
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024 15735

LASA-R: Location-Aware Scheduling Algorithm
With Rescheduling for Industrial IoT

Networks With Mobile Nodes
Marco Pettorali , Member, IEEE, Francesca Righetti , Carlo Vallati , Sajal K. Das , Fellow, IEEE,

and Giuseppe Anastasi

Abstract—The synchronized single-hop multiple gateway
(SHMG) framework has been recently proposed to support
mobility in 6TiSCH, the network architecture defined by the
IETF for the Industrial Internet of Things (IIoT). SHMG includes
a scheduling policy to allocate communication resources to mobile
nodes (MNs) in order to satisfy the stringent requirements
of industrial applications. Current scheduling algorithms, how-
ever, manage mobility by simply over-allocating communication
resources, without taking into account the position of MNs. In
this article, we propose a location-aware scheduling algorithm
with rescheduling (LASA-R) that leverages the position of MNs,
reported via periodic position notification (PN) messages, to
optimize the allocation of communication resources. LASA-R also
includes a conflict resolution mechanism to modify the schedule,
as conflicts are detected. Finally, a mathematical methodology
is developed to determine the optimal PN period. LASA-R is
assessed through simulations. The results obtained show that it
can guarantee a high reliability and a bounded latency, even with
a very large number of MNs.

Index Terms—6TiSCH, conflict avoidance, Industrial Internet
of Things (IIoT), mobility, scheduling.

I. INTRODUCTION

T
O FOSTER the adoption of the Industrial Internet of
Things (IIoT) paradigm, the Internet engineering task

force (IETF) has standardized the 6TiSCH architecture [1], an
IPv6-based standard architecture that allows to interconnect
industrial devices to the Internet, via one or more border

Manuscript received 10 July 2023; revised 7 December 2023; accepted
28 December 2023. Date of publication 12 January 2024; date of current
version 25 April 2024. This work was supported in part by the Italian Ministry
of Education and Research (MUR) in the framework of 1) the CrossLab
and FoReLab Projects (“Departments of Excellence” Program); 2) the PNRR
National Centre for HPC, Big Data, and Quantum Computing (Spoke 1, CUP:
I53C22000690001); 3) the Project “JOULE: Joint Resource Management in
Reconfigurable I4.0 Factories” under Grant 2022TMT4WA; and 4) the Project
“CAVIA: Enabling the Cloud-to-Autonomous-Vehicles Continuum for Future
Industrial Applications” under Grant 2022JAFATE, and in part by the U.S.
NSF under Grant EPCN-2319995, Grant CSSI-2104078, Grant CNS-2008878,
Grant SaTC-2030624, and Grant SCC-1952045. (Corresponding author:

Marco Pettorali.)

Marco Pettorali, Francesca Righetti, Carlo Vallati, and Giuseppe Anastasi
are with the Department of Information Engineering, University of Pisa, 56122
Pisa, Italy (e-mail: marco.pettorali@phd.unipi.it; francesca.righetti@unipi.it;
carlo.vallati@unipi.it; giuseppe.anastasi@unipi.it).

Sajal K. Das is with the Department of Computer Science, Missouri
University of Science and Technology, Rolla, MO 65409 USA (e-mail: sdas@
mst.edu).

Digital Object Identifier 10.1109/JIOT.2024.3353532

routers (BRs), with an industrial grade of service. 6TiSCH
leverages the time slotted channel hopping (TSCH) mode of
the IEEE 802.15.4 standard for short-range wireless com-
munication [2]. TSCH ensures time-bounded and predictable

latency via slotted access, increased network capacity through
multichannel communication, and improved reliability thanks
to channel hopping. One of the key component of the
architecture is the scheduling function (SF) used to allocate
communication resources to nodes.

Potential interconnected objects are not limited to stationary
devices. Actually, many industrial applications involve mobile
objects, such as autonomous vehicles, mobile robots, wearable
devices carried by workers, etc., and this trend is expect to
grow more and more in the coming years.

However, the 6TiSCH architecture does not include any
mechanism for the efficient management of node mobility, and
implicitly assumes that nodes are stationary.

In the literature, some previous works [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14] have considered node
mobility in the IIoT. However, only a few of them deals with
the 6TiSCH architecture [6], [7], [8], [9], [10], [11], [12], [13],
[14], and none of them considers the definition of a whole
framework to handle mobility.

Instead, the synchronized single-hop multiple gateway
(SHMG) framework, originally proposed in [4] and then
extended in [15], is a promising approach to handle node
mobility in 6TiSCH networks. SHMG relies on a centralized
approach. With reference to Fig. 1, the network coordinator
(NC) is responsible for calculating a communication schedule
and allocating communication resources to each mobile node
(MN) and BR, based on the application requirements and
network conditions. Then, the communication schedule is
diffused to all the BRs and MNs in the network.

While many scheduling algorithms can be used within
the SHMG framework, in literature only a few are specifi-
cally tailored to support mobility. Such solutions, however,
adopt a conservative approach where resources are over-
provisioned in a static fashion to handle mobility. For
instance, the scheduling algorithms proposed in [4] and [15]
allocate timeslots in a static and dedicated way in all the
BRs, to guarantee the stringent requirements of industrial
applications and avoid service interruptions due to mobility.
Specifically, the shared-downstream, dedicated-upstream (SD-
DU) scheduling [15] allocates dedicated timeslots for uplink

2327-4662 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15736 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

communication (i.e., from MN to BR), while timeslots for
downlink communication are shared by a certain number of
MNs. Hence, conflicts can occur in the communication from
BR to MN.

To allow an efficient utilization of communication resources,
while ensuring the highest possible communication reliability
to meet the stringent requirements of industrial applications, in
this article we propose a location-aware scheduling algorithm
with rescheduling (LASA-R). We assume that MNs are capa-
ble of tracking their position and direction, and send them to
the NC via periodic position notification (PN) messages. Based
on this information, the NC calculates an initial schedule by
solving an optimization problem to derive a communication
schedule with minimum number of conflicts (i.e., number
of MNs that are in the communication range of the same
BR with overlapping resource allocated). In order to resolve
possible conflicts, either in the initial schedule or arising at run
time due to mobility, a conflict resolution mechanism is also
included. This mechanism aims at rescheduling the allocated
communication resources, as conflicts are detected. In order
to optimize the configuration of LASA-R, we also present
a mathematical methodology to determine the optimal PN
period, in order to ensure the proper balance between accuracy
and resource consumption.

The work presented in this article extends a conference work
by the same authors [14], where the location-aware schedul-
ing algorithm (LASA) was proposed. Specifically, LASA-R
extends LASA by introducing a rescheduling mechanism to
manage and resolve conflicts. In addition, its configuration is
driven by an analytical model to properly select the period of
PN transmissions.

LASA-R is assessed through simulation against LASA [14],
A3 [16], and TESLA [17] algorithms. We also considered
an optimal (but unfeasible) scheduling algorithm, where an
oracle derives the communication schedule based on exact
position information. Our results show that LASA-R ensures
a very high reliability, close to the one provided by the oracle.
The comparison with LASA, in particular, highlights how the
conflict resolution mechanism is effective in improving the
performance.

The remainder of this article is organized as follows.
Section II introduces the 6TiSCH architecture and the SHMG
framework. In Section III, we overview the related work.
In Section IV, we describe LASA-R. In Section V, we
present the analytical methodology for selecting the optimal
PN period. In Section VI, we present the simulation setup,
while in Section VII we present the results obtained. Finally,
in Section VIII, we draw our conclusions.

II. 6TISCH ARCHITECTURE

In this section, we introduce the main features of the
6TiSCH architecture [1], as well as the SHMG framework to
manage mobility in 6TiSCH networks.

As shown in Fig. 1, a 6TiSCH network is composed by MNs
connected to the Internet through BRs. The communication
between MNs and BRs is based on the IEEE 802.15.4 TSCH
protocol [2]. TSCH provides time-slotted access by dividing

Fig. 1. 6TiSCH reference network and protocol stack.

time in fixed-duration timeslots, grouped in a slotframe that
repeats periodically over time. With the aim of increasing the
network capacity, TSCH allows nodes to exploit multichannel

communication, i.e., different nodes can transmit in the same
timeslot exploiting the 16 available channels, each identified
by a channel offset (an integer value in the range 0–15).
Finally, the frequency hopping mechanism, that allows nodes
to change their operating frequency at each timeslot following
a predefined hopping sequence, mitigates the negative effects
of multipath fading and interference. In the TSCH slotframe,
each cell identifies a communication resource through the
couple (timeslot, channel offset). There are two kinds of
cells, namely, dedicated or shared. In dedicated cells the
communication is guaranteed to be contention-free among
couple of nodes. Instead, shared cells are accessed on a
contention basis and, hence, collisions may occurs.

The TSCH standard [2] does not define approaches to
allocate cells to nodes for communication. Hence, as shown in
Fig. 1, the 6TiSCH architecture has introduced the Operation
(6top) sublayer, which is responsible for the allocation of cells
to nodes. It relays on an SF and on the 6top protocol (6P) [18].
The SF computes the number of cells each node requires
to satisfy its traffic requirements, 6P is then exploited to
negotiate the allocation/deallocation of cells among neighbor
nodes. On top of the 6top sublayer, the 6LoWPAN adaptation
protocol compresses IPv6 datagrams to fit into TSCH frames,
the IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) [19] manages multihop data delivery, and finally,
the user datagram protocol (UDP) manages data messages
generated by the application.

A. Synchronized Single-Hop Multiple Gateway Framework

The SHMG framework follows a centralized scheme to
manage mobility in 6TiSCH networks, and the entities
involved are shown in Fig. 1. The NC is the central entity
that computes the communication schedule, while BRs act
as gateways between the 6TiSCH network and the Internet
to provide connectivity to MNs. MNs generate data packets
that are transmitted to the closest BR through single-hop
communication.

It is noteworthy that, in the context of the SHMG architec-
ture, achieving a high level of reliability for the NC is crucial

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15737

and requires it to be consistently powered and operational.
However, the implementation details are beyond the scope of
this article.

In this framework, each BR builds a star topology with
the MNs located in its transmission range. Depending on the
scheduling algorithm adopted, each BR installs the commu-
nication schedule computed by the NC. The communication
schedule may be either synchronized among all the BRs, or
it can change based on the actual MNs in the transmission
range of each single BR. However, in both cases, in order to
handle node mobility efficiently, MNs do not need to acquire
cells when moving from one BR to another.

III. RELATED WORK

In the literature, only a few works consider node
mobility in 6TiSCH networks. Specifically, the works
in [9] and [10] address mobility at the MAC layer, those
in [6], [8], and [14] focus on mobility at the 6top layer, while
papers in [7], [11], [12], and [13] operate at the routing layer.

The works in [6], [9], and [10] tackle the problem of the
presence of MNs in 6TiSCH by mitigating the impact of
handovers between BRs, and define solutions to reduce the
time taken by MNs to join the network.

In particular, the work in [6] defines a distributed traffic-
aware scheduling function (DT-SF) that implements an
analytical estimation of the mobility of the neighbors per-
formed by each MN. DT-SF does not require that MNs have
additional hardware for determining their position, instead
relies on the knowledge of the number of times each MN
changed its parent node and the number of packets in their
local queue exchanged in DIO packets, i.e., the routing
control packets broadcast by RPL. However, DT-SF is not
designed to guarantee a target network performance, such as
maximum packet loss and de-synchronization time. Hence,
the proposed solution may not be suitable for industrial
applications. Moreover, the authors only consider networks
with a small number of MNs (10% of the total number of
nodes).

Nielsen et al. [9] adopted a different approach, specifi-
cally focusing on reducing the rejoining time when an MN
loses synchronization with the network. They introduce a
mechanism for MNs to predict the cell in which the next
synchronization packet will be transmitted. This is achieved by
maintaining a local state of the last schedule used and setting
up a timer to listen for an EB at the expected time if the
last used schedule was still accurate. However, the authors do
not provide any assurance regarding the QoS achieved by the
network.

Finally, Al-Nidawi and Kemp [10] proposed an enhanced
version of the TSCH protocol, namely, mobility-aware TSCH
(MTSCH). The proposed solution exploits a single frequency
for sending enhanced beacons (EBs) to advertise the presence
of the network, hence reducing the scanning time performed
by MNs to retrieve the network information. In addition,
it exploits ACK messages to advertise time synchronization
information. As above, the authors do not provide any guar-
antee on the service achieved by MNs.

The fundamental concept behind the mobile scheduling
updated algorithm for time-slotted channel hopping (MSU-
TSCH), as outlined in [8], is to assign dedicated cells for
each link between any MN and any fixed nodes. These
fixed nodes are presumed to be uniformly distributed across
the deployment area. Periodically, the fixed nodes broadcast
their positions in dedicated cells, enabling MNs to choose
the optimal cell for transmitting their packets and minimizing
the transmission attempts by the MNs. However, the size of
the network considered in the experiments is limited to ten
nodes, with only 2 of them being mobile.

The works in [7], [11], [12], and [13] use a different
approach, and define a new objective function (OF)—the
specific function used by RPL to regulate data forwarding—
to handle node mobility. In particular, Kim and Chung [7]
proposed a framework to reduce collisions in shared cells for
the transmission of control packets, hence minimizing the time
needed by the MN to associate with a parent node. Upon a
disconnection from the parent node, the MN advertises this to
its neighbors, which allocate dedicated cells for transmitting
synchronization information and allow the MN to quickly
rejoin the network.

Instead, Kim et al. [11] defined the MobiRPL framework,
and design an OF that exploits information about the received
signal strength indicator (RSSI) collected by MNs about their
neighbors. Moreover, they define a mobility detection model
that allows MNs to estimate their speed without the need of
external sensors by exploiting the rate of RPL parent changes.

A similar approach is used in [12], where the MSE-

RPL framework is defined. The proposed solution adopts a
dynamic trickle timer to adjust the sending rate of the DIO
messages by an MN, which is increased when the MN detects
neighbors with high mobility. MNs track the RSSI of the DIO
messages received by each neighbor, and rank them according
to their estimated relative speed. The neighbor with the lowest
variation in the RSSI is selected as parent.

These works, however, only consider small networks with
a low number of MNs. Instead, the work in [13] defines the
reliable and mobility-aware RPL (ARMOR) framework, which
introduces the time to reside (TTR) metric, that provides an
estimation of how long the MNs will be in the transmission
range of each other. ARMOR requires each MN to obtain its
location information (current position and direction), using a
positioning system (e.g., GPS or motion sensors), which is
then embedded in DIO messages. MNs compute the TTR met-
ric, exploiting the location information periodically obtained
by each neighbor, and select the one with the highest TTR as
parent. Although the work considers a larger number of MNs,
with respect to the previous works, the network performance
shown is not suitable for industrial applications, since the
packet loss is higher than 40% with a number of MNs equal
to 40.

Finally, the work in [14] defines the LASA, specifically
tailored to the SHMG framework, that exploits the location
information of MNs to manage the allocation of communi-
cation resources. LASA leverages the same approach used in
LASA-R to allocate communication resources in order to guar-
antee the high reliability required by industrial applications.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15738 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

However, LASA implements a very simple approach for
conflict management, where a single MN is considered for
reception by the BR when several MNs happens to be
scheduled for transmission in the same timeslot. In addition,
LASA does not include any mechanism to resolve conflicts.

LASA-R extends the LASA algorithm by introducing a
rescheduling mechanism that resolves conflicts as they occur
at run time, improving the performance in a very significant
way. In addition, in LASA-R the transmission period of PN
can be optimized, depending on the specific scenario, using an
analytical model, which allows a tradeoff between overhead
and schedule accuracy.

IV. LASA-R DESCRIPTION

In this section, we describe the LASA-R that is executed
on the NC. After the network bootstrap, the NC computes
the initial schedule, based on the location of MNs within the
deployment area. The computed schedule is then installed on
the MNs and BRs.

With LASA-R, cells are activated/deactivated on BRs, at
run time, depending on the mobility of MNs, in such a way
to guarantee consistent connectivity. LASA-R also includes a
rescheduling mechanism that modifies the schedule whenever
a conflict is detected. A conflict arises every time two or more
MNs, that are in the communication range of the same BR,
are scheduled for transmission in the same timeslot (although
at a different channel offset), since we assume that a BR can
listen to only one channel at time. The removal of conflicts
is paramount to improve the reliability, as conflicts result in
packet loss.

In the following, we provide a detailed description of the
proposed algorithm. Specifically, Section IV-A describes how
the schedule is computed initially. Section IV-B shows how
cells are activated on BRs, depending on the mobility of
MNs. Section IV-C introduces the general approach to conflict
management, while Sections IV-D and IV-E describe the two
main components of the conflict management mechanism,
namely, the selection algorithm, to select the conflicts to be
resolved at each slotframe (Section IV-D), and the reschedul-
ing algorithm that modifies the current schedule to remove
conflicts (Section IV-E).

A. Initial Schedule Computation

LASA-R computes the initial communication schedule just
after the network bootstrap. To this aim, it is assumed that the
NC knows the traffic requirements of all the MNs and their
initial location. Traffic and location information are collected
by the NC during a preliminary phase. How this process is
performed is considered out of scope in this article. It is
also assumed that the packet generation rate, r (expressed in
packet/sec), is the same for all the MNs.

First, LASA-R computes the slotframe length S (in number
of timeslots) as the maximum length that can satisfy the
packet generation rate of MNs. Specifically, LASA-R allocates
1 cell every 1/r s to each MN. Thus, S is computed as
S = �1/(Ts · r)�, where Ts is the timeslot duration in seconds
(for instance, a common value of Ts is 0.015 s).

Subsequently, knowing the slotframe length S, and the
initial location of all the MNs, LASA-R computes the optimal
communication schedule. To this end, in [14] we defined an
optimization problem, namely, the minimum-conflict sched-
ule (MCS) problem, to compute the optimal communication
schedule, i.e., the schedule that minimizes the number of
conflicts. Hence, the NC derives the initial schedule by solving
the MCS problem.

This schedule is then installed on all the MNs and, hence, all
the MNs have the same schedule. The schedule is also installed
on the BRs. However, at each BR, only cells allocated to the
MNs that are located within its communication range will be
marked as active, while the remaining ones will be marked as
inactive. The BR will listen to receive possible packets from
MNs only on active cells.

B. Cell Activation for Mobility Management

During the operational phase, node mobility is managed by
LASA-R to guarantee connectivity and continuity of service,
also when MNs change their position and BR. The complexity
of the mobility management process is handled by the NC,
which is responsible for activating preallocated cells on the
schedule installed on the BRs.

To this aim, the NC exploits the location information
(i.e., position and direction) that is periodically embedded
in data packets sent by MNs, exploiting the PN field that
includes an approximation of the position and direction of
the MN, as described in [14]. Moreover in [14], we have
demonstrated that this information can be compressed to
2 bytes without compromising performance. We denote by
PPN the transmission period of PN, expressed in terms of
number of packets. For instance, if PPN = 5, the location
information is sent every five data packets. Using the position
and direction of an MN, the NC derives its trajectory and
activates (preallocated) cells on the BRs that are located along
the path of that MN. This ensures, in a preventive manner,
the seamless connectivity of the MN. Similarly, cells are
deactivated when the MN moves away from a certain BR.

Finally, in order to improve the communication reliability,
we introduce the backup allocation strategy (BUAS). It enables
the utilization of timeslots with temporarily no active cells,
such as when no MN is within the communication range of the
BR. BUAS is executed on each BR at the beginning of each
timeslot. If no active cells are available, the BR requests the
identifier of the nearest MN from the NC with a cell allocated
in that timeslot. Subsequently, the BR activates the cell for the
MN, enabling the reception of packets from that MN.

C. Conflict Management

The initial schedule, based on the position of MNs at
network bootstrap, may result in conflicts as the MNs start
moving. This could happen, for instance, when a node A

moves to a BR that is serving another node B using a cell
corresponding to the same timeslot as node A. Since the BR
cannot receive on two different frequencies, during the same
timeslot, a conflict occurs. Moreover, conflicts might also
occur on the initial schedule, as the algorithm presented in

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15739

Section IV-A aims at minimizing conflicts, however, it is not
conflict-free.

Upon detecting a conflict on a BR, the NC instructs the
BR to select a single MN (i.e., cell), among the conflicting
ones, for data reception, so that at least one transmission can
be correctly received. In our implementation the NC adopts
the Closest-First policy, i.e., it selects the MN that is located
closet to the BR. It has been shown in [14] that this policy
performs significantly better than other alternative ones, such
as FIFO or Random.

On the other hand, to resolve a conflict, the NC needs
to modify the schedule. Changes in the schedule, after the
initial schedule, are notified to the MNs via a dedicated
control message, namely, schedule update (SU). Specifically,
SU messages are generated by the NC and transmitted to the
BRs, and contain the list of (MN ID, new cell) pairs of the
subset of MNs that must update their cell allocation. Then,
BRs broadcast them to MNs using a dedicated timeslot and
channel offset. While the timeslot is the same for all the BRs,
different channel offsets are used, by different BRs, in order to
avoid collisions with neighboring BRs. Moreover, BRs situated
at a distance from each other are allowed to reuse the same
channel offset. The channel offset for SU transmission used by
each BR is assumed to be known by the MNs since network
bootstrap, and it remains fixed during the operational phase.

Since SU messages can get lost or corrupted, a schedule
change issued by the NC may not be received correctly by
one or more MNs, thus resulting in a schedule inconsistency.
In order to detect inconsistencies, the NC monitors the data
transmissions from MNs. If an MN does not transmit any data
packet for a consecutive number of times, it is assumed that
the MN has lost a previous SU and, hence, its schedule is
not aligned with the last version. In order to resynchronize
the schedule, the NC retransmits the SU message to the
MN. Throughout, this operation will be referred as a refresh

transmission.
The amount of information that can be transmitted on a

single SU message is limited, due to size of TSCH frames.
Consequently, it may not be possible to include all the
schedule changes in a single SU message. Hence, a limit is set
to the number of MNs that can be rescheduled, and notified
through a single SU, for each slotframe. To this aim, we define
a selection algorithm (SA) to select the MNs to reschedule
at the beginning of each slotframe. Then, the Rescheduling

Algorithm is invoked to resolve conflicts and compute the new
schedule. Finally, interested MNs are notified through the SU
message.

In the remainder of this section we first present the SA

in Section IV-D and, then, the Rescheduling Algorithm in
Section IV-E.

D. Selection Algorithm

The SA is executed by the NC at the beginning of every
slotframe to select the (subset of) MNs to reschedule or
refresh. Specifically, the NC detects the MNs that are involved
in a conflict by comparing information on MN positions with
the current schedule. Instead, it detects that an MN that is no

Fig. 2. Flowchart of the selection algorithm.

longer synchronized with the current schedule by monitoring
its transmissions over time. If no successful transmission is
performed by the MN for a number of TWAIT consecutive
slotframes, the MN is assumed to be de-synchronized and
marked for a refresh.

SA takes, as input, the following information: 1) current
schedule, currSchedule; 2) maximum number of updates that
can be included in an SU, NSU; 3) the slotframe length,
S; 4) coordinates of BRs, D; and 5) status of each MN
(e.g., position, allocated cell, and last packet successfully sent),
INFOMNs. The result produced by SA is the list of updates to
be included in the next SU message updatesNextSU.

SA considers three sets of MNs.
1) The PRIO set contains MNs that are both in conflict and

not transmitting for more than TWAIT slotframes—these
MNs should be considered for both a reschedule and a
refresh.

2) the LOST set includes MNs that have lost their synchro-
nization with the current schedule and need a refresh.

3) The CONF set includes the remaining MNs in conflict.
The overall workflow is depicted in Fig. 2. The algorithm

selects cells (i.e., MNs) with a strict priority among the
different sets. Specifically, it first considers the PRIO set,
as it includes MNs that are involved both in a conflict and
in a de-synchronization. Then, it considers the LOST set,
i.e., MNs marked for refresh. Finally, it considers the CONF

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15740 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

set, i.e., MNs involved in a conflict. The algorithm selects
MNs from the next set only if there is remaining space in the
SU. In case the remaining space in the SU is not sufficient,
the MNs of a set are selected on a given order, namely, a
random order for PRIO and LOST , and on a priority-based
order for CONF. For the sake of fairness, MNs in CONF are
prioritized based on the current number of conflicts in the same
timeslot. Specifically, the timeslot with the highest number of
MNs in conflict is selected first, and a single MN is randomly
selected. Then, the process is repeated, and the list of conflicts
is updated accordingly, until either the SU is full or there are
no more MNs in CONF.

Once all the MNs have been selected, the Rescheduling
Algorithm is invoked to compute the new allocation, in order
to minimize the number of conflicts in the new schedule.

E. Rescheduling Algorithm

The rescheduling algorithm takes a maximum distance
(MD) approach to reschedule the selected MNs. Specifically,
if the number of MNs in the network, M, is lower than the
number of timeslots available for data transmission in the
slotframe, each MN has a dedicated timeslot and conflicts
never occur. Under the assumption that M is larger than the
slotframe length, for each timeslot, there will be two or more
cells allocated at different channel offsets. Hence, reallocating
a cell to resolve a conflict creates a new potential conflict.
The basic idea of the MD approach is to select the new cell
in such a way to minimize the probability that the conflict
will actually occur in the future. To this end, the new cell is
allocated in the timeslot of the MN whose physical distance,
from the MN to reschedule, is maximum.

The MD algorithm is detailed in Algorithm 1. It receives
the following input parameters: 1) number of MNs, M; 2) slot-
frame length, S; 3) current cell allocation, currSchedule; 4)
list of cells to reschedule, cellsToReschedule; and 5) position
of each MN POSMNs. The algorithm computes the new
timeslot and channel offset for all the MNs to reschedule in
rescheduledCells.

Initially, the algorithm initializes the posTs vector with the
position of the MNs that are not involved in a conflict (from
line 1 to 7). This vector is then used to compute the physical
distance between the MN to reschedule and all the other MNs
without conflicts, in order to select the cell of the MN at the
MD.

After initializing the posTs vector, the algorithm iterates
over the cells to reallocate (lines 9–23). For each cell, the
position of corresponding MN is derived (line 11). Then, for
each timeslot s in the slotframe, the position of the closest
MN pc with a cell allocated in s is computed (line 14),
and the distance dists between the MN to reschedule and
pc is calculated (line 15). At each iteration, the algorithm
reschedules MN in a new cell; specifically, the new cell
is allocated in the timeslot corresponding to the MD dists
(line 17). After rescheduling, the position of the node is added
to posTs, so that its position will be taken into account in the
next iterations.

Algorithm 1: MD Rescheduling Algorithm

Input:
M = number of MNs
S = slotframe length
currSchedule = current list of allocated cells
cellsToReschedule = cells to be rescheduled
POSMNs = list of positions of the MNs

Output:
rescheduledCells = list of the cells to be inserted

in an SU

1 posTs ← {posTs0:[], . . . , posTsS−1:[]}
2 for c in currSchedule not in cellsToReschedule do

3 Find MN that has cell c allocated
4 pMN ← position of the MN from POSMNs

5 ts ← timeslot of cell c

6 Insert pMN in posTsts list
7 end

8

9 for c in cellsToReschedule then

10 Find MN that has cell c allocated
11 pMN ← position of the MN from POSMNs

12 dist ← {dist0 : ∞, . . . , distS−1 : ∞}

13 for s = 0 to S − 1 do

14 pc ← closest element of posTss to pMN

15 dists ← ‖pc − pMN‖

16 end

17 ts ← element of dist with maximum value
18 Insert pMN in posTsts list
19 if ts �= timeslot of c then

20 cres ← new cell allocated to MN in timeslot ts

21 Insert cres in rescheduledCells

22 end

23 end

It is worth to mention that the timeslot selected by the MD
algorithm may not be different from the current one. In this
case, there is no rescheduling and the algorithm proceeds with
the next cell to reallocate. Otherwise, the algorithm reallocates
the cell in the selected timeslot, at a random channel offset
(lines 19–22).

In order to assess the performance of MD we run a set of
simulations to compare it against the MCS algorithm used to
derive the initial schedule (see Section IV-A). Since the MCS
produces an optimal solution that minimizes conflicts between
MNs, the comparison can help to measure how the heuristic
solution produced by MD is far from the optimal solution.
In particular, we are interested in comparing the fraction of
conflicts in the schedules generated by the two algorithms and
their average computation time.

It is worth to highlight that MD has been conceived to
reschedule conflicting MNs, typically, a subset of all the MNs
in the network, while MCS is used in Section IV-A to produce
an initial schedule and, hence, it considers all the MNs. In

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15741

Fig. 3. Comparison between MD and MCS in terms of fraction of MNs in conflict after the execution of the algorithm and average computation time.
(a) Fraction of MNs in conflict. (b) Average computation time.

order to make the comparison fair, in our evaluation we
assumed that all the MNs are marked for rescheduling and,
hence, the two algorithms consider the same number of MNs.

The two algorithms are implemented in an ad-hoc C++

simulator. MCS is implemented using the Google OR-TOOLS
library.1 In our simulations, we consider different scenar-
ios with an increasing number of MNs (from 10 to 500),
randomly deployed in a square area of 400 m ×400 m.
In order to ensure statistically sound results, each scenario
was repeated 100 times. For each scenario, an initial cell
allocation is generated randomly and, then, both MCS and
MD are executed to calculate a global schedule. For both
algorithms, we measure the number of conflicts in the gen-
erated schedule and the average computation time taken to
generate it.

Fig. 3 shows the percentage of conflicts for the two algo-
rithms with different numbers of MNs. We can see that MCS
typically generates a conflict-free schedule, even when the
number of MNs is very large, while MD generates a subopti-
mal schedule with a larger fraction of conflicts. However, the
number of conflicts generated by MD is negligible up to 200
MNs and, even with 500 MNs, it is around 5%, i.e., a very
limited fraction.

Fig. 3 shows the average computation time of the two
algorithms. Even when the number of MNs is very large
(e.g., 500), the MD algorithm is able to generate a complete
schedule in approximately 70 ms. On the other side, the
computation time required by MCS is much larger and ranges
from 300 ms (with ten MNs) to tens of seconds (with
300 MNs). A so large computation time is not acceptable
for on-line rescheduling that occurs very frequently (i.e., at
each slotframe). Instead, the very low computation time of
the MC-MS algorithm, coupled with the limited number
of conflicts, makes it a very good compromise for our
purposes.

1https://developers.google.com/optimization

TABLE I
LIST OF INPUTS OF THE PPN MODEL

V. ANALYTICAL METHODOLOGY TO SET PPN

In order to implement the mobility and conflict management
functionalities included in LASA-R, the NC requires to receive
continuous updates on the position of MNs. To this aim, each
MN periodically communicates its position through the PN
field included in data packets. We denote by PPN the sending
interval of the PNs.

The selection of PPN is based on a tradeoff between
accuracy and resource consumption. Specifically, a low PPN

value guarantees a high accuracy in the position estimation,
which can ensure a better performance. On the other hand,
sending frequent notifications increases the overhead, in terms
of bandwidth and, above all, energy consumption, since the
MN needs to collect information about its position more
frequently.

In this section, we present an analytical methodology to
compute the appropriate PPN value. We assume that MNs
move within the deployment area using the random pathways

mobility model. In this model, MNs move along a line toward
a uniformly distributed point in the area. Once they reach
that point, they choose another random point and move in a
straight line toward it, repeating this process. We selected this
mobility pattern as it represents a challenging scenario with
unpredictable and nondeterministic movements.

As a preliminary step, we define an analytical model
to derive, mathematically, the packet delivery ratio (PDR)
achieved by an MN, depending on operating parameters.
PDR is defined as the ratio between the number of packets

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15742 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

correctly received at destination and the total number of
packets generated by an MN. Table I summarizes the input
parameters of our model. The resulting PDR depends on the
distance DPN traveled by an MN between two subsequent PN
transmissions. In turn, DPN depends on the MN speed, data
transmission rate r, and PPN, as follows:

DPN(PPN) = v ·
1

r
· PPN. (1)

In addition, the PDR also depends on the number of MNs
in conflict, as well as on the impact of the BUAS (described
in Section IV-B). In order to master the complexity of the
overall system, we consider the different aspects of the system
separately, and derive an analytical formulation for each of
them. Then, we will integrate the different parts into a final
closed formula.

Initially, we focus on the communication success probability

of a single MN, i.e., the probability of an MN to communicate
with the associated BR in the period between two consecutive
PN transmissions. We assume that the communication success
probability only depends from the positions of the MN and the
BR in the area of deployment at the time of the transmission,
and is known for each point in the area. The communication
success probability decreases as the DPN increases, since:
1) the MN may move away from the currently associated
BR and 2) the NC cannot trigger the activation of the cell
associated with the MN on a different BR until the next PN
transmission.

To derive our model, we are interested in the average

communication success probability, i.e., the communication
success probability averaged over the whole deployment area
A, which is provided by the following lemma.

Lemma 1: The average communication success probability
of a single MN EA(DPN) is given by

EA(DPN) =
1

‖A‖

∫

p∈A

Ec(p, DPN) (2)

where ‖A‖ is the area of A, and Ec(p, DPN) is the average
communication success probability restricted to the circular
area centered in a generic point p with radius DPN when only
the BR associated with p is active.

Proof: Fig. 4 shows a graphical proof of the lemma.
We denote by p the point in which an MN transmits a
PN. Since the mobility pattern of the MN is random, the
point p is uniformly distributed in A. Until the next PN
transmission, the MN can be anywhere in a radius DPN from p,
which is represented in red in Fig. 4. Hence, the average
communication probability of an MN with its associated BR
(represented in blue) is given by the mean of the function
Ec(p, DPN) over A.

Now, we estimate of the number of MNs in conflict. To this
end, we assume that MNs and BRs are uniformly distributed
within the deployment area, and that cells are allocated to MNs
with uniform distribution within the slotframe. We also assume
that the rescheduling algorithm removes, at each execution, a
number of conflicts equal to NSU, i.e., the maximum number
of notifications that can be accommodate in an SU. Under
these assumptions, Lemma 2 the average number of MNs in
conflict.

Fig. 4. Impact of DPN on the PDR of an MN.

Lemma 2: The average number of MNs in conflict Mc in
the whole network is given by

Mc = max

(

0, B · S ·

M−1
∑

x=1

x · pn(x + 1) − NSU

)

. (3)

Proof: Initially, we consider a single BR and one timeslot.
For each MN, the probability of: 1) being in the range of that
BR and 2) having a cell allocated in that timeslot is 1/(B · S).
Hence, for x MNs, the probability pn(x) to be in the range
of the same BR, with a cell allocated in the same timeslot, is
given by the following binomial expression:

pn(x) =

(

M

x

)(

1

B · S

)x(

1 −
1

B · S

)M−x

. (4)

Now, we derive the number of MNs in conflict (or conflicts,
for short). Since each BR can serve at most one MNs per
timeslot, the number of conflicts, for each timeslot, is equal
to the number of MNs that cannot be served by the BR. For
instance, if there are x + 1 MNs in the range of the same BR
that are using the same timeslot, there will be x conflicts in
that timeslot. Hence, the probability pc(x) of having x conflicts
is pc(x) = pn(x + 1). Consequently, the average number of
conflicts, for a certain timeslot, is the expectation of pc

Mc,BR = E
[

pc(x)
]

=

M−1
∑

x=1

x · pn(x + 1). (5)

When considering the whole network, we need to sum up
the number of conflicts for each timeslot in the slotframe
and for each BR in the deployment area. Hence, the average
number of MNs in conflicts in the network is

Mc,NET = B · S · Mc,BR = B · S ·

M−1
∑

x=1

x · pn(x + 1). (6)

Finally, if we consider the impact of the rescheduling
algorithm, which removes NSU conflicts at each execution, the

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15743

average number of conflicts in the network can be expressed
as follows:

Mc = max
(

0, Mc,NET − NSU
)

. (7)

Finally, we consider the impact of the BUAS mechanism.
We recall that, for each timeslot in the slotframe, a BR can be
involved in the BUAS if it has no MN in its range with a cell
allocated in that timeslot. To take into account the impact of
the BUAS mechanism, we leverage the following two lemmas,
and derive: 1) the expected number of BRs, involved in the
BUAS, that can receive packets from an MN (Lemma 3) and
2) the average communication probability of the MN with any
BR involved in the BUAS (Lemma 4). The assumptions are
the same as above.

Lemma 3: The average number of BRs, involved in the
BUAS, that may receive packets from an MN, is given by

Bb =
B · pn(0)

M/S
. (8)

Proof: By definition, for any timeslot t, the probability
that a BR is involved in the BUAS in timeslot t is equal to
the probability that no MN with a cell allocated in t is in its
range, i.e., pn(0), according to Lemma 2. Hence, the average
number of BRs involved in the BUAS in timeslot t is then
given by Bb,t = B · pn(0).

Since cells allocated to MNs are uniformly distributed in the
slotframe, the average number of MNs allocated in the same
timeslot is Mt = M/S. Finally, as MNs and BRs are uniformly
distributed in the deployment area, each MN is listened by
Bb,t/Mt BRs, from which the result follows.

Lemma 4: The average communication probability pb

between a BR involved in the BUAS and an MN is given by

pb =
1

B

B−1
∑

i=0

pb,i (9)

where pb,i is the average communication probability with the
ith BR over all the points of the deployment area.

Proof: Since MNs and BRs are uniformly distributed in
the deployment area, and each BR can be involved in the
BUAS, the average communication probability pb between the
MN and any BR involved in the BUAS can be computed as
the average communication probability pb,i over all the BRs
in the network. Hence, the result follows.

Based on Lemmas 2–4, we are now in the position to derive
the PDR.

Theorem 1: The PDR experienced by an MN is given by

PDR(PPN) = PDRc + PDRnc(PPN) (10)

where:
1) PDRc = (Mc/M) · [1 − (1 − pb)

Bb];
2) [t]PDRnc(PPN) = [1 − (Mc/M)] · [1 − (1 − pb)

Bb ·

(1 − Ea(DPN(PPN)))].
Proof: We define the fraction of MNs in conflict, with

respect to the total number of MNs, as Mc,ratio = Mc/M, where
Mc is the average number of MNs in conflict in the network,
given by Lemma 2.

An MN in conflict can communicate with only the BUAS
BRs. Leveraging Lemmas 3 and 4, we can compute the
communication success probability of the MN with at least
one BUAS BR as 1 − (1 − pb)

Bb . Hence, the contribution to
the overall PDR, due to the MNs in conflict, is given by the
expression at point 1) above.

Similarly, we can compute the contribution to the PDR of
the MNs that are not in conflict. The fraction of MNs that are
not in conflict is 1 − Mc,ratio. They communicate with the BR
in their communication range with a probability depending on
the DPN, according to Lemma 2. Moreover, they communicate
with the BUAS BRs. Using (1), the contribution of the MNs
that are not in conflict is given by the expression at point 2)
above.

Theorem 1 provides a closed formula of the PDR, as a
function of PPN. Hence, it allows us to compute the “optimal”
notification period P∗

PN, i.e., the largest PPN value that ensures
a PDR above a predefined threshold P∗. To this end, the
following inequality must hold:

PDR
(

P∗
PN

)

≥ P∗. (11)

Consequently, P∗
PN can be derived from (11) as follows:

P∗
PN =

⌊

PDR−1(P∗
)

⌋

(12)

where PDR−1 can be computed, numerically, using the bisec-
tion method.

As a final remark, it is worthwhile highlighting that the
target PDR (i.e., P∗) might be unfeasible to reach in some
cases, i.e., no value of PPN satisfies (11). For instance, this may
happen in a network with a high number of MNs, where the
number of conflicts is very large. In such a case, our method
selects P∗

PN = 1 to guarantee the highest PDR possible.

A. Model Validation

In order to validate the analytical methodology presented
above, we ran a set of simulations to compare the P∗

PN
derived analytically with the optimal PPN value obtained from
a set of simulations. To this aim, we exploited the Mobile-

6TiSCH simulator [20]. More details about the simulator and
its settings will be provided in Section VI.

For each considered scenario, we derived the PPN through
an exhaustive search, i.e., we ran different simulation exper-
iments with varying PPN values and, then, we selected the
largest PPN that results in a PDR, i.e., percentage of pack-
ets correctly delivered, above P∗ = 99%. The value P∗

PN,
instead, was derived analytically, according to the formulas
in Section V, using a tolerance of 0.5 mm for the bisection
method.

We considered different scenarios, characterized by different
numbers of MNs (from 10 to 500) and speed (2 and 5 m/s).
The transmission rate was set to r = 2 pkt/s, resulting in a
slotframe length S = 33, according the procedure presented in
Section IV-A. The number of BRs was B = 40, deployed in
a square area of 400 m×400 m.

Fig. 5 shows the results of the comparison. We observe
that the analytical model is able to estimate the optimal PPN

with a good accuracy. When the number of MNs is very large

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15744 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

(a) (b)

Fig. 5. Comparison between analytical P∗
PN and optimal PPN derived by simulation. (a) υ = 2 m/s. (b) υ = 5 m/s.

Fig. 6. PDR obtained with analytical P∗
PN and optimal PPN derived by

simulation (v = 2 m/s).

(i.e., 350 or more) both the analytical model and simulation
provide the same result, i.e., P∗

PN = 1. This is because,
with such a large number of MNs, the number of conflicts is
higher than the maximum number of notifications that can be
accommodated in an SU message. Hence, it is necessary to
provide the MN position at each data transmission.

The discrepancy between the analytical and simulation
results, when the number of MNs is lower than 200, is due to
the fact that, for the sake of tractability, the analytical model
does not capture all the aspects of the real system, such as
the impact of the refresh procedure (see Section IV-C). Also,
it is worth mentioning that, the analytical method takes a
conservative approach and tends to underestimates the P∗

PN,
which guarantees a slightly larger PDR, as shown in Fig. 6.

The results presented above confirm the validity of our
analytical approach to estimate the optimal PPN. Looking at
the trend of the curves in Fig. 5, obtained with v = 2 m/s
and v = 5 m/s, we can observe that the P∗

PN value is strongly
influenced by the speed of the MNs. When an MN moves
at higher a speed (e.g., 5 m/s) its position changes more

frequently and hence, position information must be sent with
a lower PPN.

VI. SIMULATION SETUP

In this section, we present the simulation setup used for the
performance evaluation of LASA-R. For our simulation anal-
ysis, we rely on the Mobile6TiSCH simulator2 [20], which is
based on OMNeT++.3 It implements the SHMG architecture
and supports various mobility patterns for MNs. Moreover,
Mobile6TiSCH implements a realistic channel model to simu-
late the impact of the wireless channel on the communication
between MNs and BRs, including effects, such as multipath
fading and interference.

In order to compare the results obtained with LASA-R
with existing scheduling algorithms, we have implemented in
Mobile6TiSCH the A3 [16] and TESLA [17] algorithms.

In our experiments, we consider a deployment area of 400 m
× 400 m, in which 40 BRs are deployed according to the
policy defined in [15]. The number of MNs in the network
ranges from 10 to 500. We consider two mobility patterns for
the MNs, namely, 1) random waypoints (referred as random

in the rest of the section), previously presented in Section V
and 2) linear, in which MNs are programmed to always move
along horizontal or vertical lines within the deployment area.
We also consider two different speeds for MNs, namely, 2
and 5 m/s. We assume that all the MNs in the network have
the same mobility pattern and speed. Regarding the traffic
pattern, we assume a constant bitrate traffic from the MNs to
the NC, with a packet generation rate r set to 2 pkts/s for
each traffic source. The slotframe length S is 33, which is set
according to the approach described in Section IV-A based
on the packet generation rate. It is worth to highlight that,
since one timeslot is reserved for SU transmissions, only 32
timeslots are available for data communication.

In our simulations, we assumed that MNs are able to retrieve
their actual positions with exact precision. Nonetheless, we

2https://github.com/marcopettorali/Mobile6TiSCH
3https://omnetpp.org/

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15745

conducted experiments where a certain error was introduced
in the position readings.

The maximum number of reschedule/refresh notifications
that can be included in an SU NSU is set to 40. This value is
selected considering that the total number of cells available for
data communication in each 2-D sloframe is equal to S · Nc,
where Nc is the number of available channels (at most, 16).
Hence, every cell can be identified by a 18-bit identifier, where
the most significant 9-bits identify the specific cell among the
cell in the 2-D slotframe, while the least significant 9-bits
identify the MN using that cell for data communication to
the NC. Assuming a maximum payload size of 90 bytes, the
maximum number of cells that can be accommodated in an
SU is equal to �(90 · 8/18)� = 40.

In our experiments, we measured the PDR, defined as the
ratio between the number of packets correctly received by the
NC and the total number of packets generated by MNs.

The PDR is a key performance indicator in IIoT envi-
ronments, as industrial applications typically require high
reliability and/or low and predictable latency. In our simulation
analysis, we do not consider latency as, in LASA-R, each MN
is assigned a dedicated cell for communication with the BR
(and conflicts are detected and resolved at run time), while
BRs are assumed to be connected with the NC though a high-
capacity and reliable wired network (e.g., Ethernet). Hence,
the latency experienced by data packets is deterministic, and
its upper bound can be easily computed analytically.

To ensure statistically sound results, we run ten indepen-
dent replicas of each simulation experiment, each of 1000-s
duration. The results presented below show the confidence
intervals, calculated with a 95% confidence level.

VII. PERFORMANCE EVALUATION

In this section, we present the results of the performance
evaluation of LASA-R. Specifically, we analyze the PDR
provided by the proposed algorithm in a number of scenarios
characterized by different number of MNs, different mobility
pattern, and different speed for MNs.

To compare LASA-R with other existing solutions, in our
analysis we also consider the LASA algorithm proposed
in [14]. This allows to understand the impact of reschedul-
ing and refreshing on the PDR achieved by MNs. Since
the performance of both protocols strongly depends on the
frequency of PN notifications (i.e., the PPN value), in our
evaluation we assume that, for LASA, PPN is set to 1, which
ensures the best performance. Instead, in LASA-R PPN is
configured according to the procedure presented in Section V.

For comparison, we also considered two autonomous
scheduling algorithms, namely, A3 [16] and TESLA [17].
These algorithms are typically used in scenarios with station-
ary nodes and multihop communication, where the traffic load
on each node may vary over time. Hence, we adapted them to
the specific scenario considered in this article.

A3 computes the number of cells to be allocated for
each node and delegates the allocation to a proper schedul-
ing algorithm. In our setup, we configured A3 to delegate
scheduling to ALICE [21], as it is the most suitable option

for our scenario. ALICE allocates a dedicated cell, for each
upstream link, which position in the slotframe is obtained
through a hash function taking, as input parameters, the
addresses of the transmitter and receiver, and the absolute
slotframe number (ASFN), i.e., the number of slotframes
elapsed since the network bootstrap. In particular, BRs are
configured with one reception cell for each MN in their
communication range, while MNs are assigned with one
transmission cell for communication with their closest BR. In
our simulations, packet retransmissions are disabled since the
considered scenarios involves real-time communication, and
old data becomes stale at the next transmission opportunity.
The packet generation rate for the MNs is then constant, and
equal to 2 pkts/s. Consequently, the Traffic Load Estimation

mechanism is disabled on both BRs and MNs, as the traffic
load is predictable and the Resource Allocation algorithm is
never triggered. As a result, for each MN-BR pair, only one
cell is allocated for upstream communication. Control packets,
such as DIO and DAO packets, are assumed to always be
transmitted successfully.

Unlike A3, TESLA is built on top of the Orchestra (receiver
based) scheduling algorithm [22]. Accordingly, each node
allocates one cell for reception at the beginning of the
slotframe. Nodes periodically estimate the inward traffic rate
and adjust the slotframe size, reducing it when the estimated
traffic load is high, and increasing it otherwise. In this work,
we configured TESLA to allocate reception cells on BRs only,
as the considered traffic scenario is upstream only. As above,
MNs allocate one transmission cell for communicating with
their closest BR only, and packet retransmissions are disabled.
Finally, we assume that control packets are always transmitted
successfully and consider the parameter values proposed in the
original paper [17].

As an additional term of comparison, in our analysis we
also consider an ideal (but unfeasible) scheduling algorithm
assuming that: 1) the NC knows, in real time, the precise
position of each MN; 2) the new schedule computed by the
NC is immediately installed on each MN and BR; and 3) there
are no limits on the number of notifications that can be
accommodated in a single SU message. Throughout, this ideal
algorithm will be referred to as oracle.

Below, we compare LASA-R with the existing algorithms
presented above (Section VII-A). Then, we evaluate the indi-
vidual performance of MNs by measuring the PDR achieved
by each single MN (Section VII-B). Finally, we investigate
the impact of the TWAIT parameter (Section VII-C) and the
inaccuracy of the localization system (Section VII-D).

A. Comparison With Existing Algorithms

Fig. 7 shows the PDR obtained with the considered algo-
rithms, in four scenarios characterized by different mobility
pattern (linear and random) and speed of MNs (v = 2 m/s and
v = 5 m/s). The results obtained with LASA-R and LASA
show that, as expected, in all the considered scenarios the PDR
is close to 100% when the number of MNs less or equal to 33.
This is because, in these conditions, each MN has a dedicated
timeslot in the slotframe and, hence, there are no conflicts.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15746 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

(a) (b)

(c) (d)

Fig. 7. Comparison between LASA, LASA-R and Oracle, in terms of PDR. (a) Random mobility, υ = 2 m/s. (b) Random mobility, υ = 5 m/s. (c) Linear
mobility, υ = 2 m/s. (d) Linear mobility, υ = 5 m/s.

As the number of MNs increases, the performance of LASA
quickly degrades. In particular, in the scenario with v = 2 m/s
and random mobility [Fig. 7(a)], LASA exhibits a PDR below
90% when the number of MNs is greater than 400. Instead,
LASA-R maintains a PDR above 97% even when the number
of MNs is 500. The difference in performance between LASA
and LASA-R is even more apparent when considering a higher
speed (v = 5 m/s). This very significant improvement is due
to the rescheduling and refreshing mechanisms, implemented
in LASA-R, that are very effective in attenuating the impact
of the conflicts, thus resulting in a higher PDR.

Instead, the performance of A3 and TESLA is significantly
lower than that of LASA-R and LASA. Specifically, A3
lacks any mechanism to handle conflicts and, hence, when a
conflict arises, a random cell is chosen for receiving a packet.
This random-based strategy for handling conflicts reduces
significantly the PDR, as also highlighted in [14].

TESLA provides the lowest performance among all the
considered algorithms, and a rapid drop can be observed
in the PDR, even with a limited number of MNs. This is
due to the underlying policy used by Orchestra to allocate

cells. Since one cell is used by BRs to serve all the MNs
in their range, a high number of collisions is experienced
by MNs.

The results in Fig. 7(a) also show that, in all the considered
scenarios, the performance of LASA-R is very close to that
of the ideal oracle. This confirms also that the SA used by
LASA-R is effective in selecting the best subset of MNs to be
rescheduled and refreshed that can fit in a single SU.

In order to better emphasize the effectiveness of the conflict
resolution mechanism of LASA-R, we measured the average
fraction of MNs involved in a conflict or whose last transmis-
sion was not received by the BR, for each slotframe. For the
sake of space, we only show the results for the scenario with
random mobility and v = 5 m/s (the trend is similar for all
the other scenarios). Fig. 8 reports the average percentage of
MNs that lost their last data transmission due to a conflict,
i.e., MNs that are in a conflict and cannot communicate. The
graph shows that, as the number of MNs increases, the average
fraction of MNs involved in a conflict increases, as expected.
However, while with LASA the fraction grows up to almost
9%, with LASA-R it remains around 2% even with 500 MNs.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15747

Fig. 8. Percentage of MNs that lost the last data transmission due to a
conflict.

Focusing on the impact of the mobility patterns, from the
analysis of the Fig. 7, we can observe that the performance
gap between LASA-R and LASA is more apparent when the
mobility pattern is random. This can be explained as follows.
While an MN is involved in a conflict, it cannot communicate
and, consequently, it cannot notify its current position to the
NC. During this period, the MN can change its position, but
the activation/deactivation of cells cannot be performed by
BRs. This problem occurs more frequently with LASA, since it
does not include a conflict resolution mechanism. In addition,
it is exacerbated by random mobility, as MNs can move at
larger distances, with respect to the case of linear mobility (a
similar effect also occurs when the speed increases). Thanks
to the conflict resolution mechanism, this effect is much less
relevant in LASA-R and, hence, the impact on performance
of mobility pattern and speed is quite limited.

B. Individual Performance of MNs

In order to analyze the individual performance of MNs and
assess the fairness of LASA-R, we compare the PDR achieved
by each single MN in this section. To this aim, we report the
percentage of time (in a simulation experiment) during which
an MN experienced a certain PDR, namely, PDR higher than
95%, between 75% and 95%, between 50% and 75%, and
lower than 50%.

Ideally, all the MNs should experience the same individual
PDR, corresponding to the global PDR. Fig. 9 shows the PDR
experienced in practice by each MN with LASA-R. For the
sake of space we consider a single experiment with 400 MNs
moving with a speed v = 5 m/s and random mobility (we
assume TWAIT = 1). For the sake of readability, the identifiers
of MNs are rearranged, based on the experienced PDR, from
the highest to the lowest.

The results show that there is a very low fraction of time
during which the individual PDR of any MN is below 75%.
Instead, for all the MNs, the PDR is greater than 95% for at
least 80% of the time. And, if we compare the results of single
MNs, we can conclude that LASA-R also ensures a good level
of fairness.

For comparison, Fig. 10 shows the corresponding results
obtained with LASA. Now, any MN experiences a PDR below

Fig. 9. Individual PDR with LASA-R (400 MNs, randommobility, v =

5 m/s).

Fig. 10. Individual PDR with LASA (400 MNs, random mobility, v = 5 m/s).

50% for at least 10% of the time. Also, the gap between the
best and worst performance is significantly larger than before.
This comparison confirms the effectiveness of the LASA-
R algorithm, which ensures high communication reliability,
fairness, and service continuity.

C. Impact of the TWAIT Parameter

In order to assess the impact of the TWAIT parameter,
we performed an additional set of simulations with different
values, namely, 1, 4, 8, 16, and 32. For the sake of space,
we only show the scenario with random mobility and v =

5 m/s, which is the most challenging scenario for LASA-R
(the behavior is similar in the other scenarios).

Fig. 11 reports the PDR for different values of TWAIT , with
an increasing number of MNs. The impact of TWAIT on the
PDR is small. Only a slight decrease in the PDR can be
observed, when a large value of TWAIT is adopted, e.g., 16
and 32. This is due to the fact that, even if a large value
of TWAIT is set, only those MNs that lost the SU packet
are affected. This is a small fraction of the total number of
MNs, e.g., about 1 MN per slotframe in the scenario with
400 MNs.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

15748 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Fig. 11. Impact of TWAIT in LASA-R (random mobility, v =5 m/s).

Even though the impact of TWAIT is limited, these results
suggest that the TWAIT parameter should be set to 1, in order
to obtain a very high PDR for all the MNs. A low TWAIT

value forces the SA to refresh the MNs that lost the SU packet
immediately, thus ensuring a timely recover for MNs that have
lost their synchronization.

D. Impact of the Localization System

Finally, we investigate the impact of the localization system,
and its inaccuracy in determining the MN position, on the
performance achieved by MNs. To this end, we considered
three different indoor positioning systems, namely, GPS,
UWB, and RSSI-based triangulation. Based on previous mea-
surement studies, the average localization error is roughly
10 m for GPS [23], 5 m for RSSI [24], and 1 m for
UWB [25]. Hence, we carried out additional experiments
in which the position of MNs was displaced by a distance
corresponding to the considered average error (i.e., 1, 5,
and 10 m) in a randomly selected direction, with uniform
distribution. The results obtained are shown in Fig. 12. As
expected, the performance degrades as the average localization
error increases. However, when the average error is limited
(e.g., 1–2 m), the performance is very close to the ideal case,
also with a very large number of MNs. And, even with an
average localization error of 10 m, the PDR still remains above
90% with a number of MNs up to 250.

VIII. CONCLUSION AND FUTURE WORK

In this article, we have presented the LASA-R for managing
mobility in Industrial IoT networks based on the SHMG
framework. LASA-R exploits the position of MNs to optimize
the allocation of communication resources, while guaranteeing
the continuity of service. In addition, LASA-R includes a
conflict resolution mechanism that helps in detecting and
resolving conflicts, at run time. Finally, LASA-R includes
a mathematical framework to derive (offline) the optimal
frequency for notifying the position of MNs, thus reaching the
best compromise between accuracy and resource consumption.

LASA-R has been evaluated through simulations. Our
results show that LASA-R is able to provide continuity of
service with a reliability very close to 100%, even when the

Fig. 12. Impact of inaccuracy in the MN localization (random mobility,
v = 5 m/s).

number of MNs is very large. This is due to the efficient allo-
cation policy and the conflict resolution mechanism. LASA-R
also guarantees a low and predictable latency, since each MN
uses a dedicated cell for communication to the BR, and BRs
are assumed to be connected to the NC through a high-capacity
and reliable wired network. Hence, LASA-R is very suitable to
Industrial IoT use cases, where applications typically require
service continuity, high reliability, and low latency.

In LASA-R, the position of each MN is periodically notified
by the MN itself. As a future, we plan to derive a predictive
mobility model to forecast the position of the MNs, to further
reduce the number of updates exchanged between MNs and
the NC and further improve the accuracy of the scheduling
algorithm. Additionally, we aspire to enhance conflict man-
agement by leveraging available link quality information for
each BR and all points within the deployment area.

REFERENCES

[1] P. Thubert, “An architecture for IPv6 over the time-slotted channel
hopping mode of IEEE 802.15.4 (6TiSCH),” Internet Eng. Task Force,
RFC 9030, May 2021.

[2] IEEE Standard for Low-Rate Wireless Networks, Standard 802.15.4-
2020, (Revision of IEEE Std 802.15.4-2015), 2020.

[3] Z. Ming and M. Xu, “NBA: A name-based approach to device mobility
in Industrial IoT networks,” Comput. Netw., vol. 191, May 2021,
Art. no. 107973.

[4] J. Haxhibeqiri, A. Karaağaç, I. Moerman, and J. Hoebeke, “Seamless
roaming and guaranteed communication using a synchronized single-
hop multi-gateway 802.15.4e TSCH network,” Ad Hoc Netw., vol. 86,
pp. 1–14, Apr. 2019.

[5] H. Farag, P. Österberg, M. Gidlund, and S. Han, “RMA-RP: A reliable
mobility-aware routing protocol for Industrial IoT networks,” in Proc.
IEEE Global Conf. Internet Things (GCIoT), 2019, pp. 1–6.

[6] O. Tavallaie, J. Taheri, and A. Y. Zomaya, “Design and optimization of
traffic-aware TSCH scheduling for mobile 6TiSCH networks,” in Proc.
Int. Conf. Internet Things Design Implement., 2021, pp. 234–246.

[7] M.-J. Kim and S.-H. Chung, “Efficient route management method for
mobile nodes in 6TiSCH network,” Sensors, vol. 21, no. 9, p. 3074,
2021.

[8] W. Jerbi, O. Cheickhrouhou, A. Guermazi, and H. Trabelsi, “MSU-
TSCH: A mobile scheduling updated algorithm for TSCH in the Internet
of Things,” IEEE Trans. Ind. Informat., vol. 19, no. 7, pp. 7978–7985,
Jul. 2023.

[9] O. Nielsen, L. K. Schnügger, C. Orfanidis, and X. Fafoutis, “Mobility-
focused joining in TSCH networks,” in Proc. IEEE 47th Conf. Local
Comput. Netw. (LCN), 2022, pp. 271–274.

[10] Y. Al-Nidawi and A. H. Kemp, “Mobility aware framework for
Timeslotted channel hopping IEEE 802.15.4e sensor networks,” IEEE
Sensors J., vol. 15, no. 12, pp. 7112–7125, Dec. 2015.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

PETTORALI et al.: LASA-R: LOCATION-AWARE SCHEDULING ALGORITHM WITH RESCHEDULING 15749

[11] H. Kim, H.-S. Kim, and S. Bahk, “MobiRPL: Adaptive, robust,
and RSSI-based mobile routing in low power and lossy networks,”
J. Commun. Netw., vol. 24, no. 3, pp. 365–383, Jun. 2022.

[12] A. Vaezian and Y. Darmani, “MSE-RPL: Mobility support enhance-
ment in RPL for IoT mobile applications,” IEEE Access, vol. 10,
pp. 80816–80832, 2022.

[13] A. Mohammadsalehi, B. Safaei, A. M. H. Monazzah, L. Bauer,
J. Henkel, and A. Ejlali, “ARMOR: A reliable and mobility-aware RPL
for mobile Internet of Things infrastructures,” IEEE Internet Things J.,
vol. 9, no. 2, pp. 1503–1516, Jan. 2022.

[14] M. Pettorali, F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, “LASA:
Location-aware scheduling algorithm in Industrial IoT networks with
mobile nodes,” in Proc. IEEE 24th Int. Symp. World Wireless, Mobile
Multimedia Netw. (WoWMoM), Boston, MA, USA, 2023, pp. 185–194.

[15] M. Pettorali, F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, “Mobility
management in industrial IoT environments,” in Proc. IEEE 23rd Int.
Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM), 2022,
pp. 271–280.

[16] S. Kim, H.-S. Kim, and C.-K. Kim, “A3: Adaptive autonomous alloca-
tion of TSCH slots,” in Proc. 20th Int. Conf. Inf. Process. Sensor Netw.
(CPS), 2021, pp. 299–314.

[17] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-aware
elastic slotframe adjustment in TSCH networks,” IEEE Access, vol. 7,
pp. 130468–130483, 2019.

[18] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH operation Sublayer
(6top) protocol (6P),” Internet Eng. Task Force, RFC 8480, Nov. 2018.

[19] R. Alexander et al., “RPL: IPv6 routing protocol for low-power and
lossy networks,” Internet Eng. Task Force, RFC 6550, Mar. 2012.

[20] M. Pettorali, F. Righetti, and C. Vallati, “Mobile6TiSCH: A simulator
for 6TiSCH-based Industrial IoT networks with mobile nodes,” in Proc.
18th Int. Conf. Mobility, Sens. Netw. (MSN), 2022, pp. 614–618.

[21] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous link-based cell
scheduling for TSCH,” in Proc. 18th Int. Conf. Inf. Process. Sensor
Netw., 2019, pp. 121–132.

[22] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in
Proc. 13th ACM Conf. Embed. Netw. Sens. Syst., 2015, pp. 337–350.

[23] M. B. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. L. Christensen,
and K. Grønbæk, “Indoor positioning using GPS revisited,” in Proc. Int.
Conf. Pervas. Comput., Berlin, Germany, 2010, pp. 38–56.

[24] E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis
of RSSI-based indoor localization with IEEE 802.15.4,” in Proc. Eur.
Wireless Conf. (EW), 2010, pp. 71–77.

[25] A. Poulose, O. S. Eyobu, M. Kim, and D. S. Han, “Localization error
analysis of indoor positioning system based on UWB measurements,”
in Proc. 11th Int. Conf. Ubiquitous Future Netw. (ICUFN), 2019,
pp. 84–88.

Marco Pettorali (Member, IEEE) received the mas-
ter’s (cum laude) degree in computer engineering
from the University of Pisa, Pisa, Italy, in 2021,
where he is currently pursuing the Ph.D. degree with
the Department of Information Engineering.

His research interests include Industrial Internet
of Things and WSNs for industrial applications.

Mr. Pettorali has served as the Publicity Chair
for the 7th Workshop on Smart Service Systems co-
located with IEEE SMARTCOMP 2022.

Francesca Righetti received the bachelor’s and
master’s degrees in computer engineering and the
Ph.D. degree in information engineering from the
University of Pisa, Pisa, Italy, in 2014, 2017, and
2021, respectively.

She is an Assistant Professor with the Department
of Information Engineering, University of Pisa.
She took part in several national and interna-
tional projects. Her research interests include WSNs,
Internet of Things, and cloud/fog/edge computing.

Dr. Righetti organized the IEEE International
Workshop in Smart Service Systems (SmartSys 2022), co-located with IEEE
SMARTCOMP. In addition, she has served in the TPC of international
conference and workshops, including IEEE SMARTCOMP, IEEE CCNC,
IEEE MSN, and IEEE MELECON.

Carlo Vallati received the M.Sc. degree (magna
cum laude) and the Ph.D. degree in computer
systems engineering from the University of Pisa,
Pisa, Italy, in 2008 and 2012, respectively.

He is an Associate Professor with the Department
of Information Engineering, University of Pisa. He
is also the Director of the Crosslab on Cloud
Computing, Big Data and Cybersecurity funded by
the Italian Ministry of Education and Research in
the framework of the “Departments of Excellence”
program. He has been involved in multiple national

and international research projects. He has coauthored more than 100 peer-
reviewed papers in international journals and conference proceedings.

Dr. Vallati has served as the TPC Co-Chair of IEEE SMARTCOMP 2020
and the General Vice Chair of PERCOM 2022. He is a member of the EB of
Ad Hoc Networks, Journal of Reliable Intelligent Environments, and Applied

Sciences. He has served as a program committee member for more than 40
international conferences/workshops and as the Workshop Chair for IEEE
IoT-SoS and IEEE SmartSys.

Sajal K. Das (Fellow, IEEE) received the M.Sc.
degree in computer science and automation from
the Indian Institute of Science, Bengaluru, India, in
1984, and the Ph.D. degree in computer science from
the University of Central Florida, Orlando, FL, USA,
in 1988.

He is a Curators’ Distinguished Professor of
Computer Science and the Daniel St. Clair Endowed
Chair with the Missouri University of Science and
Technology, Rolla, MO, USA, where he was the
Chair of Computer Science Department from 2013

to 2017. He has published extensively in high quality journals and refereed
conference proceedings. He holds five U.S. patents and coauthored four books.
His H-index is 98 with more than 38 400 citations according to Google
Scholar. His research interests include wireless and sensor networks, mobile
and pervasive computing, cyber–physical systems, IoT, smart environments,
machine learning, and cyber security.

Dr. Das is a recipient of 14 Best Paper Awards in prestigious conferences,
such as ACM MobiCom and IEEE PerCom, and numerous awards for
teaching, mentoring, and research, including the IEEE Computer Society’s
Technical Achievement Award for pioneering contributions to sensor networks
and the University of Missouri System President’s Award for Sustained Career
Excellence. He is a Distinguished Alum of the Indian Institute of Science,
Bengaluru. He is the founding Editor-in-Chief of Pervasive and Mobile

Computing (Elsevier), and an Associate Editor of the IEEE TRANSACTIONS

ON MOBILE COMPUTING, IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, IEEE/ACM TRANSACTIONS ON NETWORKING, and
ACM Transactions on Sensor Networks.

Giuseppe Anastasi received the M.Sc. degree in
electronics engineering and the Ph.D. degree in
computer engineering from the University of Pisa,
Pisa, Italy, in 1990 and 1995, respectively.

He is a Professor of Computer Engineering with
the University of Pisa, where he was the Head of
the Department of Information Engineering (DII)
from 2016 to 2020. He is also the Director of the
CrossLab for the Digital Transformation, funded
by the Italian Ministry of Education and Research
(MIUR) in the framework of the “Departments of

Excellence” program. He has co-edited two books and published about
170 research papers in the area of computer networking and distributed
systems. His publications have received more than 11 000 citations, according
to Google Scholar (H-index = 45). His current scientific interests include
Internet of Things, and cloud/fog/edge computing, cyber–physical systems,
cybersecurity, and quantum Internet.

Dr. Anastasi is currently serving as a Steering Committee Member of
the IEEE SMARTCOMP conference. Previously, he served as the Area
Editor of Pervasive and Mobile Computing, Computer Communications, and
Sustainable Computing. He has also served as a general/program chair of
many international conferences.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

