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ABSTRACT: Natural products (NPs) produced by microorganisms and plants
are a major source of drugs, herbicides, and fungicides. Thanks to recent advances
in DNA sequencing, bioinformatics, and genome mining tools, a vast amount of
data on NP biosynthesis has been generated over the years, which has been
increasingly exploited to develop machine learning (ML) tools for NP discovery.
In this review, we discuss the latest advances in developing and applying ML tools
for exploring the potential NPs that can be encoded by genomic language and
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predicting the types of bioactivities of NPs. We also examine the technical
challenges associated with the development and application of ML tools for NP research.
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B INTRODUCTION

For thousands of years, natural products (NPs) have been
crucial to human health and well—being.1 Recent advances in
DNA sequencing, bioinformatics, and genome mining have
made the discovery of NPs more efficient. However, with more
compounds being discovered, it has become increasingly
challenging to avoid discovery of previously characterized NPs.
Additionally, exploring the biological functions of NPs remains
difficult, particularly as some NPs exist in very small quantities,
preventing extensive screening of their bioactivity. To aid in
the discovery of NPs and characterization of their bioactivity,
researchers have developed various strategies such as high-
throughput biosynthetic gene cluster (BGC) discovery,”” BGC
activation by CRISPR/Cas9-mediated genome editing, ™
elicitor application,’ and manipulation of global or pathway-
specific regulators.”® Over the last twenty years, NP research
has been revolutionized by the development of computational
tools for every aspect of NP discovery, ranging from BGC
identification to structure prediction to linking genes to
compounds.”"?

Machine learning (ML) is a subset of artificial intelligence
(AI) that involves the use of algorithms and statistical models
to enable computers to learn from data without being explicitly
programmed. Over the past few decades, the concept and tools
of ML have permeated into various research fields. In NP
research, ML tools have played a crucial role in improving our
understanding of NPs, including detecting BGCs, predicting
chemical structures, and proﬁlin% activity, as summarized in a
number of recent reviews.”'' ' With the exceptional
prediction power of these ML tools, it is possible to process
a vast amount of genomic and molecular data in a high-
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throughput manner, which aids in selecting an experimentally
feasible set for functional validation. A key to comprehending
NP chemistry and biology is by understanding the genomes in
which their biosynthetic pathways are encoded. Given the
increasing availability of microbial genomes, ML-based
genome mining approaches offer a profound opportunity to
decipher the genomic language of BGCs and better understand
NP chemistry and diversity.'”> Once BGC-derived NP
structures are elucidated, various ML tools can provide further
information on bioactivity such as antibacterial, anticancer, and
anti-inflammatory activity and target prediction as well as other
features.'' "

The workflow for building an ML model consists of four
main parts: dataset preparation, molecular representations and
descriptors, model training, and model evaluation (Figure 1).
Dataset preparation is crucial to generate a successful ML
model. A high-quality NP dataset is a prerequisite and leads to
better model performance. Zhang et al. identified specific
aspects that need to be considered when preparing a dataset
for ML model training, such as balanced positive and negative
instances, applicability domain, data consistency, inevitable
data errors, and database structure.'' Featurization plays a
crucial role in translating genomic language and chemical
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Figure 1. Overview of an ML-enabled workflow for discovery of NPs. The general workflow consists of model construction and experimental
validation. Model construction involves four main parts: data preparation, molecular representation and descriptor, model training, and model
evaluation. The red frame denotes model construction for BGC prediction. The blue frame represents model construction for bioactivity
prediction. BGC: biosynthetic gene cluster; SMILES: simplified input line entry system; InChl: international chemical identifier.
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Figure 2. Supervised learning. (a) Basic architecture of supervised learning. (b) Examples present the commonly used supervised algorithms for NP

discovery: neural networks, LDA, NB, SVM, DT, and RF.

structure information into computer-readable formats. It is an
essential step in modeling and predicting new BGCs as well as
the properties of NPs and other compounds. One common
example of featurization is the generation of molecular
representations and descriptors. These enable the conversion
of complex molecular structures into meaningful numerical
features that can be utilized in various computational analyses
and predictive models. Early molecular representations, such as
SMILES (simplified input line entry system),"* SMARTS
(SMILES arbitrary target specification),'” Daylight sCIS,"®
OpenEye Scientific Software,'” and InChI (international
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chemical identifier),'® were created to store and retrieve
molecular information and identify shared molecular features
or substructures from databases. Novel molecular representa-
tions, such as DeepSMILESlg and SELFIES,* have emerged
for practical use in ML tools. Molecular fingerprints, such as
ECFP (extended connectivity fingerprints)”' and MACCS
(molecular access system) keys,”” have been developed for
efficient substructure searching in growing chemical databases
and reduced storage space. Additionally, unlike chemo-
informaticians, computational chemists usually use molecular
representations to compute molecular descriptors that describe

https://doi.org/10.1021/acssynbio.3c00234
ACS Synth. Biol. 2023, 12, 2650—2662


https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00234?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.3c00234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Research Article

pubs.acs.org/synthbio

ACS Synthetic Biology

6%
4
S

(&

15

or

N4

L4

8¢

9¢

1€

e

sjo1

suoneuasardar 19PodUS [EUOTIIAMPIQ PISL]-IdUIIOJSUE)
{(3oseyep aanedau) $71°0£0’s ‘(30serep aanisod) 17€0T
(3ose3ep mzuamgv LYL'ST ‘(39seyep o&ﬁo& 96091
(suayo3 3dn110d pue ysewr) 000‘LTT

suoneyuasaidar

I0]129A SNONUIUOD pue s10399A Jurppaquus daagureyd
{(3eseyep aapeSau) 87101 ‘(1oseyep aanisod) 4861

s3ey Areurq om) pue s10309A [eUOISUIWIP-ZOT
{(39seyep aanedau) g7I‘0T ‘(39serep aantsod) £19

(37dq 3ua] Jo $103094 UN[O}) 000E~

$10109A 04
Jo xmjew {(3os3Ep o\ﬁmmoﬁv $2T'61 ‘(3oseyep aansod) 9.7

(39seyep m>nmwm:v 000°0T ‘(39serep mzu_momv SLT

0S¢

€IS

876

muO«mﬁummﬁ mﬁNUw.N —uﬁm Nwﬁci 1 REm.H
103 v3ep Pa[aQe[Un) 960S ‘(NAS 105 BIep PIqe) 9LS

mu—.—umw.w\mN_w joselep Mﬁiﬁﬂm.ﬂ

o dINV'T

o' DNVD ,'AdV L WYY
Lodadagreis T9ON
HSVINSHue

3os Surureny
< JOPULIINSLD ‘S TOIGIN

jos Surureny JECIIUERE ) o)

< NSTId-dd™

£q paynuspt sqard
suomndrpaid
0FAON u2pyuod-y3y

00 PPUTOIYL,  TNSTId-dd™
3c0TOIIN

jasejep pajemd Afenueur

A aseqejep
payeInd Ajrenuewr) gqddrd

1oserep

pajend A[enuewr pue L OMIN

joseep pajernd A[enuewr

95IN0S ejep

1yad
‘wonuane WIST

NND ‘NAS
NND ‘I94d ‘qI-INSd

I WISTd

paxpeIs ‘NND

I Yromzau
emau weid-doys

‘NN ‘WIS T

d'IN

NND [ofrered
WAS

WAS

I ‘WAS

Ld

WAS
sandnpsues} ‘INAS

suqoS[e T

sanjed) aouanbas apndad woy sJATY Anuapr
‘wop3uny [ewrue Y} woiy SJINY AJuapr
sassep N Iolew e 10§ sOOG Anuapt

sasse[d JN Jolew [[e 10 sOOG Auapt

SIN 213 jo
Ayanpoe remoajour oty 1paxd pue sassep JN Jolew [[e 10§ sHOG AJuapt

sassepqns umowy 03 Surduoyaq sapnded 1osmdaid Jarg Ajnuapr

sasseppqns umowy] 03 Juiduopaq sapndad rosmdard Jqry Anuspr

sorwoudS-ued Sursn spoHg Surpuodsarios Amuapr
pue souuew juspuadopur-sse e ur sapndad 1osmdard Jary 3o1paid

pooyroqudrou srwousS 3y djen[eas pue
sassepqns sypads 0y Surduofaq sapndad 1osmodard Janyg yuer pue Lnuspt

apndad 2100
a1y ur sanpisar payrpow Ajreuonesuenysod pue ‘syyurf-sson ‘epndad
10s1md31d Jo 231s 9Feaea]d 19pea] Ay ‘sassepqns DOG Jdrg Iv1paid

Apynads urewrop uoneduspe YN Iorpard

£ypyoads urewop uoneduspe SRYN Iorpard

uonesridde jo adoos

SIN Jo Surury swouar) 10y s[oo ], TN ‘T qe.L

uondpard JNV
pardgiNyTuy
AvVODd

paxdpng-deag

ongdeq

I0SINDAIIJTN

ddrgmeN
1) dRIOIP

0daod

DUINJIIN
VINNJANVS

zrop1pardS AN

uwreu

https://doi.org/10.1021/acssynbio.3c00234

2652

ACS Synth. Biol. 2023, 12, 2650—2662


pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.3c00234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Synthetic Biology

pubs.acs.org/synthbio

Research Article

the structure and low-dimensional meaningful features of a
compound. Model training involves selecting an appropriate
ML algorithm for the data and learning task. Supervised
algorithms, such as neural networks [e.g, graph neural
networks (GNNs), convolutional neural networks (CNNs),
and deep neural networks (DNNs)],>*~*° linear discriminant
analysis (LDA) ,%° naive Bayes (NB),”” support vector machine
(SVM),”® decision tree (DT),”” and random forest (RF),”® are
commonly used for NP prediction (Figure 2). The choice of
algorithm depends on factors such as data quantity and quality,
type of learning task, and interpretability of results. In ML, the
ability of a model to make accurate predictions on new, unseen
data is referred to as its generalization ability. To evaluate this
ability, the dataset is typically split into training data (the
portion of the dataset used to train the models), validation data
(the subset employed to tune model hyperparameters and
compare different models during cross-validation), and testing
data (the held-out set utilized to evaluate the final performance
of the selected model). The model is trained on the training
set, and its performance is evaluated on the testing set using
various evaluation metrics depending on the type of problem
being solved. Common metrics for classification tasks include
accuracy, precision, recall, and F1 score, while regression tasks
use mean squared error, mean absolute error, and R-squared.
To ensure the model’s performance consistency across various
dataset partitions, cross-validation is employed. This process
includes random partitioning of the dataset into multiple
training and validation sets. By utilizing cross-validation, one
can effectively compare different models, select the best model
and hyperparameters, and subsequently employ a held-out test
set to obtain a more accurate measure of the optimal model’s
real-world performance. This approach enhances the reliability
and robustness of the model’s evaluation, leading to more
meaningful and dependable results in practical applications. A
model that performs well on both the testing set and cross-
validation is considered to have good generalization ability and
can be used to make predictions on new, unseen data.

This review will examine how ML tools have been applied in
NP discovery, with a particular focus on how ML tools are
leveraged to comprehend the unique “genomic language” that
provides insights into NP chemistry. Additionally, we will
explore the applications of ML tools in predicting the
biological effects of NPs.

B ML-ASSISTED GENOME MINING OF NPs

NPs are structurally diverse and can be grouped into many
classes based on their biosynthetic principles. Numerous
genome mining tools have been developed to identify BGCs
directly from genome information. Most of them utilized Basic
Local Alignment Search Tool (BLAST) or profile-hidden
Markov models (pHMMs) to mine signature genes that are
responsible for the biosynthesis of a specific class of NPs (e.g.,
antiSMASH®' and PRISM’?) and then determine the
boundaries of the BGCs based on a set of predefined rules.
Over the years, ML tools have been introduced to genome
mining with the goal of discovering new BGCs that may be
overlooked by traditional rule-based models. Here, we discuss
the ML-based genome mining tools developed for different
classes of NPs (Table 1).

Nonribosomally Synthesized Peptides. Nonriboso-
mally synthesized peptides (NRPs) are synthesized by
multimodular mega-enzymes named nonribosomal peptide
synthetases (NRPSs). Each module minimally consists of three

2653

domains: the adenylation domain (A-domain), the peptidyl
carrier domain (PCP-domain), and the condensation domain
(C), responsible for the recruiting, tethering, and condensation
of the substrate into the growing peptide chain.’® The primary
structure of the NRP depends on the sequential order of the
modules and domain composition. To aid in the discovery of
new NRPs, Rottig et al. developed NRPSpredictor2®® to
predict the specificity of the A-domain to the amino acid
substrate. Built on 34 specificity-conferring active site residues
in the A-domain, NRPSpredictor2 employs SVM trained on
576 labeled A-domains and transductive SVM trained on 5096
unlabeled A-domains for the prediction of substrate specificity.
For bacteria, the predictor can predict both gross phys-
icochemical properties of an A-domain’s substrates and
detailed single-amino acid substrates. For fungi, the predictor
can only predict gross physicochemical properties of substrates
due to the lack of sufficient fungal training data. In another
study, Blin et al. developed SANDPUMA (Specificity of
Adenylation Domain Prediction Using Multiple Algorithms)®'
for ensemble prediction of substrate specificity of the A-
domain by using a DT schema that performed individual
predictions and combined the results into a single prediction.
With an expanded training dataset containing 928 unique A-
domain sequences, the ensemble method significantly outper-
forms individual methods by leveraging the strengths of the
active site motif (ASM), SVM, prediCAT (a phylogenetically
driven algorithm), and pHMMs.

Ribosomally Synthesized and Posttranslationally
Modified Peptides. Ribosomally synthesized and posttransla-
tionally modified peptides (RiPPs) are an emerging class of
NPs that are especially attractive for ML-based genome mining
efforts due to the relatively small size of RiPP BGCs and the
lack of universal signature biosynthetic genes across all RiPP
families. Based on the type of posttranslational modification
installed on the precursor peptide, RiPPs can be categorized
into more than 40 subclasses.*> In 2017, Agrawal et al.
developed RiPPMiner’® to predict chemical structures and
subclasses of RiPPs directly from precursor peptide sequences
based on SVM and RF classifiers trained on 513 experimentally
characterized RiPPs from 13 RiPP subclasses. RiPPMiner can
also predict the leader cleavage site, complex cross-links, and
posttranslationally modified residues in the core peptide for the
major RiPP subclasses like lanthipeptides, cyanobactins,
thiopeptides, and lasso peptides that contain more than S0
entries in the training dataset. An updated version of
RiPPMiner called RiPPMiner-Genome®  can directly take
genome sequences as input for automated identification of
RiPP BGCs.

In another study, Tietz et al. developed RODEO (Rapid
OREF Description and Evaluation Online)*® for mining RiPP
BGCs. Unlike RiPPMiner that uses a whole genome or
precursor peptide sequence as input, RODEO uses a single
protein of interest as query and captures the neighboring
genomic region to predict the function of nearby genes by
analyzing their Pfam pHMMs. A tripartite procedure of
heuristic scoring, SVM, and motif analysis was then utilized
to predict and rank precursor peptides. The RODEO tool first
demonstrated its utility by surveying the lasso peptide
biosynthetic landscape, revealing over 1400 BGCs and guiding
the discovery of five novel lasso peptides. It has been further
developed to survey additional RiPP subclasses includin
thiopeptides,*” Ia.nthipeptides,40 linaridins,*' ranthipeptides,4
and graspetides.”’

https://doi.org/10.1021/acssynbio.3c00234
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Despite the progress in predicting RiPP BGCs belonging to
known subclasses, genome mining of new RiPP subclasses
remains a daunting challenge. In 2020, Kloosterman et al.
established the Data-driven Exploratory Class-independent
RiPP TrackER (decRiPPter)** to tackle this challenge by
combining a SVM trained on 175 known RiPP precursors to
identify candidate precursor genes regardless of RiPP
subclasses and pangenomic analyses to identify the corre-
sponding BGCs from those operon-like structures that are
sparsely distributed among genomes. Analysis of 1295
Streptomyces genomes using decRiPPter led to the discovery
of a new lanthipeptide subfamily, serving as an experimental
validation of the approach. Geared toward novelty, this
approach inevitably suffered from a higher number of false
positives compared with the above-mentioned genome mining
tools for RiPPs.

In a departure from traditional ML-based tools including
SVM and DT classifiers (DT), deep learning-based genome
mining methods have also been utilized to identify RiPP
precursor peptides with higher accuracy. In 2019, de Los
Santos developed a deep neural network (DNN) classifier,
NeuRiPP," which was trained on over 9454 peptide sequences
for identifying known precursor peptides and new precursor
peptide-like sequences, with the best parallel CNN architecture
achieving over 99% accuracy. Another tool developed by
Merwin et al, called NLPPrecursor,”® employs natural
language processing (NLP)* to identify precursor peptides
in a class-independent manner but is parameterized for the
detection of known RiPP subclasses. NLPPrecursor is a part of
DeepRiPP, which also includes two other modules to automate
the selective discovery of novel RiPPs. One module is Basic
Alignment of Ribosomal Encoded Products Locally (BAR-
LEY), which is used for prioritizing loci that encode novel
products by matching the predicted RiPP to a chemical
structure database of previously characterized members using a
cheminformatic local alignment algorithm. The last module,
Computational Library for Analysis of Mass Spectra
(CLAMS), automates the identification of the corresponding
product in mass spectrometry data by comparative metab-
olomic analysis. By integrating these three modules, DeepRiPP
successfully guided the discovery of three novel RiPPs,
including deepstreptin (lasso peptide) and two lanthipeptides,
deepflavo and deepginsen.

Antimicrobial Peptides. Beyond RiPPs, the discovery of
antimicrobial peptides (AMPs) also greatly benefited from
various ML tools. In 2021, Sharma et al. developed
AniAMPpred, which utilized a SVM and 1D CNN with
Word2vec embedding to identify AMPs from the animal
kingdom. Trained on a curated dataset consisting of 10,187
AMPs and 15,747 non-AMPs, the model can confidently
classify both AMPs and non-AMPs for diverse peptides of
varying lengths with an F1 score of 96% on independent
datasets. They further utilized AniAMPpred to identify 436
probable antimicrobial peptides from the genome of Helobdella
robusta but did not proceed with experimental validation.” In
a recent work on AMP prediction, Ma et al. combined three
NLP models [Long Short-Term Memory (LSTM), Attention,
and Bidirectional Encoder Representations from Transformers
(BERT)] for mining AMPs from the human gut microbiome.*
The model performance was superior to that of other available
AMP prediction methods using the same test dataset in terms
of area under the precision-recall curve (AUPRC) and
precision. Experimental results showed that 181 of the 216
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identified candidate AMPs showed antimicrobial activity
(positive rate of >83%). For a comprehensive review of ML-
enabled AMP discovery and design, we refer readers to the
review by Yan et al.*’

Other ML-Based Genome Mining Tools. Compared
with ML-based genome mining tools developed for specific
classes of NPs, examples of utilizing ML for comprehensive
identification of BGCs regardless of NP classes are still limited.
In 2019, Hannigan et al. developed DeepBGC,”' which
employed a Bidirectional Long Short-Term Memory
(BiLSTM), a recurrent neural network (RNN), and a
word2vec-like word embedding skip-gram neural network
(pfam2vec) trained with 617 positive and 10,128 negative
samples for improved detection of BGCs belonging to known
classes and showed great potential for identifying novel BGC
classes. DeepBGC was supplemented with an RF classifier that
enables accurate classification of BGC product classes and
some degree of prediction of the corresponding biological
activities. In 2022, Yang et al. reported an improved version of
DeepBGC called Deep-BGCpred,”> which combined the
multisource Pfam domain encoder and the stacked BiLSTM
model for predicting BGCs with improved accuracy and
reduced false-positive rates. Benchmark experiments showed
that Deep-BGCpred is superior to the existing NP class-
independent genome mining tool, ClusterFinder,”® which
predicts BGCs via pHMMs of a sequence of Pfam annotations.
Similar to other supervised algorithms, the performance of
DeepBGC and Deep-BGCpred is highly reliant on the quality
of the negative examples that should contain no false negatives
and display similarities with true BGCs.

In a recent study, Rios-Martinez et al. pioneered the usage of
a self-supervised neural network masked language model called
BiGCARP’* that contains the ByteNet encoder-dilated CNN
architecture®® with linear input embedding and output-
decoding layers for predicting and classifying BGCs from
microbial genomes. Trained on 127,000 BGC sequences
represented as ESM-1b-pretrained embeddings of a protein
family domain,*® BiGCARP can capture meaningful patterns in
BGCs with area under the receiver operating characteristic
(AUROC) scores ranging from 0.936 to 0.950 and outper-
forms DeepBGC on classifying four out of seven product
classes. This results from the relatively large training data used
in BiIGCARP which is 100 times larger than that used in
DeepBGC. However, it is still unclear if BiGCARP can detect
some truly novel BGCs that contain noncanonical biosynthetic
domains from underrepresented sources.

B ML-BASED PREDICTION OF NP BIOACTIVITY

NP discovery has been greatly accelerated by the aforemen-
tioned antiSMASH, PRISM 4, and emerging ML tools for
genome mining. ML has offered a unique opportunity to link
molecular structures of NPs with bioactivity. In the context of
bioactivity prediction for NPs, several ML tools have been
developed for various types of activities such as antimicrobial,
anticancer, and anti-inflammation and target prediction. In the
following sections, we present examples of ML-assisted
bioactivity prediction for NPs, including the ML tools used,
data sources, and dataset sizes (Table 2). It is worth noting
that these ML tools heavily rely on NP structural information
for bioactivity prediction. This may represent a major
drawback because they are limited to known NPs that have
undergone structural characterization, and obtaining structures
for novel NPs can be challenging. However, to address the
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limitations of these approaches, alternative methods for
predicting NP activity from the gene cluster have been
reported.” SLSS Eor instance, Skinnider et al. introduced
PRISM 4, a comprehensive platform capable of predicting
the chemical structures of genomically encoded antibiotics,
covering all classes of bacterial antibiotics currently in clinical
use. The high accuracy of chemical structure prediction
facilitated the development of ML tools to predict the likely
biological activity of encoded molecules.”” To gain a deeper
understanding of these studies and the various methods
employed, we encourage readers to review the relevant
literature thoroughly. Moreover, it is worth mentioning that
data sources such as ChEMBL-, PubChem-, and FDA-
approved drugs encompass a combination of both NPs and
synthetic compounds. In the context of this review, most of the
discussed models have been trained on datasets that include
both synthetic molecules and NPs. It is important to recognize
that synthetic compounds occupy a distinct area of chemical
space compared to NPs, which could potentially lead to
reduced accuracy when these models are employed to predict
the bioactivity of NPs.

Antimicrobial. The use of ML tools in predicting the
bioactivity of NPs has gained significant attention in recent
years. One area where ML has been extensively employed is in
the prediction of antimicrobial activity. In 2018, Dias et al.
developed two QSAR (quantitative structure—activity relation-
ship) models, one using molecular descriptor (approach A)
and the other using 'D NMR descriptors (approach B), to
discover new inhibiting agents against methicillin-resistant
Staphylococcus aureus (MRSA) infection. They used regression
models to predict 6645 molecules retrieved from various
databases in approach A, achieving an R* of 0.68 and an RMSE
of 0.59 for the test set. In approach B, a new NP drug discovery
methodology was developed using 'D NMR descriptors, with
the best model achieving a prediction accuracy of over 77% for
both training and test datasets.”” Masalha et al. developed an
ML tool using the ISE (iterative stochastic elimination)
algorithm that efficiently predicts that NPs will assist in the
discovery of low-cost antibacterial drugs, achieving an AUC of
0.957 and identifying 72% of the antibacterial drugs in the top
1% of a mixed set of active and inactive substances.”® In
another study, they also used the ISE algorithm to predict NPs
for their antifungal activity, resulting in a predictive model with
an AUC of 0.89, successfully detecting 42% of the antifungal
drugs in the top 1% of the screened chemicals.”” Unlike QSAR
and ISE algorithms, in 2020, Stokes et al. developed a DNN
model (Chemprop) to predict molecules with antibacterial
activity, identifying a molecule called halicin that demonstrated
bactericidal activity against various pathogens in murine
models. Additionally, the model identified eight antibacterial
compounds that were structurally different from known
antibiotics, highlighting its potential for identifying novel
antibacterial agents.”” In 2023, Liu et al. employed the same
algorithm (Chemprop) to train with a growth inhibition
dataset for Acinetobacter baumannii. The authors then
conducted in silico predictions for structurally novel molecules
targeting A. baumannii, which led to the discovery of abaucin,
an antibacterial compound exhibiting narrow-spectrum activity
against A. baumannii. These notable findings showcase the
remarkable potential of Chemprop in predicting multiple
targets.”' In addition to using a simplex model, Egieyeh et al.
trained four different binary classifiers, NB, RF, sequential
minimization optimization (SMO), and Voted Perceptron

2,
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(VP), on a dataset of NPs with in vitro antimalarial activity and
applied their best models against 450 NPs from the
InterBioScreen chemical library, achieving consistent anti-
plasmodial bioactivity class prediction for 54% of the
compounds in the NP library.””

Anticancer. Several studies have utilized ML tools in
anticancer drug discovery to predict the anticancer bioactivity
of chemical compounds. Li and Huang developed CDRUG
(Cancer Drug), a web server that uses a hybrid score
(HSCORE) to predict the anticancer bioactivity of NPs. The
model was trained on a dataset of 8565 active compounds and
9804 inactive compounds from the NCI-60 Developmental
Therapeutics Program (DTP) project, achieving an AUC of
0.878, indicating its effectiveness in distinguishing active and
inactive compounds.”” Using CDRUG, the group predicted
the anticancer bioactivity of 21,334 compounds from 2402
plants from the traditional Chinese medicine database (TCM),
with 5278 compounds predicted as anticancer compounds and
346 compounds showing high potency in the 60 cancer cell
lines test. Similarity analysis revealed that 75% of the 5278
compounds were highly comparable to approved anticancer
drugs.”* Another study by Yue et al. developed an ML tool to
predict the sensitivity of cancer cells to NPs using various cell
lines. The study designed DT, SVM, RF, and ROF for
anticancer drug response prediction using both genomic
characterizations (gene expression) and chemical descriptors.
ROF achieved the best performance with an AUC of 0.87 with
10-fold cross-validation, and curcumin and resveratrol were
evaluated to validate the model.”” Pereira et al. utilized a
QSAR model to predict the bioactivity of compounds for
antitumor and antibiotic activities, identifying 25 and 4 lead
compounds for antibiotic and antitumor drug design,
respectively, using RE.”® The study validated the usefulness
of quantum-chemical descriptors in discriminating biologically
active and inactive compounds, and the predictive performance
was better than that of the previous model using only CDK
descriptors.”” Cortés-Ciriano et al. developed the Kekulescope
tool, which utilizes the CNN algorithm for drug discovery
using high-content screening images or 2D compound
representations, demonstrating that in vitro activity of
compounds on cancer cell lines and protein targets can be
accurately predicted from their Kekulé structure representa-
tions alone. The results also showed that including additional
fully connected layers in the CNNs increased their predictive
power by up to 10%, and averaging the output of RF models
and CNNs led to lower errors in prediction for multiple
datasets than either model alone.”® In other studies, Rayan et
al. used the ISE algorithm to create a model to predict NPs for
their anticancer activity, identifying twelve NPs as potential
anticancer drug candidates.”” Wang et al. employed a causation
discovery algorithm that displayed more robust performance
than stepwise regression to identify anticancer compounds
from Panax ginseng extracts, with ginsenoside Rb1 identified as
the most active compound.®

Anti-inflammation. Anti-inflammatory drugs are known
for their undesirable side effects. To tackle this issue, Galvez-
Llompart et al. used molecular topology and LDA to develop a
topological—mathematical model to identify new anti-inflam-
matory drugs from NPs. The model was validated externally
and led to the discovery of 74 compounds with actual anti-
inflammatory activity, 54 of which had been previously
described in the literature as anti-inflammatory.”’ In a
subsequent study, the same group developed a QSAR model
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based on molecular topology for predicting the IL-6-mediated
(interleukin-6) anti-ulcerative colitis activity of compounds,
which led to the discovery of four potentially bioactive
compounds: alizarin-3-methylimino-N, N-diacetic acid
(AMA), Calcein, (+)-dibenzyl-I-tartrate (DLT), and Ro 41-
0960. In vitro testing on two cell lines demonstrated that three
of these compounds were able to significantly reduce IL-6
levels, with Ro 41-0960 showing particular effectiveness. This
study demonstrated the effectiveness of molecular topology as
a tool for selecting potentially active compounds in the
treatment of ulcerative colitis.”> Separately, Aswad et al.
developed a predictive model using the ISE algorithm to
identify NPs with potential anti-inflammatory activity. The
model was able to differentiate between active and inactive
anti-inflammatory molecules and identified ten NPs as anti-
inflammatory drug candidates, which highlights the potential of
the ISE algorithm in identifying NPs with anti-inflammatory
properties. ?

InflamNat is an online tool which contains a database of
1351 NPs with their physicochemical properties, anti-
inflammatory bioactivities, and molecular targets, along with
two ML-based predictive tools specifically designed for NPs.
The tools use a novel multitokenization transformer model
(MTT) as a sequential encoder to predict the anti-
inflammatory activity of NPs and the compound—target
relationship. The experimental results showed that the
proposed predictive tools achieved high accuracy in predicting
both anti-inflammatory activity and compound—target inter-
actions, with AUC values of 0.842 and 0.872, respectively. The
study demonstrates the urgent need for well-curated databases
and user-friendly predictive tools to facilitate NP-inspired drug
development.**

Target Prediction. Validating the molecular targets of NPs
is crucial in identifying potential candidates for NP-based
drugs. However, the traditional process of determining
compound—target interaction requires extensive in vitro or in
vivo experiments. To address this limitation, utilizing ML tools
to predict the compound—target interaction can significantly
reduce the required effort.

Several ML tools have been developed to predict protein
targets of bioactive compounds. Keum et al. used data from the
DrugBank database to develop six classification-prediction
models for compound—target interactions in humans. Using
these models, the study predicted the interactions of
compounds from NPs and identified several disease-related
proteins, including G-protein-coupled receptors (GPCR), ion
channels, enzymes, receptors, and transporters, as potential
targets of natural herbal compounds.* Similarly, Cockroft et
al. developed STarFish, a computational target fishing model
that utilized kNN, RF, and MLP algorithms to identify protein
targets of bioactive compounds by cross-referencing 20 NP
databases with the ChEMBL bioactivity database. During
cross-validation, the models achieved strong performance with
AUROC scores ranging from 0.94 to 0.99 and Boltzmann-
enhanced discrimination of receiver operating characteristic
(BEDROC) scores ranging from 0.89 to 0.94, but their
performance decreased when tested on the NP dataset.
However, the implementation of a model stacking approach
significantly improved the performance of predicting protein
targets of NPs with increased AUROC and BEDROC scores.*

Ogztiirk et al. proposed a deep learning model that predicted
drug—target interaction (DTI) binding affinities by using only
sequence information of both targets and drugs, which

2657

outperformed existing methods such as KronRLS and
SimBoost. Unlike most computational methods that focus on
binary classification, the proposed model utilized advanced
deep learning algorithms such as CNNs to model protein
sequences and compound 1D representations for binding
affinity prediction.”” Karimi et al. used a semisupervised deep
learning model that combines recurrent and convolutional
neural networks (RNN—CNN) and integrates domain knowl-
edge to predict target selectivity. The model outperformed
conventional options in achieving relative error in ICy, within
S-fold for test cases and 20-fold for protein classes not included
in training,”® while their subsequent study curated a dataset
with both affinities and contacts of compound—protein
interactions and assessed the interpretability of various
DeepAffinity versions. The model showed generalizability in
affinity prediction and superior interpretability, with potential
applications in contact-assisted docking, structure-free bindin§
site prediction, and structure—activity relationship studies.”

Lee et al. developed a deep learning model which is capable of
predicting DTTs on a large scale using raw protein sequences,
which can handle a variety of protein lengths and target protein
classes.” In addition, Rifaioglu et al. proposed DEEPScreen, a
large-scale DTI prediction system for early-stage drug
discovery that employed a deep CNN to learn complex
features from readily available 2D structural representations of
compounds.”’ Another study by Huang et al. described
MolTrans, a deep learning model to improve DTI prediction
for in silico drug discovery by incorporating a knowledge-
inspired substructural pattern mining algorithm and interaction
modeling module, resulting in DTI prediction with increased
accuracy and interpretability, as well as utilizing an augmented
transformer encoder to better extract and capture semantic
relations among substructures from massive unlabeled
biomedical data.””

In addition, ML tools have been developed for the
prediction of specific target proteins such as protein kinase B
(PKBp),”” cytochrome P450 (CYP450),”* human plasma
proteins,” sirtuin 1 (SITR1),”® and estrogen receptor a
(ERa).”” For instance, Davis and Vasanthi utilized the QSAR
model to identify potential anticancer compounds from a
seaweed metabolite database. Using a hybrid genetic algorithm
and multiple linear regression analysis, they identified
molecular descriptors that played a role in anticancer activity,
with Baumann’s alignment-independent topological descrip-
tors playing a significant role in variation of activity.
Subsequently, they performed a docking study of two crystal
structures of PKBf to identify novel ATP-competitive
inhibitors of PKBp, with Callophycin A exhibiting better
ligand efficiency than other PKBf inhibitors. In silico
pharmacokinetic and toxicity studies also showed that
Callophycin A had a high drug score compared to other
inhibitors.” Li et al. developed a multi-task DNN model to
predict the inhibitive effect of a compound against five major
CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4.
They also built linear regression models to quantify how the
other tasks contributed to the prediction difference of a given
task between single-task and multi-task models. Furthermore,
sensitivity analysis was applied to extract useful knowledge
about CYP450 inhibition, which may shed light on the
structural features of these isoforms and give hints about how
to avoid side effects during drug development.”* Sun et al. used
six ML algorithms and 26 molecular descriptors to develop
QSAR models that could predict plasma protein binding
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Table 3. Glossary of ML Terms

feature

Supervised ML algorithm used for classification, regression, and outlier detection analysis.

An ML technology that focuses on enabling computers to understand, interpret, and generate human language.
A type of artificial neural network designed to model sequential data by allowing the network to persist with information

A type of RNN architecture designed to handle the vanishing gradient problem in standard RNNs.
A variant of the LSTM network that captures the dependencies of a sequence in both forward and backward directions.

A pretrained natural language processing model using an unsupervised learning approach.

A probabilistic classification algorithm based on Bayes’ theorem, which is commonly used in text classification and spam

A type of ensemble ML algorithm that combines multiple DT to improve the accuracy and robustness of the model.
A popular algorithm for solving the optimization problem in SVMs to find the optimal values of the parameters that

A type of Perceptron algorithm that uses multiple weight vectors instead of a single weight vector for binary
A type of wrapper method evaluating different subsets of features by iteratively removing one feature at a time based on
A type of nonparametric model that is used to model complex, nonlinear relationships between variables, without

A type of artificial neural network that is composed of multiple layers of interconnected processing nodes.

A type of deep learning architecture that is used for processing and modeling graph-structured data.
An ML model that is constructed by recursively partitioning the input space into smaller regions and used for

A binary vector that encodes the presence or absence of certain chemical substructures in a molecule.

A type of kernel function and a similarity measure between two data points in a feature space.

A supervised learning method that seeks to find a linear combination of features that best separates the classes of a given
A nonparametric and simple algorithm that makes predictions based on the similarity between a new data point and its k

A type of feedforward artificial neural network composed of multiple layers of interconnected processing nodes that is
widely used for supervised learning tasks such as classification, regression, and prediction.

A type of neural network designed to operate on data structured as graphs and used for tasks such as node classification,
A type of GNN that use a convolutional-like operation to aggregate information from neighboring nodes in a graph.
A type of GNN that consists of multiple graph convolutional layers and aims to address the problem of graph

Using statistical and ML techniques to establish a relationship between a set of molecular descriptors (such as molecular
weight, shape, and chemical properties) and the activity or property of interest (such as biological activity, solubility,

A type of ensemble learning method for combining multiple weak learners to form a strong learner and used for both

A statistical modeling technique used to analyze the relationship between two or more independent variables and a

Involves recursively splitting the data into smaller subsets based on the values of the input variables to create a DT to

A type of neural network architecture used in natural language processing tasks, such as language modeling and text

name abbreviation
support vector machine SVM
natural language NLP
processing
recurrent neural network ~ RNN
from previous time steps.
long short-term memory ~ LSTM
bidirectional long short- BiLSTM
term memory
convolutional neural CNN A type of neural network designed for image recognition and processing.
network
bidirectional encoder BERT
representations from
transformers
naive Bayes NB
filtering.
random forest RF
sequential minimization SMO
optimization define the SVM hyperplane.
voted perceptron VP
classification.
iterative stochastic ISE
elimination their importance, until a desired level of accuracy is achieved.
Gaussian process GP
making any assumptions about the underlying distribution of the data.
deep neural network DNN
directed-message passing ~ DMP-DNN
deep neural network
classification tree/decision CT/DT
tree classification and regression tasks.
frequency-weighted FWE
fingerprint
Tanimoto coeflicient TC A similarity metric used to measure the similarity between two molecular fingerprints.
MinMax kernel KMM
rotation rorest ROF An ensemble learning method combining multiple DT classifiers into a single model.
linear discriminant analysis LDA
dataset.
k-nearest neighbor kNN
nearest neighbors in the training dataset.
multilayer perceptron/ MLP/
multilayer neural MNN
network
graph neural network GNN
link prediction, and graph classification.
graph convolutional GCN
network
graph isomorphism GIN
network isomorphism.
quantitative structure— QSAR
activity relationship
or toxicity).
boost tree BT
regression and classification tasks.
multiple linear regression ~ MLR
dependent variable.
support vector regression ~ SVR A variation of SVM and used for regression analysis.
recursive partitioning RP
make predictions and used for classification and regression tasks.
multitokenization MTT
transformer classification.

(PPB) fractions of 967 pharmaceuticals. The models
demonstrated excellent performance and could be useful for
chemists in predicting PPB from molecular structure.
Furthermore, the study identified important structural
descriptors that contribute to the predictive power of the
models, providing guidance for the modification of chem-
icals.” In another application, the QSAR model was used to
generate an inhibitor structure pattern for SIRT1, a deacetylase
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enzyme associated with aging, diabetes, and cancer. The
pattern was used for ligand-based virtual screening for over one
million active compounds from Chinese herbs, leading to the
identification of 12 compounds as SIRT1 inhibitors. Molecular
docking software confirmed that three of these compounds had
a high affinity for SIRT1.”° In a separate study, Pang et al.
developed two ML models, NB and recursive partitioning
(RP), to identify ERa antagonists from an in-house NP library.
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The models predicted 162 compounds as ER antagonists,
which were then evaluated by molecular docking. Eight
representative compounds were selected and tested for ERa
competitor assay and luciferase reporter gene assay, showing
varying levels of antagonistic activity against ERa.”

B FUTURE PERSPECTIVES

ML has shown valuable potential in NP research, especially in
genome mining and scaffold prediction, and predicting
properties of NPs, such as drug-likeness, toxicity, and
biological activity.” However, there are several technical
limitations that need to be addressed in order to fully exploit
the potential of ML for NPs.””'% One of the main limitations
is the lack of integrated and standardized NP databases, which
can serve as the training data for ML models. The available
databases with structure and bioactivity information for NPs
(e.g, ChEMBL, PubChem, and ZINC NPs) and databases for
BGCs (e.g,, antiSMASH, MIBiG, and BiG-FAM) have been
extensively reviewed.”'' The existing databases are often
incomplete, contain errors, and lack standardized annotations,
making it difficult to train accurate ML models. The solution
to this limitation is to construct high-quality and large-scale NP
databases that are standardized and comprehensive, such as the
recently launched NPAtlas database.'”" Another limitation is
the featurization of NP structures, which involves transforming
chemical structures into numerical descriptors that can be used
as inputs for ML models.'> Traditional featurization methods
may not capture the unique structural features of NPs,
requiring the development of new featurization methods that
incorporate the structural diversity and complexity of NPs. An
example of such a method is the DeepChem library,'** which
uses deep learning to generate molecular representations that
capture 3D structural information. A third limitation is the lack
of ML algorithms that can handle small and biased datasets,
which are common in NP research.'”® Traditional ML
algorithms may not perform well on small datasets or when
the classes are imbalanced. To overcome the challenges posed
by small and imbalanced datasets in NP discovery, various
techniques to enhance the performance of ML models have
been proposed, such as data augmentation, transfer learning,
contrastive learning, and ensemble methods. By applying these
methods, ML models can better handle limited and unevenly
distributed data, leading to improved prediction performance
on NP discovery.'**'* Leveraging transfer learning and multi-
task learning strategies can significantly boost the efliciency
and efficacy of ML models for NP discovery. By pretraining
models on vast datasets from related domains and
subsequently fine-tuning them on smaller NP datasets, the
models can adapt and generalize to the specific context of NPs.
This approach not only leads to more accurate predictions but
also reduces the data requirements for training, making it
particularly valuable in scenarios with limited available data.
The prospect of detecting NPs with true novelty and accuracy
remains a challenge due to the limited and unbalanced training
data consisting of canonical BGCs. A possible solution to this
limitation is the integration of ML with rule-based models that
use predefined rules or logic to make decisions. In the context
of imbalanced datasets, combining ML with rule-based models
can help improve the performance and generalization of the
predictions. This approach could improve the detection of
BGCs that deviate significantly from existing biosynthetic
schemes. Finally, the integration of ML with other computa-
tional approaches, such as molecular docking, molecular
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dynamics simulations, and quantum chemical calculations,
offers a promising direction in NP research. Hybrid models
that combine ML with these complementary techniques can
provide a more comprehensive understanding of the
interactions and activities of NPs.'”® This synergy allows
researchers to gain deeper insights into the molecular
mechanisms underlying NP actions. Additionally, the use of
NLP can improve the efficiency of data extraction from the
vast amount of literature on NPs. However, the use of NLPs in
NP research is still in its early stage, and there are several
challenges to overcome, such as the complexity and variabilitg
of natural language and the lack of standardized annotations.”

B CONCLUSIONS

ML has emerged as a powerful tool for NP discovery, assisting
in genome mining and enabling the prediction of bioactivity.
This review summarizes the various ML tools utilized in
genome mining and bioactivity prediction, along with the
associated limitations and potential solutions in the NP
research field. Although there are many technical challenges
associated with the use of ML tools for NPs, the ongoing
development and application of these tools hold immense
promise in the discovery of new NPs and understanding of
their biological effects.
Table 3 contains a glossary of ML terms.
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