IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 12, 15 JUNE 2024

21135
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Abstract—Unmanned aerial vehicles (UAVs) equipped with
high-definition cameras have the capability to capture compre-
hensive and multiangled images of road conditions, facilitating
more efficient collection of pertinent road data. However, drones
encounter challenges in performing related tasks for an extended
period due to their limited energy capacity. Therefore, a crucial
concern is how to plan the path of UAVs and minimize
energy consumption. To address this problem, we propose a
multiagent deep deterministic policy gradient (MADDPG)-based
algorithm for UAV path planning (MAUP). Considering the
energy consumption and memory usage of MAUP, we have
conducted optimizations to reduce consumption on both fronts.
First, we define an optimization problem aimed at reducing
UAV energy consumption. Second, we transform the defined
optimization problem into a reinforcement learning problem and
design MAUP to solve it. Finally, we optimize energy consumption
and memory usage by reducing the number of neurons in the
hidden layer of MAUP and conducting fine-grained pruning
on connections. The final simulation results demonstrate that
our method effectively reduces the energy consumption of UAVs
compared to other methods.

Index Terms—Energy consumption optimization, multiagent
deep deterministic policy gradient (MADDPG), multiagent rein-
forcement learning (MARL), tiny machine learning (Tiny ML),
unmanned aerial vehicle (UAV) path planning.

I. INTRODUCTION

DUE THE ongoing developments and miniaturization of
electronic systems, the proliferation of Internet of Things
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(IoT) devices in real world has exhibited an exponential
growth. These devices generate vast amounts of data, which
is subsequently processed using machine learning algorithms
to extract valuable information. The escalating demand for
effectively managing the overwhelming volume of data gen-
erated by IoT devices, coupled with the growing expectation
for enhanced responsiveness in such systems, has prompted
the migration of data processing in cloud computing toward
edge computing even extending to the devices themselves.
These systems can be supported by machine learning algo-
rithms, particularly reinforcement learning, which facilitates
interaction with the environment and the accumulation of
rewards based on executed actions. However, given the con-
straints in computational resources, storage space, and energy
in IoT and edge devices, the emergence of tiny machine
learning (Tiny ML) has become inevitable [1]. Tiny ML
represents a rapidly evolving domain encompassing machine
learning technologies and applications, including algorithms,
hardware, and software, designed to facilitate on-device sensor
analytics at ultralow power [2].

By harnessing the capabilities of Tiny ML, IoT devices can
demonstrate an increasingly diverse range of functionalities.
However, their inherent lack of mobility poses limitations
on traffic monitoring tasks. In such scenarios, the integration
of unmanned aerial vehicles (UAVs) presents a compelling
solution. With their exceptional maneuverability, UAVs can
dynamically select surveillance areas and effectively cover a
significantly larger monitoring range compared to conventional
methods. Meanwhile, the monitoring of traffic conditions
holds paramount importance in smart cities, intelligent trans-
portation systems, and other related domains [3], [4]. Due
to the diversity of UAV types, UAVs can adapt to various
task requirements. Moreover, these UAVs can also accommo-
date various camera devices, enabling footage capture from
multiple perspectives [5], [6]. In the event of an emergency,
monitoring traffic conditions can provide timely warnings
to drivers and effectively mitigate the occurrence of traffic
accidents, thereby reducing both human casualties and prop-
erty damage [7], [8]. The integration of Tiny ML in the
UAV domain can enhance the capabilities of small drones,
such as improving robustness during hovering and way find-
ing. Concurrently, this facilitates small UAVs to demonstrate
heightened intelligence through locally processing rather than
transmitting data to a base station (BS), thereby augmenting
real-time performance and privacy for tasks.
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However, the rational planning of UAV routes remains
a significant challenge due to their limited energy capacity
[9]. The primary objective of route planning for UAVs is
to ascertain the optimal collision-free trajectory that can
effectively accomplish the desired outcome while simulta-
neously satisfying criteria pertaining to distance, cost, time,
and other pertinent factors. The accomplishment of these
objectives necessitates the incorporation of various constraints
pertaining to the physical attributes of the UAV, such as energy
and velocity, into path planning. To optimize UAV energy
consumption, it is imperative to devise a judicious path plan-
ning strategy. Considering the aforementioned information,
the primary focus of this article lies in devising an efficient
path for the UAV to minimize its energy utilization during
monitoring operations.

Several viable solutions have been proposed in existing stud-
ies to address the problem of UAV path planning. However,
these studies utilize traditional path planning methods and
heuristics, both of which rely on prior knowledge. The tra-
ditional methods often encounter local optimum situations.
During the phase of UAVs performing traffic monitoring tasks,
the UAV’s state undergoes constant changes. Hence, real-time
decisions are imperative to determine the flight plan of the
UAV at each time point.

Deep reinforcement learning (DRL) methods have been
applied in many scenarios due to their powerful real-time
decision-making capabilities [10], [11], [12], [13]. While
traffic monitoring scenarios are designed with multiple UAVs,
each UAV also needs to adjust its flight strategy based on the
flight strategies of other UAVs during their flights. Traditional
single-agent reinforcement learning methods involve only
one agent, and the actions taken are solely related to
this intelligence in order to learn a control strategy. If a
single-agent reinforcement learning method is employed and
UAVs are represented as a unified agent, the action space
will expand exponentially with an increasing number of
UAVs, resulting in the challenge of dimensional explosion.
In addition, if each UAV is considered as an agent and
trained separately using single-agent reinforcement learning
methods, it is easy to ignore the flight strategies of other
UAVs. In the field of reinforcement learning, multiagent
reinforcement learning (MARL) methods can compensate
for the shortcomings of single-agent reinforcement learning
methods.

This article presents a comprehensive approach to optimize
the energy consumption of UAVs by considering both hovering
and flight operations in an integrated manner. The optimization
problem is then transformed into a reinforcement learning
problem. The energy consumption of UAVs extends beyond
flight operations and encompasses energy usage in commu-
nication and computation processes. Due to the decentralized
execution and centralized training paradigm of multiagent deep
deterministic policy gradient (MADDPG)-based algorithm,
interagent communication is unnecessary. Agents solely make
predictions about other agents, thereby the algorithm reducing
communication energy consumption among them. This article
designs a MADDPG-based algorithm for UAV path planning
(MAUP). Furthermore, in order to deploy smaller UAVs and
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save more energy, we reduce the size of the MAUP by modify
the hidden layer neurons and perform fine-grained pruning on
connections, transforming original MAUP into Tiny MAUP.
The primary contributions of this article are listed below.

1) We formulate an optimization problem to mini-
mize UAVs energy consumption in a highway road
monitoring scenario. For this problem, we consider
the mobility capability of the UAVs, as well as
their energy consumption during flight, hovering and
communication.

2) We design a MADDPG-based algorithm for UAV path
planning to solve the optimization problem. MADDPG
is more suitable in the energy-saving scenario of UAVs
due to its feature: centralized training and decentralized
execution, which eliminate the need for communication
among UAVs before making decisions.

3) We propose the Tiny MAUP algorithm, which aims to
reduce the energy loss caused by the original algorithm.
It is modified from the original MAUP algorithm during
hidden layer node modify and pruning. Compared to the
original MAUP, Tiny MAUP requires less computation
and memory usage.

The remainder of this article is organized as follows.
Section II displays the related work. Section III shows the
system model. In Section IV introduces the problem for-
mulation and proposed MADDPG-based UAV path planning
algorithm. The simulation experiment settings and experimen-
tal findings are thoroughly described in Section V. Section VI
provides the conclusion.

II. RELATED WORK

This section presents a comprehensive overview of research
on UAVs-based traffic monitoring methods, DRL algorithms
for drones’ control, and Tiny ML-based control for drones.

A. Monitoring Traffic Conditions With UAV

Khan et al. [14] proposed an incognito airborne traffic
surveillance system based on UAVs utilizing 5G technology.
This system leverages the capabilities of UAVs and 5G to
effectively monitor, track, and regulate speed as well as
detect any illicit traffic behavior or suspicious vehicles on
highways and roads. Lyu et al. [15] proposed a multiobjective
optimization problem that aims to maximize data collec-
tion and energy transfer while minimizing UAV energy
consumption during the UAV serving time. Then they use
multiobjective joint optimization oriented DDPG algorithm
(MIDDPG)-based recourse allocation algorithm to solve this
problem. A proactive energy-efficient and reliable collabora-
tive scheme between UAVs and VANETS is presented in [16].
The authors proposed an innovative proactive approach to
address the challenges posed by highly mobile UAV networks.
The primary focus of this method is to establish a reliable
and energy-efficient routing mechanism for UAV systems. The
reliance of UAV-based architectures on terrestrial networks
is hindered by exorbitant deployment costs. To overcome
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this limitation, Bashir et al. [17] proposed a novel closed-
loop control architecture for highway traffic surveillance that
enhances effectiveness and adapts to varying traffic patterns.

B. Reinforcement Learning Methods for UAV Path Planning

Huang et al. [18] applied deep Q-network (DQN) to
UAV navigation, utilizing DQN to search for optimal flight
strategies. Zhang et al. [19] proposed a deep-constrained
Q algorithm that formulates the problem of 3-D dynamic
motion of UAVs under coverage constraints as a Markov
decision process (MDP). They then utilized prior knowledge
in DQN to eliminate ineffective actions, thereby finding better
flight paths. Liu et al. [20] investigated problems with the
use of UAVs for task offloading employing mobile edge
computing and created an algorithm based on DDQN approach
to maximize the overall throughput. Bayerlein et al. [21]
designed a novel RL method for obtaining data from IoT
devices using UAVs. They leveraged DDQN to strike the
right balance of data collection, obstacle avoidance and mis-
sion time minimization.The proposed multi-UAV trajectory
optimization algorithm by Ning et al. [22] is based on
partial information and allows for distributed execution of
flying actions. To the best of our knowledge, this is the first
work to achieve distributed control of multi-UAV trajectories
in scenarios with probabilistic time-varying service prefer-
ences. Although numerous studies have explored differentiated
services offered by service providers, their applicability to
UAV-based networks is limited due to the unique charac-
teristics of these networks. To the best of our knowledge,
Wang et al. [23] are the pioneers in investigating differen-
tiated services with distinct service providers in UAV-based
networks.

C. Tiny Reinforcement Learning for UAV control

The control of UAV, can be classified into low-level and
high-level control. Low-level control focuses on achieving
specific velocity or position objectives, while high-level con-
trol involves determining the subsequent destination. In the
forthcoming sections, we will present two distinct approaches’
related work for UAV control.

1) Low-Level Control: Lambert et al. [24] proposed a
model-based reinforcement learning method for quadro-
tor hovering, which is suitable for dynamic systems with
unknown priors and more applicable to real-world scenarios.
Molchanov et al. [25] designed a low-level control approach
for hovering based on PPO, which replaces the normal PID
method and achieves more robust evaluation. They deploy it
on three different quadrotors to demonstrate its effectiveness.

2) High-Level Control: Duisterhof et al. [26] applied DQN
for a high-level control algorithm, which can be deployed
on the nano quadrotor to seek light and avoid obstacles.
Ho et al. [27] proposed a method based on trust region policy
optimization (TRPO) to solve the nonconvex problem of wire-
less service provisioning through a quadcopter in a dynamic
environment with continuous action space. Kang et al. [28]
integrated a substantial volume of simulated data with a
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Fig. 1. UAV assisted traffic monitoring model.

limited amount of real-world experience to train DRL-
based autonomous flight collision avoidance strategies. This
approach is rooted in comprehending the physical charac-
teristics and dynamics of vehicles in the real world, while
simultaneously acquiring visual in-variance and patterns from
simulations.

III. SYSTEM MODEL

The scenario investigated in this study pertains to the UAV
surveillance of the highway road. A square area with side
length S’ is considered as the area where the UAV performs the
monitoring task. In this scenario, several UAVs are deployed
on the highway, and the collection of UAVs is represented
as U = 1,2,...,M, the sensing module and camera are
integrated into each UAV. There are moving vehicles on
the highway and the UAVs can collect relevant data (e.g.,
vehicle speed) within their coverage area. The data collected
by the UAVs is transmitted to a BS where a control system
is deployed to analyze the data collected by the UAVs. The
energy consumption of the UAV is related to the flight path
of the UAV. This article assumes that the UAV flies at a fixed
altitude. The longest distance a UAV can fly at once is dmax,
the total execution time of the monitoring task is fi1. The
execution time of UAV in the whole system is divided into
discrete time slots, and the duration of each time slot is 7,
where T = fyal/T. In each time slot, UAV performs road
monitoring tasks by flying or hovering. In slot ¢, the horizontal
position of the UAV r is denoted by U, = [x,(¢), y,(£)]. The
model diagram is shown in Fig. 1.

A. Communication Model

The UAV needs to transmit the collected road traffic
information to the BS in time. Assume that the flight height
of UAV is fixed, and the set of horizontal positions of each
UAV is D = {Uy, Uy, ..., Uy} within the time slot 7. The
horizontal positions of BS is Ug = [xp, yg]. In time slot ¢, the
distance between the UAV and the BS is represented by d; =

\/ |U; — Ug||> + H?, where the perceived data is transmitted
through a wireless channel. Assume that a Line-of-Sight (LoS)
connection is established between the UAV and the BS.
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The channel gain between the BS and the UAV is denoted by
Gj =G Gj, where G} and G} represents the gain of receiving
antenna and gain of transmitting antenna, respectively. In the
LoS connection scenario [29], the received power can be
expressed as

)\' o
r_ el —_
P} = PjGJ<4nd> (1)

where P} is the transmitted signal power, X is the wavelength,
and d is the distance between the BS and UAV. In the scenario
of free-space path loss, a path loss exponent « is set to 2. The
signal-to-interference-plus-noise ratio (SINR) between UAV
and BS is defined as [30]

-
R B

2 r
0%+ > iepy Pi
where o2 is the white Gaussian noise and the second term
in the denominator represents channel interference from other

UAVs. Based on Shannon theory, the data rate between the
UAV j and the BS is expressed as

Ri(1) = bj(1) logy (1 + ¥)). 3)

Y= 2

B. UAV Energy Consumption Model

The energy consumption of UAVs generally consists of
two parts: 1) communication energy consumption and 2)
flight hover energy consumption. Since the UAV needs to
perform task monitoring in the air, it will generate flight
energy consumption. Flight energy consumption is usually
determined by the speed and acceleration of the UAV. In this
article, the flight hover energy consumption of UAV is mainly
considered. Based on [31], the flight power consumption of
UAV is modeled as

32
P(V) =Py 1+ e

tip

1
ve 2\’
4v0 2v0

1
+ EdopsAV3 4)

where Py is the blade profile power, P; is the induced power,
V is the speed, Uyp represents the rotor blade speed, and
vo is known as the mean rotor induced velocity in hover.
0, S, A, dy represent air density, rotor solidity, rotor disk area
and fuselage drag ratio, respectively. When the flight speed
of the UAV is 0, it enters a state of hover. The hover power
of the UAV is P(0) = Py + P;, where Py and P; are a finite
value determined by the weight of the UAV. They represent
the air density and the area of the rotor disc, respectively.
In time slot ¢, each UAV takes a decision that consists of
two parts: 1) flight direction w(f) and 2) distance d;, where
w(t) € [0,2r],d; € [0, dnax]. Therefore, in time slot 7 + 1,
the horizontal position coordinate of the UAV is U,(t+ 1) =
[xn (1) + d; cos(w (1)), yu(t) + d;sin(w(f))]. The flight path of
each UAV must be reasonable when flying. In time slot ¢,
the flight time and hover time of UAV are T7(#) and Tj(?),
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respectively. Then the energy consumption of the UAV during
the time slot ¢ can be expressed as

E;j(t) = P(V)Ty (1) + P(O) T (2). &)

Hence, the overall flight and hovering energy consumption of
UAV j in the execution of traffic monitoring tasks is expressed
as

T
Ej=) E@) (©6)
=1
where T represents the upper bound of the time slot .

IV. MULTIAGENT DRL METHOD FOR UAV PATH
PLANNING

This section shows a problem formulate, overview of
MARL and provides further analysis of the energy consump-
tion minimization problem formulated in the previous section.
By analyzing the system model, the energy optimization
problem is transformed into a reinforcement learning problem.
A UAV path planning algorithm based on MADDPG is
designed to search for the optimal flight strategy, ensuring that
the UAV can successfully accomplish monitoring tasks while
reducing the energy consumption resulting from the execution
of these tasks.

A. Problem Formulation

Based on the discussion in Section III, the final optimization
problem is set as the minimization of energy consumption
during the flight and hovering of UAV. However, during the
UAV flight process, the flight path must be reasonable and
satisfy certain constraints. The main constraints of the system
model can be summarized as follows:

0 <d; < dmax @)
0<w@® <27 ()
X0 (), yu(D) € [o, S’] ©)
0Ty <t (10)
0<Th() <t (11)

where (7) and (8) stipulate that the flight direction and flight
distance of the UAV are within the interval [0,27] and
[0, dmax], respectively. Constraint (9) guarantees that each
UAV is within the designated area. Constraints (10) and (11)
put certain limits on the flight and hovering time of each UAV
in each time slot, respectively, i.e., the flight and hovering time
of the UAV is at least 0 and cannot exceed the size of each time
slot. According to the above analysis, the final optimization
problem is defined as follows:

M
min ZEj
J=1

s.t. Constraints  (7)—(11). (12)
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B. MARL—An Overview

MARL involves a set of agents in a sequential deci-
sion problems [32], [33]. When there are multiple agents
interacting with the environment at the same time, the whole
system becomes a multiagent system. From a more intuitive
perspective, although each agent’s ultimate goal remains to
maximize its own reward, the received reward is no longer
solely determined by its individual actions but also influenced
by the collective actions of all agents. To optimize long-term
payoff, each agent must consider the strategies employed by
other agents.

When sequential decision making is extended to multiple
agents, Markov games (MG) provide a theoretical framework
[34], [35], [36] that was originally introduced by Littma [37]
to extend MDP to multiple agents that interact with the
environment simultaneously and also interact with each other
informally. Let N > 1 denote the number of agents and S be
the set of states observed by all the agent, and the joint action
space of all the agent is denoted as A = A1 X Ay...Ap.

In state S, each agent chooses an action a; according to
its respective policy, and the joint action a = [a;liey Will
be executed in the environment. Based on the state transfer
function P : S xA xS — [0, 1], the environment state changes
from S to §’. Each agent gets an instantaneous reward r;
according to the reward function R; : S X A xS — R. The state
transfer and reward functions in MG depend on the joint action
space where each agent aims to find the optimal strategy that
maximizes long-term returns.

C. Problem Transformation

Since UAVs are in constant motion, at each time slot, each
UAV needs to determine its flight strategy based on its current
state. In other words, the position information of the UAVs
is continuously changing. Therefore, the UAV path planning
problem can be viewed as a sequential decision-making
problem. Traditional sequential decision-making algorithms,
such as dynamic programming, search algorithms, and heuris-
tic algorithms, can solve such problems, but they often come
with high-computational costs or complexities. In compari-
son, reinforcement learning algorithms can make decisions
based on the current state of the system in the UAV-assisted
traffic monitoring network. During the training process,
reinforcement learning algorithms continuously optimize the
UAV path planning strategy based on the rewards obtained
from interacting with the environment, ultimately finding the
optimal path planning solution. Hence, we transform the
optimization problem in (12) into a DRL problem.

However, traditional single-agent reinforcement learning
models have only one agent and are prone to issues like
dimensional explosion. The scenario considered in this article
involves multiple UAVs, where each UAV needs to consider
the flight strategies of other UAVs in order to cooperate
and accomplish monitoring tasks. Traditional single-agent
reinforcement learning methods do not consider these factors
when selecting strategies since they involve only one agent.
Therefore, single-agent reinforcement learning methods are
not well-suited for the application scenario discussed in this
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article. Furthermore, according to (7) and (8), the flight
direction and distance of UAVs are continuous values. Hence,
traditional reinforcement learning methods used for discrete
resource allocation are not suitable for this application sce-
nario. On the other hand, the MADDPG method, designed for
MARL with continuous action spaces. Which is particularly
well-suited for the UAV traffic monitoring scenario.

Based on these two points, this article presents a method
based on MADDPG to select the optimal UAV path planning
solution. The algorithm framework is illustrated in Fig. 2,
and the following sections explain the three key components
that need to be constructed when designing this algorithm.
In this figure, 6 and ¢ represent the parameters of actor
network and critic network, respectively. g represents the
policy generated by the agent network. And Qyy, represents
the QO value generated by the critic network.

1) State: The status information of each UAV contains two
parts: a) its own location information and b) the location
information of other drones.

2) Action: This article is based on the assumption that all
UAVs have the same action space. The actions that can
be taken by UAVs in each time slot consist of two
components: a) the flight direction w(f) € [0, 2] and
b) the flight distance d; € [0.dmax]. After each flight, the
position information of the UAVs will change.

3) Reward: In the road traffic monitoring scenario, each
UAV wants to minimize its energy consumption, the
main objective of this article is to minimize the total
energy consumption of the UAV, but the goal of the rein-
forcement learning method is to maximize the reward,
in addition, during the UAV training process, there will
be situations where the task area is exceeded and some
penalties need to be imposed, therefore, the reward
function R; is set as follows:

E®°

If UAV flies away from the task area 13
Otherwise. (3)

D. MADDPG-Based UAV Path Planning Algorithm

Based on the design of system states, actions, and reward
function, this article presents a MADDPG-based UAV path
planning algorithm. The pseudo-code for this algorithm can
be found in Algorithm 1. The main steps of the algorithm are
as follows.

First, the parameters of the MADDPG network are initial-
ized. Similar to the deep deterministic policy gradient (DDPG)
network structure, the MADDPG network consists of actor
and critic networks, along with their corresponding target
networks. Initially, the target network parameters of the actor
and critic networks are set to be the same as the parameters
of the actor and critic networks. Since the experience replay
buffer is empty at the beginning, it is in an empty state. For
each UAYV, the initial own state is observed, and the state set is
represented as S = {01, 02, ..., on}. Under the system state,
each UAV selects an action based on the existing policy and
noise, the action set is expressed by a = {aj, as, ..., am}.
This action determines the flight direction and distance for
each UAV. Subsequently, the UAVs execute their respective
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Fig. 2. MAUP framework.

actions, and after taking these actions, each UAV receives an
immediate reward. The set of rewards is denoted as r. At the
same time, the set of system states observed by each UAV
changes from S to §'.

Then, the tuple (S, a, r,S’) is put in the experience replay
buffer. For each UAV, k samples are sampled from the
experience replay buffer so that the target value is calculated
by the Critic target network of each UAV. The target network
of UAV j calculates the target value based on the sample with
the following equation:

(14)

=)
where Qj( (s, a’li, e aj\’;,) is a centralized action-value function
that takes as input the actions of all agents, a'{, ...,al’&, in
addition to some state information s, and y is the discount
factor, and rj’: is the reward for performing action aj’:. Then, the
critic network is updated by minimizing the result obtained
from the loss function. The loss function is expressed as
follows:

k
1 o N2
0\ _ . —
c(ej ) =2 Z(Q](S’,a’) y;) . (15)
i=1
Next, updating actor networks with policy gradients
L (oL L
vgjcj(ej ) - Evgjgﬁ(oj |6 )
VaQ;i(S, ay, ..., aM)laj:[:ojij
1 L
_ i | oL
=2 21: ngzzﬁ(o;- 16/
1=
V. 0;(S', dl, ..., a§4)|a;:aoj,;|0ju). (16)
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Finally, the target networks are updated by leveraging soft

updating method
0F — 16F + (1 —1)oF
02 « 102+ (1 —1)p2 (17)

where 7 is the soft update coefficient.

E. Algorithm Analyses

The algorithm incorporates two-layer multilayer perceptions
(MLPs). In each epoch, the time complexity of the algorithm
can be represented by the following equation:

I+1
0= 0(2 Li_1L;+ ZLZ')

i=1

(18)

where L; represents number of the i layer’s neurons, Lo, L+

represent dimensions of input data and dimension of output

data, and [ represents number of hidden layer neurons. Based

on (18), the time complexity of actor network can be repre-
sented as

O = O(LsH + 2H + H? + 2H + HL4 + 2L,)

= O(@4H +2Ls + H(Ls + Ly) + H?) (19)

where H represents the number of neurons in the hidden
layer, and Lg and L4 are state dimension and actor dimension,
respectively. And time complexity of critic network can be
represented as

Oc = O((Ls + La)H + 2H + H* 4+ 2H + H)
= O((Ls + Ly)H + 2H? + 5H). (20)

Because, the MAUP algorithm has target networks for actor
and critic, and target actor and critic networks structure are

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:02:16 UTC from IEEE Xplore. Restrictions apply.



KONG et al.: ENERGY CONSUMPTION OPTIMIZATION OF UAV-ASSISTED TRAFFIC MONITORING SCHEME

Algorithm 1 MADDPG-Based UAV Path Planning Algorithm

1: Initialize the parameters 6< and 69 of actor network and
critic network, and initialize the experience replay buff £
to Empty.

2: Initialize target network parameters 6% and 69 cor-

responding to the actor and critic network: 0L «

0L, 02 < 99,

for episode=1,..., N do

A random process is initialized for action exploration.
All UAVs observe initial state S = {01, 02, ...,0um, }.
fort=1,..., Tdo
Each UAV chooses action a,, = £(0m|9,§) + N;
based on available strategies and noise.
8: Each UAV execute corresponding action a =

A A

{ay, ..., apy}, calculate instant reward. The set of
reward is r. Meanwhile, the state is updated from
StoS.
9: R, =R;+r.
10: Store tuple(S, a, r, S') in E.
11: for agenti=1,...,M do
12: Randomly sample a batch of K tuples
(Sk, a, r*, ') from E.
13: Get the target value y; on the basis of (14).
14: Update the critic network via minimizing the
loss using (15).
15: Update the actor network through (16).
16: end for
17: The target networks are updated via (17)
18: end for
19: end for

same as actor and critic network. In each epoch, the algorithm
time complexity can be represented as

Oa1 = 2MO, + 2MO,
= O(4MLy + 18MH + 4MH (Lg + Ly) + 4MH?). (21)

F. Tiny MAUP

Furthermore, we are striving to optimize computation and
memory usage to facilitate the deployment of small drones
and nano quadrotors. Additionally, the incorporation of Tiny
MAUP in conventional UAVs holds promising potential for
minimizing energy consumption and enhancing endurance.
We will optimize the MAUP by adjusting the number of
hidden layer neurons and eliminating unnecessary connections
between neurons.

First, we will reduce the number of neurons in the hidden
layers because the original MAUP algorithm had 128 neurons
in the hidden layer, which is a large number for UAV memory
and requires a lot of computations. And UAVs are involved in
traffic monitoring scenarios, which may require a significant
amount of memory space to store high-definition pictures or
videos. Additionally, in Section IV-E, we analyze the time
complexity of MAUP. Our analysis reveals a strong correlation
between the time complexity and the number of hidden layer
neurons. Reducing the number of hidden layer neurons not
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TABLE I
PARAMETER SETTING

Parameter Value
Altitude of the UAV 50m
The longest distance a UAV can fly at once | 40m
Size of each time slot 4s
Number of time slots 200
Blade profile power of UAV 158.76W
Induced power of UAV 88.63W
Mean rotor induced velocity in hover 4.03m/s
Fuselage drag ration 0.6
Rotor solidity 0.05

Air density 1.225 kg/m?
Rotor disc area 0.503m?2
Tip speed of the rotor blade 120m/s

only decreases computational energy consumption but also
memory usage can be reduced.

Second, given the limited number of neurons per layer, we
will employ fine-grained pruning on connections. Our fine-
grained pruning is based on the L1 norm pruning method,
which prunes low-weight connections. At the same time, a low
weight indicates that the connection is not important.

V. PERFORMANCE EVALUATION
A. Simulation Setup

In this article, it is assumed that the UAV performs traffic
monitoring tasks on the highway, and the flight height of
the UAV is a fixed value, and the height is set as 50 m.
The maximum distance of a flight of the UAV is 40 m, and
the flight speed of the UAV is 20 m/s. The induced power
of UAV is 88.63w, blade profile power is 158.76w, blade
speed is 120 m/s, and air density is 1.225 kg/m>. Table I
describes other environment parameters. An evaluation index
are adopted in this article, namely, the total flight and hover
energy consumption of all UAVs.

The MAUP algorithm runs on a windows 64-bit operating
system with a Core i5-10400 processor. The neural network
framework is PyTorch, which is version 1.10.2 and python
version 3.6. MAUP related core parameters are shown in
Table I.

To verify the effectiveness of MAUP, the bellowed two
algorithms are adopted for comparison.

1) Random: Each UAV randomly chooses its action from
the action space at each time slot to determine its flight
direction and distance. If the action chosen by the UAV
causes the UAV to exceed the boundary, the UAV will
remain in its original position.

2) DDPG: DDPG is a typical DRL algorithm which can
be utilized in the continuous scenario.

We do not compare MAUP with DQN-based algorithms
and traditional optimization approaches because the former
cannot handle problems with continuous action spaces due to
the extremely large Q-table in such scenarios, while the latter
are unable to cope with dynamic environments and the high
complexity of real-time problems.
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(d) Learning rate is 0.001.

TABLE 11
EVALUATION IN DIFFERENT HIDDEN LAYER NEURONS

Hidden Layer Neurons 128 64 32 16
Th f stabl

© mean of sab'e 9000 | 11000 | 15000 | 20000
epochs in 5 experiments
learning rate 0.0005 | 0.0005 | 0.0005 | 0.0005
soft update rate 0.01 0.01 0.01 0.01

del size (16
mode s%ze ( neurons 11.89 379 L63 1
model size is 1)

B. Experimental Results

Table II presents training time and model size for same
models with different numbers of hidden layer nodes. During
the average convergence round, all models achieved a com-
parable level of reward and models convergence. The only
distinguishing factors were variations in training duration
and model dimensions. As our model employs two-layer
MLPs, differences in computational complexity based on the
number of hidden layer nodes can also be referred. Although
the original MAUP with 128 nodes is faster than the tiny
MAUP with 16 nodes, but the energy consumption of the
tiny MAUP is much less than that of the original MAUP in
terms of total training energy consumption. Because the time
complexity analysis shows that the time complexity of the
original MAUP is much larger than that of the tiny MAUP.
And considering future deployment of the model, this leads
to significant improvements in reducing static random-access
memory (SRAM) space occupation.

The convergence of the MAUP algorithm under different
learning rates is illustrated in Fig. 3. Specifically, learning
rates of 0.0001, 0.0002, 0.0005, and 0.001 were employed for
comparison purposes [Fig. 3(a)—(d)]. As shown in Fig. 3(a),
when a small learning rate of Ir = 0.0001 is used, the
algorithm oscillates initially, but gradually converges around
18 000 epochs. Fig. 3(b) shows that when the learning rate is
0.0002, the algorithm also oscillates initially, but the reward
keeps improving with some fluctuations in the middle, and
finally stabilizes around 20 000 epochs. When the learning rate
is Ir = 0.0005, the overall convergence is basically the same
as that of Ir = 0.0002. Compared with the learning rate of
0.0001, using these two learning rates can also converge to
the same results, but the convergence speed is slower than that
of Ir = 0.0001. When the learning rate is 0.001, due to the
exploration process at the beginning, the algorithm oscillates

Convergence performance of MAUP under different learning rates. (a) Learning rate 0.0001. (b) Learning rate 0.0002. (c) Learning rate is 0.0005.
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Fig. 4. Convergence performance of MAUP under different soft update

coefficient. (a) Soft update coefficients is 0.01. (b) Soft update coefficients
is 0.1.

significantly at first. At around 10000 epochs, the reward
improves, and the algorithm shows signs of convergence at
around 15000 epochs. The reward then improves again, and
the result converges at around 18 000 epochs. Therefore, using
a larger learning rate can also achieve convergence, but the
initial oscillation is more significant. A smaller learning rate
can speed up the convergence speed. Therefore, the learning
rate in the final simulation experiment was set to 0.0001.

The convergence of the algorithm under different soft
update coefficients is illustrated in Fig. 4, with the soft update
coefficients set to 0.01 and 0.1, respectively. As depicted in
the figure, when the soft update coefficient is set to 0.01, the
algorithm experiences initial instability due to the learning
process. However, it gradually converges after approximately
18000 training steps. On the other hand, when using a
soft update coefficient of 0.1, persistent instability occurs
during early stages of training before eventually converging
at around 32000 training steps; albeit at a relatively slower
rate compared to smaller coefficients. These results indicate
that larger soft update coefficients have a more pronounced
impact on experimental outcomes, while demonstrating faster
convergence for MAUP algorithm under smaller values of this
coefficient. Consequently, a final experiment was conducted
with a soft renewal coefficient set as 0.01.

As shown in Fig. 5, we investigated the variation of the
UAV’s continuous operation time during the training process.
This study assumes that once the UAV leaves the mission area,
the training of the current round stops, and a certain penalty
is imposed. The UAV needs to learn to adopt a reasonable
flight strategy to stay within the designated area in order to
obtain a higher reward. From the figure, it can be seen that in
the early stage of training, the UAV occasionally goes out of
bounds, causing the round to terminate before completing two
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hundred time slots, resulting in large fluctuations in continuous
operation time in the early stage. When the number of epochs
is around 18000, the UAV can fly for a full 200 time slots
without going out of bounds. After that, there will be no
situation where the UAV flies out of the designated area. This
also means that the UAV has learned how to fly reasonably
and stay within the designated boundary area in the later stage.

The experimental results for varying numbers of UAVs are
investigated in Fig. 6. As illustrated in Fig. 6, the random
method exhibits higher energy consumption compared to the
other two methods. With an increasing number of drones,
all methods experience an increase in energy consumption.
However, MAUP still demonstrates relatively low-energy con-
sumption relative to the other two methods, while the random
method consistently yields the highest energy consumption.
This can be attributed to the fact that actions in the random
method are selected randomly and do not represent a compara-
tively superior strategy. Nevertheless, as drone count increases,
there is a gradual deterioration in effectiveness observed with
DDPG method; indicating that drone count has a certain
influence on DDPG’s performance and suggesting that our
proposed approach is more suitable for this scenario.

The impact of mission duration (number of time slots) on
the final outcomes for a UAV count of two is illustrated in
Fig. 7. The number of time slots ranges from 100 to 200.
As depicted in Fig. 7, the total energy consumption of the
UAV escalates with an increase in the number of time slots,
indicating a prolonged execution period for the traffic mission.
Nevertheless, our proposed method surpasses both DDPG and
random methods.

The energy consumption of the UAV at different flight
speeds is illustrated in Fig. 8. This study investigates the
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energy consumption of the UAV within a range of flight speeds
from 10 to 30 m/s. It can be observed that at lower speeds,
specifically 10 and 15 m/s, the overall energy consumption
remains relatively low with minimal variation. However, as
the UAV’s speed increases, there is a corresponding increase
in its overall energy consumption.

VI. CONCLUSION

In this article, the path planning problem of UAVs per-
forming road traffic monitoring tasks with limited range is
studied for the main purpose of optimizing the flight and
hovering energy consumption of UAVs. By analyzing the
energy consumption problem during UAV traffic monitoring,
the energy optimization problem is defined. Subsequently,
through an analysis of the optimization problem, the UAV
energy optimization problem is transformed into a reinforce-
ment learning problem, and a UAV path planning algorithm
based on MADDPG is designed. Subsequently, we proceed to
adjust the neurons in the hidden layers and perform pruning
based on L1 norm pruning. Finally, simulation experiments
are conducted to compare the proposed algorithm with other
algorithms in order to validate its effectiveness. The size of our
model is smaller compared to the standard one. The simulation
results demonstrate that the algorithm presented in this article
can effectively reduce the energy consumption of UAVs during
flight and hovering. Experimental results also point to the
suitability of the MADDPG method for designing scenarios
with a set of sequential decision problems.

However, this study only considers the energy consumption
of UAVs during flight and hovering, without taking into
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account the communication energy consumption of the UAVs.
Additionally, this article does not consider the issue of task
offloading for UAVs, and the optimization objective only
focuses on energy consumption, implying a single-objective
optimization problem. In future research, it would be beneficial
to consider task offloading, taking into account both the path
planning problem for UAVs during traffic monitoring and the
offloading of information collected by the UAVs to nearby
edge servers. Moreover, a multiobjective optimization problem
could be designed, incorporating not only the optimization of
UAV energy consumption but also the consideration of Age
of Information (Aol). For the Tiny ML component, we will
first train a large-scale model, followed by conducting model
compression and subsequently comparing its effect with that
of a smaller model.
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