
A Parallel Framework for E�iciently Updating Graph Properties
in Large Dynamic Networks

Arindam Khanda
akkcm@mst.edu

Missouri University of Science and Technology

Rolla, MO, USA

Sajal K. Das
sdas@mst.edu

Missouri University of Science and Technology

Rolla, MO, USA

ABSTRACT

Graph queries on large networks leverage the stored graph prop-

erties to provide faster results. Since real-world graphs are mostly

dynamic, i.e., the graph topology changes over time, the correspond-

ing graph attributes also change over time. In certain situations,

recompiling or updating earlier properties is necessary to maintain

the accuracy of a response to a graph query. Here, we �rst propose

a generic framework for developing parallel algorithms to update

graph properties on large dynamic networks. We use our frame-

work to develop algorithms for updating Single Source Shortest

Path (SSSP) and Vertex Color. Then we propose applications of the

developed algorithms in Unmanned Aerial Vehicle (UAV) based

delivery systems under time-varying dynamics. Finally, we imple-

ment our SSSP and vertex color update algorithms for Nvidia GPU

architecture and show empirically that the developed algorithms

can update properties in large dynamic networks faster than the

state-of-the-art techniques.

CCS CONCEPTS

• Computing methodologies→ Parallel algorithms.

KEYWORDS

datasets, neural networks, gaze detection, text tagging

ACM Reference Format:

Arindam Khanda and Sajal K. Das. 2023. A Parallel Framework for E�ciently

Updating Graph Properties in Large Dynamic Networks. In ICDCN 2023:

24th International Conference on Distributed Computing and Networking,

Jan 04–07, 2023, IIT Kharagpur, India. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3571306.3571359

1 INTRODUCTION

Complex system analysis often takes the help of network model-

ing, where the interacting entities are modeled as vertices and the

interactions are mapped as the edges. Properties of the modeled

network help to �nd interesting insights about the actual system.

As a result, network analysis has applications in various domains

including bioinformatics, drug discovery, internet routing, and rec-

ommendation systems. For large networks, computing and storing

graph properties e�ciently is itself an expensive operation due to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICDCN 2023, Jan 04–07, 2023, IIT Kharagpur, India

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9796-4/23/01.
https://doi.org/10.1145/3571306.3571359

the irregular memory access during graph traversal. The real-world

networks, which are dynamic in nature, possess additional chal-

lenges of maintaining the correct property values with the change in

network structure. Most of the existing algorithms were developed

targeting static graphs and thus if applied on dynamic networks,

they recompute properties on network snapshots at di�erent time

instances. This technique of applying static graph algorithms on

dynamic networks is computationally expensive and involves re-

dundant operations. Furthermore, the challenge increases with the

increase in the size of the network[1–3].

Here, we propose a framework to develop algorithms to update

graph properties e�ciently.

Problem Statement: LetăĪ (ĒĪ , āĪ ) be the graph at time step Ī and

ī.ĦĨĥĦĪ be the corresponding graph property (E.g., distance from

source in SSSP or color assignment in vertex coloring problem) of a

vertex ī. Let �āĪ = āĪ+1 −āĪ be the set of changed edges from time

step Ī to time step Ī + 1. It consists of two subsets, ąĤĩĪ and ĀěĢĪ ,

respectively the set of inserted edges and deleted edges at time

step Ī . Thus, āĪ+1 = ((āĪ ∪ ąĤĩĪ ) \ ĀěĢĪ ). Our goal is to e�ciently

compute the updated property ī.ĦĨĥĦĪ+1 for all ī ∈ ĒĪ+1, without

recomputing from scratch.

In
p

u
t

U
p

d
a

te
 A
ffe

ct
e

d
 N

o
d

e
s 

It
e

ra
�v

e
ly

Original 

Network�0 Ini�al Network 

Property� Changed 

Edges Δ�
Check Δ� to iden�fy Affected subgraph

Update property of nodes in �
Generate new Fron�er of Affected Nodes 

by visi�ng neighbors

Empty Fron�er?

Yes

No

Updated Network Property

Mark affected ver�ces and generates 

Fron�er of Affected Nodes �P
ro

c
e
s
s
in

g
 C

h
a
n
g
e
d
 

E
d
g
e
s

A

F

B

D E

C
5

2 4

4

2
6

1 Del: (A, B: 2)

Ins: (A, E: 1)

A

F

B

D E

C

4

1

0

4

A

F

B

D E

C

4

1
1

0

4

7

3

A

F

B

D E

C

4

1

0

5

5

inf

inf

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

Iteration 1 Iteration 2

SSSP tree

Updated 

SSSP tree

A

F

B

D E

C

2 4

21

0

4

6

7

3

2

A

F

B

D E

C

4

1

0

4

A

F

B

D E

C

4

1
1

0

4

7

3

A

F

B

D E

C

4

1

0

5

5

inf

inf

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C
5

2 4

4

2
6

1 Del: (A, B: 2)

Ins: (A, E: 1)
SSSP tree

A

F

B

D E

C

2 4

21

0

4

6

7

3

2

Updated 

SSSP tree

Figure 1: Graph property update framework demonstrated

with an example of SSSP update.

2 GRAPH PROPERTY UPDATE FRAMEWORK
This section provides details on the proposed approach.

Step 1 identi�es the a�ected end vertices of each edge (ī, Ĭ) ∈ �ā.

In this edge-centric parallel operation, the a�ected vertices directly

related to the changed edges are gathered in a frontier for further

298



ICDCN 2023, Jan 04–07, 2023, IIT Kharagpur, India Khanda, et al.

processing. Step 2 is an iterative process of updating the property.

In each iteration, the property is updated in parallel for the a�ected

vertices in the current frontier. The next frontier is generated by

visiting the neighbors and selecting the possible set of a�ected

vertices. The iterative process converges and achieves correctness

when the frontier becomes empty.

Fig. 1 describes our parallel framework with an example of SSSP

update. In the example, the green circles are the a�ected vertices at

di�erent stages of SSSP update algorithm. For more details on SSSP

update see [3]. Similar to SSSP update, our framework can be used to

develop a vertex color update algorithm, where the initial color can

be corrected by �nding the a�ected vertices and recoloring them.

In an asynchronous parallel framework, recoloring may produce

color con�ict and it can be solved iteratively in step 2.

3 APPLICATIONS OF OUR FRAMEWORK
3.1 Centralized Drone-based Delivery
In a centralized drone-based delivery system, drones follow the

delivery route provided by the central server. In varying wind

conditions (wind speed and direction change with time), �nding

the most e�cient delivery routes becomes a problem of �nding

SSSP in a dynamic network. In [2], we applied our framework to

e�ciently update the delivery route of the drones in a centralized

system under time-varying dynamics.

3.2 Drone Truck Co-operated Delivery
In [1], we proposed a drone truck co-operated delivery scenario,

where drones start from a delivery truck, perform their delivery,

and return to the truck. In this setup, we consider a �xed prede�ned

route and rest areas for the truck. However, each drone’s delivery

route is dynamic due to time-dependent factors such as wind direc-

tion. We use the SSSP update algorithm to solve a multi-objective

problem where the delivery system aims to complete a set of deliv-

eries in the minimum time while the drones try to minimize their

energy consumption to meet the limited battery constraint.

�0 �1 �2
�3

�4�5
�6�7

>

>

>

>

>

>

>

>

<

<

<

<

Drone with 

package

Depot

Customer

Customer

Drone without 

package

Truck route

Drone route

�� Wind Control Unit

Rest Area

Truck

Figure 2: Drone truck co-operated delivery system.

4 EXPERIMENTAL RESULTS
We use our framework to develop and implement parallel algo-

rithms to update SSSP and Vertex Color in large dynamic networks.

In our experiment, Į% ąĤĩ in �ā indicates total �ā ∗ Į/100 edge

insertion and �ā ∗ (1 − Į/100) edge deletion.

4.1 Single Source Shortest Path Update
Our NVIDIA CUDA-based SSSP update implementation[3] outper-

forms state-of-the-art Gunrock’s [5] GPU-based SSSP implemen-

tation (recomputation approach) in most cases. Fig. 3a, 3b shows

the ratio of SSSP recomputation [5] time, and SSSP update time on

GPU.

BHJ-2 Orkut LiveJournal RMAT24
Dataset

0

2

4

6

8

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

50 Million Changes
Ins %

0
25
50
75

90
95
100

(a) 50 million change edges

BHJ-2 Orkut LiveJournal RMAT24
Dataset

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

100 Million Changes
Ins %

0
25
50
75

90
95
100

(b) 100 million change edges

Figure 3: SSSP: Comparison with Gunrock’s implementation.

4.2 Vertex Color Update

Fig. 4a, and 4b show the ratio of color recomputation [4] time

(using GPU-based Kokkos coloring), and vertex color update time

on GPU. Experimental result shows that the execution ratio is more

than 1 in most cases, i.e., the update algorithm takes less time than

recomputation.

RMAT24_e8 Orkut roadUSA inf-italy
Dataset

0

5

10

15

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

1 Million Changes

Ins %
5
25
50

75
95

(a) 1 million change edges

RMAT24_e8 Orkut roadUSA inf-italy
Dataset

0.0

2.5

5.0

7.5

10.0

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

5 Million Changes

Ins %
5
25
50

75
95

(b) 5 million change edges

Figure 4: Color Update: Comparison with static coloring[4]

5 CONCLUSION
We introduce a parallel framework to develop algorithms for updat-

ing the properties of large dynamic networks. Using our framework,

we develop and implement SSSP and vertex color update algorithms

on GPU architecture. Empirical results show that our implemen-

tations update di�erent graph properties faster than the current

state-of-the-art methods. We have already applied SSSP update al-

gorithm in UAV-based delivery systems for e�cient delivery route

selection under time-varying dynamics. We plan to apply our vertex

color update algorithm in a dynamic delivery-scheduling scenario.

ACKNOWLEDGMENTS

This work was supported by the NSF projects SANDY (Award #

OAC-1725755) and CANDY (Award # OAC-2104078)

REFERENCES
[1] Arindam Khanda, Federico Corò, and Sajal K Das. 2022. Drone-Truck Cooperated

Delivery Under Time Varying Dynamics. In Proceedings of the 2022 Workshop
on Advanced tools, programming languages, and PLatforms for Implementing and
Evaluating algorithms for Distributed systems. 24–29.

[2] Arindam Khanda, Federico Corò, Francesco Betti Sorbelli, Cristina M. Pinotti, and
Sajal K. Das. 2021. E�cient Route Selection for Drone-based Delivery Under Time-
varying Dynamics. In IEEE 18th International Conference on Mobile Ad Hoc and
Smart Systems (MASS). 437–445. https://doi.org/10.1109/MASS52906.2021.00061

[3] Arindam Khanda, Sriram Srinivasan, Sanjukta Bhowmick, Boyana Norris, and
Sajal K. Das. 2022. A Parallel Algorithm Template for Updating Single-Source
Shortest Paths in Large-Scale Dynamic Networks. IEEE Transactions on Parallel
and Distributed Systems 33, 4 (2022), 929–940. https://doi.org/10.1109/TPDS.2021.
3084096

[4] Sivasankaran Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang, Nathan
Ellingwood, Evan Harvey, Brian Kelley, Christian R Trott, Jeremiah Wilke, and
Ichitaro Yamazaki. 2021. Kokkos Kernels: Performance Portable Sparse/Dense
Linear Algebra and Graph Kernels. arXiv preprint arXiv:2103.11991 (2021).

[5] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Ri�el, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 1–12.

299


	Abstract
	1 Introduction
	2 Graph Property Update Framework
	3 Applications of our Framework
	3.1 Centralized Drone-based Delivery
	3.2 Drone Truck Co-operated Delivery

	4 Experimental Results
	4.1 Single Source Shortest Path Update
	4.2 Vertex Color Update

	5 Conclusion
	Acknowledgments
	References

