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Abstract—Virtual machine (VM) migration enables cloud ser-
vice providers (CSPs) to balance workload, perform zero-downtime
maintenance, and reduce applications’ power consumption and
response time. Migrating a VM consumes energy at the source,
destination, and backbone networks, i.e., intermediate routers and
switches, especially in a Geo-distributed setting. In this context,
we propose a VM migration model called Low Energy Applica-
tion Workload Migration (LEAWM) aimed at reducing the per-bit
migration cost in migrating VMs over Geo-distributed clouds.
With a Geo-distributed cloud connected through multiple Internet
Service Providers (ISPs), we develop an approach to find out the
migration path across ISPs leading to the most feasible destination.
For this, we use the variation in the electricity price at the ISPs to
decide the migration paths. However, reduced power consumption
at the expense of higher migration time is intolerable for real-time
applications. As finding an optimal relocation is NP-Hard, we
propose an Ant Colony Optimization (ACO) based bi-objective opti-
mization technique to strike a balance between migration delay and
migration power. A thorough simulation analysis of the proposed
approach shows that the proposed model can reduce the migration
time by 25%–30% and electricity cost by approximately 25%
compared to the baseline.

Index Terms—Workload migration, migration delay, migration
power, ant-colony optimization, multi-tier applications.

I. INTRODUCTION

T
HE advent of geo-distributed cloud service applications

has compelled cloud service providers (CSP) to deploy

interconnected data centers (DCs), called Internet Data Centers

(IDC), at multiple geographic locations depending on the user

demands. Electricity is proven to be one of the major day-to-day

operational costs for running an IDC, so the CSPs typically try
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Fig. 1. Hourly variation in the electricity price ($/hr) for four different
providers, namely CAISO, MISO, PJM, and ERCOT in the USA [2].

to minimize electricity costs by optimizing the usage of DC

hosts and other physical infrastructure such as the networks.

However, the scenario becomes complicated under the multi-

timescale electricity market where the cost of the electricity

changes over time [1], and the CSP has connectivity with dif-

ferent electric service providers. For example, Fig. 1 depicts

the hourly variation in the electricity price for four providers,

namely CAISO, MISO, PJM, and ERCOT in the USA (as of

25th August 2016) [2]. There is a considerable variation in the

electricity cost at different times of the day, and it also varies

across various electric service providers. Such a market attracts

competition among the providers to deliver cheap electricity and

calls for a challenging real-time cost optimization problem for

the CSPs in deciding the operational infrastructure such that the

overall running cost can be minimized.

Existing approaches for optimizing energy cost of CSPs [1],

[3], [4], [5] primarily addressed this issue using the follow-

ing macro-level energy management strategies: (a) service

placement and consolidation [1], (b) infrastructure-level opera-

tions [3], [6], and (c) energy procurement [4], [5]. However, none

of these existing works have considered the micro-management

of energy usage during typical data center operations such as

service migrations. For example, consolidation of services as

discussed in [1] requires migrating the services from one DC

to another. However, a DC maintains redundant network con-

nectivity through different Internet Service Providers (ISP) for

a reliable, available, and fail-safe system. Therefore, multiple
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migration paths exist between a source host and the target

host for service migration. Different paths for migrations will

incur different energy costs in a multi-timescale energy market-

place [2] both at the backbone ISP and the target DC. Indeed, the

power consumption by the ISP networking elements associated

with a DC is a significant concern for the CSPs for optimizing

the operational costs [7]. In [8], Heller et al. have shown that

the networking elements consume 10%–20% of the total energy

at the DCs. Considering the large number of service migrations

that typically occur per hour over a commercial geo-distributed

DC [9], an important aspect would be to reduce the energy per

bit vis-à-vis the electricity cost for service migration.

A straightforward solution to the above micro-management

problem would be to dynamically decide the migration path

to minimize energy consumed per bit of data migration. This

is a challenging problem because of the following reasons.

(i.) Nowadays, the typical cloud services are multi-tier in na-

ture [10], where a set of virtual machines (VM) are allocated to a

running service. A service migration involves the migration of all

the associated VMs; however, a single target host may not meet

the service level agreement (SLA) for all the associated VMs.

Therefore, multi-tier services migration involves a complex

decision problem to decide the target hosts and the associated

migration paths. (ii.) The optimization problem is bi-objective –

we need to reduce the per-bit energy consumption for migration

and maximize the migration bandwidth. The migration becomes

fast with minimal application downtime. (iii.) Although the deci-

sion problem is complex, the solution needs quick convergence

as it needs to be taken in real-time.

In this paper, we focus on the micro-optimization of opera-

tional cost for service migration across geo-distributed cloud

DCs. Our approach meticulously selects the ISP paths that

lead to the fast migration of multi-tier cloud services while

minimizing energy consumption and reducing electricity costs.

We model this as a multi-objective combinatorial optimization

problem, which is NP-Hard. Therefore, we develop a fast

heuristic-based approach to solve the optimization using Ant

Colony Optimization (ACO). Combining the optimization prob-

lem and the corresponding fast solution approach, we propose

Low Energy Application Workload Migration (LEAWM) in this

paper that can find out the optimal ISP paths for multi-tier service

migration over a geo-distributed cloud while maximizing the

migration bandwidth and minimizing the energy cost. We have

implemented LEAWM over CloudSim simulator, and a thorough

evaluation of the system shows that LEAWM can reduce the

migration time as well as the energy consumption cost due to

migration of a multi-tier cloud service.

A preliminary version of this paper was published in [11],

where we presented a framework to optimize the electricity cost

and time for migrating multi-tier services in a geo-distributed

cloud. The major contributions of the current work are as fol-

lows:
� We propose a framework called as LEAWM that aims to

schedule the migration of multiple VMs corresponding to

multi-tier applications. We focus on appropriately selecting

ISP paths that can reduce the migration time and reduce

the per-bit energy consumption in the process (Sections III

and IV).

� We propose an efficient migration strategy as a part of

LEAWM that can efficiently determine the paths for con-

ducting large-scale VM migrations considering the metrics

mentioned above (Sections V and VI). Finding migration

paths is challenging, especially in multi-timescale electric-

ity markets; we use an ACO-based meta-heuristic approach

to solve the above problem (Section VII).
� We perform thorough evaluations and performance com-

parisons with a baseline to ascertain the proficiency of

LEAWM. Further, the simulation results confirm the fact

that LEAWM can reduce the migration time by 25%–30%

and electricity cost by approximately 25% in comparison

to the baseline (Section VIII).

II. RELATED WORK

Various research works in the literature have proposed meth-

ods to optimize the total migration time and overall power

consumption due to migration. Both pre-copy and post-copy

migration approaches have been adopted as a migration strategy

for conducting migrations on a multi-cloud architecture for

multi-tier applications.

A. Optimizing Migration Time

Mandal et al. [16] have proposed an intelligent strategy for

accurately determining the bandwidth and pre-copy rounds to

optimize the migration in a multi-cloud setup. In [19], the

authors have proposed serial and parallel migration techniques

for migrating a sequence of VMs for multi-tier applications.

Serial migration follows a sequential ordering of VMs, where

each VM gets the full share of the LAN bandwidth during

migration. Therefore, the migration time for individual VM is

reduced. On the other hand, the VMs share the available LAN

bandwidth in the case of a parallel migration strategy. In contrast

to serial migration, parallel migration reduces the downtime for

a multi-tier application. In [17] is introduced an improved serial

migration strategy for migrating multiple VMs using a hybrid

pre-copy and post-copy approach. The post-copy method allows

the VMs to stop their execution at any point in time and copy

their boot data to resume execution at the destination. Although

this technique can reduce the migration time by minimizing the

amount of data to be copied, it often suffers from page faults

as the VM’s entire memory is not copied. This can lead to

delayed response and negatively impact the user experience and

satisfaction.

To overcome this drawback, the authors in [20] built a writable

working set (WWS) by iteratively scanning the page table and

sending it with the VM states to reduce the number of page faults,

which consequently improves the service quality. However, the

scope of these existing approaches is limited to scheduling

independent VMs. On the contrary, modern cloud applications

are represented as virtual data centers (VDCs) that comprise

multiple interdependent VMs. VDC management often requires

relocation of the entire logical application space, which trig-

gers large-scale migrations of dependent VMs [22]. A parallel

migration strategy is adopted in [15] for relocating multiple

correlated VMs and reducing overall service downtime. Higher

migration times often have harmful impacts on the performance

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore.  Restrictions apply. 



ADDYA et al.: GEO-DISTRIBUTED MULTI-TIER WORKLOAD MIGRATION 3387

TABLE I
SELECTIVE REVIEW FOCUSED ON VM MIGRATION

of responsive applications in terms of delayed response. To

minimize the total migration time, a memory compression based

VM migration (MECOM) is proposed in [18], which aims to

reduce the amount of memory to be copied to provide fast

and stable migration. Some other works that addressed the

issue of bandwidth determination, termination conditions, and

scheduling the migration of multiple VMs are discussed in [12],

[13], [14].

B. Optimizing Power Consumption

Recent literature on minimizing the power consumption of

DCs by efficiently relocating VMs has gained much impetus.

Due to regional demand differences, transmission inefficiencies,

and generation diversity, electricity prices exhibit temporal and

geographic variation. Qureshi et al. [23] have characterized

the change due to fluctuating electricity prices and argued that

the existing distributed systems should exploit such variations

for significant economic gains. Gupta et al. [24] have utilized

the spatial and temporal variation in electricity price to reduce

the operating cost associated with energy consumption. Rao et

al. [25] have studied the issue of minimizing the total electric-

ity cost under multiple electricity markets environments while

ensuring the application QoS. On the other hand, the authors

in [26] have discussed a novel approach for cost savings using

geographical load balancing without violating the SLA. Notably,

Heller et al. [8] have shown that the networking elements are

one of the major consumers of electricity. Since VM migration

is a network-intensive task, it leads to increased power con-

sumption of the intermediate networking elements. Frequent

migrations can increase electricity consumption at the interme-

diate nodes and decrease the CSPs’ revenue. Hence, there is a

need to design a migration strategy for geo-distributed clouds,

exploiting the variation in electricity pricing at the intermedi-

ate CSPs to reduce the migration overhead. However, reduced

networking cost at the expense of higher migration time is

futile [27].

Table I provides a comprehensive summary of the literature

that we reviewed on VM migration. The table indicates that

the existing literature is limited to addressing migration time

and power consumption independently. However, the two pa-

rameters have a strong correlation, especially while conducting

massive-scale migrations over a geo-distributed infrastructure.

In this paper, we propose LEAWM to jointly reduce the electricity

cost due to migration without jeopardizing the migration time,

as detailed in the following.

III. PROBLEM DEFINITION

In this paper, we address the problem of scheduling the migra-

tion of VMs of multi-tier applications. We consider a scenario

where multiple applications are deployed over servers in the

form of multiple interconnected VMs. As discussed earlier,

this is challenging as (i) migrating a multi-tier service involves

finding suitable destination servers for each VM, (ii) identifying

the migration paths over the interconnection network such that

the per-bit energy overhead is reduced, and (iii) scheduling

the migration of such VMs such that the service downtime is

minimum.

Specifically, given a geo-distributed physical data center net-

work (or substrate network) comprising multiple data centers at

different locations, interconnected through multiple ISPs, we de-

velop an efficient VM migration scheduling mechanism by suit-

ably selecting a migration path that optimizes the per-bit-energy

consumption and service downtime over a multi-timescale elec-

tricity market. Note that we focus on a single cloud with DCs

located at different geographical locations and procuring en-

ergy services from providers with cost variations at a temporal

scale.

A. System Model

In this section, we provide a detailed discussion of different

components of the proposed LEAWM framework.

1) Multi-Tier Application Instance: We assume a set of

N multi-tier application instances M = {M1,M2, . . .,MN}
where Mn refers the nth multi-tier application instance. Each

multi-tier application instance comprises a number of VMs

denoted by Vn = {V1, V2, . . ., VM}, where Vm is the mth VM,

and M is the total number of VMs within Vn. Typically a

VM,Vm ∈ Vn, requests CPU and memory resources denoted by

V CPU
m and V Mem

m respectively [13]. Further, for each VM, we

define a location constraint vectorαm that captures the allowable

DCs where a VM can be hosted. The variables in the vector

αm ∈ {0, 1} and are assigned values as per (1).

αm,j =

{

1 : if Vm can be placed in DC j
0 : otherwise

. (1)
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2) Substrate Network Model: The interconnected DC net-

work is modeled as an undirected weighted graph G
S =

(NS ,ES). Here, N
S = N

DC ∪ N
I , where N

DC denotes the

set of substrate networks, and N
I indicates the set of inter-

mediate ISP’s routers/switches in the entire network. We also

assume that the graph is connected, i.e., there is at least one

route from one DC to any other DC. Every DC dcj ∈ N
DC has

K servers at its disposal represented by Hj = {h1, h2, . . ., hK}
and uniquely indexed byHk. Each serverhk

j ∈ Hj has resources

along two dimensions, i.e., CPU and memory resources cap-

tured as hk.CPU
j and hk.Mem

j respectively. The physical links

connecting the networking elements are represented by E
S =

E
P ∪ E

B . Here, E
P indicates the number of intra-DC physical

links, and E
B represents the backbone WAN links. We only

consider the transport layer devices (routers, Internet Exchange

Points, etc.) of the ISP as the major components in the network,

which consume power during their operations. Note that we

only consider the migration overhead for inter-DC links in this

approach. The backbone links are E
B = {e1, e2, . . ., eL}, where

each physical link el ∈ E
B connects two networking elements

(gateways of two interconnecting ISPs) and has the following

properties: (i) c(el) represents the maximum capacity in terms

of bandwidth, (ii) r(el) indicates the current availability which

implies the availability of resources at a specific time-instance

(initialized at the total capacity), and (iii) d(el) captures the

maximum propagation delay experienced.

B. Multi-Tier Migration Request

In a typical cloud environment, the applications are migrated

from one DC to another due to multiple reasons such as route

maintenance, handling excess demands, load balancing, etc. All

the VMs associated with the application may need to be migrated

for a multi-tier application. We define a mapping functionΓM as

per (2) to capture the initial assignment of the VMs over the host

servers across the DCs. H denotes the set of all servers across

DCs.

ΓM : Vn → H. (2)

For instance, the mapping of a VM vm can be captured in

accordance with (3).

ΓM (Vm) = hk
j (3)

∀m ∈ [1,M ]; ∀k ∈ [1,K]; ∀j ∈ [1, |NDC |].

Given the initial mapping functionΓM , the VMs of the multi-tier

applications often get relocated. In this paper, for a multi-tier

applicationn, we define, V
′
n ⊆ Vn as the set of VMs that require

relocation. The relocation is a complex process involving finding

a suitable destination server for each migrating VM. Moreover,

as we discussed earlier, VM migration is a network-intensive

task and consumes the networking elements’ resources, leading

to increased energy consumption and reduced revenue. Hence,

the overall service migration problem is subdivided into two

sub-problems: (i) Determine a feasible destination server and

(ii) Determine the migration path, which not only reduces the

migration overheads but also minimizes the per-bit energy con-

sumption. Next, we discuss each step in detail.

1) Virtual Machine Remapping: The remapping process ad-

dresses the first aspect of the problem by selecting a feasible

destination server for the migrating VM. Although there are

efficient techniques to address the issue of VM placement [28],

[29], in this work, we use a first-fit allocation strategy for VM

relocation as the primary aim of this paper is to find optimal

relocation paths that optimize both the migration time and the

migration cost in terms of energy costs. The remapping function

is captured as per (4), where H
′ ⊆ H.

ΓR : Vn → H
′. (4)

The remapping function for a VM Vm is captured as per (5), and

is feasible iff the constraints expressed in C1, C2, C3, and C4,

are satisfied. A VM can perform its normal operations if assigned

the requisite resources. The Constraints C1 and C2 reflect that

the relocating server hk
j satisfies the CPU and memory demands

of the migrating VM Vm. On the other hand, C3 states that

remapping is feasible if the target server belongs to an allowable

data center for the VM. Finally, C4 denotes the feasible set of

values those the variables can take.

ΓR(Vm) = hk
j , (5)

subject to the conditions C1: V CPU
m ≤ hk.CPU

j ; C2:

V Mem
m ≤ hk.Mem

j ; C3:αm,j = 1; and C4:∀m ∈ [1,M ]; ∀k ∈

[1,K]; ∀j ∈ [1, |NDC |
2) Finding Remapping Paths: The next step involves finding

a suitable migration path that is able to optimize two param-

eters – (i.) the total migration time, and (ii.) the energy costs

incurred during the migration process. Ideally, finding a path

with the minimum migration time involves selecting the path

with the highest residual bandwidth. Note that we do not have

any dedicated migration paths between two DCs; we use the

same in-band Internet path used for communication between

the VMs. Selecting the path with the highest residual bandwidth

may not always lead to reduced per-bit energy consumption.

Moreover, the migration path encompasses traversing the net-

working elements of multiple ISPs acquiring electricity from

disparate service providers experiencing temporal variation in

the electricity costs. This emphasizes that the path selection is

bi-objective and involves striking a trade-off between the migra-

tion time and per-bit energy consumption. The path remapping is

captured using the one-to-one mapping function as expressed in

(6). It reflects the overall working of the path mapping function,

which implies finding a migration path from the source server

to the remapped server. Here, P
S denotes the set of loop-free

paths over the interconnection network.

ΓP = (ΓM (Vm),ΓR(Vm)) → P
S . (6)

Precisely, for a given VM Vm, a migration path selection is not

trivial. This is especially challenging when we have multiple

geo-distributed DCs having multiple paths connecting any two

substrate servers. For instance letPm ∈ P be the selected migra-

tion path for migrating Vm connecting ΓM (Vm) and ΓR(Vm).
The migration bandwidth Rm for the path can be derived as

per the (7). Note that all the migrations for a given multi-tier

application are scheduled over this path irrespective of the

strategy. The overall migration bandwidth of the path is dictated

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore.  Restrictions apply. 



ADDYA et al.: GEO-DISTRIBUTED MULTI-TIER WORKLOAD MIGRATION 3389

Fig. 2. Interconnection network comprising four DCs, i.e.,DC1,DC2,DC3

and DC4 connected using the backbone network. P1, P2 and P3 represent
three different migration paths for migrating a VM from DC1 to DC4 over the
interconnected network.

by the physical link having the least available capacity.

Rm = min
∀el∈Pm

{r(el)}. (7)

To impose restrictions on maximum tolerable migration time,

we also impose an additional constraint as reflected by (8).

This constraint caps the maximum migration delay under the

maximum tolerable delay δn for a multi-tier applicationn. T
mig
m

denote the migration delay incurred by Vm. This is done to

make the implementation realistic and applicable to real-time

and deadline-sensitive applications.

∑

∀Vm∈Vn

T
mig
m ≤ δn. (8)

In the following subsection, using an example scenario, we high-

light the complexity in the decision-making process considering

both migration and energy concerns while migrating VMs of

multi-tier applications across a Geo-distributed infrastructure.

C. An Example Scenario

To make the example scenario closer to a real-world setting,

we consider a geo-distributed infrastructure of interconnected

IDCs similar to that of Amazon web services (AWS) [30] and

is pictorially depicted in Fig. 2. Although AWS has deployed

over 26 IDCs, we restrict the example scenario to 4 intercon-

nected DCs assumed to be located in Europe (London), US-East

(Northern Virginia), Asia-Pacific (Mumbai), and Asia-Pacific

(Sydney), hereafter referred to as DC1, DC2, DC3 and DC4,

respectively. The interconnection network, as illustrated in Fig. 2

may not exactly resemble the one used by AWS but is realistic

enough to understand the undertaken problem. Further, we also

assume the presence of multiple ISPs forming the backbone net-

work to ensure a reliable, available, and fail-safe cloud-delivery

system [31].

As a consequence, every IDC has multiple interconnection

paths with other IDCs. The intermediate ISPs have routers (CRs)

to route the traffic, and these routers receive electricity from

different providers and incur additional costs. For simplicity, let

us assume a scenario where a multi-tier application only requests

a single VM relocation. Let us assume the VM’s initial mapping

is at DC1, and we need to find a suitable destination DC to host

the migrating VM. Although the migration path comprises both

inter and intra-DC paths, we reduce the inter-DC latency. This is

because it is a scarce and costly resource. We further assume that

only DC4 can host the VM and satisfies the location constraint.

As can be observed from the figure, multiple paths connectDC1
and DC4. Let us assume that VM has 200 bits of data to be

transmitted, and the electricity cost for sending each bit at each

CR is written inside the square.

Note that these values are used for this example scenario

only. The mentioned value on the edge connecting two de-

vices denotes the transmission capacity of each link. Let

us assume the migration path is DC1 → CR1 → CR2 →
CR5 → CR8 → DC4. The total cost incurred in migrating

200 bits over this path is 4,000 units, and the total time

for transmitting all the bits is 5 units. Alternatively, there

is another path DC1 → CR1 → CR2 → CR4 → CR6 →
CR7 → CR8 → DC4. The total cost incurred in migrating 200

bits over this path is 3,600 units whereas the total transmission

time is 10 units. Contrary to the above paths, there exists an-

other path DC1 → CR1 → CR3 → CR5 → CR8 → DC4,

which can reduce both the cost to 3,400 and the transmission

time to 4 units respectively. Hence, finding the most optimal

path that optimizes both the migration overhead and cost of

using intermediate devices (specifically routers) is not trivial

and demands us to find a suitable technique that optimizes

both.

IV. LEAWM ARCHITECTURE: JOINT OPTIMIZATION OF

MIGRATION DELAY AND MIGRATION POWER

As we discussed earlier, the LEAWM architecture deals in

building an efficient migration plan for already-assigned VMs

of multi-tier applications allocated across a Geo-distributed

infrastructure. These relocations can be triggered due to var-

ious activities such as maintenance, load balancing, disaster

recovery, etc., undertaken by the providers. Moreover, to en-

sure a seamless relocation, we consider both the stakeholders’

preferences in the process, i.e., users and CSPs. We provide

minimum migration overheads in reduced migration time and

service downtime from a user’s perspective. We also aim to

minimize the per-bit migration energy consumed during mi-

gration from a CSP’s standpoint. Therefore, we propose an

architecture called LEAWM to optimize the migration delay

and power jointly. We first define the constraints for find-

ing an effective remapping solution and formulate an opti-

mization problem that yields the three objectives mentioned

earlier.

A. Constraints

The constraints corresponding to a feasible service migration

are as folows.

1) Completeness of Allocation: Given a VM Vm of a multi-

tier application, we define x(Vm, hk
j ) be a binary indicator

variable as follows.

x(Vm, hk
j ) =

{

1 : If Vm can is assigned a host hk
j

0 : otherwise
. (9)
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As already defined in Section III-A1, a multi-tier applica-

tion comprises multiple dependent VMs executing different

tasks [13]. Therefore, let Vn capture the VM request set of a

multi-tier application request n. The completeness of allocation

can be ensured as per (10).

|Vn| =
∑

∀Vm∈Vn

min

⎛

¿1,
∑

∀dcj ∈NDC

∑

∀hk
j
∈Hj

x(Vm, hk
j )

À

⎠ .

(10)

Here |.| denotes the cardinality of the set. The above constraints

indicate that a feasible allocation exists for all the VMs of a

multi-tier application n, thereby implying a complete allocation

of the corresponding application.

B. Objectives of Relocation

The optimal service migration is expressed as a bi-objective

optimization problem, which is discussed next.

1) Objective 1: Minimizing Migration Delay: The migration

delay is to be minimized to improve the quality-of-service (QoS)

and responsiveness of applications. Migration delay refers to the

total time taken by a VM to seamlessly transfer its state, i.e.,

memory and CPU states, from the source server to a destination

server over a migration path. Let us assume T
mig
m be the mi-

gration delay for migrating a VM Vm ∈ V
′
n on a migration path

Pm. The total migration delay for migrating multiple such VMs

across DCs can be computed as
∑

n∈[1,N ]

∑

∀Vm∈V ′
n

T
mig
m . The

overall objective of LEAWM is to reduce the overall migration

delay incurred by all the applications during the relocation

process.

2) Objective 2: Minimizing Migration Energy: From a CSPs

perspective, the migration of VMs is an energy-draining process,

especially at the CRs encompassing different ISPs. Moreover,

these ISPs procure electricity from different providers that ex-

perience temporal variations in their prices. This adds to the

complexity of deciding the migration paths that encompass

multiple such CRs between the source and destination DCs

of a VM. The aggregated energy cost can be calculated as
∑

n∈[1,N ]

∑

∀Vm∈V ′
n

T
pow
m .

C. Bi-Objective Formulation

The remapping function ΓR(.) is desirable if it can optimize

the migration delay and energy consumed in relocating multi-tier

application requests. Summarizing the constraints and objec-

tives discussed above, the overall objective of LEAWM can be

represented as

min
∑

n∈[1,N ]

∑

∀Vm∈V ′
n

(Tmig
n + T

pow
n ), (11a)

such that

V CPU
m ≤ hk.CPU

j ,

V Mem
m ≤ hk.Mem

j (11b)

αm,j = 1 (11c)

∑

∀Vm∈Vn

T
mig
m ≤ δn (11d)

∀m ∈ [1,M ]; ∀k ∈ [1,K]; ∀n ∈ [1, N ]; ∀j ∈ [1, |NDC |].
(11e)

V. MODELING MIGRATION DELAY

Predominantly, the migration involved in LEAWM consists

of migrating multiple VMs over the WAN links. Various tech-

niques are available in VM migration literature, but we consider

pre-copy-based VM migration due to its robustness. The pre-

copy-based migration process generally involves image copy

followed by an iterative memory copying phase [32], [33]. First,

the operating system image is copied from the source server

to a target server in a separate IDC in a single iteration. This

is followed by an iterative memory copy phase consisting of

multiple rounds. In the first round, the entire memory of a VM

is transmitted, whereas, in subsequent rounds, memory dirtied in

the previous round is transmitted. The process is repeated until

a threshold on the remaining dirtied memory or the maximum

number of iterations is met [34]. This indicates the beginning of

the stop-and-copy phase, where the source VM is suspended,

and the leftover dirty pages are copied to the destination in

one final round. This marks the end of the handover process,

and the VM at the destination takes over the execution, and the

source VM is destroyed. As LEAWM involves migrating multiple

VMs of a given application, scheduling the migration is an

inherent challenge. A naive scheduling approach can deliriously

impact migration overheads. Before delving into the details of

the solution approach, we shed light on the migration strategy

used to make the description lucid.

Let nmax be the maximum number of pre-copy iterations.

Let V mem
m and V img

m be the memory and image size (in GB)

of Vm to be transferred. Let Vth be a fixed dirty memory

threshold (in GB) for stopping the memory copying phase and

initiating the stop-and-copy phase. The provisioned bandwidth

(in Gbps) available for migrating Vm over the migration path

Pm is calculated as per (7) and is denoted by Rm. The memory

page size (in KB) and memory page dirtying rate (pages/second)

are considered to be constants for Vm and are denoted as ℘m

and Υm respectively. The dirtying rate refers to the number of

pages dirtied or updated per second. Then, we define λm as

the ratio of dirtying rate to the transmission rate, and it can be

computed as λm = (℘m ∗Υm)/Rm ; 0 < λm < 1. The VM

image is generally copied in a single round, and its duration can

be calculated as per (12).

T
img
m =

V img
m

Rm

. (12)

The memory copy phase follows the image copy phase. The

memory transmitted for Vm in round i denoted by Mi
m of this

phase can be derived as per (13).

Mi
m =

{

V mem
m if i = 0,

λm ∗Mi−1
m otherwise

. (13)

From (13), the total migration time T
pc+sc
m (where, T

pc+sc
m =

T
pc
m + T

sc
m ) for the iterative-memory copying of a VM can be

calculated as (14). Here, i refers to the current pre-copy round.

T
pc+sc
m =

V mem
m

Rm

(

1− (λm)imax+1

1− λm

)

. (14)
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The service degradation time, i.e., downtime or the time taken

for the stop-and-copy phase can be calculated as per (15).

T
sc
m =

V mem
m

Rm

(λm)imax . (15)

The maximum number of pre-copy rounds imax can be derived as

per (16), where nmax denotes the maximum pre-copy iterations.

imax = min

(⌈

log
λm

Vth

V mem
m

⌉

, nmax

)

. (16)

The total migration time T
mig
m for migrating a VM can be

calculated as the sum of the duration of image copy and iterative

memory copying rounds. Hence, from (12) and (14), we get,

T
mig
m = T

img
m + T

pc+sc
m . (17)

Most multi-tier applications have multiple VMs at their disposal.

As previously discussed, the CSPs often relocate multiple VMs

of different multi-tier applications. Therefore it is of utmost

importance to schedule such migrations as a naive migration

strategy that can cause severe performance penalties in terms of

high migration time and downtime, which can lead to service

degradation and user dissatisfaction [35]. Based on previous

discussions on pre-copy earlier in this section, we shed some

light on the migration strategy incorporated in LEAWM.

A. Migration Strategy for LEAWM

The authors in [17], discussed a sequential migration strategy

to migrate ‘M ’ VMs from a source machine to a destination

machine. The sequential migration strategy schedules the mi-

gration of VMs serially. The procedure operates as follows.

The first migrating VM executes its pre-copy rounds. As the

stop-and-copy phase of this VM is triggered, the remaining

M − 1 VMs are suspended and copied in a single iteration. This

event of suspension prevents the VMs from dirtying their pages

and the pages of other VMs. We adopt this serial migration

strategy for migrating multiple VMs and the migration time

T
pc+sc
s and downtime T

sc
s denoted for this scheme is computed

as per (18) and (19).

T
pc+sc
s =

M
∑

m=1

T
pc+sc
m =

MV mem
m

Rm

(

1− (λm)imax+1

1− λm

)

(18)

T
sc
s =

V mem
m

Rm

(λm)imax + (M − 1)
V mem
m

Rm

. (19)

VI. MODELING MIGRATION POWER

The most critical issue affecting migration performance is

the path selection for migrating VMs across geographically dis-

tributed IDCs. Since multiple such paths exist for migrating VMs

across IDCs, it exhibits temporal variation in electricity price,

leading to different electricity costs. Ideally, the CSPs would

like to build a migration plan that can minimize migration time

and electricity costs. Next, we develop a power consumption

model for migrating a single VM across Geo-distributed DCs

and extend it to multiple VMs. Let, Qm be the set of ISPs to be

traversed for migrating Vm along the selected pathPm and |Qm|
denotes the number of ISP networks visited from ΓM (Vm) to

ΓR(Vm) along the path. The energy per bit transport in an ISP

network q ∈ Qm is represented as Pbit
q . Let ctq be the cost of

electricity at ISP q at tth hour of the day. The number of bits

transmitted during the migration of Vm for a given iteration i
is provided by Mi

m, and it varies depending on the migration

strategy. The total network power consumption cost Cnet
m for

migrating Vm can be computed as per (20).

Cnet
m =

imax
∑

i=1

|Qm|
∑

q=1

Mi
m ∗ Pbit

q ∗ ctq. (20)

Let CD denote a constant power cost incurred at the source and

destination hosts. By ignoring the additional administrative over-

head for connection setup, location selection, etc., the aggregate

power consumption cost for migrating Vm can be calculated as

per (21).

Cint
m = CD + Cnet

m . (21)

Hence, for a given migration path, the total power consumption

cost T
pow
m for migrating Vm over interconnection DCs can be

expressed as per (22), whereβ is an additional overhead involved

in migration for path establishment and processing of data at

intermediate nodes.

T
pow
m = Cint

m (1 + β). (22)

VII. SOLUTION USING ACO META-HEURISTIC

Given the initial allocation ΓM , and an alternative remapping

ΓR, the primary objective of LEAWM is to build a feasible

relocation plan that finds suitable paths to relocate multiple VMs

of multi-tier applications respecting the location constraints and

resource demands such that the overall migration delay and

migration energy is reduced. However, finding such a solution

to the relocation problem is NP-Hard [36]. Hence we use

an Ant colony optimization (ACO) based solution approach to

obtain a Pareto-efficient solution within acceptable time limits.

ACO is a robust meta-heuristic-based algorithm suitable for

solving complex practical problems that are computationally

expensive [37]. Specific to cloud computing, Gao et al. [38]

proposed a multi-objective ant colony system algorithm-based

VM placement to simultaneously minimize the total resource

wastage and power consumption of servers hosting VMs. In [39]

is presented an ACO-based distributed system to perform dy-

namic VM consolidation to reduce energy consumption at cloud

DCs while adhering to the application QoS. On the other hand,

a novel algorithm based on ACO is developed in [40] to solve

the virtual network embedding (VNE) problem specifically, the

authors focused on virtual link mapping onto substrate networks.

The above implementations showed promising performance and

achieved proper trade-offs among multiple parameters. Moti-

vated by this, we propose to utilize ACO to strike a trade-off

between migration time and migration power.

Following the principles of ACO, we consider a relocation

plan of Vm as a path Pm from its source host ΓM (Vm) to

ΓR(Vm) encompassing multiple core routers of different ISPs

that obtain services from disparate vendors having temporal

variation in electricity price. This problem is analogous to the

traveling salesman problem (TSP), relaxing the constraint that
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demands the artificial ants to visit all the graph nodes. The path

traversed is the migration path for the corresponding VM, and

the start and the end vertex denote the initial and remapped

servers, respectively. An artificial agent, i.e., an ant, traverses

the substrate graph to find a feasible relocation. Next, we define

the two most important parameters involved in the working of

ACO, i.e., the pheromone trial matrix and heuristic information

matrix. Let this heuristic information be represented as η, and

pheromone trial information is ζ. The heuristic information

between nodes f and g along the path denoted by ηf,g indicates

the desirability of an ant currently at node f in selecting g as

its next node for traversal. Similarly, the pheromone trail ζf,g
guides the ants in selecting the next node that complies with

the global objective function. Next, we discuss the step-wise

working of ACO.

A. Initial Pheromone Trial Determination

The initial pheromone trail ζ0 is calculated as per (23). Here,

S0 be the solution obtained by random path selection technique;

T
mig(S0) and T

pow(S0) denote the migration time and energy

cost, respectively, of S0.

ζ0 =
1

(Tmig(S0) + Tpow(S0))
. (23)

B. Computing Heuristic Information

An essential aspect of ACO-based solution strategies is choos-

ing a good heuristic, which in combination with the pheromone

information, helps generate efficient solutions. The heuristic

information acts as a guide for the ACO with problem-specific

knowledge. As the overall objective is to construct a solution to

minimize both migration time and migration power, the heuristic

functions are bi-objective and are expressed as follows.

ηf,g,1 =
1

∑|V ′
n|

m=1 T
mig
m

; ηf,g,2 =
1

∑|V ′
n|

m=1 T
pow
m

. (24)

The heuristic information denoted by ηf,g indicates the desir-

ability of an ant currently located at node f to move to node g
and is expressed as per the following equation.

ηf,g = ηf,g,1 + ηf,g,2. (25)

Equation (25) indicates the desirability of an ant currently at

node f to dynamically select node g in the traversal path that

minimizes the migration delay and power in the remapping ΓR.

The nodes f and g reflect the intermediate devices along ISP

paths. In fact, the heuristic information as in (25) captures partial

contribution of a movement from the current node f to the next

node g towards the objective function as realized in (11a) and

(11b).

C. Computing Pheromone Trials

The pheromones deposited can increase as more ants tra-

verse an edge or decrease due to vaporization. New deposits of

pheromones make sure that better solutions are retained. ACO

comprises two different pheromone updating rules (i.) local

update and (ii.) global update rules.

1) Local Update Rule: The local update rule is defined as per

(26), where Λlc denotes the local pheromone decay parameter

and lies in the range of 0 < Λlc < 1.

ζf,g = (1− Λlc)ζf,g + Λlc∆ζf,g. (26)

2) Global Update Rule: The global update is performed once

all ants have constructed their respective solutions. It is done

to make the edges traversed in the best solution’s path more

desirable in the subsequent rounds. The global update rule is de-

fined as per (27). λgb denotes the global pheromone evaporation

parameter and lies in the range of 0 < Λgb < 1. Sopt represents

the best solution generated in the current iteration. T
mig(Sopt)

and T
pow(Sopt) denote the migration time and energy cost of

the best solution.

ζf,g = (1− Λgb)ζf,g + Λgb∆ζf,g, (27)

∆ζf,g can be calculated as per the following equation.

∆ζf,g =

{

(Tmig(Sopt)
−1.T pow(Sopt)

−1) ∀el ∈ Sopt

0 otherwise
.

(28)

D. Iterative Solution Construction

For an ant z, constructing a migration path currently at node f
selects g as its next node for visiting based on the state transition

rule defined in (29). α is a parameter that denotes the relative

importance of the pheromone trail and heuristic information. r
denotes a random number uniformly distributed in the range of

[0, 1]. The parameter r0 is fixed and lies between 0 ≤ r0 ≤ 1
and S is random number selected as per (30). ω(z) is a set of

nodes that have not been visited by ant z yet.

g =

§

¨

©

argmaxg∈ω(z) {α[ζf,g].(1− α)[ηf,g]}

if r < r0 (Exploit)

S otherwise (Biased exploration)

(29)

pzf,g =

§

¨

©

α[ζf,g].(1−α)[ηf,g]∑

d∈ω(z)

α[ζf,d].(1−α)[ηf,d]
if j ∈ ω(z)

0 otherwise
. (30)

The overall state transition rule from (29) and (30) is called

pseudo-random proportionality rule, which favors selecting the

next node with lower power consumption and migration time.

The parameter r0 dictates the importance of exploration versus

exploitation. In the first case, where r < r0, ants exploit the best

solution following (29); otherwise the next node for traversal is

randomly selected based on (30). We stop the iterations when

two consecutive iterations yield little improvement.

VIII. PERFORMANCE EVALUATION

We have used the CloudSim simulation toolkit1 to im-

plement the proposed mechanism and analyzed its perfor-

mance via simulation considering different test cases compris-

ing [10, 25, 50, 100] multi-tier applications. For simulation, we

have considered 4 geographically separated DCs. Each DC is

implemented as a three-layered fat-tree topology [41], [42]. The

1[Online]. Available: http://www.cloudbus.org/cloudsim/ (Accessed: 2023/
05/18 19:08:24)
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Fig. 3. (a) Total Migration time (sec) versus Number of Applications, (b) Average Migration Time (sec) versus Number of Applications, (c) Power Consumption
(MW) versus Number of Applications.

TABLE II
KEY PARAMETERS [13], [15]

geographical separation leads to different IDCs getting served

by different electricity providers, and their prices vary hourly.

However, we assume that the electricity price does not change

during migration and is triggered after considering the latest

change in price. The rest of the simulation parameters are set

following Table II.

A. The Baseline Algorithm

To compare the performance of LEAWM, we consider a mod-

ified version of the heuristic-based algorithm in [15] (referred

to as V DC_M ) as a baseline. V DC_M aims to reduce virtual

data center (VDC) re-embedding costs considering the cost of

hosting VMs on servers and virtual links over substrate paths.

We consider migrating multi-tier applications instead of VDC

requests using a parallel migration algorithm to compare the

performance and ignore the virtual link mapping cost as a

parameter for evaluation.

B. Experimental Results

The performance of LEAWM is evaluated from three different

perspectives. First, its performance is gauged depending on

the trade-off achieved between migration delay and migration

power. Second, we assess the performance of LEAWM based

on migration-related metrics, e.g., memory copied, the number

of iterations, and application downtime. Finally, we evaluate

overheads of LEAWM in terms of metrics like the convergence

rate and execution time.

1) Migration Delay and Migration Power Trade-Off:

Fig. 3(a) shows the variation of migration time for

[10, 25, 50, 100] applications for LEAWM and V DC_M . It can

be observed that the aggregate migration time increases for an

increasing number of applications, which is expected behavior.

We also observe that LEAWM can significantly reduce migration

time compared to the baseline. This is attributed to the fact

that LEAWM strategy based on a meta-heuristic ACO can find

remapping paths that lead to reduced migration delay. The mi-

gration strategy for LEAWM can find out shorter migration paths

with higher available bandwidth. Similar behavior is observed

considering the average migration time of individual VMs and

is depicted in Fig. 3(b).

Fig. 3(c) shows the variation in the power consumption for

the strategies used for comparison for an increasing number

of applications. LEAWM consumes less power compared to the

baseline algorithm. The improved performance is achieved due

to the following reasons: (i) LEAWM is able to find shorter paths,

(ii) it is also able to find a shorter path with maximum available

bandwidth which directly reduces the migration delay, (iii)

owing to the shorter migration paths less memory is transmitted

during the migration process. This can be directly inferred from

Fig. 5(a). Since the power consumption is directly related to

the amount of memory copied (refer to (20), the proposed tech-

nique performs superior compared to the baseline. Moreover,

the higher the transmission data, the higher energy consumed

at the intermediate devices, thereby having a deleterious impact

on power consumption.

2) Migration-Related Metrics: This section discusses and

compares the performance of LEAWM and V DC_M using

migration-specific metrics. First, we compare the performance

using application downtime, which refers to the time taken by the

stop-and-copy phase when the services are halted. Fig. 4(a) and

(b) denote the total downtime and average downtime for different

number of applications across the two different techniques. It can

be observed from Fig. 4(a) that the total application downtime

increases with an increasing number of applications. This is

because the amount of memory copied in the stop-and-copy

phase of LEAWM is lower than V DC_M . This is due to the
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Fig. 4. (a) Total Application Downtime (sec) versus Number of Applications, (b) Average Application Downtime (sec) versus Number of Applications, (c)
Average number of Iterations versus Number of Applications.

Fig. 5. (a) Total Memory Copied (GB) versus Number of Applications, (b) Total Migration Time for 50 Applications versus Pre-copy Migration Memory
Threshold, (c) Execution Time (sec) versus Number of Applications.

inability of the migration protocol of V DC_M to map to

find migration paths with a lower number of hops with higher

bandwidth leading to elevated downtime. Additionally, forceful

termination of VMs at nmax iterations due to the shared band-

width among multiple migrating VMs leads to more memory

being copied in the stop-and-copy phase, thereby contribut-

ing to increased downtime. Similar conclusions can be drawn

from Fig. 4(b) that denotes the average downtime suffered by

each VM, and it is significantly lower in comparison with the

baseline. Considering the amount of memory transmitted in

the migration process, the strategies’ behavior is captured in

Fig. 5(a).

It can be observed that LEAWM transmits less memory com-

pared to the baseline algorithm. This behavior is attributed to

the fact that LEAWM is not only able to find a shorter path with

higher migration bandwidth but also is able to allocate the entire

migration bandwidth to individual VMs in contrast to V DC_M
that fails to perform both. V DC_M provides a limited share

of the migration bandwidth for VMs, thereby prolonging the

convergence of pre-copy migration latency. This can be realized

from Fig. 4(c). It can be seen that the number of iterations

is higher in the case of V DC_M , thereby leading to higher

pre-copy rounds, which leads to higher migration time and power

consumed. Moreover, it can also be observed that for a more

significant test case, i.e., 50 and 100, the pre-copy rounds are

forcefully terminated atnmax = 8. This is because the pre-copy

never converges as the suitable migration bandwidth required

is never achieved and pre-copy is prematurely halted, leading

to more memory being transferred in the stop-and-copy and

elevating the downtime.

Fig. 5(b) reflects the variation of the migration delay for

variation in the threshold memory for both strategies used for

comparison. We can observe that the total delay is higher for

V DC_M in comparison with LEAWM. However, we observe

an interesting behavior considering V DC_M . The migration

delay decreases till 0.5 GB as the pre-copy converges earlier

attributed to the higher threshold, thereby reducing iterations and

reducing migration time. Beyond 0.5, the migration delay esca-

lates as pre-copy converges very quickly, leading to almost the

entire memory being transmitted in approximately one round,

causing a bandwidth bottleneck for VMs, elevating the migration

delay.

3) Other Performance Metrics: This section discusses some

other performance metrics, such as execution time and con-

vergence rate. Fig. 5(c) shows the execution time comparison

for LEAWM and the baseline algorithm V DC_M . The baseline

algorithm consumes more time as it is brute force, and it tests

all feasible solutions before deciding on the best solution. Since

the search space for such a problem increases exponentially with

increasing problem size (Number of applications), the baseline

algorithm consumes more time.

Fig. 6 shows the convergence rate for migrating 50 appli-

cations for LEAWM. The normalized cost is obtained follow-

ing [43]. We observe from the plot that the proposed ACO-

based algorithm’s convergence rate is reasonable, and it quickly

converges to an optimal solution (close to 400 iterations for
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Fig. 6. Convergence rate.

all cases). Similar observations were made for 10, 25, and 100

applications; hence we omit such plots.

From the results, we observe that LEAWM can reduce both

migration delay and power consumed during the remapping

of multi-tier applications across Geo-distributed IDCs, inter-

connected over a backbone network. Further, it can also be

inferred from the results that the proposed scheme can re-

duce the migration delay by almost 25%–30% of what is ob-

served for the greedy approach. In comparison, we follow a

close to 25% reduction in the power cost compared to the

baselines.

IX. CONCLUSION

In this article, we have presented a novel approach, namely

LEAWM for migration path selection for VM migrations over

geo-distributed clouds that spans over multiple DCs. We opti-

mize the migration delay and migration power due to the migra-

tion traffic and develop a bi-objective optimization technique

based on an ant colony meta-heuristic. We have implemented

and tested the proposed system over a simulation framework.

The results show that the proposed approach can yield a 25–30%
reduction in the VM migration delay while ensuring close to 20%

reduction in the power consumption compared to the baseline

algorithm. As a future extension of this work, we plan to extend

the proposed technique for a federated architecture that includes

multiple ISPs connected via a more complex backbone network.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for insightful

comments to help improve the manuscript quality.

REFERENCES

[1] W. Wu, W. Wang, X. Fang, J. Luo, and A. V. Vasilakos, “Electricity
price-aware consolidation algorithms for time-sensitive VM services in
cloud systems,” IEEE Trans. Serv. Comput., vol. 14, no. 6, pp. 1726–1738,
Nov./Dec. 2021.

[2] S. Rahman, A. Gupta, M. Tornatore, and B. Mukherjee, “Dynamic work-
load migration over backbone network to minimize data center electricity
cost,” IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 570–579,
Jun. 2018.

[3] C. Gu, Z. Li, H. Huang, and X. Jia, “Energy efficient scheduling of servers
with multi-sleep modes for cloud data center,” IEEE Trans. Cloud Comput.,
vol. 8, no. 3, pp. 833–846, Third Quarter 2020.

[4] T. N. Le, J. Liang, Z. Liu, R. K. Sitaraman, J. Nair, and B. J. Choi, “Optimal
energy procurement for geo-distributed data centers in multi-timescale
electricity markets,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45, no. 3,
pp. 185–197, 2018.

[5] S. Ahmad, A. Rosenthal, M. H. Hajiesmaili, and R. K. Sitaraman, “Learn-
ing from optimal: Energy procurement strategies for data centers,” in Proc.

10th ACM Int. Conf. Future Energy Syst., 2019, pp. 326–330.
[6] S. Albers and J. Quedenfeld, “Optimal algorithms for right-sizing data

centers,” in Proc. 30th Symp. Parallelism Algorithms Architectures, 2018,
pp. 363–372.

[7] A. Marotta, S. Avallone, and A. Kassler, “A joint power efficient server
and network consolidation approach for virtualized data centers,” Comput.

Netw., vol. 130, pp. 65–80, 2018.
[8] B. Heller et al., “ElasticTree: Saving energy in data center networks,”

in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation, 2010,
pp. 249–264.

[9] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. M. Marvel, “Catch me if you can: A closer look at malicious co-
residency on the cloud,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 560–
576, Apr. 2019.

[10] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vHaul: Towards optimal
scheduling of live multi-VM migration for multi-tier applications,” in Proc.

IEEE 8th Int. Conf. Cloud Comput., 2015, pp. 453–460.
[11] S. K. Addya, A. Satpathy, B. C. Ghosh, S. Chakraborty, and S. K. Ghosh,

“Power and time aware VM migration for multi-tier applications over
geo-distributed clouds,” in Proc. IEEE 12th Int. Conf. Cloud Comput.,
2019, pp. 339–343.

[12] T. He, A. N. Toosi, and R. Buyya, “CAMIG: Concurrency-aware live
migration management of multiple virtual machines in SDN-Enabled
clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10, pp. 2318–2331,
Oct. 2022.

[13] S. K. Addya, A. Satpathy, B. C. Ghosh, S. Chakraborty, S. K. Ghosh,
and S. K. Das, “CoMCLOUD: Virtual machine coalition for multi-tier
applications over multi-cloud environments,” IEEE Trans. Cloud Comput.,
vol. 11, no. 1, pp. 956–970, First Quarter 2023.

[14] N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, and A. Y. Zomaya,
“Online live VM migration algorithms to minimize total migration time
and downtime,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2019,
pp. 406–417.

[15] G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration for multiple
correlated virtual machines in cloud-based data centers,” IEEE Trans. Serv.

Comput., vol. 11, no. 2, pp. 279–291, Mar./Apr. 2018.
[16] U. Mandal, P. Chowdhury, M. Tornatore, C. U. Martel, and B. Mukherjee,

“Bandwidth provisioning for virtual machine migration in cloud: Strategy
and application,” IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 967–976,
Fourth Quarter 2018.

[17] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, “A new technique
for efficient live migration of multiple virtual machines,” Future Gener.

Comput. Syst., vol. 55, pp. 74–86, 2016.
[18] H. Jin, L. Deng, S. Wu, X. Shi, H. Chen, and X. Pan, “MECOM: Live

migration of virtual machines by adaptively compressing memory pages,”
Future Gener. Comput. Syst., vol. 38, pp. 23–35, 2014.

[19] F. Callegati and W. Cerroni, “Live migration of virtualized edge networks:
Analytical modeling and performance evaluation,” in Proc. IEEE SDN

Future Netw. Serv., 2013, pp. 1–6.
[20] S. Sahni and V. Varma, “A hybrid approach to live migration of virtual

machines,” in Proc. IEEE Int. Conf. Cloud Comput. Emerg. Markets, 2012,
pp. 1–5.

[21] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 3,
pp. 14–26, 2009.

[22] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “CQNCR:
Optimal VM migration planning in cloud data centers,” in Proc. IFIP Netw.

Conf., 2014, pp. 1–9.
[23] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting

the electric bill for internet-scale systems,” in Proc. ACM SIGCOMM Conf.

Data Commun., 2009, pp. 123–134.
[24] A. Gupta, U. Mandal, P. Chowdhury, M. Tornatore, and B. Mukher-

jee, “Cost-efficient live VM migration based on varying electricity cost
in optical cloud networks,” Photonic Netw. Commun., vol. 30, no. 3,
pp. 376–386, Dec. 2015.

[25] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in Proc. IEEE Conf. Comput. Commun., 2010,
pp. 1–9.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore.  Restrictions apply. 



3396 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

[26] M. A. Adnan, R. Sugihara, and R. K. Gupta, “Energy efficient geographical
load balancing via dynamic deferral of workload,” in Proc. IEEE 5th Int.

Conf. Cloud Comput., 2012, pp. 188–195.
[27] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine

migration: Challenges, techniques, and open issues,” IEEE Commun.

Surveys Tuts., vol. 20, no. 2, pp. 1206–1243, Second Quarter 2018.
[28] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement with

multiple deterministic and stochastic resources in data centers,” in Proc.

IEEE Glob. Commun. Conf., 2012, pp. 2505–2510.
[29] M. Mishra and U. Bellur, “Whither tightness of packing? The case

for stable VM placement,” IEEE Trans. Cloud Comput., vol. 4, no. 4,
pp. 481–494, Fourth Quarter 2016.

[30] Regions and availability zones, Feb. 2022. [Online]. Available: https://aws.
amazon.com/about-aws/global-infrastructure/regions_az/?p=ngi&loc=2

[31] X. Yi, F. Liu, J. Liu, and H. Jin, “Building a network highway for Big
Data: Architecture and challenges,” IEEE Netw., vol. 28, no. 4, pp. 5–13,
Jul./Aug. 2014.

[32] V. Kherbache, E. Madelaine, and F. Hermenier, “Scheduling live migra-
tion of virtual machines,” IEEE Trans. Cloud Comput., vol. 8, no. 1,
pp. 282–296, First Quarter 2020.

[33] R. Torre, R.-S. Schmoll, F. Kemser, H. Salah, I. Tsokalo, and F. H. Fitzek,
“Demo: Benchmarking live migration performance of two trendy virtual-
ization technologies,” in Proc. IEEE Conf. Comput. Commun. Workshops,
2020, pp. 1087–1088.

[34] S. K. Addya, A. K. Turuk, A. Satpathy, B. Sahoo, and M. Sarkar, “A
strategy for live migration of virtual machines in a cloud federation,” IEEE

Syst. J., vol. 13, no. 3, pp. 2877–2887, Sep. 2019.
[35] A. Satpathy, M. N. Sahoo, A. Mishra, B. Majhi, J. J. Rodrigues, and

S. Bakshi, “A service sustainable live migration strategy for multiple
virtual machines in cloud data centers,” Big Data Res., vol. 25, 2021,
Art. no. 100213, doi: 10.1016/j.bdr.2021.100213.

[36] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[37] Y.-H. Jia et al., “An intelligent cloud workflow scheduling system with
time estimation and adaptive ant colony optimization,” IEEE Trans. Syst.,

Man, Cybern. Syst., vol. 51, no. 1, pp. 634–649, Jan. 2021.
[38] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing,” J.

Comput. Syst. Sci., vol. 79, no. 8, pp. 1230–1242, 2013.
[39] F. Farahnakian et al., “Using ant colony system to consolidate VMs

for green cloud computing,” IEEE Trans. Serv. Comput., vol. 8, no. 2,
pp. 187–198, Mar./Apr. 2015.

[40] H.-K. Zheng et al., “Link mapping-oriented ant colony system for vir-
tual network embedding,” in Proc. IEEE Congr. Evol. Comput., 2017,
pp. 1223–1230.

[41] T. Duong-Ba, T. Tran, T. Nguyen, and B. Bose, “A dynamic virtual machine
placement and migration scheme for data centers,” IEEE Trans. Serv.

Comput., vol. 14, no. 2, pp. 329–341, Mar./Apr. 2021.
[42] A. Zhou, S. Wang, X. Ma, and S. S. Yau, “Towards service composition

aware virtual machine migration approach in the cloud,” IEEE Trans. Serv.

Comput., vol. 13, no. 4, pp. 735–744, Jul./Aug. 2020.
[43] F. Haider, D. Zhang, M. St-Hilaire, and C. Makaya, “On the planning and

design problem of fog computing networks,” IEEE Trans. Cloud Comput.,
vol. 9, no. 2, pp. 724–736, Second Quarter 2021.

Sourav Kanti Addya (Senior Member, IEEE) re-
ceived the PhD degree in CSE from NIT Rourkela,
India and worked as a postdoctoral fellow with the
Department of CSE, IIT Kharagpur, India. He is
currently an assistant professor with the Department
of CSE, NITK Surathkal, India. His research inter-
ests include cloud system, serverless computing, IoT,
blockchain. He is a member of the ACM.

Anurag Satpathy (Graduate Student Member, IEEE)
received the BTech degree in information technology
from IIIT Bhubaneswar, India, in 2014, the MTech
degree in CSE from BIT Mesra, Ranchi, India, in
2017, and the PhD degree in CSE from NIT Rourkela,
India. His research interests include cloud computing,
the Internet of Things, and distributed systems.

Bishakh Chandra Ghosh (Student Member, IEEE)
received the BTech degree in information technology
from NIT Durgapur, India. He is a doctoral research
student in CSE with IIT Kharagpur. His current re-
search area includes cloud computing, blockchain,
and distributed systems.

Sandip Chakraborty (Member, IEEE) received the
PhD degree in CSE from IIT Guwahati. Currently, he
is an associate professor in CSE with IIT Kharagpur.
He is working as an area editor of Elsevier’s Ad

Hoc Networks and Pervasive and Mobile Computing

journals. His primary research interests are on the in-
tersections of computer systems, distributed systems,
and human-computer interaction.

Soumya K. Ghosh (Senior Member, IEEE) received
the PhD degree in CSE from the IIT, Kharagpur.
Currently, he is a professor with the Department of
CSE, IIT Kharagpur. Prior to joining IIT Kharagpur,
he was with the ISRO in the area of satellite remote
sensing and GIS. His research interests include cloud
computing, spatial data science, and IoT.

Sajal K. Das (Fellow, IEEE) is a Curators’ distin-
guished professor of computer science and Daniel St.
Clair Endowed chair with the Missouri University
of Science and Technology. His research interests
include wireless and sensor networks, mobile and per-
vasive computing, cyber-physical systems, IoT, cloud
computing, and cybersecurity. He is the editor-in-
chief of Elsevier’s Pervasive and Mobile Computing

journal, and associate editor of IEEE Transactions on

Mobile Computing, IEEE Transactions on Depend-

able and Secure Computing, and ACM Transactions

on Sensor Networks. He is a distinguished Alumnus of the Indian Institute of
Science, Bangalore.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:53:31 UTC from IEEE Xplore.  Restrictions apply. 


