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Abstract—Virtual machine (VM) migration enables cloud ser-
vice providers (CSPs) to balance workload, perform zero-downtime » CAISO .
maintenance, and reduce applications’ power consumption and 501 —— MISO *
response time. Migrating a VM consumes energy at the source, .E —— PM >
destination, and backbone networks, i.e., intermediate routers and & —e— ERCOT
switches, especially in a Geo-distributed setting. In this context, o] 40
we propose a VM migration model called Low Energy Applica- £
tion Workload Migration (LEAWM) aimed at reducing the per-bit >
migration cost in migrating VMs over Geo-distributed clouds. 530
With a Geo-distributed cloud connected through multiple Internet E
Service Providers (ISPs), we develop an approach to find out the %
migration path across ISPs leading to the most feasible destination. 20
For this, we use the variation in the electricity price at the ISPs to
decide the migration paths. However, reduced power consumption
at the expense of higher migration time is intolerable for real-time 0 5 10 15 20 25
applications. As finding an optimal relocation is A/P-Hard, we Hour
propose an Ant Colony Optimization (ACO) based bi-objective opti- , o o ) )

Fig. 1. Hourly variation in the electricity price ($/hr) for four different

mization technique to strike a balance between migration delay and
migration power. A thorough simulation analysis of the proposed
approach shows that the proposed model can reduce the migration
time by 25%-30% and electricity cost by approximately 25%
compared to the baseline.

Index Terms—Workload migration, migration delay, migration
power, ant-colony optimization, multi-tier applications.

1. INTRODUCTION

HE advent of geo-distributed cloud service applications
has compelled cloud service providers (CSP) to deploy
interconnected data centers (DCs), called Internet Data Centers
(IDC), at multiple geographic locations depending on the user
demands. Electricity is proven to be one of the major day-to-day
operational costs for running an IDC, so the CSPs typically try
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providers, namely CAISO, MISO, PJM, and ERCOT in the USA [2].

to minimize electricity costs by optimizing the usage of DC
hosts and other physical infrastructure such as the networks.
However, the scenario becomes complicated under the multi-
timescale electricity market where the cost of the electricity
changes over time [1], and the CSP has connectivity with dif-
ferent electric service providers. For example, Fig. 1 depicts
the hourly variation in the electricity price for four providers,
namely CAISO, MISO, PJM, and ERCOT in the USA (as of
25th August 2016) [2]. There is a considerable variation in the
electricity cost at different times of the day, and it also varies
across various electric service providers. Such a market attracts
competition among the providers to deliver cheap electricity and
calls for a challenging real-time cost optimization problem for
the CSPs in deciding the operational infrastructure such that the
overall running cost can be minimized.

Existing approaches for optimizing energy cost of CSPs [1],
[3], [4], [5] primarily addressed this issue using the follow-
ing macro-level energy management strategies: (a) service
placement and consolidation [1], (b) infrastructure-level opera-
tions [3], [6], and (c) energy procurement [4], [S]. However, none
of these existing works have considered the micro-management
of energy usage during typical data center operations such as
service migrations. For example, consolidation of services as
discussed in [1] requires migrating the services from one DC
to another. However, a DC maintains redundant network con-
nectivity through different Internet Service Providers (ISP) for
a reliable, available, and fail-safe system. Therefore, multiple
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migration paths exist between a source host and the target
host for service migration. Different paths for migrations will
incur different energy costs in a multi-timescale energy market-
place [2] both at the backbone ISP and the target DC. Indeed, the
power consumption by the ISP networking elements associated
with a DC is a significant concern for the CSPs for optimizing
the operational costs [7]. In [8], Heller et al. have shown that
the networking elements consume 10%—-20% of the total energy
at the DCs. Considering the large number of service migrations
that typically occur per hour over a commercial geo-distributed
DC [9], an important aspect would be to reduce the energy per
bit vis-a-vis the electricity cost for service migration.

A straightforward solution to the above micro-management
problem would be to dynamically decide the migration path
to minimize energy consumed per bit of data migration. This
is a challenging problem because of the following reasons.
(i.) Nowadays, the typical cloud services are multi-tier in na-
ture [10], where a set of virtual machines (VM) are allocated to a
running service. A service migration involves the migration of all
the associated VMs; however, a single target host may not meet
the service level agreement (SLA) for all the associated VMs.
Therefore, multi-tier services migration involves a complex
decision problem to decide the target hosts and the associated
migration paths. (ii.) The optimization problem is bi-objective —
we need to reduce the per-bit energy consumption for migration
and maximize the migration bandwidth. The migration becomes
fast with minimal application downtime. (iii.) Although the deci-
sion problem is complex, the solution needs quick convergence
as it needs to be taken in real-time.

In this paper, we focus on the micro-optimization of opera-
tional cost for service migration across geo-distributed cloud
DCs. Our approach meticulously selects the ISP paths that
lead to the fast migration of multi-tier cloud services while
minimizing energy consumption and reducing electricity costs.
We model this as a multi-objective combinatorial optimization
problem, which is A'P-Hard. Therefore, we develop a fast
heuristic-based approach to solve the optimization using Ant
Colony Optimization (ACO). Combining the optimization prob-
lem and the corresponding fast solution approach, we propose
Low Energy Application Workload Migration (LEAWM) in this
paper that can find out the optimal ISP paths for multi-tier service
migration over a geo-distributed cloud while maximizing the
migration bandwidth and minimizing the energy cost. We have
implemented LEAWM over CloudSim simulator, and a thorough
evaluation of the system shows that LEAWM can reduce the
migration time as well as the energy consumption cost due to
migration of a multi-tier cloud service.

A preliminary version of this paper was published in [11],
where we presented a framework to optimize the electricity cost
and time for migrating multi-tier services in a geo-distributed
cloud. The major contributions of the current work are as fol-
lows:

® We propose a framework called as LEAWM that aims to

schedule the migration of multiple VMs corresponding to
multi-tier applications. We focus on appropriately selecting
ISP paths that can reduce the migration time and reduce
the per-bit energy consumption in the process (Sections III
and IV).
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e We propose an efficient migration strategy as a part of
LEAWM that can efficiently determine the paths for con-
ducting large-scale VM migrations considering the metrics
mentioned above (Sections V and VI). Finding migration
paths is challenging, especially in multi-timescale electric-
ity markets; we use an ACO-based meta-heuristic approach
to solve the above problem (Section VII).

e We perform thorough evaluations and performance com-
parisons with a baseline to ascertain the proficiency of
LEAWM. Further, the simulation results confirm the fact
that LEAWM can reduce the migration time by 25%—-30%
and electricity cost by approximately 25% in comparison
to the baseline (Section VIII).

II. RELATED WORK

Various research works in the literature have proposed meth-
ods to optimize the total migration time and overall power
consumption due to migration. Both pre-copy and post-copy
migration approaches have been adopted as a migration strategy
for conducting migrations on a multi-cloud architecture for
multi-tier applications.

A. Optimizing Migration Time

Mandal et al. [16] have proposed an intelligent strategy for
accurately determining the bandwidth and pre-copy rounds to
optimize the migration in a multi-cloud setup. In [19], the
authors have proposed serial and parallel migration techniques
for migrating a sequence of VMs for multi-tier applications.
Serial migration follows a sequential ordering of VMs, where
each VM gets the full share of the LAN bandwidth during
migration. Therefore, the migration time for individual VM is
reduced. On the other hand, the VMs share the available LAN
bandwidth in the case of a parallel migration strategy. In contrast
to serial migration, parallel migration reduces the downtime for
a multi-tier application. In [17] is introduced an improved serial
migration strategy for migrating multiple VMs using a hybrid
pre-copy and post-copy approach. The post-copy method allows
the VMs to stop their execution at any point in time and copy
their boot data to resume execution at the destination. Although
this technique can reduce the migration time by minimizing the
amount of data to be copied, it often suffers from page faults
as the VM’s entire memory is not copied. This can lead to
delayed response and negatively impact the user experience and
satisfaction.

To overcome this drawback, the authors in [20] built a writable
working set (WWS) by iteratively scanning the page table and
sending it with the VM states to reduce the number of page faults,
which consequently improves the service quality. However, the
scope of these existing approaches is limited to scheduling
independent VMs. On the contrary, modern cloud applications
are represented as virtual data centers (VDCs) that comprise
multiple interdependent VMs. VDC management often requires
relocation of the entire logical application space, which trig-
gers large-scale migrations of dependent VMs [22]. A parallel
migration strategy is adopted in [15] for relocating multiple
correlated VMs and reducing overall service downtime. Higher
migration times often have harmful impacts on the performance
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TABLE I
SELECTIVE REVIEW FOCUSED ON VM MIGRATION
Migration Strategy Used (Live) Parameters Environment Migration Type
Work CPre Post Hybrid Migration | Downtime Power . LAN | WAN | Single | Concurrent
opy | Copy Copy Consumption
LEAWM X X v v 4 X v X v
He et al. [12] (2021) v X X v v/ X X v X v/
Addya et al. [13] (2021) v X X v v X X v X v
Tziritas et al. [14](2019) v X X v v X v X v X
Sun et al. [15] (2018) v X X v v X X v X v
Mandal et al. [16] (2017) 4 X X v v X X v X v/
Sun et al. [17] (2016) X X 4 v 4 X 4 v X v
Jin et al. [18] (2014) v X X v v X v v v v/
Callegati and Cerroni [19] (2013) v X X v v X v X X v
Sahni and Varma [20] (2012) X 4 X 4 4 X v X v X
Hines and Gopalan [21] (2009) X v X v v X v X X v

of responsive applications in terms of delayed response. To
minimize the total migration time, a memory compression based
VM migration (MECOM) is proposed in [18], which aims to
reduce the amount of memory to be copied to provide fast
and stable migration. Some other works that addressed the
issue of bandwidth determination, termination conditions, and
scheduling the migration of multiple VMs are discussed in [12],
[13], [14].

B. Optimizing Power Consumption

Recent literature on minimizing the power consumption of
DCs by efficiently relocating VMs has gained much impetus.
Due to regional demand differences, transmission inefficiencies,
and generation diversity, electricity prices exhibit temporal and
geographic variation. Qureshi et al. [23] have characterized
the change due to fluctuating electricity prices and argued that
the existing distributed systems should exploit such variations
for significant economic gains. Gupta et al. [24] have utilized
the spatial and temporal variation in electricity price to reduce
the operating cost associated with energy consumption. Rao et
al. [25] have studied the issue of minimizing the total electric-
ity cost under multiple electricity markets environments while
ensuring the application QoS. On the other hand, the authors
in [26] have discussed a novel approach for cost savings using
geographical load balancing without violating the SLA. Notably,
Heller et al. [8] have shown that the networking elements are
one of the major consumers of electricity. Since VM migration
is a network-intensive task, it leads to increased power con-
sumption of the intermediate networking elements. Frequent
migrations can increase electricity consumption at the interme-
diate nodes and decrease the CSPs’ revenue. Hence, there is a
need to design a migration strategy for geo-distributed clouds,
exploiting the variation in electricity pricing at the intermedi-
ate CSPs to reduce the migration overhead. However, reduced
networking cost at the expense of higher migration time is
futile [27].

Table I provides a comprehensive summary of the literature
that we reviewed on VM migration. The table indicates that
the existing literature is limited to addressing migration time
and power consumption independently. However, the two pa-
rameters have a strong correlation, especially while conducting
massive-scale migrations over a geo-distributed infrastructure.
In this paper, we propose LEAWM to jointly reduce the electricity

cost due to migration without jeopardizing the migration time,
as detailed in the following.

III. PROBLEM DEFINITION

In this paper, we address the problem of scheduling the migra-
tion of VMs of multi-tier applications. We consider a scenario
where multiple applications are deployed over servers in the
form of multiple interconnected VMs. As discussed earlier,
this is challenging as (i) migrating a multi-tier service involves
finding suitable destination servers for each VM, (ii) identifying
the migration paths over the interconnection network such that
the per-bit energy overhead is reduced, and (iii) scheduling
the migration of such VMs such that the service downtime is
minimum.

Specifically, given a geo-distributed physical data center net-
work (or substrate network) comprising multiple data centers at
different locations, interconnected through multiple ISPs, we de-
velop an efficient VM migration scheduling mechanism by suit-
ably selecting a migration path that optimizes the per-bit-energy
consumption and service downtime over a multi-timescale elec-
tricity market. Note that we focus on a single cloud with DCs
located at different geographical locations and procuring en-
ergy services from providers with cost variations at a temporal
scale.

A. System Model

In this section, we provide a detailed discussion of different
components of the proposed LEAWM framework.

1) Multi-Tier Application Instance: We assume a set of
N multi-tier application instances M = {M;, Ma, ..., My}
where M,, refers the nth multi-tier application instance. Each
multi-tier application instance comprises a number of VMs
denoted by V,, = {V1,Va,..., Vs }, where V,,, is the mth VM,
and M is the total number of VMs within V,,. Typically a
VM, V,,, € V,,requests CPU and memory resources denoted by
VTS PU and V#XI em respectively [13]. Further, for each VM, we
define alocation constraint vector o, that captures the allowable
DCs where a VM can be hosted. The variables in the vector
am € {0,1} and are assigned values as per (1).

o ':{1:ifVm can be placed in DC j )
e 0 : otherwise
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2) Substrate Network Model: The interconnected DC net-
work is modeled as an undirected weighted graph G° =
(NS,]ES). Here, N5 = NPC U NZ, where NPC denotes the
set of substrate networks, and N indicates the set of inter-
mediate ISP’s routers/switches in the entire network. We also
assume that the graph is connected, i.e., there is at least one
route from one DC to any other DC. Every DC dc; € NP¢ has
K servers at its disposal represented by H; = {h1, ho, ..., hi}
and uniquely indexed by H},. Each server hf € H; hasresources
along two dimensions, i.e., CPU and memory resources cap-
tured as h%-“PU and h%-Me™ respectively. The physical links
connecting the networking elements are represented by ES =
EP U EB. Here, E¥ indicates the number of intra-DC physical
links, and EZ represents the backbone WAN links. We only
consider the transport layer devices (routers, Internet Exchange
Points, etc.) of the ISP as the major components in the network,
which consume power during their operations. Note that we
only consider the migration overhead for inter-DC links in this
approach. The backbone linksare EZ = {e1, s, ..., er }, where
each physical link ¢; € EZ connects two networking elements
(gateways of two interconnecting ISPs) and has the following
properties: (i) c(e;) represents the maximum capacity in terms
of bandwidth, (ii) r(¢;) indicates the current availability which
implies the availability of resources at a specific time-instance
(initialized at the total capacity), and (iii) d(e;) captures the
maximum propagation delay experienced.

B. Multi-Tier Migration Request

In a typical cloud environment, the applications are migrated
from one DC to another due to multiple reasons such as route
maintenance, handling excess demands, load balancing, etc. All
the VMs associated with the application may need to be migrated
for a multi-tier application. We define a mapping function I as
per (2) to capture the initial assignment of the VMs over the host
servers across the DCs. H denotes the set of all servers across
DCs.

TV, — H. 2)

For instance, the mapping of a VM wv,,, can be captured in
accordance with (3).

Uar(Vin) = Ry 3)
vm € [1, M]; Vk € [1,K]; Vj € [1,|NPC].

Given the initial mapping function I" 5, the VMs of the multi-tier
applications often get relocated. In this paper, for a multi-tier
application n, we define, V) C V,, as the set of VMs that require
relocation. The relocation is a complex process involving finding
a suitable destination server for each migrating VM. Moreover,
as we discussed earlier, VM migration is a network-intensive
task and consumes the networking elements’ resources, leading
to increased energy consumption and reduced revenue. Hence,
the overall service migration problem is subdivided into two
sub-problems: (i) Determine a feasible destination server and
(i1) Determine the migration path, which not only reduces the
migration overheads but also minimizes the per-bit energy con-
sumption. Next, we discuss each step in detail.
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1) Virtual Machine Remapping: The remapping process ad-
dresses the first aspect of the problem by selecting a feasible
destination server for the migrating VM. Although there are
efficient techniques to address the issue of VM placement [28],
[29], in this work, we use a first-fit allocation strategy for VM
relocation as the primary aim of this paper is to find optimal
relocation paths that optimize both the migration time and the
migration cost in terms of energy costs. The remapping function
is captured as per (4), where H' C H.

Tg:V, - H. 4)

The remapping function fora VM V,,, is captured as per (5), and
is feasible iff the constraints expressed in C1, C2, C3, and C4,
are satisfied. A VM can perform its normal operations if assigned
the requisite resources. The Constraints C1 and C2 reflect that
the relocating server h§ satisfies the CPU and memory demands
of the migrating VM V,,,. On the other hand, C3 states that
remapping is feasible if the target server belongs to an allowable
data center for the VM. Finally, C4 denotes the feasible set of
values those the variables can take.

Tr(Vin) = R, (5)

subject to the conditions Cl1: VSPU < h;?'CPU; C2:
Y Mem < hf'Mem;CS:am,j = 1;andC4:Vm € [1,M]; Vk €
[1,K]; ¥j € [1,|NPC]

2) Finding Remapping Paths: The next step involves finding
a suitable migration path that is able to optimize two param-
eters — (i.) the total migration time, and (ii.) the energy costs
incurred during the migration process. ldeally, finding a path
with the minimum migration time involves selecting the path
with the highest residual bandwidth. Note that we do not have
any dedicated migration paths between two DCs; we use the
same in-band Internet path used for communication between
the VMs. Selecting the path with the highest residual bandwidth
may not always lead to reduced per-bit energy consumption.
Moreover, the migration path encompasses traversing the net-
working elements of multiple ISPs acquiring electricity from
disparate service providers experiencing temporal variation in
the electricity costs. This emphasizes that the path selection is
bi-objective and involves striking a trade-off between the migra-
tion time and per-bit energy consumption. The path remapping is
captured using the one-to-one mapping function as expressed in
(6). It reflects the overall working of the path mapping function,
which implies finding a migration path from the source server
to the remapped server. Here, P denotes the set of loop-free
paths over the interconnection network.

Tp = (Cp(Vin),Tr(Vi)) — P5. (6)

Precisely, for a given VM V,,,, a migration path selection is not
trivial. This is especially challenging when we have multiple
geo-distributed DCs having multiple paths connecting any two
substrate servers. For instance let P,, € PP be the selected migra-
tion path for migrating V,, connecting I'5/(V;,,) and T'r(V;,,).
The migration bandwidth R,, for the path can be derived as
per the (7). Note that all the migrations for a given multi-tier
application are scheduled over this path irrespective of the
strategy. The overall migration bandwidth of the path is dictated
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Fig.2. Interconnection network comprising four DCs, i.e., DC'1, DC2, DC'3
and DC'4 connected using the backbone network. P1, P2 and P3 represent
three different migration paths for migrating a VM from DC'1 to DC4 over the
interconnected network.

by the physical link having the least available capacity.
R = vmin {r(e))}. (7)

1 m

To impose restrictions on maximum tolerable migration time,
we also impose an additional constraint as reflected by (8).
This constraint caps the maximum migration delay under the
maximum tolerable delay d,, for a multi-tier application n. T %9
denote the migration delay incurred by V,,,. This is done to
make the implementation realistic and applicable to real-time
and deadline-sensitive applications.

> TR <6, (8)

VVm€Vy,

In the following subsection, using an example scenario, we high-
light the complexity in the decision-making process considering
both migration and energy concerns while migrating VMs of
multi-tier applications across a Geo-distributed infrastructure.

C. An Example Scenario

To make the example scenario closer to a real-world setting,
we consider a geo-distributed infrastructure of interconnected
IDCs similar to that of Amazon web services (AWS) [30] and
is pictorially depicted in Fig. 2. Although AWS has deployed
over 26 IDCs, we restrict the example scenario to 4 intercon-
nected DCs assumed to be located in Europe (London), US-East
(Northern Virginia), Asia-Pacific (Mumbai), and Asia-Pacific
(Sydney), hereafter referred to as DC'1, DC2, DC3 and DC4,
respectively. The interconnection network, as illustrated in Fig. 2
may not exactly resemble the one used by AWS but is realistic
enough to understand the undertaken problem. Further, we also
assume the presence of multiple ISPs forming the backbone net-
work to ensure a reliable, available, and fail-safe cloud-delivery
system [31].

As a consequence, every IDC has multiple interconnection
paths with other IDCs. The intermediate ISPs have routers (CRs)
to route the traffic, and these routers receive electricity from
different providers and incur additional costs. For simplicity, let
us assume a scenario where a multi-tier application only requests
a single VM relocation. Let us assume the VM’s initial mapping
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is at DC'1, and we need to find a suitable destination DC to host
the migrating VM. Although the migration path comprises both
inter and intra-DC paths, we reduce the inter-DC latency. This is
because it is a scarce and costly resource. We further assume that
only DC'4 can host the VM and satisfies the location constraint.
As can be observed from the figure, multiple paths connect DC'1
and DC4. Let us assume that VM has 200 bits of data to be
transmitted, and the electricity cost for sending each bit at each
CR is written inside the square.

Note that these values are used for this example scenario
only. The mentioned value on the edge connecting two de-
vices denotes the transmission capacity of each link. Let
us assume the migration path is DC1 — CR1 — CR2 —
CR5 — CR8 — DC4. The total cost incurred in migrating
200 bits over this path is 4,000 wunits, and the total time
for transmitting all the bits is 5 units. Alternatively, there
is another path DC1 — CR1 - CR2 - CR4 — CR6 —
CR7 — CR8 — DC4. Thetotal cost incurred in migrating 200
bits over this path is 3,600 units whereas the total transmission
time is 10 units. Contrary to the above paths, there exists an-
other path DC'1 — CR1 - CR3 — CR5 — CR8 — D(C4,
which can reduce both the cost to 3,400 and the transmission
time to 4 units respectively. Hence, finding the most optimal
path that optimizes both the migration overhead and cost of
using intermediate devices (specifically routers) is not trivial
and demands us to find a suitable technique that optimizes
both.

IV. LEAWM ARCHITECTURE: JOINT OPTIMIZATION OF
MIGRATION DELAY AND MIGRATION POWER

As we discussed earlier, the LEAWM architecture deals in
building an efficient migration plan for already-assigned VMs
of multi-tier applications allocated across a Geo-distributed
infrastructure. These relocations can be triggered due to var-
ious activities such as maintenance, load balancing, disaster
recovery, etc., undertaken by the providers. Moreover, to en-
sure a seamless relocation, we consider both the stakeholders’
preferences in the process, i.e., users and CSPs. We provide
minimum migration overheads in reduced migration time and
service downtime from a user’s perspective. We also aim to
minimize the per-bit migration energy consumed during mi-
gration from a CSP’s standpoint. Therefore, we propose an
architecture called LEAWM to optimize the migration delay
and power jointly. We first define the constraints for find-
ing an effective remapping solution and formulate an opti-
mization problem that yields the three objectives mentioned
earlier.

A. Constraints

The constraints corresponding to a feasible service migration
are as folows.

1) Completeness of Allocation: Given a VM V,,, of a multi-
tier application, we define z(V,,, hf) be a binary indicator
variable as follows.

1:If V,, can is assigned a host A%
0 : otherwise

2 (Vo 1) = { ©)
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As already defined in Section III-Al, a multi-tier applica-
tion comprises multiple dependent VMs executing different
tasks [13]. Therefore, let V,, capture the VM request set of a
multi-tier application request n. The completeness of allocation
can be ensured as per (10).

|V, | = Z min | 1,

VYV €V,

2>

Vde; € NPC ypk e H;

(Vi BY)

(10)
Here |.| denotes the cardinality of the set. The above constraints
indicate that a feasible allocation exists for all the VMs of a
multi-tier application n, thereby implying a complete allocation
of the corresponding application.

B. Objectives of Relocation

The optimal service migration is expressed as a bi-objective
optimization problem, which is discussed next.

1) Objective 1: Minimizing Migration Delay: The migration
delay is to be minimized to improve the quality-of-service (QoS)
and responsiveness of applications. Migration delay refers to the
total time taken by a VM to seamlessly transfer its state, i.e.,
memory and CPU states, from the source server to a destination
server over a migration path. Let us assume T/"* be the mi-
gration delay for migrating a VM V;,, € V, on a migration path
P,,,. The total migration delay for migrating multiple such VMs
across DCs can be computed as 3_,,.(; 1 2wy, v, T The
overall objective of LEAWM is to reduce the overall migration
delay incurred by all the applications during the relocation
process.

2) Objective 2: Minimizing Migration Energy: From a CSPs
perspective, the migration of VMs is an energy-draining process,
especially at the CRs encompassing different ISPs. Moreover,
these ISPs procure electricity from different providers that ex-
perience temporal variations in their prices. This adds to the
complexity of deciding the migration paths that encompass
multiple such CRs between the source and destination DCs
of a VM. The aggregated energy cost can be calculated as

D onel1,N] 2oV, eV La®.

C. Bi-Objective Formulation

The remapping function ' (.) is desirable if it can optimize
the migration delay and energy consumed in relocating multi-tier
application requests. Summarizing the constraints and objec-
tives discussed above, the overall objective of LEAWM can be
represented as

min > > (T + TR, (11a)
ne[l,N]VV,, eV,
such that
VgPU < h?:.CPU7

VT‘f\l/Iem S hﬁMﬁm (llb)
Q=1 (11c)
> TR <6, (11d)

VYV €V,
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NJ;Vj € [L, NP9
(11e)

Vm € [1,M]; Vk € [1,K];Vn € [1,

V. MODELING MIGRATION DELAY

Predominantly, the migration involved in LEAWM consists
of migrating multiple VMs over the WAN links. Various tech-
niques are available in VM migration literature, but we consider
pre-copy-based VM migration due to its robustness. The pre-
copy-based migration process generally involves image copy
followed by an iterative memory copying phase [32], [33]. First,
the operating system image is copied from the source server
to a target server in a separate IDC in a single iteration. This
is followed by an iterative memory copy phase consisting of
multiple rounds. In the first round, the entire memory of a VM
is transmitted, whereas, in subsequent rounds, memory dirtied in
the previous round is transmitted. The process is repeated until
a threshold on the remaining dirtied memory or the maximum
number of iterations is met [34]. This indicates the beginning of
the stop-and-copy phase, where the source VM is suspended,
and the leftover dirty pages are copied to the destination in
one final round. This marks the end of the handover process,
and the VM at the destination takes over the execution, and the
source VM is destroyed. As LEAWM involves migrating multiple
VMs of a given application, scheduling the migration is an
inherent challenge. A naive scheduling approach can deliriously
impact migration overheads. Before delving into the details of
the solution approach, we shed light on the migration strategy
used to make the description lucid.

Let nmax be the maximum number of pre-copy iterations.
Let V™ and V,i™9 be the memory and image size (in GB)
of V,, to be transferred. Let V;, be a fixed dirty memory
threshold (in GB) for stopping the memory copying phase and
initiating the stop-and-copy phase. The provisioned bandwidth
(in Gbps) available for migrating V,,, over the migration path
P, is calculated as per (7) and is denoted by R,,,. The memory
page size (in KB) and memory page dirtying rate (pages/second)
are considered to be constants for V,,, and are denoted as g,
and Y, respectively. The dirtying rate refers to the number of
pages dirtied or updated per second. Then, we define 1, as
the ratio of dirtying rate to the transmission rate, and it can be
computed as Ay, = (om * L )/Rm 5 0 < Ay < 1. The VM
image is generally copied in a single round, and its duration can
be calculated as per (12).

Vzmg
R
The memory copy phase follows the image copy phase. The

memory transmitted for V;,, in round i denoted by M of this
phase can be derived as per (13).

) 1/ mem
K3
Mon = {x: * Mi1

Tims = (12)

if i =0,

otherwise (13)

From (13), the total migration time TP¢T5¢ (where, TP+ =
TPe + T7¢) for the iterative-memory copying of a VM can be
calculated as (14). Here, ¢ refers to the current pre-copy round.

VT:lnem (1 _ ()\m)imax-i'l)
Rm 1 - )‘-'m '

pctsc __
Tm

(14)
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The service degradation time, i.e., downtime or the time taken
for the stop-and-copy phase can be calculated as per (15).

m
The maximum number of pre-copy rounds 7,,,,x can be derived as
per (16), where n,,,,x denotes the maximum pre-copy iterations.

S N Vin
tmax — 1N 08, W y 'max | -
m
The total migration time T/*9 for migrating a VM can be

calculated as the sum of the duration of image copy and iterative
memory copying rounds. Hence, from (12) and (14), we get,

T9 = T/mg 4 Tretse, (17)

m

()\'TTL)imax .

15)

(16)

Most multi-tier applications have multiple VMs at their disposal.
As previously discussed, the CSPs often relocate multiple VMs
of different multi-tier applications. Therefore it is of utmost
importance to schedule such migrations as a naive migration
strategy that can cause severe performance penalties in terms of
high migration time and downtime, which can lead to service
degradation and user dissatisfaction [35]. Based on previous
discussions on pre-copy earlier in this section, we shed some
light on the migration strategy incorporated in LEAWM.

A. Migration Strategy for LEAWM

The authors in [17], discussed a sequential migration strategy
to migrate ‘M’ VMs from a source machine to a destination
machine. The sequential migration strategy schedules the mi-
gration of VMs serially. The procedure operates as follows.
The first migrating VM executes its pre-copy rounds. As the
stop-and-copy phase of this VM is triggered, the remaining
M — 1 VMs are suspended and copied in a single iteration. This
event of suspension prevents the VMs from dirtying their pages
and the pages of other VMs. We adopt this serial migration
strategy for migrating multiple VMs and the migration time
TPetsc and downtime T ¢ denoted for this scheme is computed
as per (18) and (19).

M .
Tretse — Z Tretse MV rem (1 — (Xm)lmax“’l)
s m
m=1

(1)
T = Y™ i 4 (g — 1) Y (19)
s R m R

VI. MODELING MIGRATION POWER

The most critical issue affecting migration performance is
the path selection for migrating VMs across geographically dis-
tributed IDCs. Since multiple such paths exist for migrating VMs
across IDCs, it exhibits temporal variation in electricity price,
leading to different electricity costs. Ideally, the CSPs would
like to build a migration plan that can minimize migration time
and electricity costs. Next, we develop a power consumption
model for migrating a single VM across Geo-distributed DCs
and extend it to multiple VMs. Let, Q,,, be the set of ISPs to be
traversed for migrating V;,, along the selected path P, and |Q,, |
denotes the number of ISP networks visited from I'y;(V},,) to
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I'r(V;,) along the path. The energy per bif transport in an ISP
network g € Q,,, is represented as 77,’;“. Let cfz be the cost of
electricity at ISP ¢ at tth hour of the day. The number of bits
transmitted during the migration of V,,, for a given iteration @
is provided by M , and it varies depending on the migration
strategy. The total network power consumption cost C* for
migrating V,,, can be computed as per (20).

imax |Qml
et i bit t
Cnet =33 M, Pt (20)
i=1 g=1

Let Cp denote a constant power cost incurred at the source and
destination hosts. By ignoring the additional administrative over-
head for connection setup, location selection, etc., the aggregate
power consumption cost for migrating V;,, can be calculated as
per (21).

Cint = Cp +Cret, 1)

Hence, for a given migration path, the total power consumption
cost TP for migrating V,,, over interconnection DCs can be
expressed as per (22), where 3 is an additional overhead involved
in migration for path establishment and processing of data at
intermediate nodes.

TE™ = C' (1 + B). (22)

VII. SOLUTION USING ACO META-HEURISTIC

Given the initial allocation I"5;, and an alternative remapping
I'r, the primary objective of LEAWM is to build a feasible
relocation plan that finds suitable paths to relocate multiple VMs
of multi-tier applications respecting the location constraints and
resource demands such that the overall migration delay and
migration energy is reduced. However, finding such a solution
to the relocation problem is AP-Hard [36]. Hence we use
an Ant colony optimization (ACO) based solution approach to
obtain a Pareto-efficient solution within acceptable time limits.
ACO is a robust meta-heuristic-based algorithm suitable for
solving complex practical problems that are computationally
expensive [37]. Specific to cloud computing, Gao et al. [38]
proposed a multi-objective ant colony system algorithm-based
VM placement to simultaneously minimize the total resource
wastage and power consumption of servers hosting VMs. In [39]
is presented an ACO-based distributed system to perform dy-
namic VM consolidation to reduce energy consumption at cloud
DCs while adhering to the application QoS. On the other hand,
a novel algorithm based on ACO is developed in [40] to solve
the virtual network embedding (VNE) problem specifically, the
authors focused on virtual link mapping onto substrate networks.
The above implementations showed promising performance and
achieved proper trade-offs among multiple parameters. Moti-
vated by this, we propose to utilize ACO to strike a trade-off
between migration time and migration power.

Following the principles of ACO, we consider a relocation
plan of V,, as a path P, from its source host T'y;(V},) to
I'r(V;,) encompassing multiple core routers of different ISPs
that obtain services from disparate vendors having temporal
variation in electricity price. This problem is analogous to the
traveling salesman problem (TSP), relaxing the constraint that
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demands the artificial ants to visit all the graph nodes. The path
traversed is the migration path for the corresponding VM, and
the start and the end vertex denote the initial and remapped
servers, respectively. An artificial agent, i.e., an ant, traverses
the substrate graph to find a feasible relocation. Next, we define
the two most important parameters involved in the working of
ACO, i.e., the pheromone trial matrix and heuristic information
matrix. Let this heuristic information be represented as 7, and
pheromone trial information is ¢. The heuristic information
between nodes f and g along the path denoted by 7y, , indicates
the desirability of an ant currently at node f in selecting g as
its next node for traversal. Similarly, the pheromone trail (¢, 4
guides the ants in selecting the next node that complies with
the global objective function. Next, we discuss the step-wise
working of ACO.

A. Initial Pheromone Trial Determination

The initial pheromone trail ( is calculated as per (23). Here,
Sp be the solution obtained by random path selection technique;
T™9(8Sy) and TP°%(Sy) denote the migration time and energy
cost, respectively, of Sp.

1
(T™m9(So) + Trow(So))

o = (23)

B. Computing Heuristic Information

An essential aspect of ACO-based solution strategies is choos-
ing a good heuristic, which in combination with the pheromone
information, helps generate efficient solutions. The heuristic
information acts as a guide for the ACO with problem-specific
knowledge. As the overall objective is to construct a solution to
minimize both migration time and migration power, the heuristic
functions are bi-objective and are expressed as follows.

1 1
TV mia? N.92 = "V mmmow
z:IVnI1 T, Z\Vn\l TEow

m= m=

f.9.1 = 24)

The heuristic information denoted by 7 , indicates the desir-
ability of an ant currently located at node f to move to node g
and is expressed as per the following equation.

Nfg = Nf.g,1 T Nf,g.2- (25)

Equation (25) indicates the desirability of an ant currently at
node f to dynamically select node g in the traversal path that
minimizes the migration delay and power in the remapping I' .
The nodes f and g reflect the intermediate devices along ISP
paths. In fact, the heuristic information as in (25) captures partial
contribution of a movement from the current node f to the next
node g towards the objective function as realized in (11a) and
(11b).

C. Computing Pheromone Trials

The pheromones deposited can increase as more ants tra-
verse an edge or decrease due to vaporization. New deposits of
pheromones make sure that better solutions are retained. ACO
comprises two different pheromone updating rules (i.) local
update and (ii.) global update rules.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

1) Local Update Rule: The local update rule is defined as per
(26), where A;. denotes the local pheromone decay parameter
and lies in the range of 0 < A;. < 1.

Crg =1 —=Ne)Crg + MeACy g (26)

2) Global Update Rule: The global update is performed once
all ants have constructed their respective solutions. It is done
to make the edges traversed in the best solution’s path more
desirable in the subsequent rounds. The global update rule is de-
fined as per (27). 145 denotes the global pheromone evaporation
parameter and lies in the range of 0 < Ay, < 1. S, represents
the best solution generated in the current iteration. T™%9(S,,;)
and T?°"(S,,;) denote the migration time and energy cost of
the best solution.

Crg = (1= Ago)Crg + AgpAls g, @7
A(y,q can be calculated as per the following equation.
Alfg = (T™9(Sopt) TP (Sopt) ") Ver € Sopt
f.g 0 otherwise
(28)

D. Iterative Solution Construction

For an ant z, constructing a migration path currently at node f
selects g as its next node for visiting based on the state transition
rule defined in (29). « is a parameter that denotes the relative
importance of the pheromone trail and heuristic information. r
denotes a random number uniformly distributed in the range of
[0,1]. The parameter rq is fixed and lies between 0 < 7 <1
and S is random number selected as per (30). w(z) is a set of
nodes that have not been visited by ant z yet.

arg maxgew(z) {a[Cﬁg]'(l - a)[nﬂg]}

g= ifr < ro (Exploit) (29)
S otherwise (Biased exploration)
fCs.ol- (A=) [ny4] if 4
P « (-« VS W(Z)
pig, = dE§z> [C5.al-(1=a)[ny,d] . (30)
0 otherwise

The overall state transition rule from (29) and (30) is called
pseudo-random proportionality rule, which favors selecting the
next node with lower power consumption and migration time.
The parameter r( dictates the importance of exploration versus
exploitation. In the first case, where r < rg, ants exploit the best
solution following (29); otherwise the next node for traversal is
randomly selected based on (30). We stop the iterations when
two consecutive iterations yield little improvement.

VIII. PERFORMANCE EVALUATION

We have used the CloudSim simulation toolkit! to im-
plement the proposed mechanism and analyzed its perfor-
mance via simulation considering different test cases compris-
ing [10, 25, 50, 100] multi-tier applications. For simulation, we
have considered 4 geographically separated DCs. Each DC is
implemented as a three-layered fat-tree topology [41], [42]. The

1[Online]. Available: http://www.cloudbus.org/cloudsim/ (Accessed: 2023/
05/18 19:08:24)
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TABLE II

KEY PARAMETERS [13], [15]

Parameter Value
Number of Multi-Tier Applications [10, 25, 50, 100]
Number of Tiers 3
VMs per Tier U1, 3]
Dirtying Rate of a VM U(0,1)
Memory of a VM U(1,8)
Number of VCPUs of a VM U(1,4)
Number of DCs 4
Number of servers per DC 16
Server’s VCPUs U(1,16)
Server’s Memory U(1,32)
Capacity of ToR links 1 Gbps
Capacity of Switch to Switch links 40 Gbps
Capacity of Inter DC Links 40 Gbps
Prit 1.108 * 10~ "W /bit
B 0.5
Cp 125 W

geographical separation leads to different IDCs getting served
by different electricity providers, and their prices vary hourly.
However, we assume that the electricity price does not change
during migration and is triggered after considering the latest
change in price. The rest of the simulation parameters are set
following Table II.

A. The Baseline Algorithm

To compare the performance of LEAWM, we consider a mod-
ified version of the heuristic-based algorithm in [15] (referred
toas VDC_M) as a baseline. V DC_M aims to reduce virtual
data center (VDC) re-embedding costs considering the cost of
hosting VMs on servers and virtual links over substrate paths.
We consider migrating multi-tier applications instead of VDC
requests using a parallel migration algorithm to compare the
performance and ignore the virtual link mapping cost as a
parameter for evaluation.

B. Experimental Results

The performance of LEAWM is evaluated from three different
perspectives. First, its performance is gauged depending on
the trade-off achieved between migration delay and migration
power. Second, we assess the performance of LEAWM based

on migration-related metrics, e.g., memory copied, the number
of iterations, and application downtime. Finally, we evaluate
overheads of LEAWM in terms of metrics like the convergence
rate and execution time.

1) Migration Delay and Migration Power Trade-Off:
Fig. 3(a) shows the variation of migration time for
[10, 25, 50, 100] applications for LEAWM and V DC_M. It can
be observed that the aggregate migration time increases for an
increasing number of applications, which is expected behavior.
We also observe that LEAWM can significantly reduce migration
time compared to the baseline. This is attributed to the fact
that LEAWM strategy based on a meta-heuristic ACO can find
remapping paths that lead to reduced migration delay. The mi-
gration strategy for LEAWM can find out shorter migration paths
with higher available bandwidth. Similar behavior is observed
considering the average migration time of individual VMs and
is depicted in Fig. 3(b).

Fig. 3(c) shows the variation in the power consumption for
the strategies used for comparison for an increasing number
of applications. LEAWM consumes less power compared to the
baseline algorithm. The improved performance is achieved due
to the following reasons: (i) LEAWM is able to find shorter paths,
(i) it is also able to find a shorter path with maximum available
bandwidth which directly reduces the migration delay, (iii)
owing to the shorter migration paths less memory is transmitted
during the migration process. This can be directly inferred from
Fig. 5(a). Since the power consumption is directly related to
the amount of memory copied (refer to (20), the proposed tech-
nique performs superior compared to the baseline. Moreover,
the higher the transmission data, the higher energy consumed
at the intermediate devices, thereby having a deleterious impact
on power consumption.

2) Migration-Related Metrics: This section discusses and
compares the performance of LEAWM and V DC_M using
migration-specific metrics. First, we compare the performance
using application downtime, which refers to the time taken by the
stop-and-copy phase when the services are halted. Fig. 4(a) and
(b) denote the total downtime and average downtime for different
number of applications across the two different techniques. It can
be observed from Fig. 4(a) that the total application downtime
increases with an increasing number of applications. This is
because the amount of memory copied in the stop-and-copy
phase of LEAWM is lower than V. DC_M. This is due to the
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inability of the migration protocol of VDC_M to map to
find migration paths with a lower number of hops with higher
bandwidth leading to elevated downtime. Additionally, forceful
termination of VMSs at n,. iterations due to the shared band-
width among multiple migrating VMs leads to more memory
being copied in the stop-and-copy phase, thereby contribut-
ing to increased downtime. Similar conclusions can be drawn
from Fig. 4(b) that denotes the average downtime suffered by
each VM, and it is significantly lower in comparison with the
baseline. Considering the amount of memory transmitted in
the migration process, the strategies’ behavior is captured in
Fig. 5(a).

It can be observed that LEAWM transmits less memory com-
pared to the baseline algorithm. This behavior is attributed to
the fact that LEAWM is not only able to find a shorter path with
higher migration bandwidth but also is able to allocate the entire
migration bandwidth to individual VMs in contrast to V- DC_M
that fails to perform both. V. DC_M provides a limited share
of the migration bandwidth for VMs, thereby prolonging the
convergence of pre-copy migration latency. This can be realized
from Fig. 4(c). It can be seen that the number of iterations
is higher in the case of V.DC_M, thereby leading to higher
pre-copy rounds, which leads to higher migration time and power
consumed. Moreover, it can also be observed that for a more
significant test case, i.e., 50 and 100, the pre-copy rounds are
forcefully terminated at n,,,ax = 8. This is because the pre-copy
never converges as the suitable migration bandwidth required
is never achieved and pre-copy is prematurely halted, leading

to more memory being transferred in the stop-and-copy and
elevating the downtime.

Fig. 5(b) reflects the variation of the migration delay for
variation in the threshold memory for both strategies used for
comparison. We can observe that the total delay is higher for
V' DC_M in comparison with LEAWM. However, we observe
an interesting behavior considering V DC_M. The migration
delay decreases till 0.5 GB as the pre-copy converges earlier
attributed to the higher threshold, thereby reducing iterations and
reducing migration time. Beyond 0.5, the migration delay esca-
lates as pre-copy converges very quickly, leading to almost the
entire memory being transmitted in approximately one round,
causing a bandwidth bottleneck for VMs, elevating the migration
delay.

3) Other Performance Metrics: This section discusses some
other performance metrics, such as execution time and con-
vergence rate. Fig. 5(c) shows the execution time comparison
for LEAWM and the baseline algorithm V DC'_M. The baseline
algorithm consumes more time as it is brute force, and it tests
all feasible solutions before deciding on the best solution. Since
the search space for such a problem increases exponentially with
increasing problem size (Number of applications), the baseline
algorithm consumes more time.

Fig. 6 shows the convergence rate for migrating 50 appli-
cations for LEAWM. The normalized cost is obtained follow-
ing [43]. We observe from the plot that the proposed ACO-
based algorithm’s convergence rate is reasonable, and it quickly
converges to an optimal solution (close to 400 iterations for
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all cases). Similar observations were made for 10, 25, and 100
applications; hence we omit such plots.

From the results, we observe that LEAWM can reduce both
migration delay and power consumed during the remapping
of multi-tier applications across Geo-distributed IDCs, inter-
connected over a backbone network. Further, it can also be
inferred from the results that the proposed scheme can re-
duce the migration delay by almost 25%-30% of what is ob-
served for the greedy approach. In comparison, we follow a
close to 25% reduction in the power cost compared to the
baselines.

IX. CONCLUSION

In this article, we have presented a novel approach, namely
LEAWM for migration path selection for VM migrations over
geo-distributed clouds that spans over multiple DCs. We opti-
mize the migration delay and migration power due to the migra-
tion traffic and develop a bi-objective optimization technique
based on an ant colony meta-heuristic. We have implemented
and tested the proposed system over a simulation framework.
The results show that the proposed approach can yield a 25-30%
reduction in the VM migration delay while ensuring close to 20%
reduction in the power consumption compared to the baseline
algorithm. As a future extension of this work, we plan to extend
the proposed technique for a federated architecture that includes
multiple ISPs connected via a more complex backbone network.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for insightful
comments to help improve the manuscript quality.

REFERENCES

[11 W. Wu, W. Wang, X. Fang, J. Luo, and A. V. Vasilakos, “Electricity
price-aware consolidation algorithms for time-sensitive VM services in
cloud systems,” IEEE Trans. Serv. Comput., vol. 14, no. 6, pp. 1726—1738,
Nov./Dec. 2021.

[2] S.Rahman, A. Gupta, M. Tornatore, and B. Mukherjee, “Dynamic work-
load migration over backbone network to minimize data center electricity
cost,” IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 570-579,
Jun. 2018.

[3] C.Gu,Z.Li, H. Huang, and X. Jia, “Energy efficient scheduling of servers
with multi-sleep modes for cloud data center,” IEEE Trans. Cloud Comput.,
vol. &, no. 3, pp. 833-846, Third Quarter 2020.

[4]

[5

[t}

[6]

[7

—

[8

—

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

3395

T.N.Le,J. Liang, Z. Liu, R. K. Sitaraman, J. Nair, and B. J. Choi, “Optimal
energy procurement for geo-distributed data centers in multi-timescale
electricity markets,” ACM SIGMETRICS Perform. Eval. Rev.,vol.45,no. 3,
pp. 185-197, 2018.

S. Ahmad, A. Rosenthal, M. H. Hajiesmaili, and R. K. Sitaraman, “Learn-
ing from optimal: Energy procurement strategies for data centers,” in Proc.
10th ACM Int. Conf. Future Energy Syst., 2019, pp. 326-330.

S. Albers and J. Quedenfeld, “Optimal algorithms for right-sizing data
centers,” in Proc. 30th Symp. Parallelism Algorithms Architectures, 2018,
pp- 363-372.

A. Marotta, S. Avallone, and A. Kassler, “A joint power efficient server
and network consolidation approach for virtualized data centers,” Comput.
Netw., vol. 130, pp. 65-80, 2018.

B. Heller et al., “ElasticTree: Saving energy in data center networks,”
in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation, 2010,
pp- 249-264.

A. O. FE Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. M. Marvel, “Catch me if you can: A closer look at malicious co-
residency on the cloud,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 560—
576, Apr. 2019.

H.Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vHaul: Towards optimal
scheduling of live multi-VM migration for multi-tier applications,” in Proc.
IEEE 8th Int. Conf. Cloud Comput., 2015, pp. 453—460.

S. K. Addya, A. Satpathy, B. C. Ghosh, S. Chakraborty, and S. K. Ghosh,
“Power and time aware VM migration for multi-tier applications over
geo-distributed clouds,” in Proc. IEEE 12th Int. Conf. Cloud Comput.,
2019, pp. 339-343.

T. He, A. N. Toosi, and R. Buyya, “CAMIG: Concurrency-aware live
migration management of multiple virtual machines in SDN-Enabled
clouds,” IEEE Trans. Parallel Distrib. Syst.,vol. 33, no. 10, pp. 2318-2331,
Oct. 2022.

S. K. Addya, A. Satpathy, B. C. Ghosh, S. Chakraborty, S. K. Ghosh,
and S. K. Das, “CoMCLOUD: Virtual machine coalition for multi-tier
applications over multi-cloud environments,” IEEE Trans. Cloud Comput.,
vol. 11, no. 1, pp. 956-970, First Quarter 2023.

N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, and A. Y. Zomaya,
“Online live VM migration algorithms to minimize total migration time
and downtime,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2019,
pp. 406-417.

G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration for multiple
correlated virtual machines in cloud-based data centers,” IEEE Trans. Serv.
Comput., vol. 11, no. 2, pp. 279-291, Mar./Apr. 2018.

U. Mandal, P. Chowdhury, M. Tornatore, C. U. Martel, and B. Mukherjee,
“Bandwidth provisioning for virtual machine migration in cloud: Strategy
and application,” IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 967-976,
Fourth Quarter 2018.

G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, “A new technique
for efficient live migration of multiple virtual machines,” Future Gener.
Comput. Syst., vol. 55, pp. 74-86, 2016.

H. Jin, L. Deng, S. Wu, X. Shi, H. Chen, and X. Pan, “MECOM: Live
migration of virtual machines by adaptively compressing memory pages,”
Future Gener. Comput. Syst., vol. 38, pp. 23-35, 2014.

F. Callegati and W. Cerroni, “Live migration of virtualized edge networks:
Analytical modeling and performance evaluation,” in Proc. IEEE SDN
Future Netw. Serv., 2013, pp. 1-6.

S. Sahni and V. Varma, “A hybrid approach to live migration of virtual
machines,” in Proc. IEEE Int. Conf. Cloud Comput. Emerg. Markets,2012,
pp. 1-5.

M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 3,
pp. 14-26, 2009.

M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “CQNCR:
Optimal VM migration planning in cloud data centers,” in Proc. IFIP Netw.
Conf., 2014, pp. 1-9.

A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting
the electric bill for internet-scale systems,” in Proc. ACM SIGCOMM Conf.
Data Commun., 2009, pp. 123—134.

A. Gupta, U. Mandal, P. Chowdhury, M. Tornatore, and B. Mukher-
jee, “Cost-efficient live VM migration based on varying electricity cost
in optical cloud networks,” Photonic Netw. Commun., vol. 30, no. 3,
pp- 376-386, Dec. 2015.

L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in Proc. IEEE Conf. Comput. Commun., 2010,

pp. 1-9.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore. Restrictions apply.



3396

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

M. A. Adnan, R. Sugihara, and R. K. Gupta, “Energy efficient geographical
load balancing via dynamic deferral of workload,” in Proc. IEEE 5th Int.
Conf. Cloud Comput., 2012, pp. 188-195.

F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine
migration: Challenges, techniques, and open issues,” IEEE Commun.
Surveys Tuts., vol. 20, no. 2, pp. 1206-1243, Second Quarter 2018.

H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement with
multiple deterministic and stochastic resources in data centers,” in Proc.
IEEE Glob. Commun. Conf., 2012, pp. 2505-2510.

M. Mishra and U. Bellur, “Whither tightness of packing? The case
for stable VM placement,” IEEE Trans. Cloud Comput., vol. 4, no. 4,
pp. 481494, Fourth Quarter 2016.

Regions and availability zones, Feb. 2022. [Online]. Available: https://aws.
amazon.com/about-aws/global-infrastructure/regions_az/?p=ngi&loc=2
X. Yi, F Liu, J. Liu, and H. Jin, “Building a network highway for Big
Data: Architecture and challenges,” IEEE Netw., vol. 28, no. 4, pp. 5-13,
Jul./Aug. 2014.

V. Kherbache, E. Madelaine, and F. Hermenier, “Scheduling live migra-
tion of virtual machines,” IEEE Trans. Cloud Comput., vol. 8, no. 1,
pp. 282-296, First Quarter 2020.

R. Torre, R.-S. Schmoll, F. Kemser, H. Salah, I. Tsokalo, and F. H. Fitzek,
“Demo: Benchmarking live migration performance of two trendy virtual-
ization technologies,” in Proc. IEEE Conf. Comput. Commun. Workshops,
2020, pp. 1087-1088.

S. K. Addya, A. K. Turuk, A. Satpathy, B. Sahoo, and M. Sarkar, “A
strategy for live migration of virtual machines in a cloud federation,” I[EEE
Syst. J., vol. 13, no. 3, pp. 2877-2887, Sep. 2019.

A. Satpathy, M. N. Sahoo, A. Mishra, B. Majhi, J. J. Rodrigues, and
S. Bakshi, “A service sustainable live migration strategy for multiple
virtual machines in cloud data centers,” Big Data Res., vol. 25, 2021,
Art. no. 100213, doi: 10.1016/j.bdr.2021.100213.

M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206-219, Feb. 2012.

Y.-H. Jia et al., “An intelligent cloud workflow scheduling system with
time estimation and adaptive ant colony optimization,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 51, no. 1, pp. 634—649, Jan. 2021.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing,” J.
Comput. Syst. Sci., vol. 79, no. 8, pp. 1230-1242, 2013.

F. Farahnakian et al., “Using ant colony system to consolidate VMs
for green cloud computing,” IEEE Trans. Serv. Comput., vol. 8, no. 2,
pp. 187-198, Mar./Apr. 2015.

H.-K. Zheng et al., “Link mapping-oriented ant colony system for vir-
tual network embedding,” in Proc. IEEE Congr. Evol. Comput., 2017,
pp. 1223-1230.

T.Duong-Ba, T. Tran, T. Nguyen, and B. Bose, “A dynamic virtual machine
placement and migration scheme for data centers,” IEEE Trans. Serv.
Comput., vol. 14, no. 2, pp. 329-341, Mar./Apr. 2021.

A. Zhou, S. Wang, X. Ma, and S. S. Yau, “Towards service composition
aware virtual machine migration approach in the cloud,” IEEE Trans. Serv.
Comput., vol. 13, no. 4, pp. 735-744, Jul./Aug. 2020.

F. Haider, D. Zhang, M. St-Hilaire, and C. Makaya, “On the planning and
design problem of fog computing networks,” IEEE Trans. Cloud Comput.,
vol. 9, no. 2, pp. 724-736, Second Quarter 2021.

Sourav Kanti Addya (Senior Member, IEEE) re-
ceived the PhD degree in CSE from NIT Rourkela,
India and worked as a postdoctoral fellow with the
Department of CSE, IIT Kharagpur, India. He is
currently an assistant professor with the Department
of CSE, NITK Surathkal, India. His research inter-
ests include cloud system, serverless computing, IoT,
blockchain. He is a member of the ACM.

Anurag Satpathy (Graduate Student Member, IEEE)
received the BTech degree in information technology
from IIIT Bhubaneswar, India, in 2014, the MTech
degree in CSE from BIT Mesra, Ranchi, India, in
2017, and the PhD degree in CSE from NIT Rourkela,
India. His research interests include cloud computing,
the Internet of Things, and distributed systems.

Bishakh Chandra Ghosh (Student Member, IEEE)
received the BTech degree in information technology
from NIT Durgapur, India. He is a doctoral research
student in CSE with IIT Kharagpur. His current re-
search area includes cloud computing, blockchain,
and distributed systems.

Sandip Chakraborty (Member, IEEE) received the
PhD degree in CSE from IIT Guwahati. Currently, he
is an associate professor in CSE with IIT Kharagpur.
He is working as an area editor of Elsevier’s Ad
Hoc Networks and Pervasive and Mobile Computing
journals. His primary research interests are on the in-
tersections of computer systems, distributed systems,
and human-computer interaction.

Soumya K. Ghosh (Senior Member, IEEE) received
the PhD degree in CSE from the IIT, Kharagpur.
Currently, he is a professor with the Department of
CSE, IIT Kharagpur. Prior to joining IIT Kharagpur,
he was with the ISRO in the area of satellite remote
sensing and GIS. His research interests include cloud
computing, spatial data science, and IoT.

Sajal K. Das (Fellow, IEEE) is a Curators’ distin-
guished professor of computer science and Daniel St.
Clair Endowed chair with the Missouri University
of Science and Technology. His research interests
include wireless and sensor networks, mobile and per-
vasive computing, cyber-physical systems, 10T, cloud
computing, and cybersecurity. He is the editor-in-
chief of Elsevier’s Pervasive and Mobile Computing
journal, and associate editor of [EEE Transactions on
Mobile Computing, IEEE Transactions on Depend-
able and Secure Computing, and ACM Transactions

on Sensor Networks. He is a distinguished Alumnus of the Indian Institute of
Science, Bangalore.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore. Restrictions apply.



