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Abstract— Unmanned Aerial Vehicles (UAVs) or drones are
increasingly used for urban applications like traffic monitoring
and construction surveys. Autonomous navigation allows drones
to visit waypoints and accomplish activities as part of their
mission. A common activity is to hover and observe a location
using on-board cameras. Advances in Deep Neural Networks
(DNNs) allow such videos to be analyzed for automated decision
making. UAVs also host edge computing capability for on-board
inferencing by such DNNs. To this end, for a fleet of drones,
we propose a novel Mission Scheduling Problem (MSP) that
co-schedules the flight routes to visit and record video at
waypoints, and their subsequent on-board edge analytics. The
proposed schedule maximizes the data capture and computing
utilities from the activities while meeting the activity deadlines,
and the energy and computing constraints. We first prove that
MSP is NP-hard and then optimally solve it by formulating
a mixed integer linear programming (MILP) problem. Next,
we design five time-efficient heuristic algorithms that provide
sub-optimal but fast solutions that are empirically competitive
with the optimal solution. Evaluation of these five schedulers
using real drone traces demonstrate utility—runtime trade-offs
under diverse workloads.

Index Terms— UAYV, drone, edge computing, vehicle routing,
job scheduling, energy constrained, video analytics.

I. INTRODUCTION

NMANNED Aerial Vehicles (UAVS), also called drones,

are enabling a wide range of applications in smart
cities [1], such as traffic monitoring [2], construction sur-
veys [3], package delivery [4], localization [5], and disaster
management [6], assisted by 5G wireless roll-out [7]. The
mobility, agility, and hovering capabilities of drones allow
them to rapidly fly to points of interest (i.e., waypoints) in the
city to accomplish specific activities, e.g., observing traffic
at hot-spots during commute hours, status of building con-
struction, or crowding among pedestrians during COVID-19.
Usually, such activities involve hovering and recording a
scene using the drone’s camera, and analyzing the videos to
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take decisions, such as changing traffic signaling, flagging
construction delays, encouraging pedestrians to practice social
distancing, etc.

Advancements of computer vision algorithms and Deep
Neural Networks (DNNs) enable video analytics to be per-
formed over such recordings for automated decision-making,
which are inferred once these are transferred to a ground
station (GS) after the drones land. In-flight transfer of videos
to a GS is limited by the intermittent bandwidth of current
communications technologies. However, certain activities may
require low-latency analysis and decisions, as soon as the
video is captured at a location. So, the on-board edge comput-
ing capability (like ARM CPUs and NVIDIA Jetson GPUs [8])
on commercial drones can be leveraged to process the recorded
videos, and quickly report concise results to the GS over 4/5G
networks [9]. Since the transferred results are brief and the on-
board processing times dominate, we ignore communication
issues like data rate, latency, and reliability that are affected
by the UAV’s altitude, antenna envelope, etc.

UAVs are energy-constrained vehicles with limited battery
capacity, and commercial drones can currently fly for less than
an hour. The flying distance between waypoints will affect
the number of activities that can be completed in one trip
on a full battery. Besides hovering and recording videos at
waypoints, performing edge analytics also consumes energy.
So, the drone’s battery capacity should be judiciously managed
for the flying, hovering, and computing tasks. Nevertheless,
once a drone lands, its battery can be quickly replaced with a
full one, to be ready for a new trip.

This paper examines how a UAV fleet operator in a city can
plan missions for a captive set of drones to accomplish activi-
ties periodically provided by the users. An activity involves
visiting a waypoint, hovering and capturing video at that
location for a specific time period, and optionally performing
on-board analytics on the captured data. Activities also offer
utility scores depending on how they are handled. The novel
problem we propose here is for the fleet operator to co-
schedule flight routing among waypoints and on-board compu-
tation so that the drones complete (a subset of) the provided
activities, within the energy and computation constraints of
each drone, while maximizing the total utility.

Existing works have examined routing of one or more
drones for capturing and relaying data to the backend [10],
off-loading computations from mobile devices [11], coop-
erative video surveillance [12]. There also exists literature
on scheduling tasks for edge computing that are compute-
and energy-aware, operate on distributed edge resources, and
consider deadlines and device reliability [13]. None of these
examine co-scheduling a fleet of physical drones and digital
applications on them to meet the objective, while efficiently
managing the energy capacity to maximize utility.
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Specifically, our Mission Scheduling Problem (MSP) com-
bines elements of the Vehicle Routing Problem (VRP) [14],
which generalizes the well known Traveling Salesman Prob-
lem (TSP) to find optimal routes for a set of vehicles
and customers [15], and the Job-shop Scheduling Problem
(JSP) [16] for mapping jobs of different execution duration
to the available resources, which is often used for parallel
scheduling of computing tasks to multiprocessors [17].

This paper substantially extends our prior conference
paper [18]. There, we formulated the MSP and devised
the MILP-based OPT solution, besides two heuristics: RSS,
which gave good utility but had a high computational cost, and
CS, which was time-efficient but with a lower utility. Here,
we add three new algorithms for solving the MSP previously
introduced — EOFO which we find generally performs better
than the other heuristics on both utility and time, HUFD which
works well when the utility of activities are unbalanced, and
IPS that performs well when the number of activities is much
larger than the number of drones. In particular, EOFO and
IPS provide much better results than the previously published
CS [18] due to their activity selection rules being optimized
better for the task-scheduling sub-problem. Further, our exper-
imental comparison is much more rigorous, with seven addi-
tional diverse workloads evaluated for all six algorithms, and
an analysis of which ones perform well under what conditions.

We make the following contributions in this article.

o We characterize the system and application model, and
formally define the Mission Scheduling Problem (MSP)
to co-schedule routes and analytics for a fleet of drones,
maximizing the obtained utility.

o After proving that MSP is an NP-hard problem, we opti-
mally solve it using a mixed integer linear programming
(MILP) design, OPT, which is feasible for small inputs
due to its intrinsic complexity.

« For solving the MSP for arbitrary-sized inputs, we design
five time-efficient heuristic algorithms, i.e., CS that is in
average the best performing algorithm, RSS that is the
fastest in practice, HUFD that works well when the utility
of activities are pretty unbalanced, and EOFO and IPS
that are suitable when the number of activities is large
with respect to the number of drones. We also offer time
complexity bounds for them.

o We evaluate and analyze the utility and scheduling run-
time trade-offs for these algorithms, for diverse drone
workloads based on real drone traces, i.e., Random
(RND) and Depth First Search (DFS). The evaluation
shows that our presented heuristics are able to obtain
in average at least the 60-65% of the total utility in
reasonable time.

The rest of the paper is organized as follows. In Section II
we present the related work; Section III provides the system
and application model, and assumptions; Section [V formalizes
our MSP; Sections V and VI offer optimal and heuristic
algorithms to solve MSP; Section VII reports experimental
results; finally, Section VIII concludes the paper.

II. RELATED WORK
This section reviews literature on vehicle routing and job-
shop scheduling, contrasting them with our MSP.
A. Problems Concerning Vehicles to Route

The Traveling Salesman Problem (TSP) is a classic combi-
natorial problem that aims at finding the shortest route along
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edges that visits all the vertices in a given graph. Specifically,
given a weighted, undirected and complete graph with a set
of vertices and a set of edges, where each edge has a weight
that characterizes the travel distance, TSP asks to find the
minimum weight (and so the “shortest”) route in the graph
such that every vertex is visited exactly once. This problem has
been proven to be NP-hard [19], and many different heuristics
have been proposed in the literature. There is an efficient
2-approximate solution that assume triangle inequality among
edge weights [20]. The more sophisticated Christofides Algo-
rithm lowers this approximation ratio to % [21]. A complete,

recent survey on TSP and its variants can be found in [22].

VRP is a variant of TSP with multiple salespersons [14] and
it is NP-hard [23]. This problem has had several extensions
to handle realistic scenarios, such as temporal constraints that
impose deliveries only at specific time-windows [24], capacity
constraints on vehicle payloads [25], multiple trips for vehi-
cles [26], profit per vehicle [27] and traffic congestion [28].
VRP has also been adapted for route planning for a fleet of
ships [29], and for drone delivery [30].

In [10] the scheduling of events is performed by UAVs
at specific locations, involving data sensing/processing and
communication with the GS. The goal is to minimize the
drone’s energy consumption and operation time. Factors like
wind that may affect the route and execution time are also
considered. While they combine sensing and processing into
one monolithic event, these are actually independent tasks
which need to be co-scheduled, as we do. Also, they minimize
the operating time and energy while we maximize the utility
to perform tasks within a time and energy budget.

Others [11] explore the use of UAVs to off-load computing
from the users’ mobile devices, and for relaying data between
mobile devices and GS. The authors considered the drones’
trajectory, bandwidth, and computing optimizations in an
iterative manner. The aim is to minimize energy consumption
of the drones and mobile devices. It is validated through
simulation for four mobile devices. We instead consider a more
practical problem for a fleet of drones with possibly hundreds
of locations to visit and on-board computing tasks to perform,
and validate through simulation traces for up to 100 drones.

B. Problems Concerning Tasks to Schedule

Job Shop Scheduling (JSP) is classic optimization problem.
Given n jobs that have varying processing time, the problem
involves finding a scheduling across m machines such that the
makespan is minimized. The problem is known to be NP-Hard.
Several extensions have been proposed for the JSP problem
such as deadlines [31], failures [32], and preemption [33].
Scheduling of computing tasks on drones is closely aligned
with scheduling tasks on edge and fog devices [34] and
mobile edge computing (MEC) [35], and broadly with parallel
workload scheduling [17] and JSP [16].

In [13], an online algorithm is proposed for deadline-aware
task scheduling for edge computing. It highlights that work-
load scheduling on the edge has several dimensions, and it
jointly optimizes networking and computing to yield the best
possible schedule. Feng at al. [36] propose a framework for
cooperative edge computing on autonomous road vehicles,
which aims to increase their decentralized computational capa-
bilities and task execution performance.

There exist works that explore task scheduling for mobile
users and off-load computing to nearby edge/fog resources.
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These may be categorized based on their use of predictable
or unpredictable mobility models. In [37], the mobility of a
vehicle is predicted and used to select the road-side edge com-
puting unit to which the computation is off-loaded. Serendip-
ity [38] takes an alternate view and assumes that mobile
edge devices interacts with each other intermittently and at
random. This makes challenging to determine if tasks should
be off-loaded to another proximate device for reliable com-
pletion. Our problem is complementary and does not involve
off-loading. The possible waypoints are known ahead, and we
perform predictable UAV route planning and scheduling of the
computing locally on the edge.

Scheduling on the energy-constrained edge has also been
investigated by Zhang et al. [39], where an energy-aware off-
loading scheme is proposed to jointly optimize communication
and computation resource allocation on the edge, and to limit
latency. Our proposed problem also considers energy for the
drone flight while meet deadlines for on-board computing.
Others [40] propose a framework for cooperative edge com-
puting on autonomous road vehicles, aimed at increasing their
computational capabilities in a decentralized manner.

Several works [41], [42] have explored the use of Deep
Reinforcement Learning (DRL) for UAV path planning. Fer-
dowsi et al. [43] formulate an MILP to optimize for the drone
trajectory and the freshness of information. They propose a
Deep Q-network and and LSTM based autoencoder to solve
the formulation. Deliversense [44] looks at joint optimiza-
tion of crowdsensing and deliveries by drones, here again
formulated as an MILP and solved using DRL. While RL
techniques benefit from good accuracy and generalization to
unseen environments [45], they require prior training data,
unlike heuristics. In future, heuristics and DRL techniques can
complementing each other to solve such scheduling problems.

Similarly, compressive sensing has been used to reduce the
dimensionality of sparse data, and obtain a reduced represen-
tation using fewer measurements than the original data [46].
This dimensionality reduction can significantly reduce the
computational requirements to solve NP-hard optimization
problems like ours. The key is to identify the sparsity patterns
in the data fields obtained by the UAVs and then applying com-
pressive sensing techniques while still preserving its essential
information. Such alternatives can be explored in future.

III. MODELS AND ASSUMPTIONS

This section introduces the UAV system and application
models along with our underlying assumptions.

A. UAV System Model

Let A\ be the location of a UAV depot in the city (see
Figure 1, left) centered at the origin of a 3D Cartesian coordi-
nate system. Let D = {ds,...,d,,} be the set of m available
homogeneous drones. Each drone has a camera for recording
videos, which is subsequently processed. This processing can
be done using the on-board computing, or offline once the
drone lands (outside the scope of our problem). The on-board
processing speed is m floating point operations per second
(FLOPS). For simplicity, this is taken as cumulative across
CPUs and GPUs on the drone, and this capacity is orthogonal
to any computation done for navigation.

The battery on a drone has a fixed energy capacity E, which
is used both for flying and for on-board computation. The
drone’s energy consumption has three components — flying,

Fig. 1. Sample MSP scenario showing a city with the depot (X); 6 waypoints
to visit (A;) with some utility; and possible trip routes for drones (RY); then,
the corresponding 6 activities (cy;) with data capture duration (sha(fed) and
compute deadline (vertical line) and 2 drones.

hovering and computing. Let ¢/ be the energy required for
flying for a unit time duration at a constant energy-efficient
speed s within the city; let €” be the energy for hovering for
a unit time duration; and let € be the energy for performing
computation for a unit time duration at full CPU/GPU uti-
lization. For simplicity, we ignore the energy used for video
capture since it is usually negligible [47], [48]. Also, a drone
that returns to the depot can swap-in a fully charged battery
pack and immediately start a new trip.

B. Application Model

Let A = (a1,...,a,) be the set of n activities to be
performed starting from time t = 0, where each activity oy
is given by the tuple (\;,;,%;, K4, s, Vi, Vi, Vi) Here, Ay =
(x4,9i,2;) is the waypoint location coordinates where the
video data for that activity has to be captured by the drone,
relative to the depot location \. The starting and ending times
for performing the data capture task are t; and ;. The compute
requirements for processing all of the captured data is k;
floating point operations. Lastly, §; is the time deadline by
which the computation task should be completed on the drone
to derive on-time utility of processing, while v;,7;, and ~;
are respectively the data capture, on-time processing and on-
board processing utility values that are gained for completing
the activity. These are described in the following subsection.

The computation may be performed incrementally on sub-
sets of the video data, as soon as they are captured. This
is common for analytics over constrained resources [49].
Specifically, for an activity «;, the data captured between
(t; — ;) is divided into batches of a fixed duration 3, with
the sequence of batches given by B; = (b},...,b%), where
¢; = |Bi| = [#5*]. The computational cost to process each
batch is mf = Z— FLOPS, and is constant for all batches of
an activity. So, the processing time for the batch, given the

k
processing speed 7 for a drone, is p¥ = ﬁ?—‘ ;! for simplicity,
we discretize all time-units into integers.

C. Utility Model

The primary goal of drones is to capture videos at various
locations for the specified duration. This is a necessary con-
dition for an activity to be successful. We define this as the
data capture utility (v;) accrued by a drone for an activity a;.

'We assume full utilization of on-board CPU/GPU for processing.
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The secondary goal is to opportunistically process the cap-
tured data using the on-board computing on the drone. Here,
we have two scenarios. Some activities may not be time
sensitive, and performing on-board computing is just to reduce
the costs for offline computing. Here, processing the data
captured by an activity using the drone’s computing resources
will provide an on-board processing utility (7;). Other activ-
ities may be time-sensitive and have a soft-deadline §; for
completing the processing. For these, if we process its captured
data on the drone within this deadline, we receive an extra on-
time processing utility (7;). The processing utilities accrue pro
rata, for each batch of the activity completed.

D. Assumptions and Limitations

The application model is designed for periodic data collec-
tion and processing in applications like construction surveys
and traffic monitoring, where the activities are known a priori.
But, it does not support interactive applications or incremental
activities, nor does it require timely transfer of collected data
or processed results from the drone to the depot or the cloud.
So, we do not impose any communications constraints.

Four properties of the application model, the activity start
and end time, and the three utilities — data capture, on-board
processing and on-time processing — can be used to model
the urgency and priority of the data capture and processing.
They indirectly capture the “Age of Information” metric as
well [50]. Fairness across the activities is a non-goal.

Each scheduled activity is fully performed by one drone.
The drones do not collaborate together for a single activity,
where one drone could capture data and offload it to another
drone (or the cloud) to process. Only one batch may be
executed at a time on-board a drone and it is run to completion
before scheduling another. There is no concurrent processing
across batches or check-pointing of their progress. We do
not allow data capture by a drone for multiple activities
simultaneously. The data capture for an activity’s batch may
overlap with the computation of a previous batch of the same
or a different activity. All batches for a single activity are
executed in sequence, i.e., complete processing b¥ before
processing bf“. Once a batch is processed, its compact results
are sent to the GS and accrue incremental utility value.

IV. PROBLEM FORMULATION

The Mission Scheduling Problem (MSP) is summarized as:
Given a UAV depot in a city with a fleet of captive drones, and
a set of observation and computing activities to be performed
at locations in the city, each within a given time window and
with associated utilities, the goal is to co-schedule the drones
onto mission routes and the computation onto the drones,
within the energy and compute constraints of the drones, such
that the total utility achieved is maximized. This is further
formalized below.

A. Mission Scheduling Problem (MSP)

A UAV fleet operator receives and queues activities. Period-
ically, a mission schedule is planned to serve some or all the
activities submitted so far using the whole fleet to maximize
the operational utility that is gained. There may be other fixed
costs for operating the captive fleet that we ignore.

Multiple activities can be assigned to the same drone d; as
part of the drone’s mission, and the same drone can perform
multiple trips from the depot for a mission. The mission
activities for the r" trip of a drone d; is the ordered sequence
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A’]T = (agl,...,oz;n) C A where aj € A, j, < n, and
no activity appears twice within a mission. Further, we have

g ' H
aj =< a] o1 = tj t] 1 i.e., the observation start and

end times of an activity in the mission sequence fully precede
those of the next activity in it. Also, A;fﬂA‘Z =gV k,z,yto
ensure that an activity is assigned to just one drone. Depending
on the feasibility and utility, some activities may not be part
of any mission and are dropped, i.e., > ; >, |A}[ < n. The

route for the r*" trip of drone d; is given by the ordered
()\ Alsee s AL
ending waypoints of the drone are the depot location X, and
each intermediate location corresponds to the video capture
location A7 for the activity o, in the mission sequence. For
uniformity of notation, we denote the first and the last depot
location in the route as )\}'0 and )\}'wl, respectively.

A drone d;, given the rth trip of its route R;, starts
at the depot, visits each waypoint in the sequence and returns
to the depot, where it may instantly get a fresh battery and
start the (r+1)"" route. Let drone d; leave a waypoint location
in its route, )\” , at departure time T] and reach the next
waypoint locatlon Al o at arrival time T}, L4 Let the function
F(Ap, Ag) give the flying tzme between \; and \; at a constant
ﬂyrng speed So, we have 7 == 7] —i—]—'()\r A, ). The
drone must hover at each waypoint )\7" between ¢ and tT
while record1ng the video, and it departs the Waypornt after

this, i.e., Tji = t;i. Also, if the drone arrives at this waypoint

at time 7_’;" , 1.e., before the observation start time ¢;, it hovers
here for a duration of t; — T]T , and then continues hovering
during the video capture. If a drone arrives at A} after ¢7,
it is invalid since the video capture for the act1V1ty cannot
be conducted for the whole duration. So, 7'le < t; < T]i.
Also, since the deadline for on-time computation over the
captured data is d},, we require §7 > tr in the activity
specification. Once the drone ﬁmshes capturmg video for the
last activity in its rt" trip, it returns back to the depot at time
75 =T HF (N L A). So, the total flying time for a drone d;
for its 7" trip is:

sequence R} = X), where the starting and

n
=T T
Z(Tji+l - Tji)
i=0
and the total hover time for the drone on that trip is:

n n
n=D (6, =7 +Z () =) (6 7
i=1 i=1
which includes hovering due to early arrival at a waypoint, and
hovering during the data capture. Once the video is captured
for an activity, it can subsequently be processed on-board
the drone. Let the mission scheduling algorithm assign the
time slot [0%,0%) for executing a batch b% of activity ay,
on drone d;, where 6;“ 9’“ + pz, based on the batch
execution trme We define complenon functions for processing
each activity «;,, given by:
o The data capture completion function wu;, € {0,1} has
a value of 1 if the drone hovers at location )\;, for the
entire period from ¢;, to tj ,and is 0 otherwrse
o The on-board completton function 0 < 4, <1 indicates
the fraction of batches of that activity that are completed
on-board the drone. Let i = 1 if the batch b} of
activity «; is completed on-board, and ji¥ = 0 if it is
2o iy

qi

not completed on-board the drone. Then, @;, =
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o The on-time completion function 0 < u;, < 1 gives the
fraction of batches of that activity that are fully completed
within the deadline. As before, let ¥ = 1 if the batch
b¥ of activity «; is completed on-time, i.e., 0¥ < §;, and
- . - ik
[i¥ = 0 otherwise. So, i, = %

Given these, the total utility for an activity «; is given by:

U; = wy; + 47; + 17y, and the total computation time of
batches on a drone d; is:

cj= > (i, +i5) pf
a; €A

B. Optimization Objective of MSP

Based on these, the objective of the optimization is:
arg max Zai ca Ui, i.e., assign activity waypoints along drone
trips and routes, and assign activity batches to the drones’
computing slots, to maximize the utility from data capture, on-
board computation and on-time computation. These are subject
to the following constraints on the execution slot assignments
for a batch on a drone:

(tj, +k-B) < 0% o5 <o+t 0F <7,

i.e., the data capture for a duration of 3 for the k" batch of
the activity is completed before the execution slot of the batch
starts; the batches for each activity are strictly executed in
sequence; and the execution of a batch should complete before
the drone lands at the end of its mission. Also, there can only

be one batch executing at a time on a drone. So V[07 éj’p)
and [9;2, é?q) slots assigned to batches b? and bY on drone dj,

we have [07 G_fp)ﬂ 0%, 9_;{1) = @. Lastly, the energy expended
by drone d; on the rth trip, to fly, hover, and compute, should

be within its battery capacity:
E}—f;e —l—h;-e +c}e°§E

Table I lists the notations used in this paper.

V. OPTIMAL SOLUTION FOR MSP

In this section, we prove that MSP is NP-hard, and we
define an optimal, but computationally slow, algorithm called
OPTIMAL MISSION SCHEDULER (OPT) based on MILP.

A. NP-Hardness of MSP

The MSP combines elements of VRP/JSP in assigning
routes and batches to drones. So, we are ready to prove that:
Theorem 1: MSP is NP-hard.
Proof: VRP is NP-hard [23]. Also, MSP considers
multiple-trips, time-windows, energy-constraints, and utilities.
The VRP with multiple-trips (MTVRP), which considers a
maximum travel time horizon 7}, is NP-hard. Any instance of
VRP can be reduced in polynomial time to MTVRP by fixing
the number of vehicles to equal the number of waypoints,
m = n, and setting the time horizon T), = ) .. F(e),
where £ is the set of edges and F(e) is the flying time for
traversing an edge [51], and limiting the number of trips to
one. The VRP with time-windows (TWVRP), which limits the
start and end time for visiting a vertex, [ti,ﬁ-), is NP-hard.
Any instance of VRP can be reduced in polynomial time to
TWVRP by just setting ¢; = 0 and ¢; = +o00 [15]. A VRP
with energy-constrained vehicles is NP-hard, by just relaxing
those constraints to match VRP.

TABLE I
L1ST OF NOTATIONS USED

Symbol | Description

D = | List of m drones d; in fleet

idl’ oo dm}

A= (0,0,0) Location of depot at center of Cartesian space

s Processing speed of drone (FLOPS)

E Energy capacity of drone

ef el ec Energy per unit time taken for flying, hovering, and
computation

s Constant speed at which the drone flies

F(Ap, Aq) Flying time between the locations A; and \; at speed
s

A = | Set of n activities «; to be scheduled

/(\051» ©co Oén)

t=20 Initial time at which activities are submitted

a; = (N\i,ti,t;, | Activity tuple

Kiy 03, Yiy Yis Vs)

Ai = (2i,Yi, 2:) Location of waypoint in Cartesian space where data
is captured for activity a;

[tists) Time period of data capture for activity a;

Ki Compute cost for processing the captured data (float-
ing point operations) for activity «;

di Deadline by which on-board processing should hap-
pen to get on-time utility for activity a;

Yir Vi Vs Utility benefit from data capture, on-board process-
ing, and on-time processing for activity c;

B; = | List of g; batches that an activity’s «;’s computation

(b},...,b%) is divided into

B Duration of captured data which forms a batch for
processing

Kb Compute cost for processing a batch bf

pf“ Processing time for a batch b¥

(0%, 6%) Time slot assigned for executing batch b¥

A; = (aj,,..., | List of activities assigned to a drone d;’s mission

aj’!L —~

R; = (//\\, List of waypoint locations in the mission route for a

Nits e esNjns A) drone d;

T, Departure time for a drone d; after data is captured
for activity «; at location \;

Tihan Arrival time for a drone d; at location ;41 for
activity o1, after flying from location A;

f; Total flying time for a drone d;

hj Total hover time for a drone d;

u; € {0,1} Data capture completion function for activity oy

gk e {o0,1} On-board batch completion function of «;

a; € {0,1} On-time batch completion function of c;

0.0<u; <1.0 Fraction of batches of a; that complete on-board but
not on time

00<u; <10 Fraction of batches of a; that complete on-board and
on-time

cj Total computation time of batches executing on a
drone d;

21

In the above VRP variants, the goal is only to minimize the
costs. But MSP aims at maximizing the utility while bounding
the energy and compute budget. In literature, the VRP variant
with profits (PVRP) is NP-hard [26] since any instance of
MTVRP can be reduced in polynomial time to PVRP by just
setting all vertices to have the same unit-profit. Moreover, MSP
has to deal with scheduling of batches for maximizing the
profit. The original JSP is NP-hard [52]. So, any variant which
introduces constraints is again NP-hard by a simple reduction,
by relaxing those constraints, to JSP.

As MSP is a variant of VRP and JSP, it is NP-hard too. [

B. The OPT Algorithm

The OPTIMAL MISSION SCHEDULER (OPT) algorithm
offers an optimal solution to MSP by modeling it as
a multi-commodity flow problem (MCF), similar to
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TABLE I
CONSTRAINTS THAT HAVE TO BE SATISFIED FOR THE OPT MILP FORMULATION

Expression Description

YokeD 2ier Z]E7 xkl <1, Vi€ V' The waypoint for an activity o is visited only once.

Zje? ac’g; = Z;e 5 jO =0, VkeD,leR A drone trip [ starting from the depot must also end there.

zje? IOJ =1 <= Z]e 7 fjl =1, vVieV,keD,leR A drone k must visit at least one waypoint on each trip {.

Zie(f zfjl - 2167 ?zl =0, VkeD,jeV IeER A drone k visiting waypoint j must also fly out from there.

(tj — Fo5) * Zhep 2o1er zoj >0, vjeV Any drone flying to waypoint j from the depot must reach before its
observation start time ¢;.

5 = = F%) ° Dpem ZleR > 0, vieV',je 7 Any drone flying to waypoint j from ¢ must reach before its observa-
tion start time ¢;.

Let Tllcn+1 = ey oo (8 4+ Fio), Vk€D,l€R. Then .. Defines the landing time of drone k at the depot after trip [.

.. T}%H < Tmax, VkE€D,IER Depot landing times for all trips is within the maximum time.
ti+(g+1)-8< 62.9, Vie V' ,g€B; Batch g of activity «; must be observed before it is processed.
ég < 67 +1 VieV,g€B; Processing of batch g of activity a; must precede batch g + 1.

Z je i $2J+Zb€7x _1<wgh+waz’
Ba,keDleR

09 —oh <M-(1—w9"), Via€V,i#a,g€B;,h€B,
yk—1:>69+M<1—Z > o} ><5l,
l _

g*1é99+M( —Zje?z§})<’r}€ 1

Vi,aeV',i<a,geB;he

VieV,geBi,keD,leR
NVieV . geB,,keD,leR

Compute time slots of two batches g and h from activities
«; and a, on the same drone k and trip [ should not
overlap [16].

Decision variable for batches that complete before deadline.

Decision variable for batches that complete before landing.

Zik —
!
Ziev (Zje? (:tfjl Fij - ef) + 29631‘ (zii . /{‘(Z . gc)
N < E, VkeD,leR

Sier (o G-+ Fy)-e))

+

Sum of energy consumed for flying, hovering and computing on trip
{ of drone k should be within the battery capacity.

others [12], [53]. We reformulate the MSP definition as
an MILP formulation.

The paths in the city are modeled as a complete graph, G =
(V. €), between the n waypoint vertices, V = {0,1,...,n},
where 0 is the depot A. Let ¢ and ¢ be the set of out-
edges and in-edges of a vertex i, and V' = V \ {0} be the
set of all waypoints. We enumerate the m drones as D =
{1,...,m}. Let Tyax be the maximum time for completing
all the missions, and 7.« the maximum trips a drone can
perform. Let R = {1,...,7max} be the set of all possible
trips. Let zf/ € {0,1} be a decision variable that equals 1
if the drone £ € D in its trip [ € R traverses the edge
(i,7), and O otherwise. If x*! 1 for i € V', then the
waypoint for activity «; was visited by drone %k on trip [.
Let Bl = {0,...,q;} be the set of batches of an activity «;.
Let w " be a binary decision variable used to linearize the
batch computatlon whose value is 1 if batch b7 is processed
before bZ, and 0 otherwise [16]. Let yfgl be a decision variable
that equals 1 if the drone k£ € D in trip I € R processes the
batch g of activity «; within its deadline J;, and 0 otherwise;
and similarly, 2! equals 1 if the batch is processed before
the drone compfetes the trip and lands, and 0 otherwise.
Let the per-batch utility for data capture be I'; , the
on-board completlon be I[; = % , and the on-time completlon
be F for activity «. Let M be a sufficiently large
constant. quven these, the MILP objective is to maximize the
sum of the utility for data capture, on-board completion, and
on-time completion of activities across multiple drones and
multiple trips. Formally:

N ( >
subject to the constraints listed in Table II.

Zykz r, +Zkl f})

keDIeR i€V geB;
(1)
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VI. HEURISTIC ALGORITHMS FOR MSP

Since MSP is NP-hard, OPT is not tractable for large
inputs, time-efficient algorithms are necessary. In this section,
we propose five heuristics, called Cluster and Schedule (CS),
Route, Split, and Schedule (RSS), Highest Utility First with
Data capture (HUFD), Earliest Observation First with On-
time processing (EOFO), and Interval Partition and Schedule
(IPS). Depending on the particular instance of the MSP
to solve, some of them offer better utility and reduce the
execution time while offering solutions with a lower utility.

A. The CS Algorithm

The Cluster and Schedule (CS) algorithm2 aims to find
near-optimal scheduling of batches while ignoring the opti-
mizations of routing to conserve energy. CS is split into two
phases: clustering and scheduling. Intuitively, in the clustering
phase we group activities according to spatio-temporal param-
eters, to optimize the flight of drones). Then, in the scheduling
phase, we assign these activities to the available drones. This
is a Divide and Conquer approach.

Clustering Phase: First, we use the ST-DBSCAN algo-
rithm [54] to find time-efficient spatio-temporal clusters of
activities. It returns a set of clusters C such that for activ-
ities within a cluster C; € C, certain spatial and temporal
distance thresholds are met. Drones are then allocated to
clusters depending on their availability. This clustering tries
to conserve the flight routes to proximate waypoints, and
optimizes for flying time at a gross level.

For each C;, let T = maxq,cc, (f; —|—]:()\J,)\)) be the
upper bound for the latest landmg time for a drone servicing
activities in Cj; also, let T} = ming, ec, (¢; .7-"()\ Aj)) be
the lower bound for the earlzest take- off time. Then, all the
temporal windows [T, TY] for each C; € C are sorted with

2The CS heuristic was referred to as JSC in our earlier paper [18].
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respect to TE. Recalling that there are m drones available at
t = 0, these are proportionally allocated to clusters depending
on the current availability, which in turn depends on the
temporal window. So, ¢; = ™ - |C}| drones are allocated to
cluster Cy at time T and unassigned from the cluster at time
TV; ¢y = ™=<1.|C,| drones allocated to cluster C from time
TE to TY (assuming T < TY), and so on.

Scheduling Phase: Activities can be assigned only to avail-
able drones, i.e., those that have available time slots for the
computation. The feasibility of assigning o; to d;, is tested by
checking if the required flying and hovering energy is enough
to visit A; U «;; here, we ignore the batch processing energy.
If feasible, the drone can update its take-off and landing times

accordingly, and then schedule the subset of batches B; C B;
within the energy capacity. Assignments are done in two steps:
default and test and swap assignment.

Default Assignment: For each b¥ € B\z, let Pbk = [t +1i0,0k)
be the preferred interval; Q. C Pbk be the available preferred
sub-intervals, i.e., the set of periods where no other batch is
scheduled; and Sbk = [0k, Tj,,.) be the schedulable interval,
which exceeds the deadline but completes on-board. Clearly,
Pbi_c ﬂSbg = . The default schedule determines a suitable time

slot for bf. If Q. # @, b¥ is first-fit scheduled [55] within
intervals of th' else, if Qbk = &, the same first-fit policy is
applied over intervals of Sbk If b¥ cannot be scheduled even
in Sbk it remains unscheduled.

Test and Swap Assignment: If default assignment has batches
that violate their deadline, i.e., scheduled in S but not in P,
we use the test and swap assignment to improve the schedule.
Let P" = |, Py be the union of the preferred intervals
formmg the total preferred interval for an activity o;. Each
batch b is tested for violating its deadline. If it violates, then
batches b;‘ from other activities already scheduled in Pf are
identified and tested if they too violate their deadline. If so,
bh is moved to the next available slot in Sbh and its old time

slot given to b’~C If bh is in its preferred mterval but has more
slots available in thls interval, then bh is moved to another
free slot in th and b¥ assigned to the slot that is freed. Else,

the current conﬁguratlon does not contain violations, except
for the current batch b¥, but all available slots are occupied.
So, the utility for b¥ is compared with another b? in P+ nd
the batch with a hlgher utility gets this slot.

Algorithm 1 CS(A4, D)

1 C « clustering phase;

2 for C), € C do

3 for o; € Cy, do

4 for d; assigned to Cj, do
5

6

if a; U A; is feasible then
Apply best sched. from among default
and test and swap assignment on B;;

The CS algorithm is listed in Algorithm 1. After the
clustering phase, activities are tested for their feasibility.
If so, the default assignment is evaluated in terms of total
utility. If this creates deadline violation, the test and swap

assignment performed, and the best scheduling is applied. The
CS algorithm is guaranteed to terminate since we iteratively
process each cluster and the number of clusters is finite (n in
the worst case).

Time complexity of CS: ST-DBSCAN’s time complexity
is O(nlogn) for n waypoints [54]. Unlike k-means clustering,
ST-DBSCAN automatically picks a suitable number of clus-
ters, k, with ~ 2 waypomts each. For k times, we compute
the min-max of sets of size k, sort the k elements and finally
make 7 assignments. So this drones-to-clusters allocation

takes O(k% + klogk + %) time. Hence, this clustering phase

takes O(nlogn) time.

For the test and swap assignment, we maintain an inter-
val tree for fast temporal operations. If [ is the maximum
number of batches to schedule per activity, building the tree
costs (’)("l log(4)), while search, insertion and deletion cost
O(log(4)). Flndlng free time slots makes a pass over the
batches in O(%) This is repeated for [ batches, to give an
overall time complexity of O(%log(%) 4+ 212). Also the
default assignment relies on the same interval tree, reporting
the same complexity as test and swap assignment.

Finally, for the k clusters and each application in a cluster,
two schedule assignments are calculated for all the drones.
Thus, the time complexity of CS, which is the sum of
the time for the clustering phase and the scheduling phase,
is O(nlogn) + O(k%Em(% log(5t)+%1%)). However, since
the clustering can result in a single cluster, i.e., £ = 1, and
with m — n, by substitution we obtain the overall complexity
of CS as O(nlogn)+ O(n?(nllog(nl) +ni?)) = O(n31?) in
the worst case.

B. The RSS Algorithm

The Route, Split, and Schedule (RSS) algorithm3 aims to
find near-optimal waypoint routing while initially ignoring
efficient scheduling of the batch computation. RSS is split into
three phases: routing, splitting, and scheduling. In the routing
phase we create drones’ routes within the temporal constraints
of activities, while in the splitting phase we divide routes that
are energy unfeasible into smaller feasible sub-routes. Then,
in the scheduling phase, we suitably schedule the batches on
each drone. This follows a Greedy approach.

Routing phase: In this phase, RSS builds routes while
satisfying the temporal constraint for activities, i.e., for
any two consecutive activities (o, ;1) in the route, #; +
F(Ni, Ni+1) < t;r1. This is done using a modified version of
k-nearest neighbors (k-NN) algorithm, whose solution is then
locally optimized using the 2-OPT* heuristic [56], as follows.
Starting from ), a route is iteratively built by selecting, from
among the k nearest waypoints which meet the temporal
constraint, the one, say, A\; whose activity has the earliest
observation start time. This process resumes from A; to find
A2, and so on until there is no feasible ne1ghbor X is finally
added to conclude the route. This procedure is repeated to
find other routes until all the possible waypoints are chosen.
This initial set of routes is optimized to minimize the flying
and hovering energy using 2-OPT*, which lets us find a local
optimal solution from the given one [15]. However, routes
found here may be infeasible for a drone to complete within
its energy constraints.

3The RSS heuristic was referred to as VRC in our earlier paper [18].
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Splitting phase: Say R;; = (A A;,...,);,A) be an
energy-infeasible route from the routing phase, which visits
Ai/\; as the first/last waypoints from/to A. The goal is to
find a suitable waypoint A\, for ¢ < g < j such that
by splitting R;; between )\, and A;y;, we can find an
energy-feasible route while also improving the overall utility
and reducing scheduling conflicts for batches. For each edge
(Ags Ag+1), we compute a split score whose value sums up
three components: energy score, utility score, and compute
score.

Energy score: Let E(a,b) be the cumulative flying and hov-
ering energy required for some route R,;, C R;;. Here
we sequentially partition the route R;; into multiple viable
trips R g, —1)> Bky ka—1)s +++» R, ;) such that each is
a maximal trip while also remaining energy-feasible, i.e.,
E(ky, kys1 —1) < E while E(ky, ky4+1) > E. For each
(AgsAg+1) € Rk, .k, ,—1), the energy score is the ratio
E (]E:’g) < 1. A high value indicates that a split at this edge
reduces the energy usage.

Utility score: Let U(a,b) give the cumulative data capture
utility from visiting waypoints in a route %, C R; ;. Say
edge (A\g,Ag+1) € Rk, k,.1—1) C Rij is also part of a
viable trip from above. Here, we find the data capture utility
of a sub-route of R; ; that starts a new maximal viable trip at
Ag+1 and spans until A; as U(g,!). The utility score of edge
(Ags Ag+1) is the ratio between this new maximal viable trip

and the original viable trip the edge was part of, U(k+;+l)11)
A value > 1 indicates that a split at this edge improves the

utility relative to the earlier sequential partitioning of the route.

Compute score: We first do a soft-scheduling of the batches
of all waypoints in R; ; using the first-fit scheduling policy,
mapping them to their preferred interval, which is assumed to
be free. Say there are |R; ;| such batches. Then, for each edge
edge (A\g,A\g+1) € R;;, we find the overlap count O, as the
number of batches from o, whose execution slot overlaps with
batches from all other act1v1t1es The overlap score for edge
(Ags Ag+1) 18 given as ol R . If this value is higher, splitting
the route at this point will ‘Avoid batches from having schedule
conflicts in their preferred time slot.

Once the three scores are calculated and summed up, the
edge with the highest split score is selected as the split-point
to divide the route into two sub-routes. If a sub-route meets the
energy constraint, it is selected as valid trip. If either or both of
the sub-routes exceed the energy capacity, the splitting phase
is recursively applied to the sub-route(s) till all waypoints in
the original route are part of valid trips.

Scheduling phase: Trips are then sorted in decreasing order
of their total utility, and drones are allocated to trips depending
their temporal availability. Once assigned to a trip, the drone’s
scheduling is done by comparing the default assignment and
the test and swap assignment used in CS.

The RSS algorithm is given in Algorithm 2. After the rout-
ing phase, the energy-unfeasible routes are split into feasible
ones in the splitting phase, and then drones are allocated to
them. Finally, the scheduling phase is applied to find the best
schedule between the default assignment and the test and swap
assignment. The RSS algorithm will always terminate since
we iteratively assign routes to drones. The number of routes
and drones is finite and hence the iteration will terminate.

Time complexity of RSS: In the routing phase, the modi-
fied k-NN with n waypoints and k& number of neighbors takes
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Algorithm 2 RSS(A4, D)

1 R <« routing phase;

2 for R;; € R do

3 for ()\g,)\g+1) S Rij,i <g<jdo

4 s(g) < energy score + utility score + compute
score;

R’ «— splitting phase based on scores s(i),1 <i <n;

for d; assigned to R;; € R' do

Apply best scheduling from among default
assignment and test and swap assignment on I;;;

B I Y]

O(kn). 2-OPT* takes O(n*
overall has a cost of O(n?).

In the splitting phase, calculating the energy score for a
route with length n edges takes O(n). Calculating the energy
score has O(n?) complexity, and calculating the compute
score has O(n) complexity. Considering a recursion of length
n — 1, the complexity of this phase is O(n?)

Combining default assignment and test and swap assign-
ment, the RSS’s overall complexity is O(n*) + O(n?) =
O(n*) in the worst case.

) in time [57]. Hence, this phase

C. The HUFD Algorithm

The Highest Utility First with Data capture (HUFD) algo-
rithm aims to greedily assign the activities with the largest
utility to drones while initially ignoring other optimizations
related to the routing of drones and the scheduling of batches.
HUFD is split into three phases: sorting, routing, and schedul-
ing. The sorting phase orders the activities by their maximum
possible utility, and in the routing phase we assign activities
to drones. Finally, in the scheduling phase, we schedule the
activities on each drone. This takes a Greedy approach.

Sorting phase: Here, HUFD initially sorts all the activities
a; € A in non-decreasing order of the total potential utility
and creates the ordered set A. Let U; = ~; +7; + 7; be the
potential utility for an activity «;, i.e., the sum of data capture,
on-board, and on-time utilities. After the sorting procedure we

have U; > U, for each activity in A.

Routing phase: We now start to assign the sorted activities
to drones. Each drone starts with an empty trip, ()\ )\) For
each (remaining) activity o; € A in sorted order of total utility,
we iterate through all the drones and all their trips to identify
to which trip this activity can be added to while meeting the
energy constraints of the trip, i.e., we do not exceed the energy
capacity to go from the depot, to all the existing activities of
the trip and also the new activity, and back to the depot. For
each such trip, we also calculate the increase in the energy
usage for that trip as a result of adding this activity. From
among all the energy-feasible trips, we identify the one with
the least increase in energy as the one to add this activity to.

If none of the existing trips can accommodate this activity
without exceeding their energy budget, we also check if the
activity can be placed solo in a new trip on a drone — from the
depot to the new activity location and back to the depot. Here,
besides the energy constraint being met, the activity deadline
of the trip should also be feasible given the other trips already
scheduled on the drone. If so, this will create a new trip on
a drone. As an optimization, we only need to check empty
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trips once for their feasibility to add the activity irrespective
which drone such a trip is present in. If any of the trips can
be assigned this activity, we are guaranteed to accrue its data-
capture utility; if not, this activity is dropped. In either case,
we remove the activity from A and repeat this process for the
next activity with the highest potential utility.

Scheduling phase: When a new activity «; is added to
the current set of activities A; for a drone d;, HUFD tries
an optimistic scheduling by checking if all its batches can
be scheduled without deadline violations using the default
assignment of CS algorithm (see Section VI-A) for the new
batches. This assignment is optimistic; in case «; introduces
violations, HUFD does not reschedule the batches. So, the
gr\one d; may not necessarily obtain the total potential utility
U; of the activity «; since the full activity may not be
successfully scheduled for processing on-time or even on-
board the drone.

Algorithm 3 HUFD(A, D)

1 A « sort A by non-descending order of total potential

utility;

2 for a; € A do

3 d — O,

4 for d; € D do

5 if a; U A; is feasible for energy capacity of d;
and d; has lower incremental energy use than
d; then

6 L dk — dj;

7 Assign «; to dy, if di, # @ and try to schedule its

batches using default assignment;

The HUFD algorithm is shown in Algorithm 3. The main
idea is to prioritize assignment of the activities with highest
potential utility to the drones. After the initial sorting phase
where activities are ordered by the total potential utility from
high to low, activities are iteratively picked for routing on any
drone dj, which has the lowest feasible energy cost to complete
the activity’s data capture. Then, the activity is scheduled for
processing on this drone dj using default assignment and if
there are deadline violations for its batches, those are left
unscheduled. The HUFD algorithm will terminate after we
iteratively process each activity and assign it to drones. The
iteration never reconsiders an activity and hence it is bounded.

Time complexity of HUFD: The sorting phase takes
O(nlogn) for sorting n activities. In the routing phase the
activity with the largest total utility is selected and attempted
to be assigned to a drone. Evaluating the route with the
minimum total energy cost for visiting A; U o, given that
A; is already energy-feasible, is computationally inexpensive
because the data capture time windows of the activities limit
the possible choices. Since there are m drones, and that the
scheduling phase by invoking default assignment takes O (nl?)
(see Section VI-A), the loop costs O(mni?).

So, the overall complexity, which depends on the sorting
phase and on the routing phase, is O(nlogn) + O(mnl?) in
the worst case. If m < n, then m can be treated as a constant
and the time complexity of HUFD is O(nlogn + ni?) =
O(nlogn). Otherwise, if m = n, then the time complexity is
O(nlogn + n?l?) = O(n?1?) because n? dominates n logn.

D. The EOFO Algorithm

The Earliest Observation First with On-time processing
(EOFO) algorithm assigns activities with the earliest obser-
vation start time to drones, and further also avoids deadline
violations for processing batches. Accordingly, when activities
are assigned to drones, the data capture, on-board, and on-time
utilities are fully obtained in this algorithm. HUFD is split into
two phases: sorting and assigning. During sorting, we order
the activities by their earliest observation time, and when
assigning, we map the activities to drones while achieving
on-time processing. This too is a Greedy approach.

Sorting phase: EOFO initially sorts all the activities o; €
A in non-decreasing order of their earliest observation start
time, creating the ordered set A. Given that the observation
start time for an activity «; is t;, after the sorting we will have
t; < t;+1 for each activity in A.

Assigning phase: The assignment phase combines the
routing and scheduling phases of HUFD with the additional
requirement that the batches of the activities being added to a
route can be fully processed on-time. All drones start with an
empty trip. EOFO greedily picks from A the next remaining
activity with the earliest observation start time and looks for
a drone d; for it. For each drone, we check if adding «; to
the current list of activities A; of any of its trips is feasible in
terms of energy, and further, does not create any on-time batch
processing deadline violation using just the default assignment
(see Section VI-A). Among them, we select the drone whose
trip requires the minimum increase in the energy consumed
for the trip. If this activity cannot be placed in any of existing
trips of the drones without energy or deadline violations, then
we attempt to place it as a solo trip on a drone. If that too
fails, the activity is dropped. We move on to assign the next
activity in A. EOFO will accrue the total potential utility for
the activity in its entirety, compared to HUFD which will
accrue the data capture utility but may not gain the processing
utility if the activity’s batches cannot be scheduled.

The EOFO algorithm is described in Algorithm 4. After the
initial sorting phase is done based on the earliest observation
start time of the activities, we iteratively picked each activity
to assign it to any drones without on-time processing deadline
violation, and choose the drone with the least increase in its
total round trip energy on adding this activity. If none of the
existing trips can accommodate this activity without exceeding
their energy budget, we also check if the activity can be placed
solo in a new trip on a drone - from the depot to the new
activity location and back to the depot. If none of the drone
meet these constraints, we leave the activity unassigned. The
EOFO algorithm is guaranteed to terminate since we process
each activity exactly once and assign it to drones.

Time complexity of EOFO: In the routing phase, the
pre-processing sorting procedure takes O(nlogn). Since the
activities are sorted by the earliest observation start time, it is
possible to efficiently evaluate (in constant time) if the selected
activity oy; causes violations of the on-time deadline in A;Uaqy;.
As for HUFD, the assigning phase takes O(mnl?). Accord-
ingly, the EOFO’s overall complexity is O(nlogn + mnl?)
in the worst case, similar to HUFD.

E. The 1IPS Algorithm

The Interval Partition and Schedule (IPS) algorithm creates
round-trip routes of waypoints such that there is no violation

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:55:07 UTC from IEEE Xplore. Restrictions apply.



26

Algorithm 4 EOFO(A, D)

1 A «— sort A by non-desc. order of earliest obs. start

time;

2 for a; € A do

3 d — O,

4 | ford; € D do

5 if a; U A; is feasible for energy capacity of d;
and on-time compute scheduling on d; and if
d; has lower incremental energy use than dj,
then

6 L dk — dj;

7 Assign «; to dy, if di # @ and schedule its batches

using default assignment;

of the on-time processing deadline. Each route is then seen
as a temporal interval, and each drone is assigned a set of
non-overlapping intervals where each route corresponds to a
new trip for the drone. IPS is split into two phases: interval
creation and scheduling. In the interval creation phase we
identify feasible routes while considering the activity dead-
lines, and in the scheduling phase we actually assign drones
to these routes. This is a Divide and Conquer approach.

Interval partitioning phase: Here, the objective is to create
a set of feasible routes R for the drones from/to the depot.
In principle, since there are n activities, the number of possible
routes is exponential, 2", and hence it is intractable to evaluate
all of them. However, in practice the actual number of routes
is much fewer due to the presence of activity deadlines and
energy requirements to be met by the drones. Initially, all the
activities «y; are sorted in non-decreasing order of their earliest
observation start time to give the ordered set A such that ¢; <
ti+1. Then, we create the set of all energy-feasible contiguous
routes R formed from R; ; = (A, A, Adig1,..., A, A), where
A; is the waypoint associated to the activity «; and for all
it =1,...,nand i < j < n. The route R;; is added to
the set R if it can be completed within the energy budget of
a single trip for a drone. So, starting with ¢ = 1, the first
route Ry ; only has the activity o; € A, the next route R o
has «; and s, and so on. Then, we move to # = 2 and
evaluate the route Ry o with activity co and so on. All routes
Ri1,Ri2,...,Ra,..., including the singleton routes R, ;,
that are also energy-feasible are present in R. At the end, the
maximum number of possible trips is n(n + 1)/2 ~ O(n?).

Scheduling phase: For each route R; ; € R we have its
corresponding overall potential utility summed across all its
activities, i.e., U; ; = U; + ... + U;. Now, these need to be
assigned to drones while avoiding violations of the on-time
processing deadline and ensuring that each activity is assigned
to no more than one drone.

Let T}"; = t; — F(A, \;) be the take-off time required for
route R; j € R, and T}, = #; + F();, A) be its landing time.
Hence, we can treat each route as a remporal interval delimited
by its take-off and landing time, (T}, T}%;). Given two routes
Rayp and R. 4, they are said to be compatible for the same
drone if TaLJ] < ng or TCL’d < sz, i.e., it is possible for a
single drone to service these two routes on two different trips
during this mission.

We can model these temporal interval for the routes as an
undirected graph G whose vertices are the routes R; ;, and
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an edge exists between any pair of vertices if the two routes
are not compatible for being assigned to the same drone.
The weight of a vertex is the overall potential utility U; ;
for the route. Now, the goal is to find the Weighted Maximal
Independent Sets (WMIS) of vertices from this graph. A WMIS
identifies a set of vertices in the graph that do not have any
edge between them and the sum of their vertex weights is
the highest among all such sets. The WMIS indicates a set
of routes whose intervals are compatible for a single drone’s
mission and will maximize the overall potential utility. Solving
WMIS is NP-hard for general graphs. But the graph G is
an interval graph, which is a type of chordal graph, and
WMIS can be efficiently solved in polynomial time for chordal
graphs [58], [59].

In the scheduling phase, we iteratively solve WMIS m
times, once for each drone. Specifically, it is first invoked
on the entire graph G and returns a set of compatible
energy-feasible trips (vertices) for the first drone. Then we
remove these vertices from the G, along with trips (vertices)
whose activities are already assigned to the first drone. Then
we repeat WMIS on the updated graph and the resulting trips
are assigned to the next drone, and so on until either all valid
vertex sets are assigned or we run out of drones. The actual
scheduling of the batches of an activity for on-board process-
ing is again done optimistically using the default assignment.
In case of deadline violations, we do not reschedule the
batches. So, we are guaranteed to accrue the data capture
utility but not the on-board or on-time utility for an activity.

Algorithm 5 IPS(A, D)

1 A «— sort A by non-desc. order of earliest obs. start
time;

2 R « energy-feasible routes from A,

3 G «— form interval graph from R;

4 for d; € D do

5 Assign activities for a route-set from WMIS(G) to

d L.
v
6 Try to schedule the compute for the route-set’s
activities on d; using default assignment;
7 Remove the assigned route-set vertices from G;

Algorithm 5 gives the pseudo-code for IPS. In the initial
intervals creation phase activities are sorted by their earliest
observation start time. Then, the set of energy-feasible trips is
created by iterating over the sorted activities. These trips form
time-intervals vertices in an undirected interval graph with
vertex weights indicating the potential utility of the trip and
edges between incompatible vertices. Finally, in the scheduling
phase, we iteratively solve the WMIS problem on the graph
to return the best compatible trip to maximize total potential
utility for a drone and prune the interval vertices from the
graph. The IPS algorithm is guaranteed to terminate since we
iterate over each drone exactly once to assign them activities.

Time complexity of IPS: In the intervals creation phase,
activities are sorted taking O(nlogn) time. Then, energy-
feasible trips are created taking O(n?) because the maximum
number of possible trips is upper-bounded by n(n + 1)/2 ~
O(n?). Given 7 as the total length of the interval, WMIS
can be optimally solved in O(n1log#) time [60]. Hence, for
solving the WMIS m times starting from the initial set of
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TABLE III
COMPARISON BETWEEN THE ALGORITHMS

Algorithm

CS O(n31?)

Approach: Create spatio-temporal clusters, proportionally assign drone(s)
to form energy-feasible trips. Schedule batches of a trip, try to meet on-
time deadline.

RSS O(n%)

Approach: Create temporally feasible routes. Split into energy-feasible trips
that reduce batch overlaps/improve utility. Schedule trips to drones, batches
within a trip. Try to meet on-time deadline.

HUFD O(nlogn + mni?)
Approach: Sort activities by highest potential utility. Create energy-feasible
trips. Optimistically schedule the batches of a trip.

EOFO O(nlogn + mnl?)
Approach: Sort activities by earliest observation start time. Create energy-
feasible trips that also have on-time batch completion.

IPS O(mn?logn + ml)
Approach: WMIS finds temporally compatible trips for each drone with
high potential utility. Optimistically schedule the batches.

Time Complexity

trips with 7 = O(n?) intervals, takes O(m(n?logn?)) time.
The time complexity for assigning [ batches using default
schedule is O(l) So, the overall time complexity of TIPS is
O(nlogn + m(n?logn?) + ml) = O(mn?logn + ml).
Table III compares our proposed algorithms for MSP.

VII. PERFORMANCE EVALUATION

In this section, we report the results and analysis of our
detailed experiments to evaluate the 5 heuristics and the
optimal solution using realistic drone benchmarks and traces.

A. Experimental Setup

The OPT algorithm is implemented using IBM’s CPLEX
MILP solver v12 [61] with Python used to wrap the objective
and constraints, and invoke the parallel solver. This gives
the optimal solution as a best-case baseline. The CS, RSS,
HUFD, EOFO, and IPS heuristics have a sequential imple-
mentation in native Python. By default, the heuristics run on
server with Intel Xeon Gold 6208U CPU with 16 cores and
32 hyper-threads at 2.9 GHz, and 128 GB RAM. OPT uses
all 32 threads while our heuristics run on 1 thread.

We perform real-world benchmarks on flying, hovering,
DNN inferencing, and endurance, on a custom, commercial-
grade drone. The X-wing quad-copter is designed with a top
speed of 6 m/s (20 km /h), < 120 m altitude, a 24000 mAh Li-
Ion battery, and a payload capacity of 3kg. It includes dual
(front and downward) HD cameras, GPS and LiDAR Lite, and
uses the Pixhawk?2 flight controller. It also has an NVIDIA
Jetson TX2 compute module with 4-Core ARM64 CPU, 256-
core Pascal CUDA cores, 8 GB RAM, and 32 GB eMMC
storage. The maximum flying time is ~ 30 min with a range
of 3.5km. Based on our benchmarks, we use the following
parameters in our experiments.

s ‘ € ‘ € ‘ FE
4m/s|750J/s|700J/s|20J /5| 1350 kJ

i ‘ el

B. Workloads

We evaluate the scheduling algorithms for two way-
point placement scenarios: Random (RND) and Depth First

Search (DFS), and several activity configurations to form
11 workloads. We use a subset of the road network for
Bangalore, India extracted from Open Street Maps [62]. The
sub-network has 481 vertices and 1402 edges of primary roads
and highways, covering a radius of 3.5km, with the depot
being located at its center. All workloads have a maximum
mission time (makespan) of 4 h spanning multiple trips. In the
RND placement, n waypoints are randomly placed within a
3.5 km radius from the depot, and with a randomly generated
activity’s start time in (0,240] mins. This is an adversarial
scenario with no spatio-temporal locality. The DFS placement
is motivated by realistic traffic monitoring needs. We perform
a depth-first traversal over the road network starting from the
depot. For each hop in the DFS traversal, we choose a vertex
as an activity waypoint with a probability of p = 0.1. For
each hop in the traversal where we do not pick a vertex,
we increase the probability for picking the next hop vertex by
p = p+0.1; if chosen, the probability is reset to p = 0.1. The
observation start time of the activities grows monotonically:
t; =t;_1+p-3000s, where t; is the start time (in secs) of the
it" activity and ;_; is the observation end time of the previous
vertex picked in the DFS. Clustering of activities in CS is done
using a Python implementation of ST-DBSCAN. We set the
temporal threshold as 5 mins and spatial threshold as 1 km
to determine which points are placed in the same cluster.

t—t ‘ B ‘PM‘pR‘ o "77’77’?‘ (mzx) ‘ n

[1,5] min|60s|115]985]120s| [1,5] |(5,20)(10,10)(20,5) | 100

The first activity workload uses the DFS and RND waypoint
placement coupled with activity and drone configurations
shown in the table above. These parameters are based on
reasonable operational assumptions and schedule feasibility.
The compute tasks for the activity are SSD Mobilenet v2 DNN
(MNet) [63], popular for analyzing drone footage [64], and
FCN Resnetl8 DNN (RNet) [65] on the TX2. The activity
instances in the workload have a fixed batching interval ((),
batch execution time (pp; for MNet, pr for RNet), and
deadline (0). We uniformly choose the data capture time
(t —t) and values for the three utility (v, ,7) from the range
specified in the table. We use a fixed number of activities
(n = 100), but vary the number of drones (m) and the load
factor x, which decides the maximum activities per drone:
n = x - m. Drones make at most 7,x = % trips. This gives
us 625 possible configurations of activity instances to choose
from for this workload, for a given number of drones and load
factor.

We evaluate 3 workload types: MNet model with RND
waypoint placement (RMN), MNet with DFS (DMN), and
RNet with DFS (DRN); for brevity, RNet is only run on
DFES. For each instance of a workload type, we sample n =
100 activity instances from these configurations. We ensure
that all activities can be feasibly reached within its data capture
start time by a drone starting from/returning to the depot.

We define an additional 7 workload types for RND place-
ment, with more diverse activity processing times, deadlines
and utilities. Here, we expand to five DNN/vision models:
MobileNet (M-Net) [63], Object detection on Drone data [66],
Resnet-18 (R-Net) [65], Crowd counting using Drones [67],
and Optical Flow [68], with respective batch execution times
of p € {11,37,98,124,391}s as measured on the TX2.
An activity instance in a workload has equal probability of
being assigned any of these model types. We retain the data
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capture of t — ¢ = [1,5] min and batch execution interval
of B = 60s. Activities have different deadlines classified as
short-, medium- and long-term. When assigning deadlines to
activities, we ensure that the batch execution time does not
exceed the sampled deadline. This implies that some models
with high batch execution times may not feature in workload
mixes of short deadlines. Their utilities also vary, as shown
in the table below. For short-term, we assign a higher utility
range for on-time processing () as it is time-critical and
this range reduces for medium-term deadlines. The on-board
processing utility (%) is higher for medium and long-term
deadlines, as these are opportunistic.

Activity Type| 1) |~ | 7 | 7
short-term [60,120]s |[1,10]|[8,10]| O
medium-term | [600, 1200]s |[1,10]]| [3,7] |[8, 10]

long-term | [3600, 7200]s|[1,10]| 1 |[8,10]

We form 7 workload types using different ratios of
short, medium and long-term activity types for the n activ-
ities in a workload: (1,0,0) for Short-term activities Only
(RSO), (0,1,0) for Medium-term Only (RMO), (0,0,1)
for Long-term Only (RLO), (3, %,1) for Short-term Dom-
inant (RSD), (4, 1,1) for Medium-term Dominant (RMD),
(i, i, %) for Long-term Dominant (RLD), (%, %7 %) for EQual
weight (REQ). The short-term activities have 9,000 distinct
configurations to sample from for a workload instance; the
medium-term have 450, 000 and long-term have 540, 000 pos-
sibilities. All activities chosen have feasible data capture times.

Last, we create a workload, Prioritized Random (PRND),
to demonstrate the effect of large skews in the activity utilities.
This workload is identical to RMN on the activity placement,
deadlines, and the observation start and end times. However,
5% of the activities have all three utility values set between

[7,10] while the rest 95% have these utilities between [1, 3].

C. Experimental Results

We run the algorithms to evaluate a schedule and the
expected utility for each workload instance. For each of the
10 workload types, we sample different numbers of activities
(n) and use different number of drones (1m), and report results
averaged over 10 workload instances of each type. While the
initial results assume an ideal and deterministic performance
of the drones, later in Section VII-C.3 we present results using
a trace of the drone’s actual flying behavior.

1) Comparison of OPT With Heuristics for REQ: Figure 2a
reports the average utility % that is achieved out of the
maximum theoretical utility that is achievable for a given
workload, i.e., sum of the data capture and on-time processing
utility for all its activities, for OPT and the 5 algorithms.
Here, we vary the activity count n = {10, 20,50,100} and
the number of drones m = 5,...,50, but only evaluate the
REQ workload which is the most generic of all. The bars are
averaged over the 10 workload instances for each type, while
the whiskers show the minimum and maximum utility % of
the instances. The OPT is only run for 4 combinations of m
and n due to the large amount of time per run — it takes > 1h
to solve for a single workload instance of n = 20, m = 5, and
> 16h to solve for one instance of n = 20, m = 10. While
optimal, it is not useful to schedule our 4 h activity windows.

OPT offers modest utility gains but is intractable for larger
problems. As evidenced by Figure 2a, when OPT (dark
blue) finds a solution, it is better than all the heuristics by
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a modest =~ 5%. OPT is viable with a small number of
drones and activities, e.g., n < 10 and m < 10, where
it executes within 10 mins. For larger instances, its required
computation time blows up dramatically. So its marginal utility
improvements are offset by the impractical time taken for
larger problem sizes. Here, the heuristics are competitive. E.g.,
RSS and EOFO obtain only 4% less utility than OPT for
n = 20,m = 10, and even in the worst case, HUFD has
only 22% lower utility for n = 20,m = 10, but executes
much faster. While it is possible to obtain 100% of the data
capture utility, especially when m = n, the same cannot be
said for the on-time and the on-board processing utility for the
workload instances. Even OPT may not achieve 100% of the
theoretical achievable utility due to deadline constraints on the
computation and finite compute capacity.

OPT is the slowest while CS is the fastest to solve.
Figure 2b plots the execution time in seconds (logarithmic
scale) for the optimal algorithm OPT and the five heuristics,
for the same scenario as Figure 2a. Despite OPT using 16X
more cores compared to the single-threaded execution of the
heuristics, it is two orders of magnitude slower than HUFD
for m = 5 and n = 10, which is the smallest workload we
evaluate. This is consistent with the NP-hard nature of MSP.
The relative ordering of the observed execution time of the
algorithms is consistently CS (light blue) < EOFO (green) <
HUFD (yellow) < IPS (purple) < OPT (dark blue), with
RSS (red) being faster than EOFO or slower than IPS,
depending on the conditions. Since RSS has a time complexity
of O(n*), its time taken rises faster than the other heuristics
with increasing n. But it remains much faster than OPT, taking
only 69s even for n = 100, m = 5, keeping it tractable. As its
complexity does not depend on m, its execution time remains
constant across all m with a fixed n. Both HUFD and EOFO
have the same time complexity of O(n log n+mni?), and their
algorithms are identical except for an extra condition check for
EOFO. Despite that, the latter is slightly faster in practice.

CS is the fastest heuristic despite a high time complexity
of O(n31?). In practice it executes quickly taking < 1s for
all our runs, indicating that the number of clusters formed are
closer to m than n. E.g., for a large scenario with 5 drones
and 100 activities, it takes only 0.3s to return a schedule,
which is 10x faster than the next fastest algorithm EOFO
which takes 2.7s for the same scenario. However, the utility
returned by CS is the worst, though it stays within 21% of the
best heuristic solution on average. For this scenario, HUFD
is 2x slower than EOFO (5.6s vs. 2.7s), while IPS is 2x
slower than HUFD (5.6s vs. 11.7s).

The gains from adding more drones for a fixed number of
activities is marginal. In Figure 2a, as the number of drones
increases for a fixed number of activities, the improvement in
utility % obtained diminishes and eventually saturates. E.g., for
n = 50 activities, with m = 5 drones, the average utility is
(22,34, 36, 44, 38)% across the 5 heuristics, while quadrupling
the number of drones to m = 20 gets us a utility % of
only (68,83,79,81,75)%, respectively. When the number of
activities is equal to or almost equal to the number of drones,
e.g., m = 40,n = 50, the average utility % obtained across
all 5 heuristics is 100% since each drone can handle one or
two independent activities successfully.

2) Utility for Varying Load Factors and Workloads: OPT
is computationally intractable for larger numbers of activities
and drones, and therefore here we compare only the heuristics.
We estimate it would require more than a year to solve for
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Fig. 3. Average % of total possible utility achieved per workload instance by the 5 heuristics for 10 workload types, with n = 100 activities and

m = {5,10,20} drones for each instance.

all our proposed workloads, even for the smallest scenario of
m = 5,n = 100. Hence we limit further analysis only to
our heuristic algorithms. Figure 3 plots the average utility %
achieved by the 5 heuristics for 10 workload types, when using
a fixed number of activities n = 100 and varying the number
of drones, m = {5, 10,20}. The bars are averaged across the
10 workload instances for each type.

The DFS workloads obtain more utility than the RND
workloads. Across all heuristics, the utility % achieved by
the DFS-based workloads, DMN and DRN, are better than
the 7 random-placement workload types with diverse models
(RLO to REQ); RMN is slightly worse or comparable to the
DES types (Figure 3). DMN and DRN have activities located
in DFS ordering within the road network, which is realistic
for many traversal applications. So the activities are spatially
and temporally proximate. This makes it more amenable to
form single trips with many such waypoint activities present
in them. E.g., the average waypoints per trip for DMN and
DRN are 5.2 and 5.5, respectively, for m = 5,n = 100 while
it is only 3.7 for REQ. Among the RND workloads, RMN
having just the MNet model gives a higher utility compared
to the ones with a mix of model types. Since MNet has a
batch execution time of py; = 11s, its batches are likely to
be processed on-time within the deadline 6 = 120's, compared
to the longer model execution times of p € (11,391)s for
the diverse workloads, albeit with longer deadlines. E.g.,
comparing RMN with REQ for n = 100, m = b5, across
all heuristics, RMN accrues = 14% more on-time utility and
~ 3% higher on-board utility.

Most heuristics perform consistently across workloads, with
EOFO often the best. As we vary the workload types, all

heuristics, except IPS, show a similar relative performance
trend. In fact, for the 7 workloads, RLO to REQ, all heuristics
but IPS exhibit just =~ 0-3% deviation across the different
workloads, for a fixed value of (m,n). EOFO usually per-
forms better than the others for most workloads, though the
difference may be modest. The EOFO algorithm design uses
the observation start time to schedule activities, which imposes
a natural partial order and yields a sequence of activities to
be visited. This sequence improves the data capture utility
marginally, e.g., EOFO obtains a 3% better data capture
utility compared to RSS for the REQ workload with n =
100, m 10. RSS and HUFD are often competitive with
EOFO, and perform better under specific workload conditions,
as discussed below.

CS consistently gives the worst utility, being 19% worse
on average than the next best heuristic across all workloads.
It is unable to identify energy efficient tours and consistently
places over 12% fewer activities on tours. However, it is fast,
an takes sub-second latency to evaluate.

IPS has a deviation of ~ 13% in the utility obtained across
workloads for a given (m,n). It is at or above the median
among all heuristics for all but three workload types: RMO,
RMD and RSD, where it is comparable to CS, which gives
the lowest utility. In the Interval Partitioning Phase of IPS,
the intervals are created based only on energy feasibility and
not on the total utility of the interval. This may cause the
final utility obtained to vary depending on the workload type.
Overall, we see a 7% drop in the data capture utility for
the 3 workloads indicating that the intervals did not prioritize
utility. However, as discussed later, IPS gives a better utility
than EOFO for some scenarios.
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Fig. 4. Comparing the performance of heuristics for REQ workload, with varying counts of drones m and activities n.

RSS outperforms EOFO for small load factors. RSS is
the closest competitor to EOFO, and occasionally does better.
Figure 4a compares these best-two heuristic algorithms for the
REQ workload. The two algorithms exhibit different behaviors
as the load factor x = :1 varies. For a given drone count,
RSS offers a higher % achieved utility than EOFO with
fewer number of activities (lower load factor), while EOFO
is better for more number of activities (higher load factor).
In Figure 3, for xz = % =5, we see RSS gain =~ 3% more
utility when compared to EOFO. But for a higher load factor
Tr = % = 20, we see EOFO obtain =~ 9% more utility than
RSS. The two algorithms give similar utilities when = ~ 6,
e.g., (m =5,n=30) and (m = 10,n = 60).

This is also evidenced by Figure 5 which plots the median
% utility achieved on the Y-axis for all heuristics against the
load factor x on the X-axis, for several (m,n) pairs. For
load factors x 2-6, RSS (red dot) falls on the Pareto
boundary along the top-right. We see this behavior persist
across different workloads. We theorize that at lower load
factors, most activities can be assigned a drone and RSS’s
scheduling phase yields higher utility than EOFO by including
test and swap assignment over the default assignment. Beyond
that threshold, EOFO is not only preferable because it gets
more utility, but also because its execution time is smaller.
Accordingly, one can choose the best algorithm depending on
the drone-activity scenario.

IPS outperforms EOFO under very high load factors
Figure 4b compares the obtained percentage utility by IPS
against EOFO for the REQ workload. We see that with
m = 5 drones and a large number of activities, n > 200, IPS
achieves a higher utility % than EOFO, though it is small at
only = 25% of total possible utility being achieved. This is
also seen in the higher median utility % seen for IPS in the
scatter plot, Figure 5, as the load factor = > 30.

IPS tries to build a set of conflict-free temporal intervals to
assign to each drone. Intuitively, when the number of activities
become very large relative to the number of drones, the number
of intervals grow. At the same time, the possibility of making
a viable sub-optimal schedule for each drone also increases
dramatically. Hence, IPS is preferable for larger load factors.
However, its time complexity depends on the number »n of
intervals, which can be large. Having n > m may not be a
common scenario, and may lead to incomplete activities.

HUFD outperforms EOFO for workloads with a priority
skew. In the different RND workloads examined so far, HUFD
never outperforms EOFO. The HUFD heuristic is designed to
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Fig. 6. HUFD vs. EOFO for PRND workload, m = {5,10},n = 10~ 100.

prioritize selecting activities with high utilities rather than the
observation starting time. Figure 6 plots the obtained % utility
for HUFD and EOFO using the PRND workload. In this
workload, only 5% of the activities have a high utility, while
the rest yield low utility. This characterizes situations in which
a few activities have a very high priority — hence high utility,
while the rest do offer lower value. We can see that with fewer
activities, n < 20, both the heuristics achieve similar utilities.
But with a higher activity count, n > 80, HUFD obtains ~ 3%
more utility than EOFO. E.g., for n = 100, HUFD executes
all the high priority activities, while EOFO only executes 80%
of them, causing a drop in the utility obtained.

3) Some Trips Are Incomplete With Real Drone Traces:
The utilities reported above are under ideal conditions. Each
trip plan generated by a heuristic should complete within a
drone’s energy capacity. In practice, factors such as non-linear
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Fig. 7. % incomplete trips when using real-world drone energy traces. None
of the trips fail for n < 80.

battery performance can increase or decrease the actual energy
consumed. Here, use energy traces from real-world drone
flights to estimate the realistic energy usage and the trip
completion rate.

We run two flight benchmarks on the X-wing quad-copter
out-doors: (1) flying at a fixed altitude of 5m and speed
of 4m/sec along the sides of a square of size 10m, and
(2) hovering at a fixed altitude of 5 m. Its camera is turned off
and no on-board computation is performed, and this runs until
the drone exhausts its battery. We measure the battery energy
that is remaining, sampled every 1s using on-board sensors.
Separately, we also continuously measure the battery usage for
the drone when it is turned on but stationary on the ground,
while ResNet-18 inference is performed using its on-board
computer. These experiments provided us with the traces for
the drone’s battery consumption when flying, hovering, and
performing on-board compute, respectively.

The scheduling heuristics return a timeline for each drone’s
trip, for a given workload instance. This trip timeline contains
the time at which the drone should take off, land, as well as
the time periods during which it will fly, hover, and perform
on-board compute. We replay the drone’s trip while using the
real-world energy trace to determine the realistic energy usage
during these periods of flying, hovering and computing. This
helps us check if the battery capacity is exhausted before the
trip completes; if so, the trip is incomplete, and if not, it can
complete. This does not consider other ambient factors such
as wind-speed, etc.

Figure 7 plots the fraction of trips returned by each schedul-
ing algorithm for a mission, which, according to the drone
trace, do not complete. Here we report numbers for m = 5 ~
10 drones and n = 100 ~ 500 activities. When the load is for
m < 5 drones and n < 80 activities, all trips returned by all
heuristics can complete within their energy budget using the
real-world traces. But with n > 80 activities, some trips in
the planned schedule start to fail. Even here, only ~ 15% of
trips are incomplete even with m = 5,n = 500. So the effect
of real-world factors is tangible but minor. By maintaining
a buffer battery capacity of ~ 10 ~ 15% when planning
a schedule, we can ensure that the drones can complete a
trip and return to the depot. A more robust definition of the
MSP problem and system model, to be explored in future,
will include a richer energy model that includes the impact of
wind, altitude, speed and communications.

VIII. CONCLUSION

This paper introduces a novel Mission Scheduling Problem
(MSP) that co-schedules routes and analytics for drones,

maximizing the utility for completing activities. We proposed
an optimal algorithm, OPT, and five time-efficient heuristics,
CS, RSS, HUFD, EOFO, and IPS. Evaluations using three
workloads, varying drone counts and load factors, and real
traces exhibit different trade-offs between utility and execution
time. OPT is best for small instances, RSS and EOFO are
the best in general, and IPS works well when the number of
activities is really large. Their time complexity matches reality.
The schedules work well for fast and slow DNNs, though
on-time utility drops for the latter.

The MSP proposed here is just one variant of an entire class
of fleet co-scheduling problems for drones. Other architectures
can be explored considering 4G/5G network coverage to send
edge results to the back-end, or even off-load captured data
to the cloud if it is infeasible to compute on the drone.
This will allow more pathways for data sharing among UAVs
and GS, but impose energy, bandwidth and latency costs for
communications. Even the routing can be aware of cellular
coverage to ensure deterministic off-loading on a trip. We can
use alternate cost models by assigning an operational cost
per trip or per visit, and convert the MSP into a profit
maximization problem. The activity time-windows may be
relaxed rather than be defined as a static window. Drones
with heterogeneous capabilities, in their endurance, compute
capabilities, and sensors, will also be relevant for performing
diverse activities such as picking up a package using an
on-board claw and visually verifying it using a DNN. Finally,
we need to deal with dynamics and uncertainties like wind,
obstacles and non-linear battery or compute behavior that
affect flight paths, energy consumption and utilities. We can
use probability distributions and stochastic approaches coupled
with real-time information, which can decide and enact on-line
rescheduling and rerouting while on a trip. Such on-the-fly
route updates for drones allows us to accept and schedule
activities continuously, accumulate a mission over hours, and
prioritize the profitable activities. These will also need to be
validated using more robust real-world experiments and traces.
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