the cellular metabolism in 
the case of in vivo and the reaction conditions in the case of in vitro  
(Fig. 7). In this section we will discuss and compare the implementation 
of biosynthetic pathways in vitro and in vivo.

In vivo metabolic pathway optimization
In vivo pathway implementation is typically selected for fermenta-
tive processes to take advantage of cell machinery or to pursue a 
sustainable synthesis process75,76. Most knowledge-driven pathway 
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opportunities for other prediction tasks, such as in vitro prediction of reaction 
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optimization in vivo is performed with mechanistic models, specifi-
cally constraint-based models (CBMs) such as genome-scale models 
(GEMs) or kinetic models77. High-dimensional omics data are typically 
used as additional constraints for GEMs and their inclusion has created 
the greatest improvements in terms of predicting cellular phenotypes 
and chemical concentrations, but they are still neglected as tools for 
in vivo pathway design and optimization. At present, the CBM para-
digm is not fully compatible with the modern deep learning paradigm 
in that it is difficult to incorporate backpropagation for end-to-end 
learning in GEMs and deep learning alone offers little explanatory 
value for reaction mechanisms. Recently developed methods have 
integrated CBM and deep learning models by connecting them in 
series, with GEMs producing the input for the deep learning model or  
vice versa77–79.

A major scientific challenge in modelling metabolic reactions is 
the estimation in vivo of the Michaelis–Menten kinetic parameters kcat 
(the catalytic rate constant) and Km (the Michaelis constant) as they do 
not typically correlate with in vitro measurements80. Accurate predic-
tion of in vivo enzyme parameters would allow for more principled 
design and engineering of microbial cell factories. Heckmann et al. 
showed how a model trained on enzyme network context, enzyme 
structure and enzyme biochemistry with a limited labelled dataset 
of measured in vivo kcat can be used to extrapolate to 3,000 in vivo  
kcat values, thereby allowing parameterization of an E. coli GEM. When 
estimating gene expression, the authors showed that ML-extrapolated 
kcat values could improve log10 root mean squared error of gene expres-
sion prediction by 38% compared with 10% for median imputed in vitro 
kcat values81. Another method for parameterizing GEMs uses the sub-
strate structure of metabolic enzymes and the enzyme sequence to 
predict in vivo kcat. Li et al. used a combination of a graph neural net-
work to encode substrates and a CNN to encode proteins to predict 
in vivo kcat (ref. 53). Model predictions were further improved through 
Bayesian learning from experimental data. Attention from the model 
identified amino acid residues that affect enzyme activity, thereby 
generating targets for protein engineering53. More fundamental work 
aims to reconstruct the metabolism of under-characterized microbes, 
which can then be used with the existing CBM framework for pathway 
optimization14,82. While the reconstruction of metabolism using ML 
is a promising application, mechanistic models must maintain a high 
standard of integrity for them to be useful as in vivo pathway optimi-
zation tools83.

In terms of individual pathway optimization, the most common 
techniques rely on the design of experiments, predictive modelling 
and the recommendation of future designs. In 2019, HamediRad 
et al. integrated an ML model with a robotic system to fully automate 
the design–build–test–learn (DBTL) loop for pathway optimization 
and used the resultant platform, named BioAutomata, to optimize 
the biosynthetic pathway for lycopene production84. Specifically,  
a Gaussian process predictive model and Bayesian optimization were 
used to suggest the designs of future pathway variants and this plat-
form outperformed random screening with the same number of path-
way variants by 77% while evaluating less than 1% of all the possible 
pathway variants. Building on this idea, Radiojević et al. built an Auto-
mated Recommendation Tool (ART) that uses an ensemble predictive 
modelling approach followed by Bayesian optimization to rank future 
variants with an estimated probability distribution, quantifying the 
uncertainty of prediction, which can help to assess the feasibility of 
future wet-lab experiments85. A recent implementation of ART com-
bined a knowledge-driven approach using a GEM with a DBTL loop 
to engineer tryptophan overproduction. The GEM helped to identify 
promising gene targets to limit the experimental design space and ART 
was used for DBTL optimization, which led to improvements of the 
tryptophan titre by 74% and productivity by 43% compared with the 
first DBTL cycle86. DBTL has also been applied to the overproduction 
of violacein87, 1-dodecanol88 and monoterpenoids89.

In vitro pathway optimization
In vitro enzymatic pathways, often called multistep or cascading 
enzymatic reactions, can be implemented for large-scale synthesis of 
target molecules. Compared with in vivo synthesis, in vitro synthesis 
benefits from a more controlled environment and fewer constraints, 
for example, cell survival and energy maintenance, which can allow 
greater conversion rates. Key design choices include a target synthe-
sis route, typically selected with retrobiosynthesis tools, choices of 
enzymes, reaction conditions and process design. Enzyme cascades can 
be performed sequentially, but ideally they are performed in a one-pot 
reaction to reduce the number of isolation steps. A one-pot reaction 
faces challenges of inhibitory interactions90, incompatible reaction 
conditions91 and enzyme promiscuity92. Traditionally, optimization 
schemes have attempted to model system dynamics with mechanistic 
models such as kinetic models or data-driven methods, for example, 
support vector machine (SVM), Gaussian process or artificial neural 
network (ANNs), and then suggest future variants with genetic algo-
rithms or Bayesian optimization84,93. In a recent example, Wan et al. 
used a quadratic SVM model trained on quantum chemistry reactivity 
descriptors along with reaction conditions to predict the yield and 
corresponding reaction conditions94. It is worth noting that many of 
these approaches have largely ignored the representation of enzyme 
structure, especially if proteins are no longer being engineered in the 
DBTL pipeline. In principle, any of the reaction condition optimization 
techniques used for organic synthesis can be used for biosynthesis 
by representing enzymes with a categorical variable, similar to how 
solvents are often represented as categorical variables for organic 
synthesis94. There has been recent success in predicting organic syn-
thesis reaction conditions, including catalysts, solvents, reagents and 
temperature95, but the limited data on biocatalytic reaction conditions 
makes it difficult to adopt these methods in biocatalysis96.

While in vitro and in vivo optimization have traditionally been 
performed separately, the lines are beginning to blur with cell-free 
systems. In 2020, Karim et al. developed a system called iProbe that 
uses the flexibility of the cell-free system to test a combinatorial design 
space that would be infeasible to test in vivo90. From the initial screening 
of 120 pathway combinations, 43 pathways predicted from a group of 
ANNs proved to give better performance than expert design. Pathways 
optimized in vitro were then transformed in vivo, retaining the perfor-
mance with a Pearson correlation of 0.79, showing that under proper 
conditions, the benefits of in vitro optimization can be ported to the 
in vivo setting96. Furthermore, this method has been used to scale up 
industrial fermentation of C1 waste to yield acetone and isopropanol75.

Pathway inhibition
Another task of immediate interest to in vitro and in vivo optimiza-
tion is the prediction of compound–protein interactions (CPIs) and 
protein–protein interactions (PPIs), which could be inhibitory to the 
target biosynthetic pathways. The prediction of drug–protein interac-
tions (DPIs) has attracted the most attention in CPI research because 
DPI models can be used to identify inhibitory ligand binding. Common 
tasks include the prediction of binding sites, protein–ligand bind-
ing affinity and protein–ligand binding conformation54. Gainza et al. 
learnt protein interaction fingerprints with topological and chemical 
features. The model generating the interaction fingerprint was com-
bined with an application-specific layer for various prediction tasks, 
including active site classification and ligand or protein interaction 
prediction97. In the in vivo setting, combinations of DPI and PPI data 
have helped to identify important network effects98 and the toxicity 
of new compounds99. Counter to the idea that including all complex 
interaction data improves performance, Goldman et al. demonstrated 
that single-task models, deemed less generalizable, can outperform 
more complex models that attempt to include all interaction data. 
This result shows a need for new representation learning methods for 
extrapolation to unseen CPIs45.
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Table 1 | List of databases commonly used to develop ML models for retrobiosynthesis

Classification Name Description Size Representative ML models

Enzymes UniProt6 A comprehensive, high-quality and freely 
accessible resource of protein sequence 
and functional information

~120 million proteins with 
~570,000 reviewed entries

ProteInfer40, DeepEC37, UniRep13, 
AlphaFold2121, RoseTTAfold70, MSA 
VAE62, AR VAE62, ProteinGAN63, 
ProGen66, ProtGTP267, CATHe39, 
ECNet57, DeepLoc50 and 3DCNNs122

ExPASy-ENZYME100 Describes each type of characterized 
enzyme with the associated EC number

~7,000 active entries

ExPASy-PROSITE124 Describes protein domains, families and 
functional sites

~1,900 entries, ~1,300 patterns, 
~1,300 profiles and ~1,300 
prorules

Protein Data Bank125 Describes the 3D structures of proteins, 
nucleic acids and complex assemblies

~190,000 biological 
macromolecular structures

ProtaBank101 A central repository to store, query, 
analyse and share all types of protein 
design and protein engineering data

~7.7 million data points covering 
1.8 million protein variants and 
15,000 assays

ProtDataTherm102 A database focusing on analysing and 
engineering protein thermostability

>14 million protein sequences

FireProtDB103 A comprehensive and manually curated 
database of protein stability information 
for single mutants

~6,700 mutants covering 
~242 proteins and ~16,000 
experiments

Substrates ChEBI104 A database and ontology containing 
information on small chemical 
compounds of biological interest

~60,000 fully annotated 
compounds

DeepCSeqSite126, DELIA127, 
Kalasanty128, DeepSurf129 and 
PUResNet130

HMDB105 A freely available database comprising 
detailed information on small-molecule 
metabolites found in the human body

~217,000 compounds

LMSD106 A relational database encompassing 
structures and annotations of 
biologically relevant lipids

~47,000 unique lipid structures 
with 25,457 curated ones

SwissLipids107 An expert-curated resource of lipids 
and their biology providing biological 
information on lipid and lipidomic 
structures and metabolism

~780,000 lipid species and 
~7,000 distinct pieces

Reactions BRENDA108 A main enzyme and enzyme–ligand 
information system comprising disease 
relevant data, enzyme sequences, 3D 
structures, predicted enzyme locations 
and genome annotations

~4.3 million data for ~84,000 
enzymes belonging to ~7,600 
enzyme classes

EPP-HMCNF44, Km prediction131 and kcat 
prediction53

Rhea109 A comprehensive and non-redundant 
resource of expert-curated biochemical 
reactions covering the reactions of all 
EC numbers as well as thousands of 
additional enzymatic reactions, transport 
reactions and spontaneously occurring 
reactions

~14,000 reactions with ~12,000 
unique compounds

BioCatNet110 A repository of sequence, structure and 
biocatalytic experiments for a given 
enzyme family

12 enzyme families with ~55,000 
sequences and ~2,000 3D 
structures

SABIO-RK111 A curated database containing 
structured information on biochemical 
reactions, kinetic rate equations with 
parameters and experimental conditions

~72,000 curated entries with 
~56,000 Km data, ~53,000 
velocity constants and ~16,000 
inhibition constants

BKMS-react108,112 An integrated non-redundant 
reaction database containing known 
enzyme-catalysed and spontaneous 
reactions collected from BRENDA, KEGG, 
MetaCyc and SABIO-RK

~41,000 reactions with EC 
numbers

ECREACT9 A simplified enzymatic reaction database 
with EC numbers; the data were 
extracted from four databases,  
namely Rhea, BRENDA, PathBank and 
MetaNetX

~62,000 reactions with EC 
numbers

Networks KEGG113 A knowledge database for 
systematic analysis of gene functions 
linking genomic information with 
higher-structured functional information

~16,000 enzymes with ~2,000 
reactions

Metabolic Allele Classifier132, 
DeepRFC21, GC-ANN133, RetroPath2.020, 
BioNavi-NP16, Evo-DoE134 and 
feasible-metabolic-pathway 
exploration17
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Common databases used for ML model 
development
The development of ML models relies on high-quality databases. As 
briefly mentioned above and summarized in Table 1, a wide variety 
of databases have been used to develop ML models for retrobiosyn-
thesis that contain information on enzyme sequences6,100–103, sub-
strates104–107, chemical reactions9,108–112, and metabolic pathways and/
or networks113–119. However, most databases are not initially designed 
to develop ML models and few have incorporated protein mutagenesis 
data (a notable exception is Protabank101), which is necessary to develop 
ML models for enzyme engineering. Moreover, an ML-friendly database 
needs to be actively maintained and should have comprehensive cover-
age, extensive annotation and evidence scores to ensure that the data 
are of high quality and contain minimal false positives107. Therefore, 
there is a need to develop standardized databases by implementing 
cross-comparison between databases to reduce redundant or incon-
sistent information, steady maintenance to capture the ever-growing 
depth of biology, and easily accessible and user-friendly databases.

Future perspectives and conclusion
ML has made a great impact on every aspect of retrobiosynthesis, 
including synthesis planning, enzyme selection and engineering, and 
pathway optimization, both in vitro and in vivo120. However, opportuni-
ties still exist to further develop ML models for retrobiosynthesis. For 
example, current retrosynthesis tools rarely consider both chemo- and 
biocatalysis in the design of synthetic routes. Moreover, one of the 
tougher challenges in the biosynthesis of a target molecule comes 
from the missing links in the biosynthetic pathway predicted by ret-
robiosynthesis tools. The missing links can be patched by predicting 
enzyme–substrate interactions, which may indeed be challenging from 
sequence information alone. With the recent development of protein 
structure prediction tools, such as AlphaFold121 and trRosettaFold70, 
combined with catalytic site prediction tools40,122, new ML models using 
structural information could achieve the interpretation of enzyme–
substrate interactions. Alternatively, the use of semantically rich, 
conditional language models to sample artificial protein sequences 
for new reactions and further engineering using MLDE will potentially 
pave the way for the successful design of desired enzymes. As of now, 
the integration of existing ML tools assists in GEM reconstruction, the 
parameterization of GEMs for pathway simulation, the identification 
of target amino acid residues in individual proteins for site-specific 
mutagenesis, the identification of interfering small molecules and 

DBTL optimization over a combination of pathways. The major pieces 
supporting in vivo and in vitro biocatalytic vision are in place, and we 
expect to see incremental improvements in isolated prediction tasks 
and new efforts in model integration. Learning mappings between 
the in vitro and in vivo settings would further expedite this vision. To 
establish a comprehensive database for ML model development, the 
scientific community needs to continually develop a global collection 
of enzymes, reactions and pathways. There is much room for improve-
ment in automatic data mining (for example, visualization mining in 
figures and text mining for various information) and data reliability. 
With the rapid emergence of ML models, a standardized benchmark-
ing database for model development, evaluation and validation is 
needed. An initial effort in this direction has been made by Dallago 
et al., who designed Fitness Landscape Inference for Proteins (FLIP) to 
benchmark ML models for protein engineering tasks123. Such a platform 
enables rapid scoring and assessment of models, and similar datasets 
can be designed for other tasks, such as retrobiosynthesis planning. 
As researchers continue to explore biocatalysts, ML will become an 
irreplaceable tool with which to expand the boundary of molecule 
synthesis.
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