2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS) | 978-1-6654-9512-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/DCOSS54816.2022.00032

2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)

Drone-based Optimal and Heuristic Orienteering
Algorithms Towards Bug Detection in Orchards

Francesco Betti Sorbelli*, Federico Cordf, Sajal K. Das', Lorenzo Palazzettit, and Cristina M. Pinotti*
* Department of Computer Science and Mathematics, University of Perugia, Italy
f Department of Computer Science, Missouri Science and Technology University, USA
i Department of Computer Science and Mathematics, University of Florence, Italy
Email: *{francesco.bettisorbelli, cristina.pinotti} @unipg.it, T{federico.coro, sdas} @mst.edu, Florenzo.palazzetti @unifi.it

Abstract—In this paper, we consider the problem of using a
drone to collect information within orchards in order to detect
bugs. An orchard can be modeled as an aisle-graph, which is a
regular data structure formed by consecutive aisles where trees
are arranged in a straight line. For monitoring the presence of
bugs, a drone flies close to the trees and takes videos and/or
pictures that will be analyzed offline. As the drone’s energy is
limited, only a subset of locations in the orchard can be visited
with a fully charged battery. Those places that are most likely
to be infested should be selected to promptly detect the parasite.
We study the budgeted constrained position selection problem in
the orchard from an algorithmic point of view. We present the
Single-drone Orienteering Aisle-graph Problem (SOAP), a variant
of the well-known orienteering problem where the finite resource
is the drone’s battery. We first show that SOAP can be optimally
solved for aisle-graphs in polynomial time. However, the optimal
solution is not efficient for large orchards. Then, we propose two
efficient heuristics that work even for large (orchard) instances.
After a thorough analysis of the proposed solutions, we evaluate
their performance by simulation experiments on both synthetic
and real data sets.

I. INTRODUCTION

Unmanned aerial vehicles (e.g., drones) are being increas-
ingly used in numerous civilian applications, such as delivery
of goods [1], [2], search and rescue operations [3], [4], and
precision agriculture [5]. Publications on the use of drones
in agriculture started appearing around 1998 and terrifically
increased in the last decade, up to more than 150 reports in
2017 [6]. One of the main drivers for the implementation of
drone-based remote sensing technologies in agriculture is the
potential time saved by automatizing monitoring, making the
technology cost-effective for growers [7], [8]. Compared to
the conventional platforms for remote sensing, such as ground
stations, manned aerial vehicles, or satellites, drones can
potentially cover larger areas than ground-based or handheld
devices in a shorter time too. They can also fly at much lower
altitudes than manned aerial vehicles increasing the spatial
resolution of images, and reducing the number of distorted
soil and tree pixels [6]. Moreover, drones do not have long
revisiting times as satellites. An example of a time-consuming

This work was partially supported by NSF grants CNS-1818942, OAC-
1725755, OAC-2104078, and SCC-1952045; partially supported by the
“GNCS - INdAM”; and also partially supported by “HALY-ID” project
funded by the European Union’s Horizon 2020 under grant agreement ICT-
AGRI-FOOD no. 862665, no. 862671, and from MIPAAF.

2325-2944/22/$31.00 ©2022 IEEE
DOI 10.1109/DCOSS54816.2022.00032

117

procedure is the traditional field scouting for pest infestations.
In such a case, drones can accurately and very frequently
inspect the trees by taking high-resolution images of any part
(bottom, top) of them. So, combined with context information,
drones can discover the pest infection at the initial stage thus
reducing the insecticidal or biopesticide consumption [9].

In this paper, we consider an application that uses a drone
with video capabilities inside an orchard to timely discover
possible pest infections. Orchards and vineyards are formed by
several consecutive and adjacent aisles, which in turn contain
many trees along a straight line. The nets on top of modern
orchards (see Figure 1), originally set to protect the crops from
hail, can make it more difficult for pests to enter and infest
the trees [10], [11]. However, the nets constrict the drone to
fly not over the trees, but only along the aisles.

Fig. 1. Modern orchards use nets on top (left) and on the sides of the trees
(right) to protect crops from pests and bad weather.

For detecting bugs in modern orchards, a drone, moving
along aisles, is more effective than a ground or handheld
device because it can cover the whole area in a shorter
time. Moreover, just by changing its height, a drone can
take video/photos at the bottom or the top of each tree with
the same focal distance, thus preserving the same spatial
resolution. However, due to battery limitations, drones may
not be able to cover the entire orchard. The drone’s energy
consumption does not depend only on the orchard size, but also
on the payload (e.g., an RGB sensor is lighter than multi- or
hyper-spectral sensors, but with limited spectral information)
and on the speed. When recording video or taking photos, the
drone must fly slowly (or even stop, i.e., hovering) to preserve
adequate camera stabilization. Limited speeds mean longer
coverage times and also, depending on the characteristics of
the drone, higher energy consumption.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

Given that the drone has limited energy for flying and
image/video recording, in this paper we assume that the ob-
servable positions on the trees can be prioritized. Specifically,
we associate a priority, called reward, to each observable
position. The reward can be decided by analyzing the historical
time series of bug numbers, along with weather conditions that
have been recorded in past years, and also by considering
entomological knowledge. So, our objective is to plan a
drone’s route in the orchard for taking pictures or videos
(to scout bugs) in the most profitable locations (with larger
reward) under a given limited drone’s battery. This problem
can be modeled as an instance of the well-known Orienteering
Problem (OP).

The contributions of this paper are summarized as follows.

« We define a novel optimization problem, called Single-
drone Orienteering Aisle-graph Problem (SOAP").

« We design three algorithms for solving SOAP, i.e., an op-
timal algorithm (OPT), and two fast heuristic algorithms
(GBT and GBA).

« We evaluate the performance of our algorithms on ran-
domly generated synthetic data and real data adapted
to our problem. We also propose a real test-bed on an
orchard for detecting bugs.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III formally defines the prob-
lem SOAP. Section IV presents algorithms for solving SOAP.
Section V evaluates the effectiveness of our algorithms, and
Section VI offers conclusions and future research directions.

II. RELATED WORK

The OP is a particular variant of the classical Traveling
Salesman Problem (TSP) problem where, in addition to the
cost paid to move from one city to another, profits/rewards
are added to the cities. Precisely, the goal of TSP is to find
the minimum cost cycle in the area such that all cities are
visited exactly once, while OP has to find a cycle among a
subset of the cities that maximizes the sum of the profits of
the visited cities without exceeding a given cost budget.

The OP in aisle-graphs was first studied in [13]. The
authors studied the case of aisle-graphs with two accesses (two
junction lines, one on each endpoint of the aisles) in which a
robot has to plan a route inside the orchard for regulating the
quantity of water to give to the trees in order to guarantee the
proper moisture level. For solving this problem, the authors
proposed two greedy heuristics, GFR, and GPR, which select
a subset of full or partial aisles to traverse, respectively. The
robot calculates the budget needed to collect the rewards from
its current position and prefers full (respectively, partial) aisles
with maximum reward per budget unit in GFR (respectively,
GPR). The time complexities of GFR and GPR are O(m?) and
O(m?n), respectively, where m is the number of aisles and
n is the number of vertices (i.e., trees) composing each aisle.
In [14], the authors studied the problem of routing multiple

!nsecticidal soap is used to control many plant insect pests [12].

robots, proposing three algorithms combining GFR and GPR
both in series or in parallel.

The authors in [15] developed polynomial-time algorithms
to improve some of the problems faced in [13] along with
a rich set of experimental results on synthetic and real data
set [16]. In particular, they designed an optimal algorithm,
called OFR-I, that improves on GFR by determining the opti-
mal solution for the full-row policy, whose time complexity is
O(m-max{n,logm}). Moreover, they proposed HGC, which
slightly improves on GPR at a higher time complexity. The
work in [17] presents approximation and greedy algorithms for
solving the OP problem in aisle-graphs with a single access.
In [18] the authors consider the NP-hard stochastic OP, where
the goal is to navigate between start and end vertices in a
graph, maximizing the sum of rewards for visited vertices
(i.e., trees) while obeying a travel budget over edges with a
stochastic cost within a given probability of failure.

A further line of research is proposed in [19] where a sym-
biotic cooperation between ground robots and flying drones in
aisle-graphs is investigated. The team of robots has to perform
regular tasks like monitoring or collecting data in a preci-
sion agriculture scenario. Since robots are battery-powered
vehicles, their autonomy in terms of life-time is limited, so
mobile charging stations (drones and other kinds of robots) are
employed for refueling the ground robots by swapping their
batteries with new fresh ones. The authors, therefore, present
the Refuel Scheduling Problem (RSP), whose objective is to
plan a suitable scheduling for the team of mobile charging
stations dispatched to replace the batteries on-board the ground
robots, in order to guarantee a minimum service rate for the
ground robots avoiding interruptions.

III. PROBLEM DEFINITION

In this section we formally present the orchard graph model,
the reward and cost functions, and the problem to solve.

A. Orchard Graph Model

Let O(m,n,l) = (V,E) be the 3-D single-access aisle-
graph (briefly, orchard) that represents the constrained struc-
ture formed by a set of vertices V' and a set of edges E.
Specifically, given the orchard O(m,n,l), m denotes the
number of rows (aisles), n denotes the number of columns, and
l is the number of possible observable positions on each tree.
However, rows are all connected only via the first column (also
called backbone) (see Figure 2a). Since on each row there are
n trees, therefore the orchard has exactly mn trees and mnl
different positions to be observed by the drone.

Formally, the set of vertices is defined as V = VT UV’
where V7' denotes the actual set of tree roots of the orchard
and V' denotes the set of observable positions by the drone.
In particular, VT = {v; ;|1 < i < m,1 < j < n} while
VP = {uf;|1 <i<m,1<j<n,1<k<I} Analogously,
the set of edges is defined as £ = ET U E¥ where ET
denotes the inter-tree connections, while ET denotes the intra-
tree connections. In particular, ET is defined as follows: each
vertex v; ; with 1 < ¢ < m and 1 < j < n has two edges,

118

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

@ Ous @
2 2 2
®v: ©vs O
1 1 1
®uv. @us Oua
/ /
LT 5 5 V22 L V23 L V24
| @uvi. T ®vs T @i
\
2 2 2
| @ @vs @
T30 1 1 1
: 0 V3,2 e V33 @ V3.4
1,
031 U)
|
******* V3,2 U3,3 V3,4

(a) Orchard model. In particular, the aisle A; and the tree 77,3 are
highlighted. The rewards are inside the light-blue vertices, while the costs
are omitted because they are assumed to be unitary.

B

(b) Sketched representation.

Fig. 2. An orchard O(3,4,3) shown in two different representations.

one toward v; j_1 and the other toward v; ;11; each vertex
v;1 with 1 < 4 < m has three edges: one toward v;_1 1,
one toward v;11,1, and one toward v; 2. Accordingly, edges
connected to the corner vertices vy, are vy, are well defined.

Concerning E*', each vertex v}'; for any i, j with 1 < k <
has two edges, one toward vf_;l and the other toward vfjl
forming a connected list. By convention, let v?,j Vg j.
Accordingly, each tree located in v;; has an edge to its
associated list. Let r; = {v;1,...,0;,} be the i'" row in
the orchard with ¢ < 1 < m, and let ¢; = {v1,1,...,Um 1}
be the backbone, i.e., the only column in the orchard which
connects all the rows together. Let A; be the i*" 2-D single-
access aisle-graph (briefly, aisle) of O(m,n,l) with n rows
and [columns (here, the vertices on columns actually represent
the observable positions), with 1 < ¢ < m (see A; in
Figure 2a). In other words, O(m,n,l) consists of m 2-D
single-access aisle-graphs, one for each aisle. Let T; ; be the
tree in the orchard rooted at v;; and vertices vi{j, . 7v§,j,
with 1 < ¢ <m,1 < j < n (see T5; in Figure 2a). Finally,
the main vertex is the depot located at vy ;.

119

Figure 2a depicts an example of an orchard O(3,4, 3) with
3 rows (aisles), 4 columns (number of trees for aisle), and 3
possible observable positions for each tree. Hence, there are
12 trees with overall 36 observable positions. The main vertex
(depot) vy ; is depicted in dark gray representing the initial and
final location of the drone. The trees are rooted on the white
(and dark gray) vertices, while the observable positions are
the light blue ones. Graphically, the same orchard O(3,4, 3)
can be seen in Figure 2b. It is worthy to point out that the
drone cannot cross the aisles because of the tree’s foliage and
cannot fly over because of the net.

B. Reward and Cost Functions

In the orchard, a drone is in charge of visiting a subset
of trees for doing specific tasks like videos or pictures. The
drone is an energy-constrained flying vehicle that has a battery
of capacity B > 0 in terms of energy, and when the drone
moves flying along edges, it spends energy from its battery.
Let C : E — Rt be the edge cost function that defines the
energy cost for flying along any edge e € E. For simplicity,
we consider constant the edge cost function, i.e., C(e) = v
for each e € FE, for a given v € N. Moreover, without
loss of generality, we assume unitary costs, i.e., y 1.
This assumption can be considered counter-intuitive because
an edge between two adjacent trees is much longer than
that between two consecutive observable positions on a tree.
Nevertheless, the time required for the drone to completely
move between two adjacent trees, or two adjacent locations
on a tree, can be reasonably considered the same due to
accelerations and decelerations that the drone needs to perform
when moving. Moreover, when the drone takes pictures, it
needs to stay in place for some time to stabilize the camera
and get proper focus. Hence, for ease of simplicity, the energy
required for moving can be assumed to be the same even if
the distances are different.

Let R : V — RT be the reward function that characterizes
the importance of doing a specific task on vertices. The
reward function provides meaningful values only for the set
of observable positions V¥ while giving zero values for the
set of trees, hence R(v) = 0 for any v € VT, The reward
associated with each vertex is assigned to the drone only the
first time the drone performs tasks on that particular vertex.
Further visits at the same vertex do not collect any reward.
However, if the drone repeatedly travels on the same edge
multiple times, the energy cost is considered multiple times.
Given a subset of vertices X C V, there is a unique minimum
cycle trip to/from the depot vertex that visits all the vertices
in X because the structure is loosely connected. The graph
induced by the vertices in X is a tree rooted at vy ;. For a
given X C V, let C(X) be the minimum overall flying cost
for the drone defined as the sum of the costs on edges for the
unique path for connecting all the vertices in X. Similarly, let
R(X) be the overall attainable reward defined as the sum of
the individual rewards of each vertex in X (plus others that
are in the unique cycle induced by the vertices in X).

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. Problem Formulation

In this paper, we consider a drone that has to take photos
or record videos inside an orchard to scout bugs. Specifically,
the drone plans a route inside the orchard to/from the main
depot while considering its available battery capacity. Given an
orchard O(m, n, 1) with m rows, n columns, and ! observable
positions on each tree, and given a battery capacity B > 0,
the aim of the Single-drone Orienteering Aisle-graph Problem
(SOAP) is to find a suitable cycle for the drone that starts
and finishes at the depot vy ; such that the collected reward
is maximized and its energy cost is no larger than B. Indeed,
SOAP is a special case of the OP problem. Given any subset
X of vertices in O, SOAP aims to select a subset S such that
maximizes the reward under the constraint that the traveling
cost to connect all the locations in .S does not overtake a given
budget B. Formally:

S = argmax {R(X) | C(X) < B},
Xcv

(D

where R is the reward function to maximize, C is the cost
function, and B is the budget given in input.

Recalling that the costs are constant and unitary in SOAP,
the minimum budget in input must be at least 2 (B, = 2).
This is due to the fact that the closest vertex with potential re-
ward from the depot is vil, which is adjacent to it. Moreover,
B = 2 guarantees a non-trivial round trip in the orchard O. On
the other hand, the budget B is upper-bounded and cannot be
larger than the budget that ensures a sequential and full visit of
the orchard, i.e., Bmax = m2(n—1)+2(m—1)+mn2l, where
the first term is the cost for traveling (back and forth) all the
rows, the second term is the cost for traveling the backbone,
and the third term is the cost for visiting all the trees in O.
Any budget larger than B,,x would result in a waste of energy.
So, a meaningful value of budget is Buyin < B < Bnax, and
asymptotically it holds that B = O(mnl).

IV. PROPOSED ALGORITHMS FOR SOAP

In this section we propose a polynomial-time optimal al-
gorithm, called OPT, and two time-efficient heuristic greedy
algorithms, called GREEDY BEST TREE (GBT) and GREEDY
BEST AISLE (GBA).

A. The Optimal OPT Solution

We devise a dynamic programming algorithm, called OPT,
that optimally solves SOAP. It makes use of 4 tables.

The first table T stores, for each tree T; ; with 1 < 4 <
m,1 < 7 < n, the cumulative reward that can be attained
given a budget 2k such that 0 < k <[from the initial vertex
v; ;. Clearly, T[¢, j,0] = 0 by convention. Hence, we can fill
the table as follows: T[i, j, k] = T[i,j,k — 1] + R(vfj) The
algorithm makes use of this table because it has to decide how
many consecutive vertices will be part of the solution for each
tree. The size of table T is mn(l + 1).

The second table A stores, for each aisle A; with 1 < i <
m and any budget 1 — 1 < b < LBJ, the best solution so

2
far computed. Indeed, for each aisle A; the algorithm has to

120

decide which trees to include in the solution and how much
budget to dedicate to each tree. Since to take the tree T} ; one
must traverse all the trees from 1 to j — 1 in the aisle A;,
possibly without taking any vertex in some of those trees, we
create a table A of size m x n X (nl 4+ (n — 1)) where:

Ali,j,b) = max {Ali,j = 1,b—k 1]+ Ti,j,kl}.)

Note that A, 7, b] visits the aisle A; up to the tree T; ;, and
when k& = 0 no vertices of that tree are visited.

Then, in the third table A*, for each aisle A; with1 < i < m
and any budget i — 1 < b < L%J, we memorize which is the
maximum reward by varying the last visited tree:

A*[i,0] = max {Al,,b]}.

1<j<n

3)

The size of table A* is n x (nl + (n — 1)).

Finally, OPT has to decide which aisle to select and for
each aisle, up to which tree to visit. Considering that to get to
the aisle A; one must traverse the part of the backbone ¢; in
front of the rows 1,...,7—1 up to row %, the optimal solution
including A; is defined by the optimal solution that includes
up to A;_1, possibly without taking any tree in some of the
aisle Aq,...,A;. For this, we create the fourth table Q. To
find the final solution, first we compute the maximum reward
with a given budget b assuming to traverse up to row g.

. - / * 7/
O, b] = OSb’gmin{gi%i(l,nl-i{S)—[%} Lo=1-0]+A7]} &)
Then, among OJi,b], we compute the absolute maximum
reward with budget bounded by B as:

{0, b]}.

max
1<i<m,0<b< [£
Note that the size of table O is n x | B/2].

The algorithm runs in time O(mnlB) time. Since the max-
imum budget is By, i.€., B is upper bounded by O(mnl),
then algorithm OPT has time complexity O(m?2n21?).

By the above discussion:

Theorem 1. Algorithm OPT optimally solves SOAP.

(&)

Proof. Omitted due to page limit constraints. O

Let us illustrate how to compute O, i.e., the result of OPT,
with the example in Figure 2a considering B 21, and
assuming to have already computed by Eq. (3) the values
A*[i, 0], for 0 < i <2 and 0 < b < 10, reported in Table L

TABLE I
TABLE A* CONSIDERING THE EXAMPLE IN FIGURE 2A WITH B = 21.
\ 0 1 2 3 4 5 6 7 8 9 10
1({0 3 5 10 18 21 26 33 37 40 43
210 7 14 15 22 27 31 32 35 39 40
310 1 8§ 12 17 20 27 29 37 40 46

Let us consider the best solutions when taking into account
only the first aisle A;. O[1,1] = 3 because in the first aisle
and budget 2 (recall that the second index in O is halved,

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

so 1 means budget 2) only the vertex v}’l can be visited,

whose reward is 3. Q[1,2] = 5 because the drone can visit
both v{ ; and o7 ;. It is interesting to see that O[1,3] = 10
has two possible choices, i.e., either completely visiting the
first tree 171 (3 +2 + 5 = 10) or visiting the vertices viQ
and v, from the second tree (2 + 8 = 10). With the same
reasoning, Q[1,4] = 18 up to the last value Q[1,10] = 43,
which is given by vj 5,07 5,0} 5,01 3,07 3,07 4,07 4. That is,
O[1,b] = AL, b], for any b.

Let us consider the best solutions when considering also
the second aisle A,. Starting from this phase, we have to
redistribute the budget to the new current aisle and to the
previous ones. For computing Q[2,1] we have to compare
the best solution when assigning budget 2 for A (and 0 for
A1), and the best solution when giving budget 0 for A5 (and
2 for A;). In this case, O[2,1] = max{0,3} because with
budget 2 we cannot visit any observable position in Ay (this
is the reason why we have 0) while the best solution assigning
budget 2 up to the previous aisle was 3: hence the maximum
is 3. For O[2, 2] we have an additional comparison. In fact, we
can distribute the budget as follows: 4 only for Ay, 2 for Ay,
or 4 for A;. Hence, 0|2, 2] = max{7, 3,5} because in the first
case, we can visit 11571 whose reward is 7, in the second case
we cannot obtain any reward from A, but the best solution so
far calculated up to A; with budget 2 gives 3, and in the third
case 0 reward from A, and the best solution with budget 4 was
with reward 5. So, the maximum value among those is 7. With
the same reasoning, Q[2, 3] = max{14,10,3,5,10} = 14 up
to the last value Q[2, 10] = 47 obtained assigning budget 4 to
Ag and budget 7 to A;.

The same logic is applied when considering As. In fact, for
example in Q[3,2] we compare the best solutions assigning
budget 4 for only As, or budget 2 for A3 and the best solution
with budget 2 up to As, or the best solution with budget 4 up
to Ay. Hence, O[3, 2] = max{0, 3,7} because in the first case
we cannot visit any observable position in Ag, in the second
case, we already know that with a budget of 2 the best solution
gives 3, while in the third case the best solution is 7. Hence, the
maximum value is 7. The last value for A3 is Q[3,10] = 47.

TABLE II
TABLE O CONSIDERING THE EXAMPLE IN FIGURE 2A WITH B = 21.
\ 0 1 2 3 4 5 6 7 8 9 10
110 3 5 10 18 21 26 33 37 40 43
2|10 3 7 14 18 22 27 33 37 40 47
3|10 3 7 14 18 22 27 33 37 40 47

Finally, the total reward is 47 with B = 20 (see Table II):
budget 14 is spent for A;, and budget 4 for A, (see Table I).

B. The GBT Heuristic Algorithm

In this section, we devise a faster algorithm that sub-
optimally solves SOAP in polynomial time, called GREEDY
BEST TREE (GBT).

When a tree is selected in this strategy, all the observable
positions are visited. So, we say that the main idea behind

121

the strategy is to consider only fully visited trees. At each
iteration, the tree reachable with the current budget with the
largest ratio reward/cost is selected. The algorithm finishes
when either B = 0 or the budget is not enough to reach any
unselected tree.

The pseudo-code of GBT is given in Algorithm 1.

Algorithm 1: The GBT Algorithm
1S« o

2 while B > 0 and T} ; # @ do
R(Tig) gy,

C(Ty,5) o
T.; ¢ S and B —C(T.;) >0
S SUTL]‘,B «~— B 7C(T¢7j)

6 return S

3 T;,; + arg max

4
5

Initially the solution S is empty (Algorithm 1, Line 1), and
the main cycle starts (Line 2). The drone will start to consider
only a subset of trees visited as a whole. This means that once
the drone begins to visit the first observable position 01-17 jona
particular tree T; ;, it has necessarily to continue until the last
observable position vi ;- Therefore, for each tree T} ; in the
orchard, the GBT initially sums up all the possible obtainable
rewards and the costs (for visiting the whole tree plus the
traveling cost for reaching that tree given the current solution).
In Line 4 we compute R(7; ;) which is the sum of the rewards
of vertices for the tree 7; ;, and C(7; ;) which is the total
cost for completely visiting the same tree also considering the
(possible additional) traveling cost for reaching that tree given
the current solution. After that, we greedily pick the tree T; ;
that has the largest ratio between the sums of the rewards and
the sums of the costs (Line 4). Then, both the current solution
and budget are updated (Line 5). This selection is repeatedly
performed until the budget is completely used. If there is no
available tree to be picked, the cycle stops.

About the time complexity, since the number of trees 7T; ;
is mn, the main cycle is repeated for O(mn) times. Every
time we evaluate all the ratios among the unpicked trees. So
the time complexity of GBT is O(m?n?).

Let us illustrate the GBT algorithm with the example in
Figure 2a. We consider B = 21. Iteratively, we consider the
rewards and costs of each tree. The first tree T ; has a total
reward 10 and cost 6, and hence ratio 1.67. Analogously, the
second tree 77 o has a total reward of 18 and cost of &, and
hence a ratio of 2.25, and so on. When evaluating all the trees,
the tree with the largest ratio is 71 2, and so it is added to the
solution. After the first selection, we reconsider the remaining
trees. For 77 ; we have again the same ratio 1.67. The tree
T 3 has reward 19 and now cost 8 (ratio of 2.375), because
we already considered the cost for reaching 7 2, and so on.
Now, the tree with the largest ratio is 77 3, and it is selected.

Finally, this algorithm returns 37 as the total reward and
16 as the cost. Notice that it remains a 21 — 16 = 5 residual
budget which is not sufficient for visiting any other tree as a
whole.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. The GBA Heuristic Algorithm

In this section, we devise another heuristic algorithm that
solves SOAP in polynomial time, called GREEDY BEST
AISLE (GBA). This algorithm either visits an entire aisle or
discards it. Therefore, the main idea behind the strategy is
to consider only fully visited aisles in the solution. At each
selection, the aisle with the maximum ratio between reward
and cost is preferred. The pseudo-code of GBA is given in
Algorithm 2.

Algorithm 2: The GBA Algorithm

1 S+
2 while B > 0 and A; # @ do

) R(A;)
3 A; + arg max Za

4 A; ¢S and B—C(A;) >0
s | S« SUA;,B+ B-C(4)

S.t.

6 return S

Initially the solution S is empty (Algorithm 2, Line 1), and
the main cycle starts (Line 2). The drone will start to consider
only a subset of aisles visited as a whole. Basically, it follows
the same reasoning as done for GBT, with the only difference
that instead of selecting full trees T ; here we select full aisles
A;. The most convenient aisle A;, in terms of ratio reward/cost
R(A;)/C(A;), is greedily selected (Line 4). As usual, when
considering the cost, we also consider the possible additional
traveling cost (in the backbone) for reaching the picked aisle
A;. About the time complexity, GBA requires to precompute
the sum of rewards and costs only once, requiring O(mnl) in
time. Then, we pick the best aisles until the budget is finished.

It is worthy to note that GBA can end up with a significant
amount of budget, although not enough to visit an entire aisle.
Thus, the algorithm can extend the solution by exhausting the
budget, e.g., by selecting a portion of the aisle that would be
chosen by the greedy strategy. This last step is not reported
in GBA. The computational cost of the extended solution for
GBA does not exceed the total computational of the original
algorithm, which remains O(mnl).

Let us illustrate the GBA algorithm with the example in
Figure 2a. We consider B = 21. For the whole aisle A;, the
total reward is 58 with cost 30 and ratio 1.93. For A,, the
total reward is 52 with cost 32 and ratio 1.73, and for As,
the total reward is 68 with cost 34 and ratio 2.27. So, the
most convenient aisle is As. However, its cost of 34 is larger
than the available budget of 21. So, GBA will end up with the
entire budget B = 34 unused. To extend the solution, we apply
GBT to the aisle A3 with a budget of 21, left after considering
the backbone cost to reach As. The solution achieves a total
reward of 37 and ends up with 1 unit of budget unused.

V. PERFORMANCE EVALUATION

We implemented our algorithms in Python language version
3.7, and run all the instances on an Intel i7-10genK computer
with 16 GB of RAM. We evaluate the performance, in terms of

total obtained reward, of the presented algorithms for solving
SOAP, i.e,, OPT, GBT, and GBA.
We tested the algorithms on three different workloads W;:

e Wi: randomly generated synthetic data sets;

e Wsy: real data set from an orchard test-bed for insect
scouting; and

o Wj: a large data set from an irrigation application for
smart agriculture.

For Wj, we run different scenarios varying the number
of rows m, the number of columns n and the number
of observable locations [, and the distribution of the re-
wards by changing appropriate parameters. For each scenario,
each algorithm is tested with an increasing budget B =
{5%,10%, 15%, 20%, 40%, 60%, 80%} Bimax (z-axis), and we
plot the average of the results on 33 instances along with
their 95% confidence interval (y-axis). A few words about
the y-axis: here, we plot the ratio among the total reward
collected by the tested algorithm and the one collected by
OPT. Obviously, such a ratio should be less than or equal
to 1. For W5, we implemented our algorithms on a drone
and created a demonstrative test-bed in which we provide
as input rewards set manually from previous knowledge of
the orchard. Finally, for W3, we have 10 instances from an
irrigation application for smart agriculture that is opportunely
adapted for SOAP.

A. With Synthetic Data set

In the workload W7, we randomly generated rewards on
vertices through the ZipF distribution [20] by varying the 6
parameter. By varying the 6 parameter we can study how
much the variability in the orchard can affect our algorithms.
Note that in our evaluation we assume to have the rewards
(integers) in the interval [0, 100). So, when 6 = 0, the rewards
are uniformly distributed in [0, 100), while when 6 increases,
the smallest rewards become more and more frequent than
the largest ones. In particular, in this workload we assume
6 = {0,0.8}. Moreover, we vary the layout of the orchard O
by setting the number of rows n = {50,25}, the number of
columns m = {25, 50}, and fixing the number of observable
locations [= {3,5}. Figure 3 comprehensively illustrates the
evaluation on synthetic data sets.

We first observe the impact of 6. As we can see, the plots
on the left have § = 0 while the others on the right have
6 = 0.8. Although all the greedy algorithms work almost the
same, with § = 0.8 there is a gap of about 10% in favor of
the case with & = 0. This shows that the greedy heuristics,
which are confined to select large portions (full trees or full
rows) waste budget because the reward is very variable and it
does not satisfy any locality rule.

Comparing the two heuristics GBT and GBA, we can see
that when the budget is low, GBT obtains better performance
than GBA, while when the budget in input increases, the
behavior is exactly the opposite, with GBA better than GBT.
This is due to the different granularity of the choice of two
algorithms: when the budget is limited, still GBT can select
the most advantageous tree with respect to the actual budget,

122

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

l_._ OPT —@— GBT —@— GBA ‘

0(25,50,3), 0 =0 0(25,50,3), 6 =0.8
oo | o+
0.9 - Vi—{"{: <409 i
’*fg 0.8 |- -1 0.8 .
0.7 |- -1 0.7 >
o6t 06 e
5 10 15 20 40 60 80 5 10 1520 40 60 80
budget (%) budget (%
0(25,50,5), 06 =0 0(25,50,5), 0 = 0.8
1fF —o—eo—o+—9o—9o—29 | |[o—o—o—o+—o—o—9 |
09 M -1 0.9 .
'450.8 = -1 0.8 >
0.7 - =1 0.7 .
0604 + 1 406 1 | |
5 10 15 20 40 60 80 5 10 15 20 40 60 80
budget (% budget (%
O 50,25,3), 0 =0 0(50,25,3), 0 =0.8
1F 71 1F ¢———e—a—e—9
09+ -1 0.9 a
’*5 0.8 |- -1 0.8 .
0.7 |- -1 0.7 >
o6t 1+ 1 406k e s s s
5 10 15 20 40 60 80 5 10 15 20 40 60 80
budget (%) budget (%)
0(50, 255,9—0 0(50,25,5), 0 = 0.8
1F - 1F —e—e—eo—o—o—9
0.9 |- <109} >
.*50.8 = -1 0.8 | a
0.7 - =1 0.7 .
0.6 — 4 0.6 — =

I I I I I I
51015204((%6080 51

I I I I
01520 40 60 80
budget (% VG

budget (%

Fig. 3. Wi: randomly generated synthetic data sets.

while GBA feels much more the budget constraint and it is
forced to select a closer aisle independently of its reward. Vice
versa, when the budget is large, GBA, which selects full aisles,
is less myopic than GBT. In fact, GBT may end up trapped
in local minima because it prefers sparse trees that, although
have a higher reward, lead to a loss of budget.

By varying the number [of observable positions (respec-
tively, the number n of trees), we see that the performance
of the algorithms slightly differs. In particular, GBT (respec-
tively, GBA) obtains more reward when [(respectively, n)
increases.

Finally, we have compared two different layouts, i.e., more
columns than rows (m < n) and more rows than columns
(m > n). The results highlight that in the previous case (m =
25,n = 50) the performance is in general slightly better than
the latter case (around 5%). This is probably influenced by the
energy required for traveling in the backbone.

123

B. Preliminary Experimental Results

In order to test the effectiveness of our algorithms in a
real-world scenario, we arranged a small real test-bed using a
drone, creating the workload W5. This experiment has been
performed in the context of the HALY-ID research project [21]
that aims to scout the Halyomorpha Halys (HH) bug (shown
in Figure 4b). HH seriously damages fruit production (pears in
particular) not only in northern Italy but also in central Europe,
the United States, and eastern Asia. In our small test-bed, we
aimed at scouting the presence on the trees of HH attracted
by previously placed pheromones (shown in Figure 4b).

The orchard of our test-bed has 12 rows and 15 columns
(180 pear trees), and we set ¢ = 3 observable positions, having
so an 0(12,15, 3). About the drone, we used a powerful DJI
Matrice 300 RTK (see Figure 4a) which is able to fly for up to
55 min having 2 batteries with capacity of ~ 6000 mAh [22].

(@)

Fig. 4. Our developed test-bed. a) the drone used; b) original footage, showing
the Halyomorpha Halys (HH) captured by the drone.

(W)

Since only a small selection of trees had the pheromones,
we modeled this instance by adding more reward to the trees
closer to the pheromones, and less reward otherwise. So, the
objective was to take pictures of the trees in order to collect as
many meaningful pictures with the HH as possible. On each
tree, we set 3 observable positions: bottom, middle, and top.
The redistribution of the reward in each tree ensures that the
observable positions on the top of the trees have more reward,
as per entomological knowledge. Precisely, we redistribute the
reward in each tree v; ; with pheromones assigning 20%, 30%,
and 50% of the reward to v} ,] and v} 7 j» respectively.

Figure 5 (left) depicts the results of the proposed algorithms.
We observe that in this real data set the variability is partic-
ularly high and this is given by how the pheromones were
positioned. Since some of the pheromones have been placed
close to the depot, it can be seen that with a very low budget
(5%) most of the algorithms return solutions very close to the
optimal. As the budget increases, the total reward increases
for each algorithm, but the totalized ratio actually decreases
until budget approximately > 40%. GBT and GBA perform
differently, with GBT more stable, in terms of obtained ratio
than GBA. This depends on the point-wise reward associated
with trees: the reward of an aisle is much less predictable
in presence of pheromones than that of a tree. However, in
general, with this small test-bed, all the algorithms perform
very well, with > 80% of the optimum reward given by OPT.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. With Real Data set

In the workload W3, we use a real data set that comes
from another smart agriculture application [16] in order to
test our algorithms on larger orchards. The field is composed
of 137 x 107 trees. The rewards indicate how important is to
regulate the quantity of water to the trees. However, in that
data set, we only have a single reward for each tree. To adapt
that data set to our application, as before we set 3 observable
positions on each tree: the bottom, the middle, and the top, and
we redistribute the reward as before. Since the corresponding
graph is quite large, i.e., O(137,107,3), we only run the two
heuristics GBT and GBA. Figure 5 (right) shows the results.

‘ —e— OPT —m— GBT —e— GBA ‘

0(12,15,3) 0(137,107,3)

1F m s T T 1 T T 1T T]
50.95 |- 1 =6 .
= g4l N

= 09| 1 &
2 L |

=g |

0.85 ok F 1 B

I I I I I
5 10 15 20 40 60 80
budget (%)

| | | | | |
5 10 15 20 40 60 80
budget (%)

Fig. 5. Wa (left) and W3 (right).

First of all, we cannot report in the y-axis the ratio since
we did not run the OPT. Hence, we only show the retrieved
reward scaled down by a factor of 10%. The peculiarity of W3
is that the need for water (i.e., reward) is split into macro
areas that include multiple trees. Moreover, in each of such
areas, the reward smoothly increases or decreases. Therefore,
as discussed earlier, GBA can be considered the winning
strategy in this context, also given its lower time complexity.

VI. DISCUSSION AND OUTLOOK

Drones are revolutionizing agriculture by offering farmers
efficacy and efficiency, and early pest scouting is a major
application of drones in this area. The impact of drones is
constrained by the energy required for flying and collecting
data. Thus, an important step towards bug detection is to plan
an efficient route for the drone in the orchard by selecting the
areas/trees in which to capture images or videos. In this paper
we studied this scenario by introducing a new problem, called
SOAP, and a graph model to represent real orchards. We
optimally solved SOAP, devising also two heuristic algorithms
with a reduced computational time cost.

In future work, we would like to integrate our algorithm
with a machine learning approach to perform comprehensive
simulations and study its effectiveness and accuracy in real
orchards. Moreover, it would be interesting to investigate a
stochastic reward that can also account for the bug mobility.
Also, a model with different costs for different edges is worthy
to be explored to make our model more realistic. Symbiotic
systems where multiple drones and ground devices collaborate
have to be devised in next future.

124

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]
(22]

REFERENCES

A. Khanda, F. Coro, F. B. Sorbelli, C. M. Pinotti, and S. K. Das,
“Efficient route selection for drone-based delivery under time-varying
dynamics,” in 2021 IEEE 18th International Conference on Mobile Ad
Hoc and Smart Systems (MASS), pp. 437-445, IEEE, 2021.

F. B. Sorbelli, F. Coro, S. K. Das, L. Palazzetti, and C. M. Pinotti,
“Greedy algorithms for scheduling package delivery with multiple
drones,” in 23rd International Conference on Distributed Computing
and Networking (ICDCN), 2022.

T. Calamoneri, F. Coro, and S. Mancini, “A realistic model to support
rescue operations after an earthquake via uavs,” IEEE Access, 2022.
C. Qu, R. Singh, A. E. Morel, F. B. Sorbelli, P. Calyam, and S. K.
Das, “Obstacle-aware and energy-efficient multi-drone coordination and
networking for disaster response,” in 2021 17th International Conference
on Network and Service Management (CNSM), pp. 1-9, IEEE, 2021.
A. Rabello, R. C. Brito, F. Favarim, A. Weitzenfeld, and E. Todt, “Mobile
system for optimized planning to drone flight applied to the precision
agriculture,” in 2020 3rd International Conference on Information and
Computer Technologies (ICICT), pp. 12-16, IEEE, 2020.

F. H. ITost Filho, W. B. Heldens, Z. Kong, and E. S. de Lange, “Drones:
innovative technology for use in precision pest management,” Journal
of economic entomology, vol. 113, no. 1, pp. 1-25, 2020.

S. K. Dara, “The new integrated pest management paradigm for the
modern age,” Journal of Integrated Pest Management, vol. 10, no. 1,
p- 12, 2019.

R. Basri, E. Islam, S. B. Shorif, and M. S. Uddin, “Robots and drones
in agriculture—a survey,” in Computer Vision and Machine Learning in
Agriculture, pp. 9-29, Springer, 2021.

G. Sujayanand, S. Sheelamary, and G. Prabhu, “Recent innovations and
approaches for insect pest management in agriculture,” Biotica Research
Today, vol. 3, no. 2, pp. 100-102, 2021.

S. P. Giuseppino, B. P. Paolo, N. Roberta, M. Leonardo, and R. P. Fed-
erico, “Efficacy of long lasting insecticide nets in killing halyomorpha
halys in pear orchards,” Outlooks on Pest Management, vol. 29, no. 2,
pp. 70-74, 2018.

I. Schlatholter, A. Dalbosco, M. Meissle, A. Knauf, A. Dallemulle,
B. Keller, J. Romeis, G. A. Broggini, and A. Patocchi, “Low outcrossing
from an apple field trial protected with nets,” Agronomy, vol. 11, no. 9,
p- 1754, 2021.

R. Weinzierl and T. Henn, “Botanical insecticides and insecticidal
soaps,” in Handbook of integrated pest management for turf and
ornamentals, pp. 541-555, CRC Press, 2020.

T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Routing
algorithms for robot assisted precision irrigation,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2221-2228,
IEEE, 2018.

T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), pp. 14-21, IEEE, 2018.

F. B. Sorbelli, S. Carpin, F. Coro, A. Navarra, and C. M. Pinotti,
“Optimal routing schedules for robots operating in aisle-structures,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4927-4933, IEEE, 2020.

F. B. Sorbelli, S. Carpin, F. Coro, S. K. Das, A. Navarra, and C. M.
Pinotti, “Speeding up routing schedules on aisle graphs with single
access,” IEEE Transactions on Robotics, 2021.

F. B. Sorbelli, F. Coro, S. K. Das, A. Navarra, and C. M. Pinotti,
“Speeding-up routing schedules on aisle-graphs,” in 2020 16th In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS), pp. 69-76, IEEE, 2020.

T. C. Thayer and S. Carpin, “An adaptive method for the stochastic
orienteering problem,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 4185-4192, 2021.

T. Gao, Y. Tian, and S. Bhattacharya, “Refuel scheduling for multirobot
charging-on-demand,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5825-5830, IEEE, 2021.

C. Tullo and J. Hurford, “Modelling zipfian distributions in language,”
in Proceedings of language evolution and computation workshop/course
at ESSLLI, pp. 62-75, 2003.

HALY.ID, “Project.” https://www.haly-id.eu, 2022.

DJI, “Matrice 300 rtk.” https://www.dji.com/en/matrice-300/specs, 2022.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

