
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024 2583

Deep Meta Q-Learning Based Multi-Task

Offloading in Edge-Cloud Systems
Nelson Sharma , Aswini Ghosh , Rajiv Misra , Senior Member, IEEE, and Sajal K. Das , Fellow, IEEE

Abstract—Resource-constrained edge devices can not efficiently
handle the explosive growth of mobile data and the increasing com-
putational demand of modern-day user applications. Task offload-
ing allows the migration of complex tasks from user devices to the
remote edge-cloud servers thereby reducing their computational
burden and energy consumption while also improving the effi-
ciency of task processing. However, obtaining the optimal offload-
ing strategy in a multi-task offloading decision-making process is
an NP-hard problem. Existing Deep learning techniques with slow
learning rates and weak adaptability are not suitable for dynamic
multi-user scenarios. In this article, we propose a novel deep meta-
reinforcement learning-based approach to the multi-task offload-
ing problem using a combination of first-order meta-learning and
deep Q-learning methods. We establish the meta-generalization
bounds for the proposed algorithm and demonstrate that it can
reduce the time and energy consumption of IoT applications by up
to 15%. Through rigorous simulations, we show that our method
achieves near-optimal offloading solutions while also being able to
adapt to dynamic edge-cloud environments.

Index Terms—Deep q-learning, directed acyclic graph, edge-
cloud computing, Internet of Things, meta-learning, multi-task
offloading.

I. INTRODUCTION

W
ITH the advent of Internet of Things (IoT) and rapid

advancements in communication technologies, there has

been an unprecedented growth in the volume of data generated

by IoT and end-user devices. AI-enabled Intelligent IoT devices

have increased demand for computational resources while also

trying to operate under stringent latency and capacity con-

straints which cannot be adequately addressed by a conventional

centralized cloud computing architecture [1]. Edge computing

emerges as an extension of cloud computing which shifts the

function of cloud services to the proximity of end users. Edge

caching, edge training, edge inference, and edge offloading are

four fundamental components of edge intelligence [2]. Edge

offloading helps to migrate complex and computation-intensive

Manuscript received 8 February 2022; revised 13 March 2023; accepted 23
March 2023. Date of publication 5 April 2023; date of current version 6 March
2024. The work of Sajal K. Das was supported by the NSF under Grants
CNS-2008878 (FLINT: Robust Federated Learning for Internet of Things),
OAC-1916084 (SANDY), and OAC-2104078 (CANDY). Recommended for
acceptance by A. Capone. (Corresponding author: Aswini Ghosh.)

Nelson Sharma, Aswini Ghosh, and Rajiv Misra are with the Department of
Computer Science, Engineering, Indian Institute of Technology, Patna 801106,
India (e-mail: nelson_2121cs07@iitp.ac.in; aswini_2121cs02@iitp.ac.in; ra-
jivm@iitp.ac.in).

Sajal K. Das is with the Department of Computer Science, Missouri University
of Science, Technology, Rolla, MO 65409 USA (e-mail: sdas@mst.edu).

Digital Object Identifier 10.1109/TMC.2023.3264901

tasks to nearby cloudlets by utilizing powerful decision-making

capabilities [3] of edge intelligence.

Making optimal offloading decisions in multi access edge

computing (MEC) is generally affected by the quality of network

connection, wireless communication channels, preferences of

application users, mobility of IoT devices, and availability of

cloud servers. A downside of edge offloading is that it increases

the amount of data communication between the IoT and edge

devices which may cause network congestion and affects the

latency of user devices. In addition, adjusting the offloading

decisions in rapidly changing MEC environments is usually a

difficult task because it requires recomputing optimal offloading

solutions every time the environment changes. It creates huge

service delays [4] and increases resource consumption of edge

devices.

By extending the offloading process to cloud servers, users can

essentially overcome any resource limitations imposed by their

devices while also consuming less overall energy. In [35], the

authors considered offloading decisions for a series of dependent

tasks considering the delay and energy consumption of the con-

cerned devices. It is assumed that the application sub-tasks are

atomic i.e., a task can be either performed locally or completely

offloaded to a remote location. Being able to execute multiple

sub-tasks in parallel can reduce the overall execution time of user

applications, which is highly desirable for every user application

today. Multi-threaded processing models [28], [29], [30] and

directed acyclic graphs (DAG) [31], [32], [33], [34] are some

of the known techniques for modeling applications in a task

offloading scenario.

Deep Reinforcement Learning (DRL) is a promising way

to address task offloading issues but the main disadvantage

of DRL is slower learning speed and weak inductive bias,

making it generally less efficient [6]. Recent applications of

DRL to various MEC task offloading problems are discussed

in [2], [24], [25], [27], where the models learn the offloading

policy by interacting with the MEC environment but strictly

consider the MEC host, wireless channel and user equipment to

be stationary. All these methods have the shortcoming of weak

adaptability in dynamic environments as they require full re-

training in new environments, making it a very time-consuming

process.

Researchers have introduced meta-reinforcement learn-

ing [26] to address the adaptability issue by leveraging knowl-

edge learned from a range of training tasks to perform sig-

nificantly better on new or unseen tasks. Meta reinforcement

learning (MRL) tries to learn a meta-policy which, when trained,

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2584 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

can learn a new or unseen task, using a small number of interac-

tions with the environment. MRL algorithms usually have two

learning procedures, the inner loop and the outer loop. The inner

loop learns a new task, while the outer loop uses its experiences

over different task contexts in random environments to gradually

adjust the parameters of meta-policy such that new tasks can be

learned in a fewer number of learning steps [27]. It should be

noted that the term task used in the context of meta-learning

represents a meta-task and is different from that used in the

context of task offloading.

In this research, we introduce a novel meta-learning method

that accounts for multi-task dependency and quick adaptability

while optimizing offloading decisions, ensuring that total exe-

cution time and energy consumption are kept to a minimum in

a dynamic edge-cloud environment. The major contribution of

this work can be summarized as follows:
� We propose a framework for multi-task offloading where

we use directed acyclic graphs (DAGs) for modeling appli-

cations and consider that the offloading decisions are to be

made for multiple dependent tasks across multiple remote

edge or cloud servers.
� Taking into account the dynamic nature of edge-cloud

environments, we formulate the task offloading problem

as a few-shot meta-learning [47] problem.
� We propose a meta-learning algorithm, called Deep Meta

Q-learning based task-offloading (DMQTO), which uses

first-order meta-learning and deep Q-learning to address

the multi-task offloading problem.
� We evaluate the performance of our algorithm through

rigorous testing under a variety of dynamic edge-cloud

environments. We observe that the proposed method can

achieve up to 15% improvements in time and energy con-

sumption of applications over four baseline methods.

The rest of the paper is organized as follows. We have re-

viewed the related work in Section II. The system model and

problem formulation are presented in Section III. In Section IV,

we have presented the proposed Deep Meta Q-learning based

offloading framework and algorithm. Section V contains exper-

imental results and performance evaluation. Finally, Section VI

concludes the paper.

II. RELATED WORK

In the existing literature, the task-offloading methods used in

MEC or similar environments can be broadly classified into two

categories – Traditional and Deep Learning methods.

Traditional methods mainly used heuristics and meta-

heuristic based solution and numerical optimization based meth-

ods. The authors in [7] modeled the computation offloading

decision problem as a multi-user computation offloading game

for mobile-edge cloud computing in a multi-channel wireless

context and proposed a distributed computation offloading algo-

rithm that can successfully achieve the game’s Nash equilibrium.

In [8], the computation offloading problem is formulated in a

multi-cell mobile edge-computing scenario. In the single-user

case, the authors computed the global optimal solution of the

resulting non-convex optimization problem in closed form. In

the more general multi-cell multi-user scenario, they developed

centralized and distributed Successive Convex Approximation

based algorithm with provable convergence to local optimal

solutions.

A Lyapunov optimization method was proposed in [9] with

a goal to optimize the long-term problems on a slot-by-slot

basis. The authors utilized an open Jackson queuing network

to optimize caching, jointly with task offloading. Based on

the Lyapunov optimization novel eTime strategy is presented

in [10] for energy-efficient data transmission between cloud and

mobile devices. eTime aggressively and adaptively seizes the

timing of good connectivity to pre-fetch frequently used data

while deferring delay-tolerant data in bad connectivity. In [11]

is proposed the low complexity Lyapunov optimization-based

dynamic computation offloading algorithm for green MEC sys-

tems with energy harvesting (EH) devices which jointly decides

on the offloading decision, the CPU-cycle frequencies for mobile

execution, and the transmit power for computation offloading.

In [12], the authors investigated the trade-off between energy

consumption and execution delay for dynamic offloading tasks

in an MEC system with EH capabilities and proposed an online

dynamic Lyapunov optimization-based offloading algorithm.

Key challenges of task offloading in blockchain-enabled het-

erogeneous IoT-edge-cloud computing architecture is addressed

in [13] that proposed an energy-efficient dynamic task offloading

algorithm which can dynamically offload tasks by choosing the

optimal computing location in an online way. In [14], the authors

investigated two types of delayed offloading policies – the partial

offloading model and the full offloading model. Both models

minimize the energy-response time-weighted product metric.

The authors have shown that for delay-sensitive applications, the

partial offloading model is mostly preferred and if applications

are delay-tolerant, the full offloading model outperforms the

other offloading models when using long deadlines.

A computing offloading game for mobile devices and edge-

cloud servers is proposed in [15] which showed the existence

of Stackelberg equilibrium in that game. In [51] is proposed

distributed task offloading algorithm by formulating the of-

floading problem as a multi-user potential game. In [16], the

authors proposed a novel memetic algorithm based application

placement technique to solve the task offloading problems in

computing environments with multiple IoT devices, multiple

fog/edge servers, and cloud servers. The multi-user computation

offloading problem is modeled in [43] as a mixed-integer linear

programming problem and an iterative heuristic algorithm is

propsoed to make offloading decisions dynamically. In [33],

a heuristic algorithm is proposed for the dependency-aware

task offloading problem without considering parallelism among

the sub-tasks. The traditional approaches cannot handle large

and complex decision-making processes and require a huge

amount of computation time, making them impractical for many

real-world scenarios.

In recent years, artificial intelligence (AI) and deep learning

(DL) have gained a significant amount of popularity among re-

searchers. Although reinforcement learning (RL) shows promis-

ing results, it usually suffers from slow learning and weak

adaptability in unseen environments. In such cases, conventional

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2585

RL algorithms perform poorly since the learned parameters

cannot make accurate decisions in changing environments and

require retraining from scratch, making the learning process very

slow. Repetitive training consumes large amount of computation

resources and increases the overall time consumption of the

offloading algorithm.

A deep reinforcement learning-based online offloading al-

gorithm is proposed in [5] to maximize the weighted sum

computation rate in wireless-powered MEC networks with bi-

nary computation offloading. In [45], the authors applied deep-

imitation-learning based algorithms for fine-grained computa-

tion offloading for a single mobile device within MEC networks.

In [46], a distributed deep learning-based offloading algorithm

is proposed for MEC networks to minimize the overall system

utility including both the total energy consumption and the

delay in finishing the task. In [18] is proposed a distributed

deep learning-driven task offloading algorithm where multiple

parallel deep neural networks (DNNs) are adopted to effectively

and efficiently generate offloading decisions over the mobile

device (MDs), edge-cloud server, and central cloud server. To

obtain the optimal offloading policy in a dynamic blockchain

network with MEC for multiple users, the authors in [20] pro-

posed reinforcement learning-based task offloading algorithms

but did not consider dynamic environment changes in MEC.

A meta reinforcement learning-based task offloading frame-

work for edge-cloud computing is proposed in [35] that con-

sidered a single task at a time for offloading decision-making.

Since this method considers a single task, it is not suitable for

dependent multi-task application models where the offloading

decisions for multiple tasks would be taken at a time. In [36],

a DRL-based methodology is developed for the MEC system’s

DAG-based multi-task computation offloading strategy, but this

approach has very limited adaptability in MEC environments

that change often.

IoT applications are usually composed of multiple tasks that

depend on each other. Therefore, while making offloading de-

cisions, it is important to take task dependencies into account.

In [44], a multi-user partial computation offloading is formulated

in the MEC system to minimize the weighted sum of energy

consumption of smart mobile devices (SMDs). In [21], the

authors developed a successful offloading strategy to achieve

the lowest possible total latency and used meta-reinforcement

learning for fast adaptability. The authors use directed acyclic

graphs (DAGs) to model mobile applications and use policy

optimization to train a sequence-to-sequence (seq2seq) neural

network. In [48], the dependent task offloading is approached us-

ing both deep Q-learning and proximal policy optimization tech-

niques. In [50], the authors used first-order meta-RL methods to

obtain fine-tuned policies in heterogeneous edge/cloud comput-

ing environments with multiple mobile terminal users, varying

data volumes, and varying task workloads. However, they do

not consider inter-task dependency. In [49], a meta-learning for

computation offloading in dynamic MEC is proposed, without

ctaking task dependency into account.

The deep learning methods discussed so far can easily outper-

form traditional methods in complex decision-making scenarios.

However, ensuring adaptability and minimizing total execution

Fig. 1. Edge-cloud network with multiple IoT devices.

time as well as energy consumption in dynamic environments

for highly complex, multi-task systems is very challenging.

Traditional optimization algorithms require iteratively adjusting

the offloading decisions towards the optimum which is often in-

feasible for real-time system optimization under a fast-changing

environment. Therefore, improved intelligent meta-learning al-

gorithms are well suited to address the aforementioned objective.

III. SYSTEM MODEL

As shown in Fig. 1, the edge-cloud network model con-

sists of multiple cloud and edge servers interconnected via a

network with the IoT devices directly connecting to nearby

high-bandwidth edge servers. For the remainder of this paper,

we shall refer to all end-user devices as IoT devices while the

edge and cloud servers shall be referred to as remote servers.

A. Environment Model

The environment is designed to model multi-user edge-cloud

scenarios like MECs. It is based on an underlying edge-cloud

network topology where each server or device is referred to as

a location (l). An offloading process that optimizes the offload-

ing decision based on parameters like task execution time and

energy consumption, requires access to underlying environment

parameters such as available bandwidth, transmission delays in

the network, computation power of cloud servers and energy

requirement of the user and edge servers to compute offloading

costs. It is assumed that this information is available through

appropriate monitoring tools deployed in the environment. We

characterize such an environment model using the following

parameters:
� DR(li, lj) represents the Data Time Consumption i.e., the

time taken to move a unit of data between locations li and

lj over the network.
� DE(li) represents the Data Energy Consumption i.e., the

energy consumed for processing a unit of data at the

location li, which includes energy consumption for trans-

mitting and receiving data through appropriate networking

hardware.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2586 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 2. Example of DAGs for computer vision applications.

� VR(li) represents the Task Time Consumption i.e., the time

taken to execute a unit task at the location li.
� VE(li) represents the Task Energy Consumption i.e., the

energy consumed for executing a unit task at the location

li.

B. Application Model

As described in [21], [35], [36], [48], [53], [54], IoT devices

can have applications composed of multiple tasks with inner

dependencies among them. We refer to such a set of dependent

tasks as an application workflow. A workflow can be interpreted

as one large set of programs or tasks to be executed in a certain

order as defined by the data dependencies between them [35],

[53]. An application may generate a variety of workflows that

are essentially task graphs modeled using directed acyclic

graphs (DAGs). Some examples of computer vision application

DAGs [54] are shown in Fig. 2. In such a workflow DAG, the

nodes represent the tasks in a workflow while the edges represent

the data dependencies i.e., communication required between

tasks. It is assumed that each task requires some input data and

produces certain output data for the next task. After the execution

of a certain task in the workflow, the output data produced, has

to be moved over the network to the location where the next

task is to be executed. Also, the initial data required for the first

set of tasks is assumed to be located on the IoT device. At the

end of completing all tasks, the final output data must be sent

back to the IoT device which generated the workflow. Formally,

a workflow containing N tasks is represented by a DAG (w),
defined as:

w = {V,D}

where, V represents the vertex set and D represents the edge

set, defined as:

V = {(vi) : 0 ≤ i ≤ (N + 1)}

D = {(di,j) : 0 ≤ i, j ≤ (N + 1)}

Fig. 3. IoT application workflows modeled as directed acyclic graphs (DAGs).

Accordingly, for the ith task, vi represents the task size (in

CPU cycles) and di,j represents the size of data dependency

(in bytes) to the jth task. Note that the entry task (v0) and the

exit task (vN+1) are added to the workflow-DAG as a proxy

for IoT input and output respectively. Both the entry and the

exit task have unit task size which represents some initial and

final processing delay at the IoT devices. These tasks cannot be

offloaded and their sizes will not affect the offloading decision.

Also, the setJi represents the set of all parent tasks of the ith task,

and the set Ki represents the set of all tasks that are dependent

on the ith task. Fig. 3 shows a few DAG topologies used to

represent an application workflow.

In order to leverage the computation resource of the edge

servers, the application would require to offload its workflow

consisting of multiple dependent tasks, across the available

remote locations using an appropriate offloading scheme. Such

a scheme should be able to produce offloading solutions of the

form p, represented by a sequence of N offloading locations as:

p = {l1, l2, l3, . . ., lN}
where li represents the offloading location for the ith task of the

workflow. It should be noted that the IoT devices are referenced

by a special location number l = 0. Hence, li = 0 represents no

offloading i.e., the task is not to be offloaded to a remote location

but executed locally on the IoT device. Since only IoT devices

can generate workflows, it is assumed that l0 = lN+1 = 0. For

example, Fig. 4 depicts the placement solution p = {1, 4, 2, 5}
for the given workflow containing four tasks. In the solution

vector p, the locations 1 and 2 refer to edge servers whereas the

locations 4 and 5 refer to cloud servers.

C. Cost Model

The offloading cost (U) captures the total weighted cost

of offloading a workflow (w) which includes task execution

time, delay in moving data within the network, and the energy

consumed in processing tasks and data by remote servers and IoT

devices. Specifically, the offloading cost for a given workflow is

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2587

Fig. 4. Task placement across the edge-cloud network using offloading solu-
tion p = {1, 4, 2, 5} for a 3-level DAG.

the sum of the costs of the total energy consumed and the total

delay incurred in executing the workflow i.e., from the time

of the request, till the final output data is received back at the

requesting IoT device.

To capture the proper trade-off between execution time and

energy consumption, one should agree on an appropriate cost

per unit of both time and energy. Hence a trade-off is decided

where we assume equivalence between some amount of time and

energy. The trade-off is implementation specific and should be

decided based on the energy consumption and execution time of

hardware components used by the participating IoT devices and

remote servers. We assume that Tt units of time (milliseconds)

are equivalent to Te units of energy (millijoules) and both the

terms have unit cost. Hence, the cost per unit of execution time

(CT) and the cost per unit of energy consumption (CE) can be

defined as:

CT =
1

Tt

(1)

CE =
1

Te

(2)

The offloading cost depends on the parameters that define the

underlying edge-cloud network model which may vary in the

number of edge servers (E) and the number of cloud servers (C)
that are available. To model the environment, we assume a set of

four parameters {DR, DE , VR, VE} as defined in Section III-A.

The offloading cost for a workflow consists of two components

namely, energy consumption cost (E) and time consumption cost

(T). These components are defined as follows:
� Energy Consumption Cost (E), is the combined energy

cost incurred in completing all the tasks in a workflow

at their respective offloading location in the edge-cloud

network, defined as:

E = CE · (ED + EV) (3)

where, ED represents the total energy consumed for data

communication at the respective locations of task execu-

tion, defined as:

ED =

N
∑

i=1

⎡

⎣DE(li)×

⎛

¿

∑

j∈Ji

dj,i +
∑

k∈Ki

di,k

À

⎠

⎤

⎦ (4)

and EV represents the total energy consumed in executing

all the tasks at their respective offloading locations, defined

as:

EV =
N
∑

i=1

vi × VE(li) (5)

� Time Consumption Cost (T), is the cost equivalent of

the total time required to complete the execution of a

workflow including task execution time and data commu-

nication delay. The total execution time of all the tasks in

a workflow-DAG is given by the cost of the critical path

i.e., the path of maximum delay through the corresponding

delay-DAG. To obtain a delay-DAG (w∆ = {V∆, D∆}),
we first define a DAG which is isomorphic to the workflow-

DAG (w = {V,D}) and then set its weights as:

D∆(i, j) = di,j ×DR(li, lj) + vi × VR(li) (6)

The delay-DAG combines the time consumption for task

execution and data transfer. As opposed to workflow-DAG,

the delay-DAG has no weights assigned to its nodes. The

edge weights in the delay-DAG represent the time delay

between dependent tasks i.e., the sum of task execution

time and the data transfer time to the next dependent task.

The total time consumption cost can then be obtained using:

T = CT ·∆max(w∆) (7)

where ∆max is a function that computes the total delay

of the critical path (longest path) in a given delay-DAG

(w∆). Finding the longest path is an NP-hard problem for

an arbitrary graph. However, for directed acyclic graphs,

finding the longest path is the same as finding the shortest

path on an equivalent graph with negative weights. Hence,

the critical path problem for the delay-DAG can be solved

in linear time O(E + V) using a topological sorting-based

algorithm [52].

Finally, the total offloading cost (U) for a workflow (w) using

an offloading solution (p) can be expressed as:

U(w, p) = δtT + δeE (8)

where δt and δe are the weights assigned to the time con-

sumption cost and the energy consumption cost respectively.

These weights take binary values (δt, δe ∈ {0, 1}) based on the

application’s mode of operation. The applications may run under

three major modes of operation as follows:
� Low Latency Mode: applications running on low latency

mode prefer to improve performance. In this mode, no

weight is assigned to the energy consumption cost. Hence,

δe = 0 and δt = 1.
� Low Power Mode : applications running on low power

mode prefer to reduce the energy consumption of devices.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2588 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 5. Steps in application-specific task-offloading.

In this mode, no weight is assigned to the time consumption

cost. Hence, δe = 1 and δt = 0.
� Balanced Mode: applications running on balanced mode

prefer to minimize both energy consumption and execution

time. In this mode, equal weights are assigned to both the

energy consumption cost and the time consumption cost.

Hence, δe = δt = 1.

Using an application-specific offloading approach requires

each application instance to have its own offloading policy that

is fine-tuned to the application-specific workflows. When an

application instance is initialized on an IoT device, it commu-

nicates with a central offloading manager to obtain a refined

policy based on the current application profile, user preferences,

and device parameters such as transmission rate and energy

consumption. The central offloading manager maintains a col-

lection of meta-policies and provides fine-tuned policies to each

application instance as and when required.

As shown in Fig. 5, our approach shifts the computation

required for training environment-specific policies from IoT

devices to edge servers which further reduces the computa-

tional burden at the end devices. Another advantage of such

an application-specific approach is that it allows the grouping

of offloading policies according to the set of applications they

apply to. Instead of maintaining a single policy for all types of

applications, we can now group the policies according to the

similarity in their workflow profiles and the specific IoT devices

that they can support. Through our experiments, it is observed

that a clever grouping of applications can greatly improve adapt-

ability and allows the use of heterogeneous policies. It should

be noted that the terms offloading scheme and offloading policy

can be used interchangeably. A summary of the notation used in

this paper is presented in Table I.

D. Problem Formulation

Given an edge-cloud network represented using parameters

{DR, DE , VR, VE} containing E number of edge servers and C
number of cloud servers with the IoT applications generating

workflows according to their respective profiles and mode of

TABLE I
SUMMARY OF NOTATION

operation, our objective is to find an optimal offloading scheme

that can generate minimum cost offloading solution for any given

workflow. Formally, the problem can be expressed as:

min
p

{U(w, p)} ∀w ∈ W (9)

where W represents the set of all possible workflows that

can be generated by an application running on an IoT device

under different profiles or modes of operation. The workflows,

represented by DAGs, can vary according to the IoT application

and user preferences. We consider a variety of workflow DAGs

characterized by the following attributes:
� Node-density - the number of nodes in the DAG that

represent the total number of tasks in the workflow.
� Height - the maximum path length starting from the entry

task and ending at the exit task.
� Maximum branch-factor - represents the maximum number

of dependent tasks that any given task can have.

We consider a variety of applications with randomly generated

workflow DAGs having the node density, height, and maximum

branch factor limited to a maximum of 20. These parameters are

described in detail in Section V. The applications are allowed

to run in three modes of operation i.e., low latency, low power,

and balanced mode. In the following section, we formalize the

offloading cost optimization problem using the reinforcement

learning framework.

E. Reinforcement Learning

In a reinforcement learning setup, we consider agents that are

able to take a sequence of actions in an environment by following

a policy. The environment state dynamics are described by a

Markov Decision Process (MDP) which can be either stochastic

or fully deterministic. The agents build up their experience by

taking actions and obtaining a single scalar reward per action.

In an episodic setting with fixed horizon (H), we consider the

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2589

MDP to have a finite and constant number of state transitions

(steps) for each episode i.e., agents can reach a final state from

any given initial state, by taking a fixed and constant number of

actions. The task of an agent is to learn a policy that maximizes

the cumulative reward over every possible episode. Formally,

consider an agent operating over an episode of T time-steps

where at time-step t the agent encounters state st and chooses

an action at according to its policy (π) and receives a numerical

reward rt. Throughout the paper, it is assumed that the actions

are discrete and finite as well.

Q-learning [42] is a well-established technique that uses an

action-value function, also called the Q-function: Q(st, at), to

estimate the expected future reward for taking an action at in a

state st. At its core, Q-learning uses the Bellman Optimality

equation to characterize the optimal expected future reward

function via a state-action value function as:

Q∗(st, a) = E[rt + γ ·max
á

(st+1, á)] (10)

where, the expectation is taken w.r.t the distribution of state st+1

and reward rt obtained by taking action a, and γ represents the

discount factor. Unlike classical approaches that use a linear

or tabular representation of the Q-function, modern approaches

employ the use of non-linear deep neural networks for auto-

matic feature extraction and the parameterized representation

of the Q-function. However, it requires large quantities of data

and computation resources for the neural network algorithms

to learn appropriate feature representation. Even though data

collection is quite straightforward, it is crucial for the algorithm

to operate on uncorrelated samples of data for stability. To

mitigate this problem, the technique of experience replay [22]

has proven to be highly successful. The agent uses a replay

buffer to store its experience as a data set of transitions of the

form {st, at, rt, st+1}. During the learning process, the agent

uses mini-batches of experience (B) drawn randomly from

the replay buffer to calculate the Q-value updates and uses

stochastic gradient-based methods to optimize the parameter-

ized Q-function as:

min
θ

∑

i∈B
[Qθ(si, ai)− (ri + γ ·max

a
QT

θ (si, a))]
2 (11)

where QT
θ represents a target Q-network [40] which is often

combined with a deep Q-learning algorithm to avoid any rapid

changes to the target values as the parameters of the base Q-

network change during learning.

We formalize our problem in terms of a fully deterministic

markov decision process (MDP) which is described by the tuple

(H,S,A, TS , R) defined as follows:
� Horizon (H): the number of time steps to reach a final state

from any given initial state. In this formulation, we assume

the horizon to be the same as the number of tasks in the

workflow. The agent makes an offloading decision for one

task of the workflow at each time step. Hence,

H = {1, 2, . . ., N} (12)

� State Space (S): the state vectors carry information about

the time-step, the workflow and the partial offloading so-

lution. Assuming that the set W represents all possible

workflows and the set P represents the set of all possible

placement solutions, we define the state space as

S = H ×W × P (13)

Hence, a state is defined by the tuple, s = (h,w, p). The

initial state is chosen uniformly from the set of all possible

initial states defined as (S0)

S0 = {1} ×W × {p0} (14)

where p0 is the zero vector in the space of all possible

offloading solutions (P). It refers to a solution where none

of the tasks are offloaded and are instead executed locally

on the IoT device. Hence,

p0 = {0, 0, . . ., 0} (15)

� Action Space (A): the action space is a discrete space

containing (1 + E + C) actions with each action referring

to an offloading location available on the underlying edge-

cloud network. The zero location is representative of no

offloading. We define action space as

A = {0, 1, . . ., E , E + 1, . . ., E + C} (16)

� State-Transition function (TS): since we assume a fully

deterministic MDP, the transition functions directly map

the current state to the next state instead of defining a

transition probability. Hence, TS : S ×A → S

TS((h,w, p), a) = (h+ 1, w,M(h, p, a)) (17)

where, M(h, p, a) represents an action transformation

function,

M : H × P ×A → P (18)

The action transformation function describes how the par-

tial offloading solution (p) changes by applying action a
at time-step h.

� Reward function (R): for the deterministic MDP, the re-

ward function defines a real-valued reward for each state-

action pair. Hence R : S ×A → R

R((h,w, p), a) = U(w, p)− U(w,M(h, p, a)) (19)

For any given workflow (w), an action (a) at a time-

step (h), defines a transformation on the solution p(h−1) →
p(h). The reward function captures the amount of improve-

ment made to the solution. Since the MDP always starts

in the initial state s0 = (1, w, p0), the summation of re-

ward over N time steps by following a policy π can be

calculated as: RN (π) =
∑N

i=1 R((i, w, pi−1), π(i, w, pi−1)) =
∑N

i=1[U(w, pi−1)− U(w,M(i, pi−1, π(i, w, pi−1)))] Assum-

ing ai = π(i, w, pi−1), and pi = M(i, pi−1, ai) It follows that,

RN (π) =
N
∑

i=1

[U(w, pi−1)− U(w, pi)] (20)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2590 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Finally,

RN (π) = U(w, p0)− U(w, pN) (21)

Hence,

max
π

[RT (π)] ≡ max
π

[U(w, p0)− U(w, pN)] (22)

Since U(w, p0) is a known constant for a given workflow,

maximizing the total reward RN is the same as minimizing the

offloading cost U(w, pN). It follows,

max
π

[RT (π)] ≡ min
π

[U(w, pN)] (23)

Therefore, the offloading cost (U) can be minimized by

solving the MDP formulated above as long as the set of action

transformations guarantees that the minimum cost solution is

reachable from initial state (1, w, p0) in at most N time-steps.

The optimal policy (π∗) defines a set ofN actions that transform

the initial solution (p0) to the optimal solution (pN) after N
time-steps.

The action transformation function (M) decides how the

current solution changes by applying an action on the current

state of the MDP. A variety of transformation functions can be

used that allow the solution to reach its minimum in at least N
time steps. We define transformation function (M) as:

M(h, p, a) = ṕ (24)

where, ṕ represents a new solution in which all the tasks follow-

ing the hth task are offloaded to the location corresponding to

the action a, while locations of the tasks prior to the hth task

remain unchanged.

As shown in Fig. 6, the MDP always starts from a fixed initial

solution (p0), and M is applied at each time step with some

chosen value of action (a). It can be seen that the choice of

action transformation function allows the solution vector to be

modified in every dimension so that all possible solutions are

reachable by at least one unique sequence ofN actions. It should

be noted that the tasks are offloaded only after the final solution

has been produced by the trained agent i.e., after all time steps

have been completed. None of the tasks are offloaded on any

intermediate time step.

IV. META-LEARNING BASED ON DEEP Q-LEARNING

In a dynamic edge-cloud environment, any changes to the

application profile or mode of operation may cause the topology

of underlying workflow-DAGs to be changed. The network

bandwidth and execution speed of remote devices are also sub-

jected to dynamic changes causing the environment parameter

(DR, VR) to change as well, causing a direct change in the

reward signal of the underlying MDP. This causes the estimated

Q-values to become invalid in the current context and requires re-

training in the changed environment. A meta-learning algorithm

aims to find the optimal meta-parameters (θ) that can adapt to

a new environment i.e., a new set of optimal Q-value estimates,

in a fewer number of learning steps. Such a meta-learning setup

is often referred to as a few-shot learning [37] problem.

Fig. 6. Transformation of the offloading solution vector p ∈ P , over a single
episode of N = 4 time-steps.

To address the aforementioned meta-learning problem, we

propose a meta-learning algorithm, called the Deep Meta Q-

learning based task-offloading (DMQTO) which combines the

concepts from first-order meta-learning [37] with the deep Q-

learning [38] approach. We employ the deep Q-learning method

for better sample efficiency as well as having the advantage

of off-policy learning for better exploration. The proposed

meta-learning algorithm is described in the algorithm [1]. The

algorithm consists of two phases, the task-learning phase, and

the meta-learning phase.

A. Task-Learning Phase

The task-learning phase represents the inner loop of the meta-

algorithm. In this phase, a new DQN (Qi : θi), initialized using

the meta-DQN (Qθ : θ), is trained using trajectories or episodes

from the current environment until the loss stabilizes below a

minimum value Lmin. The agent first explores the environment

using the ε-greedy strategy for a fixed number of episodes and

stores its experience in a replay buffer as a set of transitions (D).
After enough experience has been collected, a random sample

of transitions (DX
i) is selected for learning.

DX
i = [Sx, Ax, Rx, S

′
x] (25)

The updated Q-values (Q̃i) are calculated using:

Q̃i(Sx, Ax) = Rx + γ ×max[Qi(S
′
x)] (26)

where, γ represents the discount factor and Qi represents the

Q-function estimated by the current DQN (Qi : θi).

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2591

Using Mean Squared Error (MSE) as the loss function, we

obtain the training loss Li
X as:

Li
X =

1

X

X
∑

x=1

(Qi(Sx, Ax)− Q̃i(Sx, Ax))
2 (27)

Using a learning rate of ³, we update the parameters θi using

Adam-based stochastic gradient descent as:

θi ← θi − ³m/(
√
v + μ) (28)

where, μ is small constant (μ ≤ 10−8), m and v represent the

first and second moment vector respectively. We use ´1 and ´2

as the exponential decay rates for our moment estimates thus

updating moment vectors at learning step (t) as:

m ← ´1m+ (1− ´1)∇θiLi
X

1− ´t
1

(29)

v ← ´2v + (1− ´2)(∇θiLi
X)2

1− ´t
2

(30)

The process of gradient descent is repeated with random batches

of experience (DX
i) until the training loss reaches the minimum

loss value (Lmin). After the learning iterations have been com-

pleted, we obtain the learned parameters θi and store them for

later use in the meta-learning phase.

After running the task-learning phase for multiple random

environments, we obtain a set of learned parameters B
B = {θi : i ∈ [1, 2, . . ., B]} (31)

B. Meta-Learning Phase

The meta-learning phase represents the outer loop of the meta-

algorithm. In this phase, the set of parameters, B learned from

multiple random environments in the task-learning phase, is used

to update the meta parameters. We want the meta-parameters

(θ) to be as close as possible, to all the learned parameters

{θi} so that it takes less number of learning steps for the meta

parameters to converge to new parameters. In other words, we

directly minimize the mean squared error (LB) between the

meta-parameters and the learned parameters, expressed as:

LB =
1

B

∑

i∈B

1

2
(θ − θi)

2 (32)

We again use gradient descent to perform the minimization of

the MSE Loss (LB). The gradient of LB w.r.t meta-parameters

(θ) can be obtained as follows:

∇θLB = ∇θ

1

B

∑

i∈B

1

2
(θ − θi)

2 =
1

2B

∑

i∈B
∇θ(θ − θi)

2

In second-order meta-learning algorithms like MAML [21], the

parameters learned during the inner loop are assumed to be

dependent on the meta parameters through updates made in

the inner loop. In such a case, during the meta-learning step,

second-order back-propagation through multiple gradient up-

date steps, made in the inner loop, becomes a high computation

and memory-intensive task. Hence, in first-order meta-learning,

we assume the learned parameters (θi) to be independent of

Algorithm 1: Deep Meta Q-Learning Based Task-

Offloading.

Require:Hyper-Parameters (³, ´,B,X)
1: Randomly initialize a new meta-DQN (Qθ : θ)
2: Set Lmin = ∞
3: while Lmin > Lµ do

4: Sample a new batch (T) containing B number of

random environments

5: Initialize an empty set B for storing learned parameters

6: for i = 1 to B do

7: Set the current environment to Ti
8: Initialize a new DQN (Qi : θi) ← (Qθ : θ)
9: Initialize moment vectors m ← 0 and v ← 0

10: while not (LX ≤ Lmin) do

11: Explore the current environment using ε-greedy

strategy and store the experience in the replay

buffer

12: Sample a batch of X transitions (DX
i) from the

replay buffer for learning

13: Calculate Q-Updates Q̃i(Sx, Ax) from experience

(DX
i)

14: Obtain inner loss Li
X and use its gradient to update

moment vectors m and v
15: Updated parameters, θi ← θi − ³m/(

√
v + μ)

16: end while

17: Add θi to set of learnt parameters B
18: end for

19: Update loss thresholds as: Lmin ← 1
B

∑B
i=1 Li

X

20: Obtain outer loss LB and use its gradient to update

meta-parameters, θ ← θ − ´∇θLB
21: end while

22: output DQN (Qθ : θ) as meta-DQN

the meta-parameters so as to avoid the second-order gradient

computation. Hence, the above gradient reduces to:

∇θLB =
1

B

∑

i∈B
(θ − θi) (33)

Finally, using a learning rate of ´, we update the meta-

parameters as:

θ ← θ − ´∇θLB (34)

In the implementation of DMQTO, we consider the batch of

learned parameters (B) to be estimated from a uniformly sam-

pled batch of random environments (T). To avoid fine-tuning

DQN in the early phases of meta-learning, we start with a larger

value of minimum loss (Lmin) for the task-learning phase and

reduced it over time. This improves the training process by

avoiding the meta-parameters to move too close to any particular

batch of environment parameters.

C. Generalization Bounds

For meta-learning operating in a multi-task setting, the goal is

to produce a meta-algorithm (A) that can take data from multiple

tasks (Ti) and output a task-specific learning algorithm (A).

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2592 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

The meta-learning algorithm is said to be data efficient if it can

produce a task-specific algorithm using a small number of tasks

(n) with fewer data points (m) that are assumed to originate

from a common underlying distribution (P). In such a case,

the quantity of interest is the meta-generalization of A which

describes a relation between the performance of a task-specific

algorithm (A) produced by a meta-algorithm (A), on any future

tasks sampled from P ; and the number of training-tasks (n) and

data points per tasks (m). We assume that a learning task Ti is

defined using an independent and identically distributed sample

of m data points, called the support set (S), defined as:

Si = { (xj , xj) : ∀j ∈ [1,m] } ∼ Dm
i

where, Di ∼ P . The transfer risk (R), as defined in [38], can

be expressed as:

R(A,P) = ED∼P [ES∼Dm [E(x,y)∼D[L(fA(x), y)]]] (35)

The transfer risk expresses the expected loss of models (fA)
produced using algorithm A, on new tasks Ti sampled from

a distribution P and hence, characterizes the generalization of

algorithm A over task distribution P . For a meta-learning algo-

rithm (A) that produces learning algorithm (A) by optimizing

loss (L), we express the meta-generalization error bounds using

the definition given in [39] as follows:

Definition 1. For a meta-learning algorithm A that produces

a learning algorithm A using a meta task sample set S of

n tasks (S = {Si : i ∈ [1, n]}), sampled from a distribution

P , the meta-generalization error bound can expressed by the

function B(δ,S) if for any task distribution P and 0 < δ ≤ 1
the following holds with a probability at least (1− δ) :

R(A,P)− L(A,S) < B(δ,S) (36)

where A is obtained from A using a set of tasks S, as:

A = argmin
A∈{A(S)}

L(A,S)

The bounds are obtained in [39] using results from algorithmic

stability in [40] and [41] for the first-order algorithm in a Few-

Shot Classification setting as:

R(A,P (T))− L(A,S) ≤ O
(

Ĺ2T́

√

ln(1/δ)

n
+ L2T

1

m

)

where, the loss minimized in the outer loop L(A,S) is assumed

to be an empirical estimator of the true transfer risk. The quan-

tities L and Ĺ refer to the Lipschitz constant of the inner and

outer loss respectively whereas T and T́ represent the number

of learning steps in the inner loop and outer loop respectively.

In the reinforcement learning setup of the DMQTO algorithm,

we note that the inner loop may use multiple batches of experi-

ence replay for updating Q-values until the loss reaches Lmin at

the ith iteration of the inner loop. Considering the batch size of

X , the data points per task (m) can be bounded by O(X). Also,

the number of tasks used in the learning phase (n) is the same

as the size of the learned-parameter set |B| = B. Hence, we can

Algorithm 2: Deployment Algorithm.

Require:Hyper-Parameters (³,X)
1: Initialize a new DQN (Qi : θi) ← (Qθ : θ)
2: Initialize moment vectors m ← 0 and v ← 0
3: while not converged do

4: Explore the current environment using ε-greedy

strategy and store the experience in the replay buffer

5: Sample a batch of X transitions (DX
i) from the replay

buffer for learning

6: Calculate Q-Updates Q̃i(Sx, Ax) from experience

(DX
i) using (22)

7: Obtain loss Li
X using (27) and update moment vectors

m and v using (29) and (30)

8: Updated parameters, θi ← θi − ³m/(
√
v + μ)

9: end while

10: Output θi as the learnt parameters

express the bounds for the DMQTO algorithm using Definition

(1) as follows:

Corollary 1. Let Tα and Tβ represent the number of learning

steps of step-size³ and ´ respectively and letB andX represent

the number of meta-learning environments and size of replay

batch (DX
i) used per task respectively, the meta-generalization

bounds for DMQTO can be expressed as:

B ⊆ O
(

Tβ

√

ln(1/δ)

B
+

Tα

X

)

(37)

It is evident from the bounds expressed in (37) that a larger

sample (B) of meta-learning tasks should result in better gen-

eralization with lower transfer risk. It can also be noted that

as B → ∞, the generalization bound does not reduce to zero,

instead, it is bounded by the batch-size (X) used by the inner-

learning algorithm (inner loop). This implies that the DMQTO

algorithm will always have a non-zero gap that arises due to

within-task sample complexity in the task-learning phase.

While using a decremented loss threshold in the task-learning

phase, it should be noted that asLmin → 0, the agent will require

more batches of experience to fine-tune its Q-value estimates,

causing X → ∞. Although this suggests better generalization,

it might be not possible to reduce the loss all the way to zero.

Hence, we assume that the loss threshold tends to move towards

an arbitrarily small value (Lmin → Lµ).

D. Deployment Phase

In the deployment phase, an application instance first com-

municates the application profile, user preferences, and device

information to the central offloading manager which in turn

initializes a new DQN with meta parameters θ and train it in

the current environment to obtain optimal parameters θi. The

fine-tuned DQN (Qi : θi) is then sent to the user device and used

for inference until any changes in the user preferences or device

parameters are detected, after which the application requests

a new policy in the changed environment. The deployment

algorithm is demonstrated in the algorithm [2].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2593

TABLE II
ENVIRONMENT PARAMETERS

During the deployment phase, we start with a learning rate

³ = 0.01 and gradually reduce it as the loss becomes smaller. We

also decay the exploration probability ε as the training progresses

causing the agent to take greedy actions during later phases of

training. Reducing exploration probability in such a way causes

the Q-value estimates of greedy paths to improve and stabilize

as the training process nears its completion. We use a linearly

decaying exploration probability (ε) and an exponentially de-

caying learning rate (³) in the deployment phase.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results and perfor-

mance evaluation of the proposed DMQTO algorithm. All the

experiments were conducted on an Intel i7-6700 processor with

16 GB of memory and were implemented using python-3.8 with

PyTorch-1.10.1+cu102 and TensorFlow-2.9.1 for deep learning.

A. Experimental Setup

We set up three experiments to measure the overall perfor-

mance of the DMQTO algorithm, each having a different edge-

cloud network topology and a group of application profiles. To

simulate a dynamic environment, we first define a joint uniform

distribution (P) over all the environment parameters that can be

randomized.

P ∼ {DR, VR,W, δe, δt}

A set of random environments (T) is sampled from a uniform

distribution of environments (P) for each task-learning phase.

In such a distribution, each of the parameters in P is chosen

uniformly within a predefined range of values. The range of

each environment parameter is presented in Table II.

The set of workflow DAGs (W) is generated randomly for

each application based on its profile and user preference while

δe and δt are chosen based on all the modes of operation that

the application can support. We consider different values of

node-density (Gn), height (Gh) and maximum branch factor

(Gb) across multiple applications and assume that the task sizes

(vi) take values in range [106, 107] CPU cycles, whereas data

dependencies (di,j) take values within the range of [10, 30] MB.

The cost per unit energy CE is set to 1.34 and the cost per unit

TABLE III
EXPERIMENTAL PARAMETERS

Fig. 7. Edge-cloud network architecture used in experiments.

Fig. 8. Multi-head attention-based DQN architecture.

time CT is set to 0.2. A summary of experimental parameters is

presented in Table III.

As shown in Fig. 7, we consider three different edge-cloud

network architectures across experiments A, B, and C with

varying numbers of Edge (E) and Cloud (C) servers.

To learn the Q-function, we employ an ensemble of multi-head

attention-based encoders followed by a fully-connected dense

neural network containing four layers consisting of 256 neurons

each, with ELU (Exponential Linear Unit) activation at each

layer as shown in Fig. 8. The state vector is transformed into a

sequence using an appropriate embedding before it is fed to the

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2594 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 9. Task-Embedding for a sample workflow DAG: each column represents
a single time-step in the sequence while the rows represent the features: vi
represents the task size, di,j represents the data-dependency and pi represents
the offloading location.

Fig. 10. Meta-Training Loss in experiment A for various batch sizes (B).

Fig. 11. Effect of scaling on meta-training: loss across experiments of increas-
ing scale with fixed meta batch size (B = 128).

DQN. This is achieved by defining a topological ordering on the

nodes of the workflow DAG. If two or more tasks are at the same

height, the task with higher task size (Vi) is ordered before tasks

with a lower task size. As shown in Fig. 9, the features of each

task in the sequence include its task size (vi), data dependency

to other tasks (di,j) and its partial offloading location (pi). The

time-step information (h) is appended to the encoder output i.e.,

after the feed forward and normalization layers.

B. Performance Evaluation

The convergence of the meta-training phase with four differ-

ent batch sizes (B) is shown in Fig. 10. It is noted that using a

larger batch size in the meta-learning phase results in better min-

imization of the meta-loss and takes a lower number of learning

Fig. 12. Training loss comparison for meta-initialized and randomly initialized
parameters during deployment phase.

Fig. 13. Comparison of average cost improvement percentage (J) for differ-
ent offloading schemes under 3 modes of operation for the experiment (C).

steps to converge. Fig. 11 shows the effect of environment scale

on meta-convergence with fixed meta batch size B.

The convergence performance of the meta-initialization

method is shown in Fig. 14. We compare the convergence perfor-

mance of meta-initialization method with two other initialization

methods:
� Pre-Trained: a DQN trained on random environments
� Random Initialization: a DQN initialized randomly

For validation, we use a set of frozen environments contain-

ing fixed workflow-DAG with topology similar to that in the

corresponding training environments. We define the average

validation cost improvement (V) in the total offloading cost for

the currently trained scheme (Sθ) over no-offloading scheme

(S0) for the set of validation workflows (Wv), defined as:

V(θ) =
1

|Wv|
∑

w∈Wv

U(w, p0)− U(w, pθ)

U(w, p0)
(38)

where, U(w, p0) represents the cost achieved by no-offloading

scheme (S0) and U(w, pθ) represents the cost achieved for the

offloading solution produced by currently trained scheme (Sθ).
The validation cost improvement captures the reduction in

offloading cost achieved by offloading solutions produced by

the trained scheme over the no-offloading scheme. We use a

single validation set for each experiment which consists of 20

different random environments with frozen parameters P where

each environment has 100 unique validation workflows.

As shown in Fig. 14, the DMQTO meta-initialization method

allows for faster convergence in a fewer number of steps

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2595

Fig. 14. Validation cost improvement for policy initialization methods.

Fig. 15. Offloading cost reduction for an application running in 3 different modes of operation in changing environments.

as compared to the other two initialization methods. It can

be noted from Fig. 12 that the loss observed by DQNs us-

ing the meta-initialization method is quite low as compared

to random-initialization. This allows the meta-DQNs to con-

verge faster, requiring fewer learning steps to reach the same

level of performance when compared to other initialization

methods.

To observe the effect of environment changes on offloading

cost, we consider a single application running in three differ-

ent modes of operation and subject it to random environment

changes. The environment parameters are chosen randomly from

within the range as defined in Table II. Fig. 15 shows the

offloading cost as the DQN is being trained using the deployment

algorithm over three episodes of environment randomization.

To measure the performance of trained DQNs, we use base-

lines obtained using the fine-tuned multi-layer perceptron (MLP)

based DQN [22] and Double-DQN [23] algorithms. We also

compare the results with two other non-intelligent offloading

schemes namely, Edge-Only offloading and Cloud-Only offload-

ing. To compare the performance of different offloading schemes

under each mode of operation, we define the average cost

improvement percentage (J) in the total offloading cost for a

given scheme (S) over No-Offloading scheme (S0) for a set of

workflows (W), defined as:

J(S) =
100

|W|
∑

w∈W

U(w, p0)− U(w, p)

U(w, p0)
(39)

where, U(w, p0) represents the cost achieved by no-offloading

scheme (S0) and U(w, p) represents the cost achieved for the

offloading solution produced by current scheme (S).
As seen in Fig. 13, the average cost improvement (%) in total

offloading cost over the no-offloading scheme is the largest in

the DMQTO algorithm which suggests that DMQTO achieves

lower cost than any other scheme which is a direct consequence

of faster convergence.

We have also compared our algorithm against compati-

ble meta-learning methods in the existing literature such as

MRLCO [21], MELO [49], and MR-DRO [50], all of which

use first-order meta-learning. The comparison is based on a

restricted environment model since the existing schemes do

not capture the scale of the environment and/or the application

task model (DAG-based) as used in our experiments. Table IV

captures the difference between various existing meta-learning-

based methods.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2596 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

TABLE IV
DIFFERENCES IN EXISTING META-LEARNING BASED METHODS

Fig. 16. Convergence performance under different meta-initialized methods.

For comparison against the MRLCO and MELO schemes,

we consider only the low-latency mode with a specialized

environment that contains only one edge server since both of

these schemes consider binary offloading and optimize only

the execution time of tasks. Furthermore, the MELO scheme

considers sequential tasks only which can be represented by

DAGs with a maximum branch factor of 1. For comparison

with the MR-DRO scheme, we consider a single edge and a

single cloud server with sequential tasks only. Fig. 16 compares

the convergence performance of meta-initialized networks using

the MRLCO, MELO, and MR-DRO schemes over the DMQTO

scheme. The DMQTO scheme performs better than the MRLCO

scheme in the early stages of fine-tuning which can be attributed

to the smaller size of the multi-head attention-based DQN used

in the DMQTO scheme as opposed to a larger seq2seq LSTM

encoder-decoder architecture used in the MRLCO scheme.

However, given enough training time, both schemes can achieve

equivalent performance. The MELO scheme is designed for

binary-offloading for the sequential task models instead of the

DAG-based task model and uses simple multi-layer perceptron

(MLP) based DQN. Our scheme performs better than MELO

because of the use of multi-head attention-based architecture

that can better capture sequential data. The same can be stated

for MR-DRO which also uses MLP-based DQN and is designed

for sequential task models instead of DAG-based task models.

C. Computational Complexity

Due to inherent randomness in Deep RL algorithms, it is

difficult to capture the time complexity of such algorithms

accurately. Table V shows the average time for our deployment

algorithm (Algorithm [2]) for random initialized, pre-trained

initialized, and meta-initialized DQN for all three experiments.

TABLE V
AVERAGE TRAINING TIME (IN MINUTES) FOR THE DEPLOYMENT ALGORITHM

The experiments are conducted on an Intel i7-6700 processor

with 16 GB of memory. It can be noted that the CPU time is

comparatively less for meta-initialization as compared to other

initialization methods.

Modern RL libraries provide vectorized environments and

parallel implementation of RL algorithms that can significantly

improve training time. However, we do not employ parallelism

or use vectorized environments for training. The results pre-

sented in this paper are based on simple non-vectorized envi-

ronments without employing any parallelism.

VI. CONCLUSION

In this article, we proposed an improved framework for for-

mulating multi-task offloading problems in dynamic edge-cloud

systems. In our formulation, we used directed acyclic graphs

(DAGs) to model the application workflows and consider that

the offloading locations span across multiple edge and cloud

servers. We presented the DMQTO algorithm that uses meta-

learning techniques to improve the learning process in dynamic

edge-cloud environments by reducing the time required to train

an optimal offloading policy. Through the experiments, it was

observed that the proposed DMQTO algorithm consistently

achieved the lowest offloading cost in a variety of dynamic

scenarios as compared to other methods.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DEEP META Q-LEARNING BASED MULTI-TASK OFFLOADING IN EDGE-CLOUD SYSTEMS 2597

In recent years, resource scheduling in edge computing has

attracted widespread interest from industry and academia. In

the future, we plan to expand the DMQTO framework to in-

clude resource scheduling as well. In addition, we shall try to

improve the meta-learning process so that it can further reduce

the training time and improve overall efficiency.

REFERENCES

[1] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for the
Internet of Things: A primer,” Digit. Commun. Netw., vol. 4, no. 2,
pp. 77–86, 2018.

[2] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “A survey on edge
intelligence,” 2003, arXiv:2003.12172.

[3] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Trans. Cloud Comput., vol. 8, no. 2,
pp. 570–584, Second Quarter 2020.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Commun. Surv.

Tut., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter 2017.
[5] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning for on-

line computation offloading in wireless powered mobile-edge computing
networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2581–2593,
Nov. 2020.

[6] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and
D. Hassabis, “Reinforcement learning, fast and slow,” Trends Cogn. Sci.,
vol. 23, no. 5, pp. 408–422, 2019.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[8] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,” IEEE

Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, Jun. 2015.
[9] K. Peng et al., “Joint optimization of service chain caching and task

offloading in mobile edge computing,” Appl. Soft Comput., vol. 103, 2021,
Art. no. 107142.

[10] P. Shu et al., “eTime: Energy-efficient transmission between cloud and
mobile devices,” in Proc. IEEE INFOCOM, 2013, pp. 195–199.

[11] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation of-
floading for mobile-edge computing with energy harvesting devices,”
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605,
Dec. 2016.

[12] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay trade-
off for dynamic offloading in a mobile-edge computing system with
energy harvesting devices,” IEEE Trans. Ind. Inform., vol. 14, no. 10,
pp. 4642–4655, Oct. 2018.

[13] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO: An
energy-efficient dynamic task offloading algorithm for blockchain-enabled
IoT-edge-cloud orchestrated computing,” Internet Things J., vol. 8, no. 4,
pp. 2163–2176, Feb. 2021.

[14] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Feb. 2018.

[15] M. Li, Q. Wu, J. Zhu, R. Zheng, and M. Zhang, “A computing offloading
game for mobile devices and edge cloud servers,” Wireless Commun.

Mobile Comput., vol. 2018, p. 10, 2018.
[16] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application

placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[17] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surv. Tut., vol. 22, no. 2, pp. 869–904, Feb. 2020.

[18] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet of
Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110, Sep. 2020.

[19] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[20] Z. Zhang, F. R. Yu, F. Fu, Q. Yan, and Z. Wang, “Joint offloading and
resource allocation in mobile edge computing systems: An actor-critic
approach,” in Proc. IEEE Glob. Commun. Conf., 2018, pp. 1–6.

[21] J. J. Wang, G. Hu, A. Y. MinZomaya, and N. Georgalas, “Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253,
Jan. 2021.

[22] V. Mnih et al., “Playing atari with deep reinforcement learning,”
2023, arXiv:1312.5602.

[23] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[24] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for computation
offloading in mobile edge computing,” IEEE Trans. Commun., vol. 66,
no. 12, pp. 6353–6367, Dec. 2018.

[25] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[26] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[27] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,”
IEEE Commun. Mag., vol. 57, no. 3, pp. 56–62, Mar. 2019.

[28] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User mobility
aware task assignment for mobile edge computing,” Future Gener. Comput.

Syst., vol. 85, pp. 1–8, 2018.
[29] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Future

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.
[30] W. Sun, J. Liu, and H. Zhang, “When smart wearables meet intelligent

vehicles: Challenges and future directions,” IEEE Wireless Commun.,
vol. 24, no. 3, pp. 58–65, Jun. 2017.

[31] J. Lee, H. Ko, J. Kim, and S. Pack, “Data: Dependency-aware task
allocation scheme in distributed edge clouds,” IEEE Trans. Ind. Informat.,
vol. 16, no. 12, pp. 7782–7790, Dec. 2020.

[32] V. De Maio and I. Brandic, “First hop mobile offloading of dag computa-
tions,” in Proc. 18th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput.,
2018, pp. 83–92.

[33] Y. Han, Z. Zhao, J. Mo, C. Shu, and G. Min, “Efficient task offloading
with dependency guarantees in ultra-dense edge networks,” in Proc. IEEE

Glob. Commun. Conf., 2019, pp. 1–6.
[34] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offload-

ing for edge computing networks: A dependency-aware and latency-
optimal approach,” IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689,
Mar. 2019.

[35] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: ADeep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021.

[36] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multitask
offloading strategy optimization based on directed acyclic graphs for edge
computing,” IEEE Internet Things J., vol. 9, no. 12, pp. 9367–9378,
Jun. 2022.

[37] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms”, 2018, arXiv:1803.02999.

[38] J. Baxter, “A model of inductive bias learning,” J. Artif. Intell. Res., vol. 12,
pp. 149–198, 2000.

[39] M. Al-Shedivat, L. Li, E. Xing, and A. Talwalkar, “On data efficiency of
meta-learning,” 2021, arXiv:2102.00127.

[40] O. Bousquet and A. Elisseeff, “Stability and generalization,” J. Mach.

Learn. Res., vol. 2, pp. 499–526, 2002.
[41] A. Maurer, “Algorithmic stability and meta-learning,” J. Mach. Learn.

Res., vol. 6, pp. pp. 967–994, 2005.
[42] , “Christopher JCH Watkins and Peter Dayan,” Q-Learn. Mach. Learn.,

vol. 6, pp. 967–994, 2005.
[43] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial com-

putation offloading scheme for mobile edge computing enabled Inter-
net of Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814,
Jun. 2019.

[44] Y. Wang, M. Sheng, X. Wang, and J. Li, “Cooperative dynamic voltage
scaling and radio resource allocation for energy-efficient multiuser mobile
edge computing,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–6.

[45] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99, Feb. 2020.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

2598 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

[46] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed deep
learning-based offloading for mobile edge computing networks,” Mobile

Netw. Appl., vol. 27, pp. 1123–1130, 2022.
[47] M. Ren et al., “Meta-learning for semi-supervised few-shot classification,”

2018, arXiv:1803.00676.
[48] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas, “De-

pendent task offloading for edge computing based on deep reinforcement
learning,” IEEE Trans. Comput., vol. 71, no. 10, pp. 2449–2461, Oct. 2022.

[49] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-learning
based dynamic computation task offloading for mobile edge computing
networks,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1568–1572, May 2021.

[50] Z. Zhang, N. Wang, H. Wu, C. Tang, and R. Li, “MR-DRO: A fast and
efficient task offloading algorithm in heterogeneous edge/cloud computing
environments,” IEEE Internet Things J., vol. 10, no. 4, pp. 3165–3178,
Feb. 2023.

[51] E. Wang, P. Dong, Y. Xu, D. Li, L. Wang, and Y. Yang, “Distributed
game-theoretical task offloading for mobile edge computing,” in Proc.

IEEE 18th Int. Conf. Mobile Ad Hoc Smart Syst., 2021, pp. 216–224.
[52] R. Sedgewick and K. Wayne, Algorithms, 4th ed., London, U.K.: Pearson

Education, 2011.
[53] I. Gupta, A. Choudhary, and P. K. Jana, “Generation and proliferation

of random directed acyclic graphs for workflow scheduling problem,” in
Proc. 7th Int. Conf. Comput. Commun. Technol.2017 pp. 123–127.

[54] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,
“Odessa: Enabling interactive perception applications on mobile devices,”
in Proc. 11th 9th Int. Conf. Mobile Syst. Appl. Serv., 2011, pp. 43–56.

Nelson Sharma received the MTech degree in com-
puter science and engineering from IIEST, Shibpur,
India, in 2020. He is currently working toward the
PhD degree from the Department of Computer Sci-
ence and Engineering, Indian Institute of Technol-
ogy(IIT) Patna, India. His current research interests
include Reinforcement-learning, Cloud, and Edge
computing.

Aswini Ghosh received the BTech and MTech de-
grees from Maulana Abul Kalam Azad University
in Computer Science and Engineering, in 2005 and
2008 respectively. He is currently working toward
the PhD degree in the department of Computer Sci-
ence and Engineering from the Indian Institute of
Technology(IIT) Patna, India. His current research
interests include Cloud computing, Edge computing,
5G Slicing, and Wireless Networks. He has ten years
experience of working in a 3G data center in India.

Rajiv Misra (Senior Member, IEEE) received the
MTech degree in computer science and engineering
from the Indian Institute of Technology (IIT) Bombay
and the PhD degree in mobile computing from the
Indian Institute of Technology (IIT) Kharagpur. He
presently has a position as professor and CSE de-
partment head at the Indian Institute of Technology
(IIT) Patna in India. His current research focuses on
reinforcement learning for distributed cloud and edge
computing, designing distributed algorithms for wire-
less networks. In addition to publishing more than 60

papers in prestigious journals and conferences, a text book, and edited books, he
has made a substantial contribution to these fields. With almost 1241 citations,
his h-index is 16, which is high. He has published articles in journals like IEEE

Transactions on Parallel and Distributed Systems and IEEE Transactions on

Mobile Computing, among others.

Sajal K. Das (Fellow, IEEE) is a Curators’ Distin-
guished Professor of Computer Science and Daniel
St. Clair Endowed Chair with the Missouri University
of Science and Technology, Rolla, USA. His research
interests include wireless and sensor networks, IoT,
cyber-physical systems, smart environments (smart
city, smart grid, smart transportation, smart agricul-
ture, and smart health), edge and cloud computing,
applied machine learning, data science, and cyber-
physical security. He has published extensively in
these areas with more than 700 research articles in

high-quality journals and refereed conference proceedings. He holds 5 US
patents and co-authored 4 books. His h-index is 98 with more than 38,700
citations according to Google Scholar. He is a recipient of 14 Best Paper Awards
in prestigious conferences and numerous awards for teaching, mentoring, and
research. He has graduated 50 Ph.D. students and mentored more than a dozen
postdoctoral fellows. He is a Distinguished alumni of the Indian Institute of
Science, Bangalore.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:51:11 UTC from IEEE Xplore. Restrictions apply.

