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ABSTRACT

Graph queries on large networks leverage the stored graph prop-

erties to provide faster results. Since real-world graphs are mostly

dynamic, i.e., the graph topology changes over time, the correspond-

ing graph attributes also change over time. In certain situations,

recompiling or updating earlier properties is necessary to maintain

the accuracy of a response to a graph query. Here, we �rst propose

a generic framework for developing parallel algorithms to update

graph properties on large dynamic networks. We use our frame-

work to develop algorithms for updating Single Source Shortest

Path (SSSP) and Vertex Color. Then we propose applications of the

developed algorithms in Unmanned Aerial Vehicle (UAV) based

delivery systems under time-varying dynamics. Finally, we imple-

ment our SSSP and vertex color update algorithms for Nvidia GPU

architecture and show empirically that the developed algorithms

can update properties in large dynamic networks faster than the

state-of-the-art techniques.
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1 INTRODUCTION

Complex system analysis often takes the help of network model-

ing, where the interacting entities are modeled as vertices and the

interactions are mapped as the edges. Properties of the modeled

network help to �nd interesting insights about the actual system.

As a result, network analysis has applications in various domains

including bioinformatics, drug discovery, internet routing, and rec-

ommendation systems. For large networks, computing and storing

graph properties e�ciently is itself an expensive operation due to
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the irregular memory access during graph traversal. The real-world

networks, which are dynamic in nature, possess additional chal-

lenges of maintaining the correct property values with the change in

network structure. Most of the existing algorithms were developed

targeting static graphs and thus if applied on dynamic networks,

they recompute properties on network snapshots at di�erent time

instances. This technique of applying static graph algorithms on

dynamic networks is computationally expensive and involves re-

dundant operations. Furthermore, the challenge increases with the

increase in the size of the network[1–3].

Here, we propose a framework to develop algorithms to update

graph properties e�ciently.

Problem Statement: LetăĪ (ĒĪ , āĪ ) be the graph at time step Ī and

ī.ĦĨĥĦĪ be the corresponding graph property (E.g., distance from

source in SSSP or color assignment in vertex coloring problem) of a

vertex ī. Let �āĪ = āĪ+1 −āĪ be the set of changed edges from time

step Ī to time step Ī + 1. It consists of two subsets, ąĤĩĪ and ĀěĢĪ ,

respectively the set of inserted edges and deleted edges at time

step Ī . Thus, āĪ+1 = ((āĪ ∪ ąĤĩĪ ) \ ĀěĢĪ ). Our goal is to e�ciently

compute the updated property ī.ĦĨĥĦĪ+1 for all ī ∈ ĒĪ+1, without

recomputing from scratch.
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Figure 1: Graph property update framework demonstrated

with an example of SSSP update.

2 GRAPH PROPERTY UPDATE FRAMEWORK
This section provides details on the proposed approach.

Step 1 identi�es the a�ected end vertices of each edge (ī, Ĭ) ∈ �ā.

In this edge-centric parallel operation, the a�ected vertices directly

related to the changed edges are gathered in a frontier for further
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processing. Step 2 is an iterative process of updating the property.

In each iteration, the property is updated in parallel for the a�ected

vertices in the current frontier. The next frontier is generated by

visiting the neighbors and selecting the possible set of a�ected

vertices. The iterative process converges and achieves correctness

when the frontier becomes empty.

Fig. 1 describes our parallel framework with an example of SSSP

update. In the example, the green circles are the a�ected vertices at

di�erent stages of SSSP update algorithm. For more details on SSSP

update see [3]. Similar to SSSP update, our framework can be used to

develop a vertex color update algorithm, where the initial color can

be corrected by �nding the a�ected vertices and recoloring them.

In an asynchronous parallel framework, recoloring may produce

color con�ict and it can be solved iteratively in step 2.

3 APPLICATIONS OF OUR FRAMEWORK
3.1 Centralized Drone-based Delivery
In a centralized drone-based delivery system, drones follow the

delivery route provided by the central server. In varying wind

conditions (wind speed and direction change with time), �nding

the most e�cient delivery routes becomes a problem of �nding

SSSP in a dynamic network. In [2], we applied our framework to

e�ciently update the delivery route of the drones in a centralized

system under time-varying dynamics.

3.2 Drone Truck Co-operated Delivery
In [1], we proposed a drone truck co-operated delivery scenario,

where drones start from a delivery truck, perform their delivery,

and return to the truck. In this setup, we consider a �xed prede�ned

route and rest areas for the truck. However, each drone’s delivery

route is dynamic due to time-dependent factors such as wind direc-

tion. We use the SSSP update algorithm to solve a multi-objective

problem where the delivery system aims to complete a set of deliv-

eries in the minimum time while the drones try to minimize their

energy consumption to meet the limited battery constraint.
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Figure 2: Drone truck co-operated delivery system.

4 EXPERIMENTAL RESULTS
We use our framework to develop and implement parallel algo-

rithms to update SSSP and Vertex Color in large dynamic networks.

In our experiment, Į% ąĤĩ in �ā indicates total �ā ∗ Į/100 edge

insertion and �ā ∗ (1 − Į/100) edge deletion.

4.1 Single Source Shortest Path Update
Our NVIDIA CUDA-based SSSP update implementation[3] outper-

forms state-of-the-art Gunrock’s [5] GPU-based SSSP implemen-

tation (recomputation approach) in most cases. Fig. 3a, 3b shows

the ratio of SSSP recomputation [5] time, and SSSP update time on

GPU.
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Figure 3: SSSP: Comparison with Gunrock’s implementation.

4.2 Vertex Color Update

Fig. 4a, and 4b show the ratio of color recomputation [4] time

(using GPU-based Kokkos coloring), and vertex color update time

on GPU. Experimental result shows that the execution ratio is more

than 1 in most cases, i.e., the update algorithm takes less time than

recomputation.
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Figure 4: Color Update: Comparison with static coloring[4]

5 CONCLUSION
We introduce a parallel framework to develop algorithms for updat-

ing the properties of large dynamic networks. Using our framework,

we develop and implement SSSP and vertex color update algorithms

on GPU architecture. Empirical results show that our implemen-

tations update di�erent graph properties faster than the current

state-of-the-art methods. We have already applied SSSP update al-

gorithm in UAV-based delivery systems for e�cient delivery route

selection under time-varying dynamics. We plan to apply our vertex

color update algorithm in a dynamic delivery-scheduling scenario.
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