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Deep Meta Q-Learning Based Multi-Task
Offloading in Edge-Cloud Systems
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Abstract—Resource-constrained edge devices can not efficiently
handle the explosive growth of mobile data and the increasing com-
putational demand of modern-day user applications. Task offload-
ing allows the migration of complex tasks from user devices to the
remote edge-cloud servers thereby reducing their computational
burden and energy consumption while also improving the effi-
ciency of task processing. However, obtaining the optimal offload-
ing strategy in a multi-task offloading decision-making process is
an NP-hard problem. Existing Deep learning techniques with slow
learning rates and weak adaptability are not suitable for dynamic
multi-user scenarios. In this article, we propose a novel deep meta-
reinforcement learning-based approach to the multi-task offload-
ing problem using a combination of first-order meta-learning and
deep Q-learning methods. We establish the meta-generalization
bounds for the proposed algorithm and demonstrate that it can
reduce the time and energy consumption of IoT applications by up
to 15%. Through rigorous simulations, we show that our method
achieves near-optimal offloading solutions while also being able to
adapt to dynamic edge-cloud environments.

Index Terms—Deep q-learning, directed acyclic graph, edge-
cloud computing, Internet of Things, meta-learning, multi-task
offloading.

1. INTRODUCTION

ITH the advent of Internet of Things (10T) and rapid
W advancements in communication technologies, there has
been an unprecedented growth in the volume of data generated
by IoT and end-user devices. Al-enabled Intelligent IoT devices
have increased demand for computational resources while also
trying to operate under stringent latency and capacity con-
straints which cannot be adequately addressed by a conventional
centralized cloud computing architecture [1]. Edge computing
emerges as an extension of cloud computing which shifts the
function of cloud services to the proximity of end users. Edge
caching, edge training, edge inference, and edge offloading are
four fundamental components of edge intelligence [2]. Edge
offloading helps to migrate complex and computation-intensive
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tasks to nearby cloudlets by utilizing powerful decision-making
capabilities [3] of edge intelligence.

Making optimal offloading decisions in multi access edge
computing (MEC) is generally affected by the quality of network
connection, wireless communication channels, preferences of
application users, mobility of IoT devices, and availability of
cloud servers. A downside of edge offloading is that it increases
the amount of data communication between the IoT and edge
devices which may cause network congestion and affects the
latency of user devices. In addition, adjusting the offloading
decisions in rapidly changing MEC environments is usually a
difficult task because it requires recomputing optimal offloading
solutions every time the environment changes. It creates huge
service delays [4] and increases resource consumption of edge
devices.

By extending the offloading process to cloud servers, users can
essentially overcome any resource limitations imposed by their
devices while also consuming less overall energy. In [35], the
authors considered offloading decisions for a series of dependent
tasks considering the delay and energy consumption of the con-
cerned devices. It is assumed that the application sub-tasks are
atomic i.e., a task can be either performed locally or completely
offloaded to a remote location. Being able to execute multiple
sub-tasks in parallel can reduce the overall execution time of user
applications, which is highly desirable for every user application
today. Multi-threaded processing models [28], [29], [30] and
directed acyclic graphs (DAG) [31], [32], [33], [34] are some
of the known techniques for modeling applications in a task
offloading scenario.

Deep Reinforcement Learning (DRL) is a promising way
to address task offloading issues but the main disadvantage
of DRL is slower learning speed and weak inductive bias,
making it generally less efficient [6]. Recent applications of
DRL to various MEC task offloading problems are discussed
in [2], [24], [25], [27], where the models learn the offloading
policy by interacting with the MEC environment but strictly
consider the MEC host, wireless channel and user equipment to
be stationary. All these methods have the shortcoming of weak
adaptability in dynamic environments as they require full re-
training in new environments, making it a very time-consuming
process.

Researchers have introduced meta-reinforcement learn-
ing [26] to address the adaptability issue by leveraging knowl-
edge learned from a range of training tasks to perform sig-
nificantly better on new or unseen tasks. Meta reinforcement
learning (MRL) tries to learn a meta-policy which, when trained,
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can learn a new or unseen task, using a small number of interac-
tions with the environment. MRL algorithms usually have two
learning procedures, the inner loop and the outer loop. The inner
loop learns a new task, while the outer loop uses its experiences
over different task contexts in random environments to gradually
adjust the parameters of meta-policy such that new tasks can be
learned in a fewer number of learning steps [27]. It should be
noted that the term fask used in the context of meta-learning
represents a meta-task and is different from that used in the
context of task offloading.

In this research, we introduce a novel meta-learning method
that accounts for multi-task dependency and quick adaptability
while optimizing offloading decisions, ensuring that total exe-
cution time and energy consumption are kept to a minimum in
a dynamic edge-cloud environment. The major contribution of
this work can be summarized as follows:

® We propose a framework for multi-task offloading where
we use directed acyclic graphs (DAGs) for modeling appli-
cations and consider that the offloading decisions are to be
made for multiple dependent tasks across multiple remote
edge or cloud servers.

e Taking into account the dynamic nature of edge-cloud
environments, we formulate the task offloading problem
as a few-shot meta-learning [47] problem.

® We propose a meta-learning algorithm, called Deep Meta
Q-learning based task-offloading (DMQTO), which uses
first-order meta-learning and deep Q-learning to address
the multi-task offloading problem.

® We evaluate the performance of our algorithm through
rigorous testing under a variety of dynamic edge-cloud
environments. We observe that the proposed method can
achieve up to 15% improvements in time and energy con-
sumption of applications over four baseline methods.

The rest of the paper is organized as follows. We have re-
viewed the related work in Section II. The system model and
problem formulation are presented in Section IIIL. In Section IV,
we have presented the proposed Deep Meta Q-learning based
offloading framework and algorithm. Section V contains exper-
imental results and performance evaluation. Finally, Section VI
concludes the paper.

II. RELATED WORK

In the existing literature, the task-offloading methods used in
MEC or similar environments can be broadly classified into two
categories — Traditional and Deep Learning methods.

Traditional methods mainly used heuristics and meta-
heuristic based solution and numerical optimization based meth-
ods. The authors in [7] modeled the computation offloading
decision problem as a multi-user computation offloading game
for mobile-edge cloud computing in a multi-channel wireless
context and proposed a distributed computation offloading algo-
rithm that can successfully achieve the game’s Nash equilibrium.
In [8], the computation offloading problem is formulated in a
multi-cell mobile edge-computing scenario. In the single-user
case, the authors computed the global optimal solution of the
resulting non-convex optimization problem in closed form. In
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the more general multi-cell multi-user scenario, they developed
centralized and distributed Successive Convex Approximation
based algorithm with provable convergence to local optimal
solutions.

A Lyapunov optimization method was proposed in [9] with
a goal to optimize the long-term problems on a slot-by-slot
basis. The authors utilized an open Jackson queuing network
to optimize caching, jointly with task offloading. Based on
the Lyapunov optimization novel eTime strategy is presented
in [10] for energy-efficient data transmission between cloud and
mobile devices. eTime aggressively and adaptively seizes the
timing of good connectivity to pre-fetch frequently used data
while deferring delay-tolerant data in bad connectivity. In [11]
is proposed the low complexity Lyapunov optimization-based
dynamic computation offloading algorithm for green MEC sys-
tems with energy harvesting (EH) devices which jointly decides
on the offloading decision, the CPU-cycle frequencies for mobile
execution, and the transmit power for computation offloading.
In [12], the authors investigated the trade-off between energy
consumption and execution delay for dynamic offloading tasks
in an MEC system with EH capabilities and proposed an online
dynamic Lyapunov optimization-based offloading algorithm.

Key challenges of task offloading in blockchain-enabled het-
erogeneous loT-edge-cloud computing architecture is addressed
in [13] that proposed an energy-efficient dynamic task offloading
algorithm which can dynamically offload tasks by choosing the
optimal computing location in an online way. In [14], the authors
investigated two types of delayed offloading policies — the partial
offloading model and the full offloading model. Both models
minimize the energy-response time-weighted product metric.
The authors have shown that for delay-sensitive applications, the
partial offloading model is mostly preferred and if applications
are delay-tolerant, the full offloading model outperforms the
other offloading models when using long deadlines.

A computing offloading game for mobile devices and edge-
cloud servers is proposed in [15] which showed the existence
of Stackelberg equilibrium in that game. In [51] is proposed
distributed task offloading algorithm by formulating the of-
floading problem as a multi-user potential game. In [16], the
authors proposed a novel memetic algorithm based application
placement technique to solve the task offloading problems in
computing environments with multiple IoT devices, multiple
fog/edge servers, and cloud servers. The multi-user computation
offloading problem is modeled in [43] as a mixed-integer linear
programming problem and an iterative heuristic algorithm is
propsoed to make offloading decisions dynamically. In [33],
a heuristic algorithm is proposed for the dependency-aware
task offloading problem without considering parallelism among
the sub-tasks. The traditional approaches cannot handle large
and complex decision-making processes and require a huge
amount of computation time, making them impractical for many
real-world scenarios.

In recent years, artificial intelligence (Al) and deep learning
(DL) have gained a significant amount of popularity among re-
searchers. Although reinforcement learning (RL) shows promis-
ing results, it usually suffers from slow learning and weak
adaptability in unseen environments. In such cases, conventional
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RL algorithms perform poorly since the learned parameters
cannot make accurate decisions in changing environments and
require retraining from scratch, making the learning process very
slow. Repetitive training consumes large amount of computation
resources and increases the overall time consumption of the
offloading algorithm.

A deep reinforcement learning-based online offloading al-
gorithm is proposed in [5] to maximize the weighted sum
computation rate in wireless-powered MEC networks with bi-
nary computation offloading. In [45], the authors applied deep-
imitation-learning based algorithms for fine-grained computa-
tion offloading for a single mobile device within MEC networks.
In [46], a distributed deep learning-based offloading algorithm
is proposed for MEC networks to minimize the overall system
utility including both the total energy consumption and the
delay in finishing the task. In [18] is proposed a distributed
deep learning-driven task offloading algorithm where multiple
parallel deep neural networks (DNNs) are adopted to effectively
and efficiently generate offloading decisions over the mobile
device (MDs), edge-cloud server, and central cloud server. To
obtain the optimal offloading policy in a dynamic blockchain
network with MEC for multiple users, the authors in [20] pro-
posed reinforcement learning-based task offloading algorithms
but did not consider dynamic environment changes in MEC.

A meta reinforcement learning-based task offloading frame-
work for edge-cloud computing is proposed in [35] that con-
sidered a single task at a time for offloading decision-making.
Since this method considers a single task, it is not suitable for
dependent multi-task application models where the offloading
decisions for multiple tasks would be taken at a time. In [36],
a DRL-based methodology is developed for the MEC system’s
DAG-based multi-task computation offloading strategy, but this
approach has very limited adaptability in MEC environments
that change often.

ToT applications are usually composed of multiple tasks that
depend on each other. Therefore, while making offloading de-
cisions, it is important to take task dependencies into account.
In [44], amulti-user partial computation offloading is formulated
in the MEC system to minimize the weighted sum of energy
consumption of smart mobile devices (SMDs). In [21], the
authors developed a successful offloading strategy to achieve
the lowest possible total latency and used meta-reinforcement
learning for fast adaptability. The authors use directed acyclic
graphs (DAGs) to model mobile applications and use policy
optimization to train a sequence-to-sequence (seq2seq) neural
network. In [48], the dependent task offloading is approached us-
ing both deep Q-learning and proximal policy optimization tech-
niques. In [50], the authors used first-order meta-RL methods to
obtain fine-tuned policies in heterogeneous edge/cloud comput-
ing environments with multiple mobile terminal users, varying
data volumes, and varying task workloads. However, they do
not consider inter-task dependency. In [49], a meta-learning for
computation offloading in dynamic MEC is proposed, without
ctaking task dependency into account.

The deep learning methods discussed so far can easily outper-
form traditional methods in complex decision-making scenarios.
However, ensuring adaptability and minimizing total execution
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Fig. 1. Edge-cloud network with multiple IoT devices.

time as well as energy consumption in dynamic environments
for highly complex, multi-task systems is very challenging.
Traditional optimization algorithms require iteratively adjusting
the offloading decisions towards the optimum which is often in-
feasible for real-time system optimization under a fast-changing
environment. Therefore, improved intelligent meta-learning al-
gorithms are well suited to address the aforementioned objective.

III. SYSTEM MODEL

As shown in Fig. 1, the edge-cloud network model con-
sists of multiple cloud and edge servers interconnected via a
network with the IoT devices directly connecting to nearby
high-bandwidth edge servers. For the remainder of this paper,
we shall refer to all end-user devices as loT devices while the
edge and cloud servers shall be referred to as remote servers.

A. Environment Model

The environment is designed to model multi-user edge-cloud
scenarios like MECs. It is based on an underlying edge-cloud
network topology where each server or device is referred to as
alocation (7). An offloading process that optimizes the offload-
ing decision based on parameters like task execution time and
energy consumption, requires access to underlying environment
parameters such as available bandwidth, transmission delays in
the network, computation power of cloud servers and energy
requirement of the user and edge servers to compute offloading
costs. It is assumed that this information is available through
appropriate monitoring tools deployed in the environment. We
characterize such an environment model using the following
parameters:

® Dr(l;,1;) represents the Data Time Consumption i.e., the
time taken to move a unit of data between locations /; and
l; over the network.

e Dpg(l;) represents the Data Energy Consumption i.e., the
energy consumed for processing a unit of data at the
location [;, which includes energy consumption for trans-
mitting and receiving data through appropriate networking
hardware.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.



2586

=

[Puir generator]

(a) Face Recognition (b) Object Recognition (c) Gesture Recognition

Fig. 2. Example of DAGs for computer vision applications.

e Vr(l;) represents the Task Time Consumption i.e., the time
taken to execute a unit task at the location [;.

e Vg (l;) represents the Task Energy Consumption i.e., the
energy consumed for executing a unit task at the location
l.

B. Application Model

As described in [21], [35], [36], [48], [53], [54], IoT devices
can have applications composed of multiple tasks with inner
dependencies among them. We refer to such a set of dependent
tasks as an application workflow. A workflow can be interpreted
as one large set of programs or tasks to be executed in a certain
order as defined by the data dependencies between them [35],
[53]. An application may generate a variety of workflows that
are essentially task graphs modeled using directed acyclic
graphs (DAGs). Some examples of computer vision application
DAGs [54] are shown in Fig. 2. In such a workflow DAG, the
nodes represent the fasks in a workflow while the edges represent
the data dependencies i.e., communication required between
tasks. It is assumed that each task requires some input data and
produces certain output data for the next task. After the execution
of a certain task in the workflow, the output data produced, has
to be moved over the network to the location where the next
task is to be executed. Also, the initial data required for the first
set of tasks is assumed to be located on the IoT device. At the
end of completing all tasks, the final output data must be sent
back to the IoT device which generated the workflow. Formally,
a workflow containing N tasks is represented by a DAG (w),
defined as:

w={V,D}

where, V represents the vertex set and D represents the edge
set, defined as:

V={(v):0<i<(N+1)}

D={(di;):0<4,j<(N+1)}
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Accordingly, for the ¢th task, v; represents the task size (in
CPU cycles) and d; ; represents the size of data dependency
(in bytes) to the jth task. Note that the entry task (vo) and the
exit task (vn41) are added to the workflow-DAG as a proxy
for IoT input and output respectively. Both the entry and the
exit task have unit task size which represents some initial and
final processing delay at the IoT devices. These tasks cannot be
offloaded and their sizes will not affect the offloading decision.
Also, the set J; represents the set of all parent tasks of the ith task,
and the set K; represents the set of all tasks that are dependent
on the ith task. Fig. 3 shows a few DAG topologies used to
represent an application workflow.

In order to leverage the computation resource of the edge
servers, the application would require to offload its workflow
consisting of multiple dependent tasks, across the available
remote locations using an appropriate offloading scheme. Such
a scheme should be able to produce offloading solutions of the
form p, represented by a sequence of IV offloading locations as:

'alN}

where [; represents the offloading location for the ith task of the
workflow. It should be noted that the IoT devices are referenced
by a special location number [ = 0. Hence, /; = 0 represents no
offloading i.e., the task is not to be offloaded to a remote location
but executed locally on the IoT device. Since only IoT devices
can generate workflows, it is assumed that [o = [+ = 0. For
example, Fig. 4 depicts the placement solution p = {1,4,2,5}
for the given workflow containing four tasks. In the solution
vector p, the locations 1 and 2 refer to edge servers whereas the
locations 4 and 5 refer to cloud servers.

p={li,l2,13,..

C. Cost Model

The offloading cost (U) captures the total weighted cost
of offloading a workflow (w) which includes task execution
time, delay in moving data within the network, and the energy
consumed in processing tasks and data by remote servers and [oT
devices. Specifically, the offloading cost for a given workflow is
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Fig. 4. Task placement across the edge-cloud network using offloading solu-
tion p = {1,4, 2,5} for a 3-level DAG.

the sum of the costs of the total energy consumed and the total
delay incurred in executing the workflow i.e., from the time
of the request, till the final output data is received back at the
requesting IoT device.

To capture the proper trade-off between execution time and
energy consumption, one should agree on an appropriate cost
per unit of both time and energy. Hence a trade-off is decided
where we assume equivalence between some amount of time and
energy. The trade-off is implementation specific and should be
decided based on the energy consumption and execution time of
hardware components used by the participating IoT devices and
remote servers. We assume that T; units of time (milliseconds)
are equivalent to T, units of energy (millijoules) and both the
terms have unit cost. Hence, the cost per unit of execution time
(C7) and the cost per unit of energy consumption (Cg) can be
defined as:

Cr= (D

Cp = @)

€

The offloading cost depends on the parameters that define the
underlying edge-cloud network model which may vary in the
number of edge servers (£) and the number of cloud servers (C)
that are available. To model the environment, we assume a set of
four parameters { D, Dg, Vi, Vg } as defined in Section III-A.
The offloading cost for a workflow consists of two components
namely, energy consumption cost (E) and time consumption cost
(T'). These components are defined as follows:

e Energy Consumption Cost (E), is the combined energy
cost incurred in completing all the tasks in a workflow
at their respective offloading location in the edge-cloud
network, defined as:

E=Cg-(Ep+ Ev) 3)
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where, Ep represents the total energy consumed for data
communication at the respective locations of task execu-
tion, defined as:

N

Ep=> |Dp(li)x (Y dii+ Y dix (4)

i=1 jedi keK;

and Ey represents the total energy consumed in executing
all the tasks at their respective offloading locations, defined
as:
N
By = v x Vg(l) )
i=1
e Time Consumption Cost (T), is the cost equivalent of
the total time required to complete the execution of a
workflow including task execution time and data commu-
nication delay. The total execution time of all the tasks in
a workflow-DAG is given by the cost of the critical path
i.e., the path of maximum delay through the corresponding
delay-DAG. To obtain a delay-DAG (wa = {Va,Da}),
we first define a DAG which is isomorphic to the workflow-
DAG (w = {V, D}) and then set its weights as:

Da(i,j) = dij X Dg(li,l;) +vi x Vr(l;)  (6)

The delay-DAG combines the time consumption for task
execution and data transfer. As opposed to workflow-DAG,
the delay-DAG has no weights assigned to its nodes. The
edge weights in the delay-DAG represent the time delay
between dependent tasks i.e., the sum of task execution
time and the data transfer time to the next dependent task.
The total time consumption cost can then be obtained using:

T =Cr Apaz(wa) (N

where A, is a function that computes the total delay
of the critical path (longest path) in a given delay-DAG
(wa). Finding the longest path is an NP-hard problem for
an arbitrary graph. However, for directed acyclic graphs,
finding the longest path is the same as finding the shortest
path on an equivalent graph with negative weights. Hence,
the critical path problem for the delay-DAG can be solved
in linear time O(E + V') using a topological sorting-based
algorithm [52].

Finally, the total offloading cost (U) for a workflow (w) using

an offloading solution (p) can be expressed as:

U(w,p) = 6T + 6. E ®)

where ; and . are the weights assigned to the time con-
sumption cost and the energy consumption cost respectively.
These weights take binary values (d;, 0. € {0,1}) based on the
application’s mode of operation. The applications may run under
three major modes of operation as follows:

e Low Latency Mode: applications running on low latency
mode prefer to improve performance. In this mode, no
weight is assigned to the energy consumption cost. Hence,
0. = 0and d; = 1.

e Low Power Mode : applications running on low power
mode prefer to reduce the energy consumption of devices.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.



2588

Train Meta-Policy using
application profile

Central Offloading
Manager

Obtain Optimal
Offloading Policy

Provide Application Profile
and device information.

loT Application
Instance

Fig. 5. Steps in application-specific task-offloading.

In this mode, no weight is assigned to the time consumption
cost. Hence, . = 1 and §; = 0.

® Balanced Mode: applications running on balanced mode
prefer to minimize both energy consumption and execution
time. In this mode, equal weights are assigned to both the
energy consumption cost and the time consumption cost.
Hence, 0, = 0; = 1.

Using an application-specific offloading approach requires
each application instance to have its own offloading policy that
is fine-tuned to the application-specific workflows. When an
application instance is initialized on an IoT device, it commu-
nicates with a central offloading manager to obtain a refined
policy based on the current application profile, user preferences,
and device parameters such as transmission rate and energy
consumption. The central offloading manager maintains a col-
lection of meta-policies and provides fine-tuned policies to each
application instance as and when required.

As shown in Fig. 5, our approach shifts the computation
required for training environment-specific policies from IoT
devices to edge servers which further reduces the computa-
tional burden at the end devices. Another advantage of such
an application-specific approach is that it allows the grouping
of offloading policies according to the set of applications they
apply to. Instead of maintaining a single policy for all types of
applications, we can now group the policies according to the
similarity in their workflow profiles and the specific IoT devices
that they can support. Through our experiments, it is observed
that a clever grouping of applications can greatly improve adapt-
ability and allows the use of heterogeneous policies. It should
be noted that the terms offloading scheme and offloading policy
can be used interchangeably. A summary of the notation used in
this paper is presented in Table 1.

D. Problem Formulation

Given an edge-cloud network represented using parameters
{Dgr, Dg, Vg, Vg} containing £ number of edge servers and C
number of cloud servers with the IoT applications generating
workflows according to their respective profiles and mode of
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TABLE I
SUMMARY OF NOTATION

Parameter Description
l; Offloading location for 7t" task.
v; Task size for ¢¢7 task.

d; ; Data dependency size between it and j*" task.
Ve(l;) Task energy consumption at location [;
Dg(l;) Data energy consumption at location [;
Vr(l;) Task time consumption at location [;

Dr(l;,1;) | Data time consumption between location [; and I;

Cg Cost per unit of energy consumption

Cr Cost per unit of time consumption

Ep Total data energy consumption for workflow

by Total task energy consumption for workflow

I Total energy consumption for workflow
T Total time consumption for workflow

Ot Weight assigned to task time consumption
de Weight assigned to task energy consumption
U Total offloading cost

& Number of edge offloading locations

C Number of cloud offloading locations

Gn Node-density for workflow DAG

G Maximum height of workflow DAG

Gy Maximum branch-factor for workflow DAG

operation, our objective is to find an optimal offloading scheme
that can generate minimum cost offloading solution for any given
workflow. Formally, the problem can be expressed as:

mpin{U(w,p)} Yw e W ©)]

where W represents the set of all possible workflows that
can be generated by an application running on an IoT device
under different profiles or modes of operation. The workflows,
represented by DAGs, can vary according to the IoT application
and user preferences. We consider a variety of workflow DAGs
characterized by the following attributes:

e Node-density - the number of nodes in the DAG that

represent the total number of tasks in the workflow.

® Height - the maximum path length starting from the entry

task and ending at the exit task.

® Maximum branch-factor - represents the maximum number

of dependent tasks that any given task can have.

We consider a variety of applications with randomly generated
workflow DAGs having the node density, height, and maximum
branch factor limited to a maximum of 20. These parameters are
described in detail in Section V. The applications are allowed
to run in three modes of operation i.e., low latency, low power,
and balanced mode. In the following section, we formalize the
offloading cost optimization problem using the reinforcement
learning framework.

E. Reinforcement Learning

In a reinforcement learning setup, we consider agents that are
able to take a sequence of actions in an environment by following
a policy. The environment state dynamics are described by a
Markov Decision Process (MDP) which can be either stochastic
or fully deterministic. The agents build up their experience by
taking actions and obtaining a single scalar reward per action.
In an episodic setting with fixed horizon (H ), we consider the
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MDP to have a finite and constant number of state transitions
(steps) for each episode i.e., agents can reach a final state from
any given initial state, by taking a fixed and constant number of
actions. The task of an agent is to learn a policy that maximizes
the cumulative reward over every possible episode. Formally,
consider an agent operating over an episode of 7' time-steps
where at time-step t the agent encounters state s; and chooses
an action a; according to its policy () and receives a numerical
reward r;. Throughout the paper, it is assumed that the actions
are discrete and finite as well.

Q-learning [42] is a well-established technique that uses an
action-value function, also called the Q-function: Q(s;, a;), to
estimate the expected future reward for taking an action a, in a
state s;. At its core, Q-learning uses the Bellman Optimality
equation to characterize the optimal expected future reward
function via a state-action value function as:

Q*(st,a) =E[ry + - maz (S¢41,4d)] (10)

where, the expectation is taken w.r.t the distribution of state s
and reward r; obtained by taking action a, and =y represents the
discount factor. Unlike classical approaches that use a linear
or tabular representation of the Q-function, modern approaches
employ the use of non-linear deep neural networks for auto-
matic feature extraction and the parameterized representation
of the Q-function. However, it requires large quantities of data
and computation resources for the neural network algorithms
to learn appropriate feature representation. Even though data
collection is quite straightforward, it is crucial for the algorithm
to operate on uncorrelated samples of data for stability. To
mitigate this problem, the technique of experience replay [22]
has proven to be highly successful. The agent uses a replay
buffer to store its experience as a data set of transitions of the
form {si, at, 7, s¢41}. During the learning process, the agent
uses mini-batches of experience (B) drawn randomly from
the replay buffer to calculate the Q-value updates and uses
stochastic gradient-based methods to optimize the parameter-
ized Q-function as:

mgnZ[QG(Siaai) —(ri+v- max Qf (si,a))]* (1D

i€B

where Q7 represents a target Q-network [40] which is often
combined with a deep Q-learning algorithm to avoid any rapid
changes to the target values as the parameters of the base Q-
network change during learning.

We formalize our problem in terms of a fully deterministic
markov decision process (MDP) which is described by the tuple
(H,S, A, Ts, R) defined as follows:

e Horizon (H): the number of time steps to reach a final state
from any given initial state. In this formulation, we assume
the horizon to be the same as the number of tasks in the
workflow. The agent makes an offloading decision for one
task of the workflow at each time step. Hence,

H=1{1,2,...,N} (12)
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e State Space (.5): the state vectors carry information about
the time-step, the workflow and the partial offloading so-
lution. Assuming that the set W represents all possible
workflows and the set P represents the set of all possible
placement solutions, we define the state space as

S=HxW x P (13)

Hence, a state is defined by the tuple, s = (h,w, p). The
initial state is chosen uniformly from the set of all possible
initial states defined as (Sp)

So = {1} x W x {po}

where pg is the zero vector in the space of all possible
offloading solutions (P). It refers to a solution where none
of the tasks are offloaded and are instead executed locally
on the IoT device. Hence,

pO:{O,O,...,O}

e Action Space (A): the action space is a discrete space
containing (1 + £ 4 C) actions with each action referring
to an offloading location available on the underlying edge-
cloud network. The zero location is representative of no
offloading. We define action space as

A={0,1,....,E+1,...E+C}

(14)

15)

(16)

e State-Transition function (Ts): since we assume a fully
deterministic MDP, the transition functions directly map
the current state to the next state instead of defining a
transition probability. Hence, Ts : S x A — §

Ts((h,w,p),a) = (h+1,w, M(h,p,a))  (17)

where, M (h,p,a) represents an action transformation
function,

M:HxPxA—P (18)

The action transformation function describes how the par-
tial offloading solution (p) changes by applying action a
at time-step h.

e Reward function (R): for the deterministic MDP, the re-
ward function defines a real-valued reward for each state-
action pair. Hence R : S x A — R

R((h,w,p),a) =U(w,p) — U(w, M(h,p,a)) (19)

For any given workflow (w), an action (a) at a time-
step (h), defines a transformation on the solution D(h-1) =
P(n)- The reward function captures the amount of improve-
ment made to the solution. Since the MDP always starts
in the initial state so = (1,w,pp), the summation of re-
ward over N time steps by following a policy m can be
calculated as: Ry (7) = 32N | R((i,w,pi1), w(i,w, p; 1)) =
SN U (w, pi1) — Uw, M(i,pi 1, 7(i,w, pi—1)))] Assum-
ing a; = w(i,w,p;—1), and p; = M (i, p;_1, a;) It follows that,

N
Ry(m) =Y _[U(w,pi1) = U(w,p)]

i=1

(20)
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Finally,

Ry(m) = U(w, po) — U(w,pn) 1)

Hence,

maz[Ry(r)] = maxlU(w,po) — Ulw,px)]  (22)
Since U(w, pg) is a known constant for a given workflow,
maximizing the total reward Ry is the same as minimizing the

offloading cost U (w, py ). It follows,

m:rzzz:[RT(ﬂ')} = m;rin[U(w,pN)] (23)

Therefore, the offloading cost (U) can be minimized by
solving the MDP formulated above as long as the set of action
transformations guarantees that the minimum cost solution is
reachable from initial state (1, w,pg) in at most N time-steps.
The optimal policy (7*) defines a set of N actions that transform
the initial solution (pg) to the optimal solution (py) after N
time-steps.

The action transformation function (M) decides how the
current solution changes by applying an action on the current
state of the MDP. A variety of transformation functions can be
used that allow the solution to reach its minimum in at least NV
time steps. We define transformation function (M) as:

M(h,p,a) =p

where, p represents a new solution in which all the tasks follow-
ing the hth task are offloaded to the location corresponding to
the action a, while locations of the tasks prior to the hth task
remain unchanged.

As shown in Fig. 6, the MDP always starts from a fixed initial
solution (pp), and M is applied at each time step with some
chosen value of action (a). It can be seen that the choice of
action transformation function allows the solution vector to be
modified in every dimension so that all possible solutions are
reachable by at least one unique sequence of NV actions. It should
be noted that the tasks are offloaded only after the final solution
has been produced by the trained agent i.e., after all time steps
have been completed. None of the tasks are offloaded on any
intermediate time step.

(24)

IV. META-LEARNING BASED ON DEEP Q-LEARNING

In a dynamic edge-cloud environment, any changes to the
application profile or mode of operation may cause the topology
of underlying workflow-DAGs to be changed. The network
bandwidth and execution speed of remote devices are also sub-
jected to dynamic changes causing the environment parameter
(DR, Vg) to change as well, causing a direct change in the
reward signal of the underlying MDP. This causes the estimated
Q-values to become invalid in the current context and requires re-
training in the changed environment. A meta-learning algorithm
aims to find the optimal meta-parameters () that can adapt to
a new environment i.e., a new set of optimal Q-value estimates,
in a fewer number of learning steps. Such a meta-learning setup
is often referred to as a few-shot learning [37] problem.
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Initial Solution Vector (No-Offloading)

action:to Edge

action: No offloading

time-step: 1

T <4

time-step: 2

#4—

time-step:

#

‘ action:to Cloud
‘ action: to Edge

Final Solution Vector time-step:

Task Offloading Locations

Fig. 6. Transformation of the offloading solution vector p € P, over a single
episode of N = 4 time-steps.

To address the aforementioned meta-learning problem, we
propose a meta-learning algorithm, called the Deep Meta Q-
learning based task-offloading (DMQTO) which combines the
concepts from first-order meta-learning [37] with the deep Q-
learning [38] approach. We employ the deep Q-learning method
for better sample efficiency as well as having the advantage
of off-policy learning for better exploration. The proposed
meta-learning algorithm is described in the algorithm [1]. The
algorithm consists of two phases, the task-learning phase, and
the meta-learning phase.

A. Task-Learning Phase

The task-learning phase represents the inner loop of the meta-
algorithm. In this phase, a new DQN (Q); : 0;), initialized using
the meta-DQN (Qp : ), is trained using trajectories or episodes
from the current environment until the loss stabilizes below a
minimum value £,,;,. The agent first explores the environment
using the e-greedy strategy for a fixed number of episodes and
stores its experience in a replay buffer as a set of transitions (D).
After enough experience has been collected, a random sample
of transitions (D;¥) is selected for learning.

The updated Q-values (Q;) are calculated using:
Qi(Ss, As) = R+ x maz[Qi(S},)] (26)

where,  represents the discount factor and @); represents the
Q-function estimated by the current DQN (Q); : 0;).
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Using Mean Squared Error (MSE) as the loss function, we
obtain the training loss L% as:

X
rx=1

Using a learning rate of «, we update the parameters 6; using
Adam-based stochastic gradient descent as:

where, p is small constant (p < 10_8), m and v represent the
first and second moment vector respectively. We use 51 and [
as the exponential decay rates for our moment estimates thus
updating moment vectors at learning step (¢) as:

1-— L
. Bim + (1 — p1)Ve, L%

(28)

T )
Ué_@v+(1—@ﬂvaﬁky (30)
1— 48

The process of gradient descent is repeated with random batches
of experience (D;¥) until the training loss reaches the minimum
loss value (L, ). After the learning iterations have been com-
pleted, we obtain the learned parameters 6; and store them for
later use in the meta-learning phase.

After running the task-learning phase for multiple random
environments, we obtain a set of learned parameters B

B={6;:ic1,2,...,B]} 31)

B. Meta-Learning Phase

The meta-learning phase represents the outer loop of the meta-
algorithm. In this phase, the set of parameters, 53 learned from
multiple random environments in the task-learning phase, is used
to update the meta parameters. We want the meta-parameters
(0) to be as close as possible, to all the learned parameters
{0} so that it takes less number of learning steps for the meta
parameters to converge to new parameters. In other words, we
directly minimize the mean squared error (Lg) between the
meta-parameters and the learned parameters, expressed as:

_ A5ty g
53_3;2(9 0;)

(32)

We again use gradient descent to perform the minimization of
the MSE Loss (L3). The gradient of £ w.r.t meta-parameters
(0) can be obtained as follows:

1 1 9 1 9
VoLls =Vog Z 500" = o Zw(e —6;)
icB icB
In second-order meta-learning algorithms like MAML [21], the
parameters learned during the inner loop are assumed to be
dependent on the meta parameters through updates made in
the inner loop. In such a case, during the meta-learning step,
second-order back-propagation through multiple gradient up-
date steps, made in the inner loop, becomes a high computation
and memory-intensive task. Hence, in first-order meta-learning,
we assume the learned parameters (6;) to be independent of
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Algorithm 1: Deep Meta Q-Learning Based Task-
Offloading.

Require:Hyper-Parameters («, 3, B, X)

1: Randomly initialize a new meta-DQN (Qy : 0)

2:Set Lin = 00

3: while £,,;,, > £,, do

4: Sample a new batch (7) containing B number of
random environments

5: Initialize an empty set B for storing learned parameters

6: for:=1to Bdo

7 Set the current environment to 7;

8:  Initialize a new DQN (Q; : 6;) < (Qg : 0)

9 Initialize moment vectors m <— 0 and v < 0

0

1

10: while not (Lx < L,,:,) do

11: Explore the current environment using e-greedy
strategy and store the experience in the replay
buffer

12: Sample a batch of X transitions (D;X) from the
replay buffer for learning

13: Calculate Q-Updates Qi(Sz, A,) from experience
(DX)

14: Obtain inner loss £% and use its gradient to update
moment vectors m and v

15: Updated parameters, 0; < 6; — am/(y/v + 1)

16: end while

17: Add 6; to set of learnt parameters B

18: end for

19:  Update loss thresholds as: Lyin < 5 Z?: | L5

20: Obtain outer loss L and use its gradient to update
meta-parameters, 0 < 0 — SV Lz

21: end while

22: output DQN (Qyg : ) as meta-DQN

the meta-parameters so as to avoid the second-order gradient
computation. Hence, the above gradient reduces to:

1
VoLls = 5 2(9 —0;)
i€B

(33)

Finally, using a learning rate of 3, we update the meta-
parameters as:

0«60 — ﬂV@EB (34)

In the implementation of DMQTO, we consider the batch of
learned parameters (B) to be estimated from a uniformly sam-
pled batch of random environments (7). To avoid fine-tuning
DOQN in the early phases of meta-learning, we start with a larger
value of minimum loss (£,;,,) for the task-learning phase and
reduced it over time. This improves the training process by
avoiding the meta-parameters to move too close to any particular
batch of environment parameters.

C. Generalization Bounds

For meta-learning operating in a multi-task setting, the goal is
to produce a meta-algorithm (A ) that can take data from multiple
tasks (7;) and output a task-specific learning algorithm (.A).
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The meta-learning algorithm is said to be data efficient if it can
produce a task-specific algorithm using a small number of tasks
(n) with fewer data points (m) that are assumed to originate
from a common underlying distribution (P). In such a case,
the quantity of interest is the meta-generalization of A which
describes a relation between the performance of a task-specific
algorithm (A) produced by a meta-algorithm (A), on any future
tasks sampled from P; and the number of training-tasks (n) and
data points per tasks (m). We assume that a learning task 7; is
defined using an independent and identically distributed sample
of m data points, called the support set (.5), defined as:

Si ={ (), x;) : Vj € 1, m] } ~ D"

where, D; ~ P. The transfer risk (R), as defined in [38], can
be expressed as:

R(A, P) =Ep.p [ESND"" [E(r,y)ND[‘C(fA(x)v y)]]]

The transfer risk expresses the expected loss of models (f4)
produced using algorithm .4, on new tasks 7; sampled from
a distribution P and hence, characterizes the generalization of
algorithm A over task distribution IP. For a meta-learning algo-
rithm (A) that produces learning algorithm (A) by optimizing
loss (£), we express the meta-generalization error bounds using
the definition given in [39] as follows:

Definition 1. For a meta-learning algorithm A that produces
a learning algorithm A using a meta task sample set S of
n tasks (S ={S; :i € [l,n]}), sampled from a distribution
P, the meta-generalization error bound can expressed by the
function B(d, S) if for any task distribution P and 0 < 6 <1
the following holds with a probability at least (1 — 4) :

(35)

R(A,P) — L(A,S) < B(5,S) (36)

where A is obtained from A using a set of tasks S, as:

A = argmin L(A,S)
Ae{A(S)}

The bounds are obtained in [39] using results from algorithmic
stability in [40] and [41] for the first-order algorithm in a Few-
Shot Classification setting as:

In(1/9)

n

R(A,P(T)) — L(A,S) < O <E2T + L2T§l>

where, the loss minimized in the outer loop £(.A, S) is assumed
to be an empirical estimator of the true transfer risk. The quan-
tities L and L refer to the Lipschitz constant of the inner and
outer loss respectively whereas 1" and T represent the number
of learning steps in the inner loop and outer loop respectively.
In the reinforcement learning setup of the DMQTO algorithm,
we note that the inner loop may use multiple batches of experi-
ence replay for updating Q-values until the loss reaches £, at
the sth iteration of the inner loop. Considering the batch size of
X, the data points per task (m) can be bounded by O(X). Also,
the number of tasks used in the learning phase (n) is the same
as the size of the learned-parameter set |B| = B. Hence, we can

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Algorithm 2: Deployment Algorithm.

Require:Hyper-Parameters (v, X)

1: Initialize a new DQN (Q; : ;) + (Qg : 0)

2: Initialize moment vectors m <— 0 and v < 0

3: while not converged do

4: Explore the current environment using e-greedy
strategy and store the experience in the replay buffer

5:  Sample a batch of X transitions (D;*) from the replay
buffer for learning

6: Calculate Q-Updates Qi(S’I7 A, ) from experience
(D) using (22)

7:  Obtain loss LY using (27) and update moment vectors
m and v using (29) and (30)

8: Updated parameters, 0; < 0; — am/(\/v + 1)

9: end while

10: Output 6; as the learnt parameters

express the bounds for the DMQTO algorithm using Definition
(1) as follows:

Corollary 1. Let T,, and T represent the number of learning
steps of step-size « and 3 respectively and let B and X represent
the number of meta-learning environments and size of replay
batch (D) used per task respectively, the meta-generalization
bounds for DMQTO can be expressed as:

BCO (TB m%/a) + 7;;5)

It is evident from the bounds expressed in (37) that a larger
sample (B) of meta-learning tasks should result in better gen-
eralization with lower transfer risk. It can also be noted that
as B — oo, the generalization bound does not reduce to zero,
instead, it is bounded by the batch-size (X) used by the inner-
learning algorithm (inner loop). This implies that the DMQTO
algorithm will always have a non-zero gap that arises due to
within-task sample complexity in the task-learning phase.

While using a decremented loss threshold in the task-learning
phase, it should be noted thatas £,,,;,, — 0, the agent will require
more batches of experience to fine-tune its Q-value estimates,
causing X — oo. Although this suggests better generalization,
it might be not possible to reduce the loss all the way to zero.
Hence, we assume that the loss threshold tends to move towards
an arbitrarily small value (Lpin, — L,,).

(37

D. Deployment Phase

In the deployment phase, an application instance first com-
municates the application profile, user preferences, and device
information to the central offloading manager which in turn
initializes a new DQN with meta parameters ¢ and train it in
the current environment to obtain optimal parameters ;. The
fine-tuned DQN (Q; : 6;) is then sent to the user device and used
for inference until any changes in the user preferences or device
parameters are detected, after which the application requests
a new policy in the changed environment. The deployment
algorithm is demonstrated in the algorithm [2].
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TABLE II
ENVIRONMENT PARAMETERS

Parameter Range of Values
Ve (liot) 2.0 mJ
VE(ledge) 1.0 mJ
Vi (lcloud) 0.5 mJ
Dg(liot) 0.1mJ
DE(ledge) 0.05 mJ
DE(lcloud) 0.02 mJ
VR (Liot) (0.010,0.015) mS
Ve (ledge) (0.005,0.009) mS
Vi(leioud) (0.002, 0.005) mS
Dr(liot) ledge) (2.0,2.5) mS
DR (ledge, ledge) (1.0,1.5) mS
Dr (ledgev letoud (1~0, 1.5) mS
Dr(letoud; letoud) (0.5,1.0) mS

During the deployment phase, we start with a learning rate
o = 0.01 and gradually reduce it as the loss becomes smaller. We
also decay the exploration probability € as the training progresses
causing the agent to take greedy actions during later phases of
training. Reducing exploration probability in such a way causes
the Q-value estimates of greedy paths to improve and stabilize
as the training process nears its completion. We use a linearly
decaying exploration probability (¢) and an exponentially de-
caying learning rate («) in the deployment phase.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results and perfor-
mance evaluation of the proposed DMQTO algorithm. All the
experiments were conducted on an Intel i7-6700 processor with
16 GB of memory and were implemented using python-3.8 with
PyTorch-1.10.1+cul02 and TensorFlow-2.9.1 for deep learning.

A. Experimental Setup

We set up three experiments to measure the overall perfor-
mance of the DMQTO algorithm, each having a different edge-
cloud network topology and a group of application profiles. To
simulate a dynamic environment, we first define a joint uniform
distribution (P) over all the environment parameters that can be
randomized.

P ~ {DR7 VR) VV? 567 6t}

A set of random environments (7) is sampled from a uniform
distribution of environments () for each task-learning phase.
In such a distribution, each of the parameters in P is chosen
uniformly within a predefined range of values. The range of
each environment parameter is presented in Table II.

The set of workflow DAGs (W) is generated randomly for
each application based on its profile and user preference while
0. and §; are chosen based on all the modes of operation that
the application can support. We consider different values of
node-density (G,,), height (G},) and maximum branch factor
(Gy) across multiple applications and assume that the task sizes
(v;) take values in range [105,107] CPU cycles, whereas data
dependencies (d; ;) take values within the range of [10, 30] MB.
The cost per unit energy C'g is set to 1.34 and the cost per unit
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TABLE III
EXPERIMENTAL PARAMETERS

Experiment | £ | C Gn, Gp, Gy,
A T 1] (510 | (2,10) | 3
B 3] 2| (10,15) | (3,15) 6
C 5| 2 | (15,20) | (4,20) | 8
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Fig. 7. Edge-cloud network architecture used in experiments.
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Fig. 8. Multi-head attention-based DQN architecture.

time C is set to 0.2. A summary of experimental parameters is
presented in Table III.

As shown in Fig. 7, we consider three different edge-cloud
network architectures across experiments A, B, and C with
varying numbers of Edge (£) and Cloud (C) servers.

To learn the Q-function, we employ an ensemble of multi-head
attention-based encoders followed by a fully-connected dense
neural network containing four layers consisting of 256 neurons
each, with ELU (Exponential Linear Unit) activation at each
layer as shown in Fig. 8. The state vector is transformed into a
sequence using an appropriate embedding before it is fed to the
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Fig.9. Task-Embedding for a sample workflow DAG: each column represents
a single time-step in the sequence while the rows represent the features: v;
represents the task size, d; ; represents the data-dependency and p; represents
the offloading location.
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Fig. 10. Meta-Training Loss in experiment A for various batch sizes (B).
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Fig. 11.  Effect of scaling on meta-training: loss across experiments of increas-
ing scale with fixed meta batch size (B = 128).

DQN. This is achieved by defining a topological ordering on the
nodes of the workflow DAG. If two or more tasks are at the same
height, the task with higher task size (V;) is ordered before tasks
with a lower task size. As shown in Fig. 9, the features of each
task in the sequence include its task size (v;), data dependency
to other tasks (d; ;) and its partial offloading location (p;). The
time-step information (%) is appended to the encoder output i.e.,
after the feed forward and normalization layers.

B. Performance Evaluation

The convergence of the meta-training phase with four differ-
ent batch sizes (B) is shown in Fig. 10. It is noted that using a
larger batch size in the meta-learning phase results in better min-
imization of the meta-loss and takes a lower number of learning
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parameters during deployment phase.
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Fig. 13.  Comparison of average cost improvement percentage (7 ) for differ-
ent offloading schemes under 3 modes of operation for the experiment (C).

steps to converge. Fig. 11 shows the effect of environment scale
on meta-convergence with fixed meta batch size 5.

The convergence performance of the meta-initialization
method is shown in Fig. 14. We compare the convergence perfor-
mance of meta-initialization method with two other initialization
methods:

® Pre-Trained: a DQN trained on random environments

® Random Initialization: a DQN initialized randomly

For validation, we use a set of frozen environments contain-
ing fixed workflow-DAG with topology similar to that in the
corresponding training environments. We define the average
validation cost improvement (V) in the total offloading cost for
the currently trained scheme (Sp) over no-offloading scheme
(Sp) for the set of validation workflows (W, ), defined as:

1 U(w, po) — U(w,ps)
. 2

Vigy =
DT S Ulwp)

(3%

where, U(w, pg) represents the cost achieved by no-offloading
scheme (Sp) and U (w, pg) represents the cost achieved for the
offloading solution produced by currently trained scheme (Sp).

The validation cost improvement captures the reduction in
offloading cost achieved by offloading solutions produced by
the trained scheme over the no-offloading scheme. We use a
single validation set for each experiment which consists of 20
different random environments with frozen parameters P where
each environment has 100 unique validation workflows.

As shown in Fig. 14, the DMQTO meta-initialization method
allows for faster convergence in a fewer number of steps
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as compared to the other two initialization methods. It can  workflows (W), defined as:
be noted from Fig. 12 that the loss observed by DQNs us-
ing the meta-initialization method is quite low as compared 100 U(w,po) — Ulw, p)
o e . . . ) b
to random-initialization. This allows the meta-DQNs to con- Jis) = W[ E Ulw.po) (39
.. . 0
verge faster, requiring fewer learning steps to reach the same wew ’

level of performance when compared to other initialization
methods.

To observe the effect of environment changes on offloading
cost, we consider a single application running in three differ-
ent modes of operation and subject it to random environment
changes. The environment parameters are chosen randomly from
within the range as defined in Table II. Fig. 15 shows the
offloading cost as the DQN is being trained using the deployment
algorithm over three episodes of environment randomization.

To measure the performance of trained DQNs, we use base-
lines obtained using the fine-tuned multi-layer perceptron (MLP)
based DQN [22] and Double-DQN [23] algorithms. We also
compare the results with two other non-intelligent offloading
schemes namely, Edge-Only offloading and Cloud-Only offload-
ing. To compare the performance of different offloading schemes
under each mode of operation, we define the average cost
improvement percentage (J) in the total offloading cost for a
given scheme (S) over No-Offloading scheme (Sp) for a set of

where, U(w, pp) represents the cost achieved by no-offloading
scheme (Sy) and U(w, p) represents the cost achieved for the
offloading solution produced by current scheme (S).

As seen in Fig. 13, the average cost improvement (%) in total
offloading cost over the no-offloading scheme is the largest in
the DMQTO algorithm which suggests that DMQTO achieves
lower cost than any other scheme which is a direct consequence
of faster convergence.

We have also compared our algorithm against compati-
ble meta-learning methods in the existing literature such as
MRLCO [21], MELO [49], and MR-DRO [50], all of which
use first-order meta-learning. The comparison is based on a
restricted environment model since the existing schemes do
not capture the scale of the environment and/or the application
task model (DAG-based) as used in our experiments. Table IV
captures the difference between various existing meta-learning-
based methods.
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TABLE IV

DIFFERENCES IN EXISTING META-LEARNING BASED METHODS

Method MRLCO MELO MR-DRO DMQTO (ours)
Optimization parameter execution time execution time | execution time, energy consumption | execution time, energy consumption
RL-Algorithm (inner loop) Proximal Policy Optimization Q-Learning Q-Learning Q-Learning
No. of offloading locations fixed (2) fixed (2) fixed (3) variable (>3)
Task-model DAG Sequence Sequence DAG
Neural Network architecture Seq2Seq LSTM MLP MLP Multi-Head attention encoder
DMQTO vs MRLCO DMQTO vs MELO DMQTO vs MR-DRO
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Fig. 16.  Convergence performance under different meta-initialized methods.
TABLE V

For comparison against the MRLCO and MELO schemes,
we consider only the low-latency mode with a specialized

environment that contains only one edge server since both of

these schemes consider binary offloading and optimize only
the execution time of tasks. Furthermore, the MELO scheme
considers sequential tasks only which can be represented by
DAGs with a maximum branch factor of 1. For comparison
with the MR-DRO scheme, we consider a single edge and a
single cloud server with sequential tasks only. Fig. 16 compares
the convergence performance of meta-initialized networks using
the MRLCO, MELO, and MR-DRO schemes over the DMQTO
scheme. The DMQTO scheme performs better than the MRLCO
scheme in the early stages of fine-tuning which can be attributed
to the smaller size of the multi-head attention-based DQN used
in the DMQTO scheme as opposed to a larger seq2seq LSTM
encoder-decoder architecture used in the MRLCO scheme.
However, given enough training time, both schemes can achieve
equivalent performance. The MELO scheme is designed for
binary-offloading for the sequential task models instead of the
DAG-based task model and uses simple multi-layer perceptron
(MLP) based DQN. Our scheme performs better than MELO
because of the use of multi-head attention-based architecture
that can better capture sequential data. The same can be stated
for MR-DRO which also uses MLP-based DQN and is designed
for sequential task models instead of DAG-based task models.

C. Computational Complexity

Due to inherent randomness in Deep RL algorithms, it is
difficult to capture the time complexity of such algorithms
accurately. Table V shows the average time for our deployment
algorithm (Algorithm [2]) for random initialized, pre-trained
initialized, and meta-initialized DQN for all three experiments.

AVERAGE TRAINING TIME (IN MINUTES) FOR THE DEPLOYMENT ALGORITHM

Experiment | Random-Initialization | Pre-trained | Meta-Initialization
A 12.66 8.95 5.06
B 20.32 13.33 8.41
C 31.87 20.52 12.42

The experiments are conducted on an Intel 17-6700 processor
with 16 GB of memory. It can be noted that the CPU time is
comparatively less for meta-initialization as compared to other
initialization methods.

Modern RL libraries provide vectorized environments and
parallel implementation of RL algorithms that can significantly
improve training time. However, we do not employ parallelism
or use vectorized environments for training. The results pre-
sented in this paper are based on simple non-vectorized envi-
ronments without employing any parallelism.

VI. CONCLUSION

In this article, we proposed an improved framework for for-
mulating multi-task offloading problems in dynamic edge-cloud
systems. In our formulation, we used directed acyclic graphs
(DAGs) to model the application workflows and consider that
the offloading locations span across multiple edge and cloud
servers. We presented the DMQTO algorithm that uses meta-
learning techniques to improve the learning process in dynamic
edge-cloud environments by reducing the time required to train
an optimal offloading policy. Through the experiments, it was
observed that the proposed DMQTO algorithm consistently
achieved the lowest offloading cost in a variety of dynamic
scenarios as compared to other methods.
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In recent years, resource scheduling in edge computing has
attracted widespread interest from industry and academia. In
the future, we plan to expand the DMQTO framework to in-
clude resource scheduling as well. In addition, we shall try to
improve the meta-learning process so that it can further reduce
the training time and improve overall efficiency.
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