
Drone-based Optimal and Heuristic Orienteering

Algorithms Towards Bug Detection in Orchards

Francesco Betti Sorbelli∗, Federico Corò†, Sajal K. Das†, Lorenzo Palazzetti‡, and Cristina M. Pinotti∗

∗ Department of Computer Science and Mathematics, University of Perugia, Italy
† Department of Computer Science, Missouri Science and Technology University, USA

‡ Department of Computer Science and Mathematics, University of Florence, Italy

Email: ∗{francesco.bettisorbelli, cristina.pinotti}@unipg.it, †{federico.coro, sdas}@mst.edu, ‡lorenzo.palazzetti@unifi.it

Abstract—In this paper, we consider the problem of using a
drone to collect information within orchards in order to detect
bugs. An orchard can be modeled as an aisle-graph, which is a
regular data structure formed by consecutive aisles where trees
are arranged in a straight line. For monitoring the presence of
bugs, a drone flies close to the trees and takes videos and/or
pictures that will be analyzed offline. As the drone’s energy is
limited, only a subset of locations in the orchard can be visited
with a fully charged battery. Those places that are most likely
to be infested should be selected to promptly detect the parasite.
We study the budgeted constrained position selection problem in
the orchard from an algorithmic point of view. We present the
Single-drone Orienteering Aisle-graph Problem (SOAP), a variant
of the well-known orienteering problem where the finite resource
is the drone’s battery. We first show that SOAP can be optimally
solved for aisle-graphs in polynomial time. However, the optimal
solution is not efficient for large orchards. Then, we propose two
efficient heuristics that work even for large (orchard) instances.
After a thorough analysis of the proposed solutions, we evaluate
their performance by simulation experiments on both synthetic
and real data sets.

I. INTRODUCTION

Unmanned aerial vehicles (e.g., drones) are being increas-

ingly used in numerous civilian applications, such as delivery

of goods [1], [2], search and rescue operations [3], [4], and

precision agriculture [5]. Publications on the use of drones

in agriculture started appearing around 1998 and terrifically

increased in the last decade, up to more than 150 reports in

2017 [6]. One of the main drivers for the implementation of

drone-based remote sensing technologies in agriculture is the

potential time saved by automatizing monitoring, making the

technology cost-effective for growers [7], [8]. Compared to

the conventional platforms for remote sensing, such as ground

stations, manned aerial vehicles, or satellites, drones can

potentially cover larger areas than ground-based or handheld

devices in a shorter time too. They can also fly at much lower

altitudes than manned aerial vehicles increasing the spatial

resolution of images, and reducing the number of distorted

soil and tree pixels [6]. Moreover, drones do not have long

revisiting times as satellites. An example of a time-consuming

This work was partially supported by NSF grants CNS-1818942, OAC-
1725755, OAC-2104078, and SCC-1952045; partially supported by the
“GNCS – INdAM”; and also partially supported by “HALY-ID” project
funded by the European Union’s Horizon 2020 under grant agreement ICT-
AGRI-FOOD no. 862665, no. 862671, and from MIPAAF.

procedure is the traditional field scouting for pest infestations.

In such a case, drones can accurately and very frequently

inspect the trees by taking high-resolution images of any part

(bottom, top) of them. So, combined with context information,

drones can discover the pest infection at the initial stage thus

reducing the insecticidal or biopesticide consumption [9].

In this paper, we consider an application that uses a drone

with video capabilities inside an orchard to timely discover

possible pest infections. Orchards and vineyards are formed by

several consecutive and adjacent aisles, which in turn contain

many trees along a straight line. The nets on top of modern

orchards (see Figure 1), originally set to protect the crops from

hail, can make it more difficult for pests to enter and infest

the trees [10], [11]. However, the nets constrict the drone to

fly not over the trees, but only along the aisles.

Fig. 1. Modern orchards use nets on top (left) and on the sides of the trees
(right) to protect crops from pests and bad weather.

For detecting bugs in modern orchards, a drone, moving

along aisles, is more effective than a ground or handheld

device because it can cover the whole area in a shorter

time. Moreover, just by changing its height, a drone can

take video/photos at the bottom or the top of each tree with

the same focal distance, thus preserving the same spatial

resolution. However, due to battery limitations, drones may

not be able to cover the entire orchard. The drone’s energy

consumption does not depend only on the orchard size, but also

on the payload (e.g., an RGB sensor is lighter than multi- or

hyper-spectral sensors, but with limited spectral information)

and on the speed. When recording video or taking photos, the

drone must fly slowly (or even stop, i.e., hovering) to preserve

adequate camera stabilization. Limited speeds mean longer

coverage times and also, depending on the characteristics of

the drone, higher energy consumption.

1117

2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)

2325-2944/22/$31.00 ©2022 IEEE
DOI 10.1109/DCOSS54816.2022.00032

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

Given that the drone has limited energy for flying and

image/video recording, in this paper we assume that the ob-

servable positions on the trees can be prioritized. Specifically,

we associate a priority, called reward, to each observable

position. The reward can be decided by analyzing the historical

time series of bug numbers, along with weather conditions that

have been recorded in past years, and also by considering

entomological knowledge. So, our objective is to plan a

drone’s route in the orchard for taking pictures or videos

(to scout bugs) in the most profitable locations (with larger

reward) under a given limited drone’s battery. This problem

can be modeled as an instance of the well-known Orienteering

Problem (OP).

The contributions of this paper are summarized as follows.

• We define a novel optimization problem, called Single-

drone Orienteering Aisle-graph Problem (SOAP1).

• We design three algorithms for solving SOAP, i.e., an op-

timal algorithm (OPT), and two fast heuristic algorithms

(GBT and GBA).

• We evaluate the performance of our algorithms on ran-

domly generated synthetic data and real data adapted

to our problem. We also propose a real test-bed on an

orchard for detecting bugs.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III formally defines the prob-

lem SOAP. Section IV presents algorithms for solving SOAP.

Section V evaluates the effectiveness of our algorithms, and

Section VI offers conclusions and future research directions.

II. RELATED WORK

The OP is a particular variant of the classical Traveling

Salesman Problem (TSP) problem where, in addition to the

cost paid to move from one city to another, profits/rewards

are added to the cities. Precisely, the goal of TSP is to find

the minimum cost cycle in the area such that all cities are

visited exactly once, while OP has to find a cycle among a

subset of the cities that maximizes the sum of the profits of

the visited cities without exceeding a given cost budget.

The OP in aisle-graphs was first studied in [13]. The

authors studied the case of aisle-graphs with two accesses (two

junction lines, one on each endpoint of the aisles) in which a

robot has to plan a route inside the orchard for regulating the

quantity of water to give to the trees in order to guarantee the

proper moisture level. For solving this problem, the authors

proposed two greedy heuristics, GFR, and GPR, which select

a subset of full or partial aisles to traverse, respectively. The

robot calculates the budget needed to collect the rewards from

its current position and prefers full (respectively, partial) aisles

with maximum reward per budget unit in GFR (respectively,

GPR). The time complexities of GFR and GPR are O(m2) and

O(m2n), respectively, where m is the number of aisles and

n is the number of vertices (i.e., trees) composing each aisle.

In [14], the authors studied the problem of routing multiple

1Insecticidal soap is used to control many plant insect pests [12].

robots, proposing three algorithms combining GFR and GPR

both in series or in parallel.

The authors in [15] developed polynomial-time algorithms

to improve some of the problems faced in [13] along with

a rich set of experimental results on synthetic and real data

set [16]. In particular, they designed an optimal algorithm,

called OFR-I, that improves on GFR by determining the opti-

mal solution for the full-row policy, whose time complexity is

O(m ·max{n, logm}). Moreover, they proposed HGC, which

slightly improves on GPR at a higher time complexity. The

work in [17] presents approximation and greedy algorithms for

solving the OP problem in aisle-graphs with a single access.

In [18] the authors consider the NP-hard stochastic OP, where

the goal is to navigate between start and end vertices in a

graph, maximizing the sum of rewards for visited vertices

(i.e., trees) while obeying a travel budget over edges with a

stochastic cost within a given probability of failure.

A further line of research is proposed in [19] where a sym-

biotic cooperation between ground robots and flying drones in

aisle-graphs is investigated. The team of robots has to perform

regular tasks like monitoring or collecting data in a preci-

sion agriculture scenario. Since robots are battery-powered

vehicles, their autonomy in terms of life-time is limited, so

mobile charging stations (drones and other kinds of robots) are

employed for refueling the ground robots by swapping their

batteries with new fresh ones. The authors, therefore, present

the Refuel Scheduling Problem (RSP), whose objective is to

plan a suitable scheduling for the team of mobile charging

stations dispatched to replace the batteries on-board the ground

robots, in order to guarantee a minimum service rate for the

ground robots avoiding interruptions.

III. PROBLEM DEFINITION

In this section we formally present the orchard graph model,

the reward and cost functions, and the problem to solve.

A. Orchard Graph Model

Let O(m,n, l) = (V,E) be the 3-D single-access aisle-

graph (briefly, orchard) that represents the constrained struc-

ture formed by a set of vertices V and a set of edges E.

Specifically, given the orchard O(m,n, l), m denotes the

number of rows (aisles), n denotes the number of columns, and

l is the number of possible observable positions on each tree.

However, rows are all connected only via the first column (also

called backbone) (see Figure 2a). Since on each row there are

n trees, therefore the orchard has exactly mn trees and mnl
different positions to be observed by the drone.

Formally, the set of vertices is defined as V = V T ∪ V P

where V T denotes the actual set of tree roots of the orchard

and V P denotes the set of observable positions by the drone.

In particular, V T = {vi,j |1 f i f m, 1 f j f n} while

V P = {vki,j |1 f i f m, 1 f j f n, 1 f k f l}. Analogously,

the set of edges is defined as E = ET ∪ EP where ET

denotes the inter-tree connections, while EP denotes the intra-

tree connections. In particular, ET is defined as follows: each

vertex vi,j with 1 f i f m and 1 < j < n has two edges,

2118

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

v3,1

v3,2 v3,3 v3,4

v2,1

v2,2 v2,3 v2,4

v1,1

v1,2 v1,3 v1,4

A1

T3,1

v1
1,1

v2
1,1

v3
1,1

v1
1,2

v2
1,2

v3
1,2

v1
1,3

v2
1,3

v3
1,3

v1
1,4

v2
1,4

v3
1,4

v1
2,1

v2
2,1

v3
2,1

v1
2,2

v2
2,2

v3
2,2

v1
2,3

v2
2,3

v3
2,3

v1
2,4

v2
2,4

v3
2,4

v1
3,1

v2
3,1

v3
3,1

v1
3,2

v2
3,2

v3
3,2

v1
3,3

v2
3,3

v3
3,3

v1
3,4

v2
3,4

v3
3,4

3

2

5

2

8

8

8

7

4

2

8

1

7

7

1

8

5

4

2

6

1

1

1

9

1

7

4

7

1

9

4

8

8

9

4

6

(a) Orchard model. In particular, the aisle A1 and the tree T1,3 are
highlighted. The rewards are inside the light-blue vertices, while the costs
are omitted because they are assumed to be unitary.

(b) Sketched representation.

Fig. 2. An orchard O(3, 4, 3) shown in two different representations.

one toward vi,j−1 and the other toward vi,j+1; each vertex

vi,1 with 1 < i < m has three edges: one toward vi−1,1,

one toward vi+1,1, and one toward vi,2. Accordingly, edges

connected to the corner vertices v1,1 are vm,1 are well defined.

Concerning EP , each vertex vki,j for any i, j with 1 f k < l

has two edges, one toward vk−1

i,j and the other toward vk+1

i,j

forming a connected list. By convention, let v0i,j = vi,j .

Accordingly, each tree located in vi,j has an edge to its

associated list. Let ri = {vi,1, . . . , vi,n} be the ith row in

the orchard with i f 1 f m, and let c1 = {v1,1, . . . , vm,1}
be the backbone, i.e., the only column in the orchard which

connects all the rows together. Let Ai be the ith 2-D single-

access aisle-graph (briefly, aisle) of O(m,n, l) with n rows

and l columns (here, the vertices on columns actually represent

the observable positions), with 1 f i f m (see A1 in

Figure 2a). In other words, O(m,n, l) consists of m 2-D

single-access aisle-graphs, one for each aisle. Let Ti,j be the

tree in the orchard rooted at vi,j and vertices v1i,j , . . . , v
l
i,j ,

with 1 f i f m, 1 f j f n (see T3,1 in Figure 2a). Finally,

the main vertex is the depot located at v1,1.

Figure 2a depicts an example of an orchard O(3, 4, 3) with

3 rows (aisles), 4 columns (number of trees for aisle), and 3
possible observable positions for each tree. Hence, there are

12 trees with overall 36 observable positions. The main vertex

(depot) v1,1 is depicted in dark gray representing the initial and

final location of the drone. The trees are rooted on the white

(and dark gray) vertices, while the observable positions are

the light blue ones. Graphically, the same orchard O(3, 4, 3)
can be seen in Figure 2b. It is worthy to point out that the

drone cannot cross the aisles because of the tree’s foliage and

cannot fly over because of the net.

B. Reward and Cost Functions

In the orchard, a drone is in charge of visiting a subset

of trees for doing specific tasks like videos or pictures. The

drone is an energy-constrained flying vehicle that has a battery

of capacity B g 0 in terms of energy, and when the drone

moves flying along edges, it spends energy from its battery.

Let C : E → R
+ be the edge cost function that defines the

energy cost for flying along any edge e ∈ E. For simplicity,

we consider constant the edge cost function, i.e., C(e) = γ
for each e ∈ E, for a given γ ∈ N. Moreover, without

loss of generality, we assume unitary costs, i.e., γ = 1.

This assumption can be considered counter-intuitive because

an edge between two adjacent trees is much longer than

that between two consecutive observable positions on a tree.

Nevertheless, the time required for the drone to completely

move between two adjacent trees, or two adjacent locations

on a tree, can be reasonably considered the same due to

accelerations and decelerations that the drone needs to perform

when moving. Moreover, when the drone takes pictures, it

needs to stay in place for some time to stabilize the camera

and get proper focus. Hence, for ease of simplicity, the energy

required for moving can be assumed to be the same even if

the distances are different.

Let R : V → R
+ be the reward function that characterizes

the importance of doing a specific task on vertices. The

reward function provides meaningful values only for the set

of observable positions V P while giving zero values for the

set of trees, hence R(v) = 0 for any v ∈ V T . The reward

associated with each vertex is assigned to the drone only the

first time the drone performs tasks on that particular vertex.

Further visits at the same vertex do not collect any reward.

However, if the drone repeatedly travels on the same edge

multiple times, the energy cost is considered multiple times.

Given a subset of vertices X ¦ V , there is a unique minimum

cycle trip to/from the depot vertex that visits all the vertices

in X because the structure is loosely connected. The graph

induced by the vertices in X is a tree rooted at v1,1. For a

given X ¦ V , let C(X) be the minimum overall flying cost

for the drone defined as the sum of the costs on edges for the

unique path for connecting all the vertices in X . Similarly, let

R(X) be the overall attainable reward defined as the sum of

the individual rewards of each vertex in X (plus others that

are in the unique cycle induced by the vertices in X).

3119

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. Problem Formulation

In this paper, we consider a drone that has to take photos

or record videos inside an orchard to scout bugs. Specifically,

the drone plans a route inside the orchard to/from the main

depot while considering its available battery capacity. Given an

orchard O(m,n, l) with m rows, n columns, and l observable

positions on each tree, and given a battery capacity B g 0,

the aim of the Single-drone Orienteering Aisle-graph Problem

(SOAP) is to find a suitable cycle for the drone that starts

and finishes at the depot v1,1 such that the collected reward

is maximized and its energy cost is no larger than B. Indeed,

SOAP is a special case of the OP problem. Given any subset

X of vertices in O, SOAP aims to select a subset S such that

maximizes the reward under the constraint that the traveling

cost to connect all the locations in S does not overtake a given

budget B. Formally:

S = argmax
X¦V

{R(X) | C(X) f B}, (1)

where R is the reward function to maximize, C is the cost

function, and B is the budget given in input.

Recalling that the costs are constant and unitary in SOAP,

the minimum budget in input must be at least 2 (Bmin = 2).

This is due to the fact that the closest vertex with potential re-

ward from the depot is v11,1, which is adjacent to it. Moreover,

B = 2 guarantees a non-trivial round trip in the orchard O. On

the other hand, the budget B is upper-bounded and cannot be

larger than the budget that ensures a sequential and full visit of

the orchard, i.e., Bmax = m2(n−1)+2(m−1)+mn2l, where

the first term is the cost for traveling (back and forth) all the

rows, the second term is the cost for traveling the backbone,

and the third term is the cost for visiting all the trees in O.

Any budget larger than Bmax would result in a waste of energy.

So, a meaningful value of budget is Bmin f B f Bmax, and

asymptotically it holds that B = O(mnl).

IV. PROPOSED ALGORITHMS FOR SOAP

In this section we propose a polynomial-time optimal al-

gorithm, called OPT, and two time-efficient heuristic greedy

algorithms, called GREEDY BEST TREE (GBT) and GREEDY

BEST AISLE (GBA).

A. The Optimal OPT Solution

We devise a dynamic programming algorithm, called OPT,

that optimally solves SOAP. It makes use of 4 tables.

The first table T stores, for each tree Ti,j with 1 f i f
m, 1 f j f n, the cumulative reward that can be attained

given a budget 2k such that 0 f k f l from the initial vertex

vi,j . Clearly, T[i, j, 0] = 0 by convention. Hence, we can fill

the table as follows: T[i, j, k] = T[i, j, k − 1] +R(vki,j). The

algorithm makes use of this table because it has to decide how

many consecutive vertices will be part of the solution for each

tree. The size of table T is mn(l + 1).
The second table A stores, for each aisle Ai with 1 f i f

m and any budget i − 1 f b f +B
2
,, the best solution so

far computed. Indeed, for each aisle Ai the algorithm has to

decide which trees to include in the solution and how much

budget to dedicate to each tree. Since to take the tree Ti,j one

must traverse all the trees from 1 to j − 1 in the aisle Ai,

possibly without taking any vertex in some of those trees, we

create a table A of size m× n× (nl + (n− 1)) where:

A[i, j, b] = max
0fkfl

{A[i, j − 1, b− k − 1] + T[i, j, k]}. (2)

Note that A[i, j, b] visits the aisle Ai up to the tree Ti,j , and

when k = 0 no vertices of that tree are visited.

Then, in the third table A∗, for each aisle Ai with 1 f i f m
and any budget i− 1 f b f +B

2
,, we memorize which is the

maximum reward by varying the last visited tree:

A
∗[i, b] = max

1fjfn
{A[i, j, b]}. (3)

The size of table A
∗ is n× (nl + (n− 1)).

Finally, OPT has to decide which aisle to select and for

each aisle, up to which tree to visit. Considering that to get to

the aisle Ai one must traverse the part of the backbone c1 in

front of the rows 1, . . . , i−1 up to row i, the optimal solution

including Ai is defined by the optimal solution that includes

up to Ai−1, possibly without taking any tree in some of the

aisle A1, . . . , Ai. For this, we create the fourth table O. To

find the final solution, first we compute the maximum reward

with a given budget b assuming to traverse up to row i.

O[i, b] = max
0fb′fmin{b−i−1,nl+n−1}

{O[i−1, b−1−b′]+A
∗
i [b

′]}. (4)

Then, among O[i, b], we compute the absolute maximum

reward with budget bounded by B as:

max
1fifm,0fbf+B

2
,
{O[i, b]}. (5)

Note that the size of table O is n× +B/2,.

The algorithm runs in time O(mnlB) time. Since the max-

imum budget is Bmax, i.e., B is upper bounded by O(mnl),
then algorithm OPT has time complexity O(m2n2l2).

By the above discussion:

Theorem 1. Algorithm OPT optimally solves SOAP.

Proof. Omitted due to page limit constraints.

Let us illustrate how to compute O, i.e., the result of OPT,

with the example in Figure 2a considering B = 21, and

assuming to have already computed by Eq. (3) the values

A
∗[i, b], for 0 f i f 2 and 0 f b f 10, reported in Table I.

TABLE I
TABLE A∗ CONSIDERING THE EXAMPLE IN FIGURE 2A WITH B = 21.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 5 10 18 21 26 33 37 40 43
2 0 7 14 15 22 27 31 32 35 39 40
3 0 1 8 12 17 20 27 29 37 40 46

Let us consider the best solutions when taking into account

only the first aisle A1. O[1, 1] = 3 because in the first aisle

and budget 2 (recall that the second index in O is halved,

4120

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

so 1 means budget 2) only the vertex v11,1 can be visited,

whose reward is 3. O[1, 2] = 5 because the drone can visit

both v11,1 and v21,1. It is interesting to see that O[1, 3] = 10
has two possible choices, i.e., either completely visiting the

first tree T1,1 (3 + 2 + 5 = 10) or visiting the vertices v11,2
and v21,2 from the second tree (2 + 8 = 10). With the same

reasoning, O[1, 4] = 18 up to the last value O[1, 10] = 43,

which is given by v11,2, v
2
1,2, v

3
1,2, v

1
1,3, v

2
1,3, v

2
1,4, v

3
1,4. That is,

O[1, b] = A[1, b], for any b.
Let us consider the best solutions when considering also

the second aisle A2. Starting from this phase, we have to

redistribute the budget to the new current aisle and to the

previous ones. For computing O[2, 1] we have to compare

the best solution when assigning budget 2 for A2 (and 0 for

A1), and the best solution when giving budget 0 for A2 (and

2 for A1). In this case, O[2, 1] = max{0, 3} because with

budget 2 we cannot visit any observable position in A2 (this

is the reason why we have 0) while the best solution assigning

budget 2 up to the previous aisle was 3: hence the maximum

is 3. For O[2, 2] we have an additional comparison. In fact, we

can distribute the budget as follows: 4 only for A2, 2 for A1,

or 4 for A1. Hence, O[2, 2] = max{7, 3, 5} because in the first

case, we can visit v12,1 whose reward is 7, in the second case

we cannot obtain any reward from A2 but the best solution so

far calculated up to A1 with budget 2 gives 3, and in the third

case 0 reward from A2 and the best solution with budget 4 was

with reward 5. So, the maximum value among those is 7. With

the same reasoning, O[2, 3] = max{14, 10, 3, 5, 10} = 14 up

to the last value O[2, 10] = 47 obtained assigning budget 4 to

A2 and budget 7 to A1.

The same logic is applied when considering A3. In fact, for

example in O[3, 2] we compare the best solutions assigning

budget 4 for only A3, or budget 2 for A3 and the best solution

with budget 2 up to A2, or the best solution with budget 4 up

to A2. Hence, O[3, 2] = max{0, 3, 7} because in the first case

we cannot visit any observable position in A3, in the second

case, we already know that with a budget of 2 the best solution

gives 3, while in the third case the best solution is 7. Hence, the

maximum value is 7. The last value for A3 is O[3, 10] = 47.

TABLE II
TABLE O CONSIDERING THE EXAMPLE IN FIGURE 2A WITH B = 21.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 5 10 18 21 26 33 37 40 43
2 0 3 7 14 18 22 27 33 37 40 47
3 0 3 7 14 18 22 27 33 37 40 47

Finally, the total reward is 47 with B = 20 (see Table II):

budget 14 is spent for A1, and budget 4 for A2 (see Table I).

B. The GBT Heuristic Algorithm

In this section, we devise a faster algorithm that sub-

optimally solves SOAP in polynomial time, called GREEDY

BEST TREE (GBT).

When a tree is selected in this strategy, all the observable

positions are visited. So, we say that the main idea behind

the strategy is to consider only fully visited trees. At each

iteration, the tree reachable with the current budget with the

largest ratio reward/cost is selected. The algorithm finishes

when either B = 0 or the budget is not enough to reach any

unselected tree.

The pseudo-code of GBT is given in Algorithm 1.

Algorithm 1: The GBT Algorithm

1 Ŝ ← ∅

2 while B > 0 and Ti,j ̸= ∅ do

3 Ti,j ← argmax
R(Ti,j)

C(Ti,j)
s.t.

4 Ti,j ̸∈ Ŝ and B − C(Ti,j) g 0

5 Ŝ ← Ŝ ∪ Ti,j , B ← B − C(Ti,j)

6 return Ŝ

Initially the solution Ŝ is empty (Algorithm 1, Line 1), and

the main cycle starts (Line 2). The drone will start to consider

only a subset of trees visited as a whole. This means that once

the drone begins to visit the first observable position v1i,j on a

particular tree Ti,j , it has necessarily to continue until the last

observable position vli,j . Therefore, for each tree Ti,j in the

orchard, the GBT initially sums up all the possible obtainable

rewards and the costs (for visiting the whole tree plus the

traveling cost for reaching that tree given the current solution).

In Line 4 we compute R(Ti,j) which is the sum of the rewards

of vertices for the tree Ti,j , and C(Ti,j) which is the total

cost for completely visiting the same tree also considering the

(possible additional) traveling cost for reaching that tree given

the current solution. After that, we greedily pick the tree Ti,j

that has the largest ratio between the sums of the rewards and

the sums of the costs (Line 4). Then, both the current solution

and budget are updated (Line 5). This selection is repeatedly

performed until the budget is completely used. If there is no

available tree to be picked, the cycle stops.

About the time complexity, since the number of trees Ti,j

is mn, the main cycle is repeated for O(mn) times. Every

time we evaluate all the ratios among the unpicked trees. So

the time complexity of GBT is O(m2n2).

Let us illustrate the GBT algorithm with the example in

Figure 2a. We consider B = 21. Iteratively, we consider the

rewards and costs of each tree. The first tree T1,1 has a total

reward 10 and cost 6, and hence ratio 1.67. Analogously, the

second tree T1,2 has a total reward of 18 and cost of 8, and

hence a ratio of 2.25, and so on. When evaluating all the trees,

the tree with the largest ratio is T1,2, and so it is added to the

solution. After the first selection, we reconsider the remaining

trees. For T1,1 we have again the same ratio 1.67. The tree

T1,3 has reward 19 and now cost 8 (ratio of 2.375), because

we already considered the cost for reaching T1,2, and so on.

Now, the tree with the largest ratio is T1,3, and it is selected.

Finally, this algorithm returns 37 as the total reward and

16 as the cost. Notice that it remains a 21 − 16 = 5 residual

budget which is not sufficient for visiting any other tree as a

whole.

5121

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. The GBA Heuristic Algorithm

In this section, we devise another heuristic algorithm that

solves SOAP in polynomial time, called GREEDY BEST

AISLE (GBA). This algorithm either visits an entire aisle or

discards it. Therefore, the main idea behind the strategy is

to consider only fully visited aisles in the solution. At each

selection, the aisle with the maximum ratio between reward

and cost is preferred. The pseudo-code of GBA is given in

Algorithm 2.

Algorithm 2: The GBA Algorithm

1 Ŝ ← ∅

2 while B > 0 and Ai ̸= ∅ do

3 Ai ← argmax R(Ai)

C(Ai)
s.t.

4 Ai ̸∈ Ŝ and B − C(Ai) g 0

5 Ŝ ← Ŝ ∪Ai, B ← B − C(Ai)

6 return Ŝ

Initially the solution Ŝ is empty (Algorithm 2, Line 1), and

the main cycle starts (Line 2). The drone will start to consider

only a subset of aisles visited as a whole. Basically, it follows

the same reasoning as done for GBT, with the only difference

that instead of selecting full trees Ti,j here we select full aisles

Ai. The most convenient aisle Ai, in terms of ratio reward/cost

R(Ai)/C(Ai), is greedily selected (Line 4). As usual, when

considering the cost, we also consider the possible additional

traveling cost (in the backbone) for reaching the picked aisle

Ai. About the time complexity, GBA requires to precompute

the sum of rewards and costs only once, requiring O(mnl) in

time. Then, we pick the best aisles until the budget is finished.

It is worthy to note that GBA can end up with a significant

amount of budget, although not enough to visit an entire aisle.

Thus, the algorithm can extend the solution by exhausting the

budget, e.g., by selecting a portion of the aisle that would be

chosen by the greedy strategy. This last step is not reported

in GBA. The computational cost of the extended solution for

GBA does not exceed the total computational of the original

algorithm, which remains O(mnl).

Let us illustrate the GBA algorithm with the example in

Figure 2a. We consider B = 21. For the whole aisle A1, the

total reward is 58 with cost 30 and ratio 1.93. For A2, the

total reward is 52 with cost 32 and ratio 1.73, and for A3,

the total reward is 68 with cost 34 and ratio 2.27. So, the

most convenient aisle is A3. However, its cost of 34 is larger

than the available budget of 21. So, GBA will end up with the

entire budget B = 34 unused. To extend the solution, we apply

GBT to the aisle A3 with a budget of 21, left after considering

the backbone cost to reach A3. The solution achieves a total

reward of 37 and ends up with 1 unit of budget unused.

V. PERFORMANCE EVALUATION

We implemented our algorithms in Python language version

3.7, and run all the instances on an Intel i7-10genK computer

with 16GB of RAM. We evaluate the performance, in terms of

total obtained reward, of the presented algorithms for solving

SOAP, i.e., OPT, GBT, and GBA.

We tested the algorithms on three different workloads Wi:

• W1: randomly generated synthetic data sets;

• W2: real data set from an orchard test-bed for insect

scouting; and

• W3: a large data set from an irrigation application for

smart agriculture.

For W1, we run different scenarios varying the number

of rows m, the number of columns n and the number

of observable locations l, and the distribution of the re-

wards by changing appropriate parameters. For each scenario,

each algorithm is tested with an increasing budget B =
{5%, 10%, 15%, 20%, 40%, 60%, 80%}Bmax (x-axis), and we

plot the average of the results on 33 instances along with

their 95% confidence interval (y-axis). A few words about

the y-axis: here, we plot the ratio among the total reward

collected by the tested algorithm and the one collected by

OPT. Obviously, such a ratio should be less than or equal

to 1. For W2, we implemented our algorithms on a drone

and created a demonstrative test-bed in which we provide

as input rewards set manually from previous knowledge of

the orchard. Finally, for W3, we have 10 instances from an

irrigation application for smart agriculture that is opportunely

adapted for SOAP.

A. With Synthetic Data set

In the workload W1, we randomly generated rewards on

vertices through the ZipF distribution [20] by varying the θ
parameter. By varying the θ parameter we can study how

much the variability in the orchard can affect our algorithms.

Note that in our evaluation we assume to have the rewards

(integers) in the interval [0, 100). So, when θ = 0, the rewards

are uniformly distributed in [0, 100), while when θ increases,

the smallest rewards become more and more frequent than

the largest ones. In particular, in this workload we assume

θ = {0, 0.8}. Moreover, we vary the layout of the orchard O
by setting the number of rows n = {50, 25}, the number of

columns m = {25, 50}, and fixing the number of observable

locations l = {3, 5}. Figure 3 comprehensively illustrates the

evaluation on synthetic data sets.

We first observe the impact of θ. As we can see, the plots

on the left have θ = 0 while the others on the right have

θ = 0.8. Although all the greedy algorithms work almost the

same, with θ = 0.8 there is a gap of about 10% in favor of

the case with θ = 0. This shows that the greedy heuristics,

which are confined to select large portions (full trees or full

rows) waste budget because the reward is very variable and it

does not satisfy any locality rule.

Comparing the two heuristics GBT and GBA, we can see

that when the budget is low, GBT obtains better performance

than GBA, while when the budget in input increases, the

behavior is exactly the opposite, with GBA better than GBT.

This is due to the different granularity of the choice of two

algorithms: when the budget is limited, still GBT can select

the most advantageous tree with respect to the actual budget,

6122

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

ra
ti
o

O(25, 50, 3), θ = 0

OPT GBT GBA

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

O(25, 50, 3), θ = 0.8

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

ra
ti
o

O(25, 50, 5), θ = 0

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

O(25, 50, 5), θ = 0.8

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

ra
ti
o

O(50, 25, 3), θ = 0

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

O(50, 25, 3), θ = 0.8

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

ra
ti
o

O(50, 25, 5), θ = 0

5 10 15 20 40 60 80
0.6

0.7

0.8

0.9

1

budget (%)

O(50, 25, 5), θ = 0.8

Fig. 3. W1: randomly generated synthetic data sets.

while GBA feels much more the budget constraint and it is

forced to select a closer aisle independently of its reward. Vice

versa, when the budget is large, GBA, which selects full aisles,

is less myopic than GBT. In fact, GBT may end up trapped

in local minima because it prefers sparse trees that, although

have a higher reward, lead to a loss of budget.

By varying the number l of observable positions (respec-

tively, the number n of trees), we see that the performance

of the algorithms slightly differs. In particular, GBT (respec-

tively, GBA) obtains more reward when l (respectively, n)

increases.

Finally, we have compared two different layouts, i.e., more

columns than rows (m < n) and more rows than columns

(m > n). The results highlight that in the previous case (m =
25, n = 50) the performance is in general slightly better than

the latter case (around 5%). This is probably influenced by the

energy required for traveling in the backbone.

B. Preliminary Experimental Results

In order to test the effectiveness of our algorithms in a

real-world scenario, we arranged a small real test-bed using a

drone, creating the workload W2. This experiment has been

performed in the context of the HALY-ID research project [21]

that aims to scout the Halyomorpha Halys (HH) bug (shown

in Figure 4b). HH seriously damages fruit production (pears in

particular) not only in northern Italy but also in central Europe,

the United States, and eastern Asia. In our small test-bed, we

aimed at scouting the presence on the trees of HH attracted

by previously placed pheromones (shown in Figure 4b).

The orchard of our test-bed has 12 rows and 15 columns

(180 pear trees), and we set t = 3 observable positions, having

so an O(12, 15, 3). About the drone, we used a powerful DJI

Matrice 300 RTK (see Figure 4a) which is able to fly for up to

55min having 2 batteries with capacity of ≈ 6000mAh [22].

(a) (b)

Fig. 4. Our developed test-bed. a) the drone used; b) original footage, showing
the Halyomorpha Halys (HH) captured by the drone.

Since only a small selection of trees had the pheromones,

we modeled this instance by adding more reward to the trees

closer to the pheromones, and less reward otherwise. So, the

objective was to take pictures of the trees in order to collect as

many meaningful pictures with the HH as possible. On each

tree, we set 3 observable positions: bottom, middle, and top.

The redistribution of the reward in each tree ensures that the

observable positions on the top of the trees have more reward,

as per entomological knowledge. Precisely, we redistribute the

reward in each tree vi,j with pheromones assigning 20%, 30%,

and 50% of the reward to v1i,j , v2i,j , and v3i,j , respectively.

Figure 5 (left) depicts the results of the proposed algorithms.

We observe that in this real data set the variability is partic-

ularly high and this is given by how the pheromones were

positioned. Since some of the pheromones have been placed

close to the depot, it can be seen that with a very low budget

(5%) most of the algorithms return solutions very close to the

optimal. As the budget increases, the total reward increases

for each algorithm, but the totalized ratio actually decreases

until budget approximately g 40%. GBT and GBA perform

differently, with GBT more stable, in terms of obtained ratio

than GBA. This depends on the point-wise reward associated

with trees: the reward of an aisle is much less predictable

in presence of pheromones than that of a tree. However, in

general, with this small test-bed, all the algorithms perform

very well, with g 80% of the optimum reward given by OPT.

7123

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

C. With Real Data set

In the workload W3, we use a real data set that comes

from another smart agriculture application [16] in order to

test our algorithms on larger orchards. The field is composed

of 137× 107 trees. The rewards indicate how important is to

regulate the quantity of water to the trees. However, in that

data set, we only have a single reward for each tree. To adapt

that data set to our application, as before we set 3 observable

positions on each tree: the bottom, the middle, and the top, and

we redistribute the reward as before. Since the corresponding

graph is quite large, i.e., O(137, 107, 3), we only run the two

heuristics GBT and GBA. Figure 5 (right) shows the results.

5 10 15 20 40 60 80

0.85

0.9

0.95

1

budget (%)

ra
ti
o

O(12, 15, 3)

OPT GBT GBA

5 10 15 20 40 60 80
0

2

4

6

8

budget (%)

re
w
ar
d

O(137, 107, 3)

Fig. 5. W2 (left) and W3 (right).

First of all, we cannot report in the y-axis the ratio since

we did not run the OPT. Hence, we only show the retrieved

reward scaled down by a factor of 104. The peculiarity of W3

is that the need for water (i.e., reward) is split into macro

areas that include multiple trees. Moreover, in each of such

areas, the reward smoothly increases or decreases. Therefore,

as discussed earlier, GBA can be considered the winning

strategy in this context, also given its lower time complexity.

VI. DISCUSSION AND OUTLOOK

Drones are revolutionizing agriculture by offering farmers

efficacy and efficiency, and early pest scouting is a major

application of drones in this area. The impact of drones is

constrained by the energy required for flying and collecting

data. Thus, an important step towards bug detection is to plan

an efficient route for the drone in the orchard by selecting the

areas/trees in which to capture images or videos. In this paper

we studied this scenario by introducing a new problem, called

SOAP, and a graph model to represent real orchards. We

optimally solved SOAP, devising also two heuristic algorithms

with a reduced computational time cost.

In future work, we would like to integrate our algorithm

with a machine learning approach to perform comprehensive

simulations and study its effectiveness and accuracy in real

orchards. Moreover, it would be interesting to investigate a

stochastic reward that can also account for the bug mobility.

Also, a model with different costs for different edges is worthy

to be explored to make our model more realistic. Symbiotic

systems where multiple drones and ground devices collaborate

have to be devised in next future.

REFERENCES

[1] A. Khanda, F. Corò, F. B. Sorbelli, C. M. Pinotti, and S. K. Das,
“Efficient route selection for drone-based delivery under time-varying
dynamics,” in 2021 IEEE 18th International Conference on Mobile Ad

Hoc and Smart Systems (MASS), pp. 437–445, IEEE, 2021.
[2] F. B. Sorbelli, F. Corò, S. K. Das, L. Palazzetti, and C. M. Pinotti,

“Greedy algorithms for scheduling package delivery with multiple
drones,” in 23rd International Conference on Distributed Computing

and Networking (ICDCN), 2022.
[3] T. Calamoneri, F. Corò, and S. Mancini, “A realistic model to support

rescue operations after an earthquake via uavs,” IEEE Access, 2022.
[4] C. Qu, R. Singh, A. E. Morel, F. B. Sorbelli, P. Calyam, and S. K.

Das, “Obstacle-aware and energy-efficient multi-drone coordination and
networking for disaster response,” in 2021 17th International Conference

on Network and Service Management (CNSM), pp. 1–9, IEEE, 2021.
[5] A. Rabello, R. C. Brito, F. Favarim, A. Weitzenfeld, and E. Todt, “Mobile

system for optimized planning to drone flight applied to the precision
agriculture,” in 2020 3rd International Conference on Information and

Computer Technologies (ICICT), pp. 12–16, IEEE, 2020.
[6] F. H. Iost Filho, W. B. Heldens, Z. Kong, and E. S. de Lange, “Drones:

innovative technology for use in precision pest management,” Journal

of economic entomology, vol. 113, no. 1, pp. 1–25, 2020.
[7] S. K. Dara, “The new integrated pest management paradigm for the

modern age,” Journal of Integrated Pest Management, vol. 10, no. 1,
p. 12, 2019.

[8] R. Basri, F. Islam, S. B. Shorif, and M. S. Uddin, “Robots and drones
in agriculture—a survey,” in Computer Vision and Machine Learning in

Agriculture, pp. 9–29, Springer, 2021.
[9] G. Sujayanand, S. Sheelamary, and G. Prabhu, “Recent innovations and

approaches for insect pest management in agriculture,” Biotica Research

Today, vol. 3, no. 2, pp. 100–102, 2021.
[10] S. P. Giuseppino, B. P. Paolo, N. Roberta, M. Leonardo, and R. P. Fed-

erico, “Efficacy of long lasting insecticide nets in killing halyomorpha
halys in pear orchards,” Outlooks on Pest Management, vol. 29, no. 2,
pp. 70–74, 2018.

[11] I. Schlathölter, A. Dalbosco, M. Meissle, A. Knauf, A. Dallemulle,
B. Keller, J. Romeis, G. A. Broggini, and A. Patocchi, “Low outcrossing
from an apple field trial protected with nets,” Agronomy, vol. 11, no. 9,
p. 1754, 2021.

[12] R. Weinzierl and T. Henn, “Botanical insecticides and insecticidal
soaps,” in Handbook of integrated pest management for turf and

ornamentals, pp. 541–555, CRC Press, 2020.
[13] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Routing

algorithms for robot assisted precision irrigation,” in 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 2221–2228,
IEEE, 2018.

[14] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in 2018 IEEE

14th International Conference on Automation Science and Engineering

(CASE), pp. 14–21, IEEE, 2018.
[15] F. B. Sorbelli, S. Carpin, F. Corò, A. Navarra, and C. M. Pinotti,

“Optimal routing schedules for robots operating in aisle-structures,”
in 2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 4927–4933, IEEE, 2020.
[16] F. B. Sorbelli, S. Carpin, F. Corò, S. K. Das, A. Navarra, and C. M.

Pinotti, “Speeding up routing schedules on aisle graphs with single
access,” IEEE Transactions on Robotics, 2021.

[17] F. B. Sorbelli, F. Corò, S. K. Das, A. Navarra, and C. M. Pinotti,
“Speeding-up routing schedules on aisle-graphs,” in 2020 16th In-

ternational Conference on Distributed Computing in Sensor Systems

(DCOSS), pp. 69–76, IEEE, 2020.
[18] T. C. Thayer and S. Carpin, “An adaptive method for the stochastic

orienteering problem,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 4185–4192, 2021.

[19] T. Gao, Y. Tian, and S. Bhattacharya, “Refuel scheduling for multirobot
charging-on-demand,” in 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5825–5830, IEEE, 2021.
[20] C. Tullo and J. Hurford, “Modelling zipfian distributions in language,”

in Proceedings of language evolution and computation workshop/course

at ESSLLI, pp. 62–75, 2003.
[21] HALY.ID, “Project.” https://www.haly-id.eu, 2022.
[22] DJI, “Matrice 300 rtk.” https://www.dji.com/en/matrice-300/specs, 2022.

8124

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:48:22 UTC from IEEE Xplore. Restrictions apply.

