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Abstract—Unmanned aerial vehicles (UAVs) equipped with
high-definition cameras have the capability to capture compre-
hensive and multiangled images of road conditions, facilitating
more efficient collection of pertinent road data. However, drones
encounter challenges in performing related tasks for an extended
period due to their limited energy capacity. Therefore, a crucial
concern is how to plan the path of UAVs and minimize
energy consumption. To address this problem, we propose a
multiagent deep deterministic policy gradient (MADDPG)-based
algorithm for UAV path planning (MAUP). Considering the
energy consumption and memory usage of MAUP, we have
conducted optimizations to reduce consumption on both fronts.
First, we define an optimization problem aimed at reducing
UAV energy consumption. Second, we transform the defined
optimization problem into a reinforcement learning problem and
design MAUP to solve it. Finally, we optimize energy consumption
and memory usage by reducing the number of neurons in the
hidden layer of MAUP and conducting fine-grained pruning
on connections. The final simulation results demonstrate that
our method effectively reduces the energy consumption of UAVs
compared to other methods.

Index Terms—Energy consumption optimization, multiagent
deep deterministic policy gradient (MADDPG), multiagent rein-
forcement learning (MARL), tiny machine learning (Tiny ML),
unmanned aerial vehicle (UAV) path planning.

I. INTRODUCTION

D
UE THE ongoing developments and miniaturization of

electronic systems, the proliferation of Internet of Things
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(IoT) devices in real world has exhibited an exponential

growth. These devices generate vast amounts of data, which

is subsequently processed using machine learning algorithms

to extract valuable information. The escalating demand for

effectively managing the overwhelming volume of data gen-

erated by IoT devices, coupled with the growing expectation

for enhanced responsiveness in such systems, has prompted

the migration of data processing in cloud computing toward

edge computing even extending to the devices themselves.

These systems can be supported by machine learning algo-

rithms, particularly reinforcement learning, which facilitates

interaction with the environment and the accumulation of

rewards based on executed actions. However, given the con-

straints in computational resources, storage space, and energy

in IoT and edge devices, the emergence of tiny machine

learning (Tiny ML) has become inevitable [1]. Tiny ML

represents a rapidly evolving domain encompassing machine

learning technologies and applications, including algorithms,

hardware, and software, designed to facilitate on-device sensor

analytics at ultralow power [2].

By harnessing the capabilities of Tiny ML, IoT devices can

demonstrate an increasingly diverse range of functionalities.

However, their inherent lack of mobility poses limitations

on traffic monitoring tasks. In such scenarios, the integration

of unmanned aerial vehicles (UAVs) presents a compelling

solution. With their exceptional maneuverability, UAVs can

dynamically select surveillance areas and effectively cover a

significantly larger monitoring range compared to conventional

methods. Meanwhile, the monitoring of traffic conditions

holds paramount importance in smart cities, intelligent trans-

portation systems, and other related domains [3], [4]. Due

to the diversity of UAV types, UAVs can adapt to various

task requirements. Moreover, these UAVs can also accommo-

date various camera devices, enabling footage capture from

multiple perspectives [5], [6]. In the event of an emergency,

monitoring traffic conditions can provide timely warnings

to drivers and effectively mitigate the occurrence of traffic

accidents, thereby reducing both human casualties and prop-

erty damage [7], [8]. The integration of Tiny ML in the

UAV domain can enhance the capabilities of small drones,

such as improving robustness during hovering and way find-

ing. Concurrently, this facilitates small UAVs to demonstrate

heightened intelligence through locally processing rather than

transmitting data to a base station (BS), thereby augmenting

real-time performance and privacy for tasks.
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However, the rational planning of UAV routes remains

a significant challenge due to their limited energy capacity

[9]. The primary objective of route planning for UAVs is

to ascertain the optimal collision-free trajectory that can

effectively accomplish the desired outcome while simulta-

neously satisfying criteria pertaining to distance, cost, time,

and other pertinent factors. The accomplishment of these

objectives necessitates the incorporation of various constraints

pertaining to the physical attributes of the UAV, such as energy

and velocity, into path planning. To optimize UAV energy

consumption, it is imperative to devise a judicious path plan-

ning strategy. Considering the aforementioned information,

the primary focus of this article lies in devising an efficient

path for the UAV to minimize its energy utilization during

monitoring operations.

Several viable solutions have been proposed in existing stud-

ies to address the problem of UAV path planning. However,

these studies utilize traditional path planning methods and

heuristics, both of which rely on prior knowledge. The tra-

ditional methods often encounter local optimum situations.

During the phase of UAVs performing traffic monitoring tasks,

the UAV’s state undergoes constant changes. Hence, real-time

decisions are imperative to determine the flight plan of the

UAV at each time point.

Deep reinforcement learning (DRL) methods have been

applied in many scenarios due to their powerful real-time

decision-making capabilities [10], [11], [12], [13]. While

traffic monitoring scenarios are designed with multiple UAVs,

each UAV also needs to adjust its flight strategy based on the

flight strategies of other UAVs during their flights. Traditional

single-agent reinforcement learning methods involve only

one agent, and the actions taken are solely related to

this intelligence in order to learn a control strategy. If a

single-agent reinforcement learning method is employed and

UAVs are represented as a unified agent, the action space

will expand exponentially with an increasing number of

UAVs, resulting in the challenge of dimensional explosion.

In addition, if each UAV is considered as an agent and

trained separately using single-agent reinforcement learning

methods, it is easy to ignore the flight strategies of other

UAVs. In the field of reinforcement learning, multiagent

reinforcement learning (MARL) methods can compensate

for the shortcomings of single-agent reinforcement learning

methods.

This article presents a comprehensive approach to optimize

the energy consumption of UAVs by considering both hovering

and flight operations in an integrated manner. The optimization

problem is then transformed into a reinforcement learning

problem. The energy consumption of UAVs extends beyond

flight operations and encompasses energy usage in commu-

nication and computation processes. Due to the decentralized

execution and centralized training paradigm of multiagent deep

deterministic policy gradient (MADDPG)-based algorithm,

interagent communication is unnecessary. Agents solely make

predictions about other agents, thereby the algorithm reducing

communication energy consumption among them. This article

designs a MADDPG-based algorithm for UAV path planning

(MAUP). Furthermore, in order to deploy smaller UAVs and

save more energy, we reduce the size of the MAUP by modify

the hidden layer neurons and perform fine-grained pruning on

connections, transforming original MAUP into Tiny MAUP.

The primary contributions of this article are listed below.

1) We formulate an optimization problem to mini-

mize UAVs energy consumption in a highway road

monitoring scenario. For this problem, we consider

the mobility capability of the UAVs, as well as

their energy consumption during flight, hovering and

communication.

2) We design a MADDPG-based algorithm for UAV path

planning to solve the optimization problem. MADDPG

is more suitable in the energy-saving scenario of UAVs

due to its feature: centralized training and decentralized

execution, which eliminate the need for communication

among UAVs before making decisions.

3) We propose the Tiny MAUP algorithm, which aims to

reduce the energy loss caused by the original algorithm.

It is modified from the original MAUP algorithm during

hidden layer node modify and pruning. Compared to the

original MAUP, Tiny MAUP requires less computation

and memory usage.

The remainder of this article is organized as follows.

Section II displays the related work. Section III shows the

system model. In Section IV introduces the problem for-

mulation and proposed MADDPG-based UAV path planning

algorithm. The simulation experiment settings and experimen-

tal findings are thoroughly described in Section V. Section VI

provides the conclusion.

II. RELATED WORK

This section presents a comprehensive overview of research

on UAVs-based traffic monitoring methods, DRL algorithms

for drones’ control, and Tiny ML-based control for drones.

A. Monitoring Traffic Conditions With UAV

Khan et al. [14] proposed an incognito airborne traffic

surveillance system based on UAVs utilizing 5G technology.

This system leverages the capabilities of UAVs and 5G to

effectively monitor, track, and regulate speed as well as

detect any illicit traffic behavior or suspicious vehicles on

highways and roads. Lyu et al. [15] proposed a multiobjective

optimization problem that aims to maximize data collec-

tion and energy transfer while minimizing UAV energy

consumption during the UAV serving time. Then they use

multiobjective joint optimization oriented DDPG algorithm

(MJDDPG)-based recourse allocation algorithm to solve this

problem. A proactive energy-efficient and reliable collabora-

tive scheme between UAVs and VANETs is presented in [16].

The authors proposed an innovative proactive approach to

address the challenges posed by highly mobile UAV networks.

The primary focus of this method is to establish a reliable

and energy-efficient routing mechanism for UAV systems. The

reliance of UAV-based architectures on terrestrial networks

is hindered by exorbitant deployment costs. To overcome
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this limitation, Bashir et al. [17] proposed a novel closed-

loop control architecture for highway traffic surveillance that

enhances effectiveness and adapts to varying traffic patterns.

B. Reinforcement Learning Methods for UAV Path Planning

Huang et al. [18] applied deep Q-network (DQN) to

UAV navigation, utilizing DQN to search for optimal flight

strategies. Zhang et al. [19] proposed a deep-constrained

Q algorithm that formulates the problem of 3-D dynamic

motion of UAVs under coverage constraints as a Markov

decision process (MDP). They then utilized prior knowledge

in DQN to eliminate ineffective actions, thereby finding better

flight paths. Liu et al. [20] investigated problems with the

use of UAVs for task offloading employing mobile edge

computing and created an algorithm based on DDQN approach

to maximize the overall throughput. Bayerlein et al. [21]

designed a novel RL method for obtaining data from IoT

devices using UAVs. They leveraged DDQN to strike the

right balance of data collection, obstacle avoidance and mis-

sion time minimization.The proposed multi-UAV trajectory

optimization algorithm by Ning et al. [22] is based on

partial information and allows for distributed execution of

flying actions. To the best of our knowledge, this is the first

work to achieve distributed control of multi-UAV trajectories

in scenarios with probabilistic time-varying service prefer-

ences. Although numerous studies have explored differentiated

services offered by service providers, their applicability to

UAV-based networks is limited due to the unique charac-

teristics of these networks. To the best of our knowledge,

Wang et al. [23] are the pioneers in investigating differen-

tiated services with distinct service providers in UAV-based

networks.

C. Tiny Reinforcement Learning for UAV control

The control of UAV, can be classified into low-level and

high-level control. Low-level control focuses on achieving

specific velocity or position objectives, while high-level con-

trol involves determining the subsequent destination. In the

forthcoming sections, we will present two distinct approaches’

related work for UAV control.

1) Low-Level Control: Lambert et al. [24] proposed a

model-based reinforcement learning method for quadro-

tor hovering, which is suitable for dynamic systems with

unknown priors and more applicable to real-world scenarios.

Molchanov et al. [25] designed a low-level control approach

for hovering based on PPO, which replaces the normal PID

method and achieves more robust evaluation. They deploy it

on three different quadrotors to demonstrate its effectiveness.

2) High-Level Control: Duisterhof et al. [26] applied DQN

for a high-level control algorithm, which can be deployed

on the nano quadrotor to seek light and avoid obstacles.

Ho et al. [27] proposed a method based on trust region policy

optimization (TRPO) to solve the nonconvex problem of wire-

less service provisioning through a quadcopter in a dynamic

environment with continuous action space. Kang et al. [28]

integrated a substantial volume of simulated data with a

Fig. 1. UAV assisted traffic monitoring model.

limited amount of real-world experience to train DRL-

based autonomous flight collision avoidance strategies. This

approach is rooted in comprehending the physical charac-

teristics and dynamics of vehicles in the real world, while

simultaneously acquiring visual in-variance and patterns from

simulations.

III. SYSTEM MODEL

The scenario investigated in this study pertains to the UAV

surveillance of the highway road. A square area with side

length Sl is considered as the area where the UAV performs the

monitoring task. In this scenario, several UAVs are deployed

on the highway, and the collection of UAVs is represented

as U = 1, 2, . . . , M, the sensing module and camera are

integrated into each UAV. There are moving vehicles on

the highway and the UAVs can collect relevant data (e.g.,

vehicle speed) within their coverage area. The data collected

by the UAVs is transmitted to a BS where a control system

is deployed to analyze the data collected by the UAVs. The

energy consumption of the UAV is related to the flight path

of the UAV. This article assumes that the UAV flies at a fixed

altitude. The longest distance a UAV can fly at once is dmax,

the total execution time of the monitoring task is ttotal. The

execution time of UAV in the whole system is divided into

discrete time slots, and the duration of each time slot is τ ,

where τ = ttotal/T . In each time slot, UAV performs road

monitoring tasks by flying or hovering. In slot t, the horizontal

position of the UAV n is denoted by Un = [xn(t), yn(t)]. The

model diagram is shown in Fig. 1.

A. Communication Model

The UAV needs to transmit the collected road traffic

information to the BS in time. Assume that the flight height

of UAV is fixed, and the set of horizontal positions of each

UAV is D = {U1, U2, . . . , UM} within the time slot t. The

horizontal positions of BS is UB = [xB, yB]. In time slot t, the

distance between the UAV and the BS is represented by dj =
√

‖Uj − UB‖2 + H2, where the perceived data is transmitted

through a wireless channel. Assume that a Line-of-Sight (LoS)

connection is established between the UAV and the BS.
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The channel gain between the BS and the UAV is denoted by

Gj = Gr
j Gt

j, where Gr
j and Gt

j represents the gain of receiving

antenna and gain of transmitting antenna, respectively. In the

LoS connection scenario [29], the received power can be

expressed as

Pr
j = Pt

jGj

(

λ

4πd

)α

(1)

where Pt
j is the transmitted signal power, λ is the wavelength,

and d is the distance between the BS and UAV. In the scenario

of free-space path loss, a path loss exponent α is set to 2. The

signal-to-interference-plus-noise ratio (SINR) between UAV

and BS is defined as [30]

γj =
Pr

j

σ 2 +
∑

i∈D\j Pr
i

(2)

where σ 2 is the white Gaussian noise and the second term

in the denominator represents channel interference from other

UAVs. Based on Shannon theory, the data rate between the

UAV j and the BS is expressed as

Rj(t) = bj(t) log2

(

1 + γj

)

. (3)

B. UAV Energy Consumption Model

The energy consumption of UAVs generally consists of

two parts: 1) communication energy consumption and 2)

flight hover energy consumption. Since the UAV needs to

perform task monitoring in the air, it will generate flight

energy consumption. Flight energy consumption is usually

determined by the speed and acceleration of the UAV. In this

article, the flight hover energy consumption of UAV is mainly

considered. Based on [31], the flight power consumption of

UAV is modeled as

P(V) = P0

(

1 +
3V2

U2
tip

)

+ Pi

(√

1 +
V4

4v4
0

−
V2

2v2
0

)

1
2

+
1

2
d0ρsAV3 (4)

where P0 is the blade profile power, Pi is the induced power,

V is the speed, Utip represents the rotor blade speed, and

v0 is known as the mean rotor induced velocity in hover.

ρ, s, A, d0 represent air density, rotor solidity, rotor disk area

and fuselage drag ratio, respectively. When the flight speed

of the UAV is 0, it enters a state of hover. The hover power

of the UAV is P(0) = P0 + Pi, where P0 and Pi are a finite

value determined by the weight of the UAV. They represent

the air density and the area of the rotor disc, respectively.

In time slot t, each UAV takes a decision that consists of

two parts: 1) flight direction ω(t) and 2) distance dt, where

ω(t) ∈ [0, 2π ], dt ∈ [0, dmax]. Therefore, in time slot t + 1,

the horizontal position coordinate of the UAV is Un(t + 1) =

[xn(t) + dt cos(ω(t)), yn(t) + dt sin(ω(t))]. The flight path of

each UAV must be reasonable when flying. In time slot t,

the flight time and hover time of UAV are Tf (t) and Th(t),

respectively. Then the energy consumption of the UAV during

the time slot t can be expressed as

Ej(t) = P(V)Tf (t) + P(0)Th(t). (5)

Hence, the overall flight and hovering energy consumption of

UAV j in the execution of traffic monitoring tasks is expressed

as

Ej =

T
∑

t=1

Ej(t) (6)

where T represents the upper bound of the time slot t.

IV. MULTIAGENT DRL METHOD FOR UAV PATH

PLANNING

This section shows a problem formulate, overview of

MARL and provides further analysis of the energy consump-

tion minimization problem formulated in the previous section.

By analyzing the system model, the energy optimization

problem is transformed into a reinforcement learning problem.

A UAV path planning algorithm based on MADDPG is

designed to search for the optimal flight strategy, ensuring that

the UAV can successfully accomplish monitoring tasks while

reducing the energy consumption resulting from the execution

of these tasks.

A. Problem Formulation

Based on the discussion in Section III, the final optimization

problem is set as the minimization of energy consumption

during the flight and hovering of UAV. However, during the

UAV flight process, the flight path must be reasonable and

satisfy certain constraints. The main constraints of the system

model can be summarized as follows:

0 ≤ dt ≤ dmax (7)

0 ≤ ω(t) ≤ 2π (8)

xn(t), yn(t) ∈
[

0, Sl
]

(9)

0 ≤ Tf (t) ≤ τ (10)

0 ≤ Th(t) ≤ τ (11)

where (7) and (8) stipulate that the flight direction and flight

distance of the UAV are within the interval [0, 2π ] and

[0, dmax], respectively. Constraint (9) guarantees that each

UAV is within the designated area. Constraints (10) and (11)

put certain limits on the flight and hovering time of each UAV

in each time slot, respectively, i.e., the flight and hovering time

of the UAV is at least 0 and cannot exceed the size of each time

slot. According to the above analysis, the final optimization

problem is defined as follows:

min

M
∑

j=1

Ej

s.t. Constraints (7)−(11). (12)
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B. MARL—An Overview

MARL involves a set of agents in a sequential deci-

sion problems [32], [33]. When there are multiple agents

interacting with the environment at the same time, the whole

system becomes a multiagent system. From a more intuitive

perspective, although each agent’s ultimate goal remains to

maximize its own reward, the received reward is no longer

solely determined by its individual actions but also influenced

by the collective actions of all agents. To optimize long-term

payoff, each agent must consider the strategies employed by

other agents.

When sequential decision making is extended to multiple

agents, Markov games (MG) provide a theoretical framework

[34], [35], [36] that was originally introduced by Littma [37]

to extend MDP to multiple agents that interact with the

environment simultaneously and also interact with each other

informally. Let N > 1 denote the number of agents and S be

the set of states observed by all the agent, and the joint action

space of all the agent is denoted as A = A1 × A2 . . . AN .

In state S, each agent chooses an action ai according to

its respective policy, and the joint action a = [ai]i∈N will

be executed in the environment. Based on the state transfer

function P : S×A×S → [0, 1], the environment state changes

from S to S′. Each agent gets an instantaneous reward ri

according to the reward function Ri : S×A×S → R. The state

transfer and reward functions in MG depend on the joint action

space where each agent aims to find the optimal strategy that

maximizes long-term returns.

C. Problem Transformation

Since UAVs are in constant motion, at each time slot, each

UAV needs to determine its flight strategy based on its current

state. In other words, the position information of the UAVs

is continuously changing. Therefore, the UAV path planning

problem can be viewed as a sequential decision-making

problem. Traditional sequential decision-making algorithms,

such as dynamic programming, search algorithms, and heuris-

tic algorithms, can solve such problems, but they often come

with high-computational costs or complexities. In compari-

son, reinforcement learning algorithms can make decisions

based on the current state of the system in the UAV-assisted

traffic monitoring network. During the training process,

reinforcement learning algorithms continuously optimize the

UAV path planning strategy based on the rewards obtained

from interacting with the environment, ultimately finding the

optimal path planning solution. Hence, we transform the

optimization problem in (12) into a DRL problem.

However, traditional single-agent reinforcement learning

models have only one agent and are prone to issues like

dimensional explosion. The scenario considered in this article

involves multiple UAVs, where each UAV needs to consider

the flight strategies of other UAVs in order to cooperate

and accomplish monitoring tasks. Traditional single-agent

reinforcement learning methods do not consider these factors

when selecting strategies since they involve only one agent.

Therefore, single-agent reinforcement learning methods are

not well-suited for the application scenario discussed in this

article. Furthermore, according to (7) and (8), the flight

direction and distance of UAVs are continuous values. Hence,

traditional reinforcement learning methods used for discrete

resource allocation are not suitable for this application sce-

nario. On the other hand, the MADDPG method, designed for

MARL with continuous action spaces. Which is particularly

well-suited for the UAV traffic monitoring scenario.

Based on these two points, this article presents a method

based on MADDPG to select the optimal UAV path planning

solution. The algorithm framework is illustrated in Fig. 2,

and the following sections explain the three key components

that need to be constructed when designing this algorithm.

In this figure, θ and ϕ represent the parameters of actor

network and critic network, respectively. µθ represents the

policy generated by the agent network. And QMϕ represents

the Q value generated by the critic network.

1) State: The status information of each UAV contains two

parts: a) its own location information and b) the location

information of other drones.

2) Action: This article is based on the assumption that all

UAVs have the same action space. The actions that can

be taken by UAVs in each time slot consist of two

components: a) the flight direction ω(t) ∈ [0, 2π ] and

b) the flight distance dt ∈ [0.dmax]. After each flight, the

position information of the UAVs will change.

3) Reward: In the road traffic monitoring scenario, each

UAV wants to minimize its energy consumption, the

main objective of this article is to minimize the total

energy consumption of the UAV, but the goal of the rein-

forcement learning method is to maximize the reward,

in addition, during the UAV training process, there will

be situations where the task area is exceeded and some

penalties need to be imposed, therefore, the reward

function Ri is set as follows:

Ri =

{

P1, If UAV flies away from the task area
1

Ej(t)
, Otherwise.

(13)

D. MADDPG-Based UAV Path Planning Algorithm

Based on the design of system states, actions, and reward

function, this article presents a MADDPG-based UAV path

planning algorithm. The pseudo-code for this algorithm can

be found in Algorithm 1. The main steps of the algorithm are

as follows.

First, the parameters of the MADDPG network are initial-

ized. Similar to the deep deterministic policy gradient (DDPG)

network structure, the MADDPG network consists of actor

and critic networks, along with their corresponding target

networks. Initially, the target network parameters of the actor

and critic networks are set to be the same as the parameters

of the actor and critic networks. Since the experience replay

buffer is empty at the beginning, it is in an empty state. For

each UAV, the initial own state is observed, and the state set is

represented as S = {o1, o2, . . . , oM}. Under the system state,

each UAV selects an action based on the existing policy and

noise, the action set is expressed by a = {a1, a2, . . . , aM}.

This action determines the flight direction and distance for

each UAV. Subsequently, the UAVs execute their respective
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Fig. 2. MAUP framework.

actions, and after taking these actions, each UAV receives an

immediate reward. The set of rewards is denoted as r. At the

same time, the set of system states observed by each UAV

changes from S to S′.

Then, the tuple (S, a, r, S′) is put in the experience replay

buffer. For each UAV, k samples are sampled from the

experience replay buffer so that the target value is calculated

by the Critic target network of each UAV. The target network

of UAV j calculates the target value based on the sample with

the following equation:

yi
j = ri

j + γ Q′
j

(

s′i, a′i
1, . . . , a′i

M

)

∣

∣

∣

a′i
j =L′

(

o′i
j |θC

′

j

) (14)

where Q′
j(s

′i, a′i
1, . . . , a′i

M) is a centralized action-value function

that takes as input the actions of all agents, a′i
1, . . . , a′i

M , in

addition to some state information s′, and γ is the discount

factor, and ri
j is the reward for performing action ai

j. Then, the

critic network is updated by minimizing the result obtained

from the loss function. The loss function is expressed as

follows:

L

(

θ
Q
j

)

=
1

k

k
∑

i=1

(

Qj(S
i, ai) − yi

j

)2
. (15)

Next, updating actor networks with policy gradients

∇L

θCj
J
(

θLj

)

= E∇θLj
L

(

oj | θLj

)

∇aQj(S, a1, . . . , aM)|aj=Loj|θ
L
j

=
1

k

L
∑

i=1

∇θLj
L(oi

j | θLj )

∇aQj(S
i, ai

1, . . . , ai
M)|ai

j=L(oi
j|θ

u
j ). (16)

Finally, the target networks are updated by leveraging soft

updating method

θL
′

i ← τθLi + (1 − τ)θL
′

i

θ
Q′

i ← τθ
Q
i + (1 − τ)θ

Q′

i (17)

where τ is the soft update coefficient.

E. Algorithm Analyses

The algorithm incorporates two-layer multilayer perceptions

(MLPs). In each epoch, the time complexity of the algorithm

can be represented by the following equation:

O = O

(

l+1
∑

i=1

Li−1Li + 2Li

)

(18)

where Li represents number of the i layer’s neurons, L0, Ll+1

represent dimensions of input data and dimension of output

data, and l represents number of hidden layer neurons. Based

on (18), the time complexity of actor network can be repre-

sented as

Oa = O(LSH + 2H + H2 + 2H + HLA + 2LA)

= O(4H + 2LA + H(LS + LA) + H2) (19)

where H represents the number of neurons in the hidden

layer, and LS and LA are state dimension and actor dimension,

respectively. And time complexity of critic network can be

represented as

Oc = O((LS + LA)H + 2H + H2 + 2H + H)

= O((LS + LA)H + 2H2 + 5H). (20)

Because, the MAUP algorithm has target networks for actor

and critic, and target actor and critic networks structure are
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Algorithm 1 MADDPG-Based UAV Path Planning Algorithm

1: Initialize the parameters θL and θQ of actor network and

critic network, and initialize the experience replay buff E

to Empty.

2: Initialize target network parameters θL
′

and θQ′
cor-

responding to the actor and critic network: θL
′

←

θL, θQ′
← θQ.

3: for episode=1,. . . , N do

4: A random process is initialized for action exploration.

5: All UAVs observe initial state S = {o1, o2, . . . , oM, }.

6: for t = 1,. . . , T do

7: Each UAV chooses action am = L(om|θLm ) + Nt

based on available strategies and noise.

8: Each UAV execute corresponding action a =

{a1, . . . , aM}, calculate instant reward. The set of

reward is r. Meanwhile, the state is updated from

S to S′.

9: Ri = Ri + rt.

10: Store tuple(S, a, r, S′) in E.

11: for agent i = 1, . . . , M do

12: Randomly sample a batch of K tuples

(Sk, ak, rk, s′k) from E.

13: Get the target value yt on the basis of (14).

14: Update the critic network via minimizing the

loss using (15).

15: Update the actor network through (16).

16: end for

17: The target networks are updated via (17)

18: end for

19: end for

same as actor and critic network. In each epoch, the algorithm

time complexity can be represented as

Oall = 2MOa + 2MOc

= O(4MLA + 18MH + 4MH(LS + LA) + 4MH2). (21)

F. Tiny MAUP

Furthermore, we are striving to optimize computation and

memory usage to facilitate the deployment of small drones

and nano quadrotors. Additionally, the incorporation of Tiny

MAUP in conventional UAVs holds promising potential for

minimizing energy consumption and enhancing endurance.

We will optimize the MAUP by adjusting the number of

hidden layer neurons and eliminating unnecessary connections

between neurons.

First, we will reduce the number of neurons in the hidden

layers because the original MAUP algorithm had 128 neurons

in the hidden layer, which is a large number for UAV memory

and requires a lot of computations. And UAVs are involved in

traffic monitoring scenarios, which may require a significant

amount of memory space to store high-definition pictures or

videos. Additionally, in Section IV-E, we analyze the time

complexity of MAUP. Our analysis reveals a strong correlation

between the time complexity and the number of hidden layer

neurons. Reducing the number of hidden layer neurons not

TABLE I
PARAMETER SETTING

only decreases computational energy consumption but also

memory usage can be reduced.

Second, given the limited number of neurons per layer, we

will employ fine-grained pruning on connections. Our fine-

grained pruning is based on the L1 norm pruning method,

which prunes low-weight connections. At the same time, a low

weight indicates that the connection is not important.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In this article, it is assumed that the UAV performs traffic

monitoring tasks on the highway, and the flight height of

the UAV is a fixed value, and the height is set as 50 m.

The maximum distance of a flight of the UAV is 40 m, and

the flight speed of the UAV is 20 m/s. The induced power

of UAV is 88.63w, blade profile power is 158.76w, blade

speed is 120 m/s, and air density is 1.225 kg/m3. Table I

describes other environment parameters. An evaluation index

are adopted in this article, namely, the total flight and hover

energy consumption of all UAVs.

The MAUP algorithm runs on a windows 64-bit operating

system with a Core i5-10400 processor. The neural network

framework is PyTorch, which is version 1.10.2 and python

version 3.6. MAUP related core parameters are shown in

Table I.

To verify the effectiveness of MAUP, the bellowed two

algorithms are adopted for comparison.

1) Random: Each UAV randomly chooses its action from

the action space at each time slot to determine its flight

direction and distance. If the action chosen by the UAV

causes the UAV to exceed the boundary, the UAV will

remain in its original position.

2) DDPG: DDPG is a typical DRL algorithm which can

be utilized in the continuous scenario.

We do not compare MAUP with DQN-based algorithms

and traditional optimization approaches because the former

cannot handle problems with continuous action spaces due to

the extremely large Q-table in such scenarios, while the latter

are unable to cope with dynamic environments and the high

complexity of real-time problems.
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(a) (b) (c) (d)

Fig. 3. Convergence performance of MAUP under different learning rates. (a) Learning rate 0.0001. (b) Learning rate 0.0002. (c) Learning rate is 0.0005.
(d) Learning rate is 0.001.

TABLE II
EVALUATION IN DIFFERENT HIDDEN LAYER NEURONS

B. Experimental Results

Table II presents training time and model size for same

models with different numbers of hidden layer nodes. During

the average convergence round, all models achieved a com-

parable level of reward and models convergence. The only

distinguishing factors were variations in training duration

and model dimensions. As our model employs two-layer

MLPs, differences in computational complexity based on the

number of hidden layer nodes can also be referred. Although

the original MAUP with 128 nodes is faster than the tiny

MAUP with 16 nodes, but the energy consumption of the

tiny MAUP is much less than that of the original MAUP in

terms of total training energy consumption. Because the time

complexity analysis shows that the time complexity of the

original MAUP is much larger than that of the tiny MAUP.

And considering future deployment of the model, this leads

to significant improvements in reducing static random-access

memory (SRAM) space occupation.

The convergence of the MAUP algorithm under different

learning rates is illustrated in Fig. 3. Specifically, learning

rates of 0.0001, 0.0002, 0.0005, and 0.001 were employed for

comparison purposes [Fig. 3(a)–(d)]. As shown in Fig. 3(a),

when a small learning rate of lr = 0.0001 is used, the

algorithm oscillates initially, but gradually converges around

18 000 epochs. Fig. 3(b) shows that when the learning rate is

0.0002, the algorithm also oscillates initially, but the reward

keeps improving with some fluctuations in the middle, and

finally stabilizes around 20 000 epochs. When the learning rate

is lr = 0.0005, the overall convergence is basically the same

as that of lr = 0.0002. Compared with the learning rate of

0.0001, using these two learning rates can also converge to

the same results, but the convergence speed is slower than that

of lr = 0.0001. When the learning rate is 0.001, due to the

exploration process at the beginning, the algorithm oscillates

� �

(a) (b)

Fig. 4. Convergence performance of MAUP under different soft update
coefficient. (a) Soft update coefficients is 0.01. (b) Soft update coefficients
is 0.1.

significantly at first. At around 10 000 epochs, the reward

improves, and the algorithm shows signs of convergence at

around 15 000 epochs. The reward then improves again, and

the result converges at around 18 000 epochs. Therefore, using

a larger learning rate can also achieve convergence, but the

initial oscillation is more significant. A smaller learning rate

can speed up the convergence speed. Therefore, the learning

rate in the final simulation experiment was set to 0.0001.

The convergence of the algorithm under different soft

update coefficients is illustrated in Fig. 4, with the soft update

coefficients set to 0.01 and 0.1, respectively. As depicted in

the figure, when the soft update coefficient is set to 0.01, the

algorithm experiences initial instability due to the learning

process. However, it gradually converges after approximately

18 000 training steps. On the other hand, when using a

soft update coefficient of 0.1, persistent instability occurs

during early stages of training before eventually converging

at around 32 000 training steps; albeit at a relatively slower

rate compared to smaller coefficients. These results indicate

that larger soft update coefficients have a more pronounced

impact on experimental outcomes, while demonstrating faster

convergence for MAUP algorithm under smaller values of this

coefficient. Consequently, a final experiment was conducted

with a soft renewal coefficient set as 0.01.

As shown in Fig. 5, we investigated the variation of the

UAV’s continuous operation time during the training process.

This study assumes that once the UAV leaves the mission area,

the training of the current round stops, and a certain penalty

is imposed. The UAV needs to learn to adopt a reasonable

flight strategy to stay within the designated area in order to

obtain a higher reward. From the figure, it can be seen that in

the early stage of training, the UAV occasionally goes out of

bounds, causing the round to terminate before completing two
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Fig. 5. Variation of duration with the training process.

Fig. 6. Energy consumption under different number of UAVs.

hundred time slots, resulting in large fluctuations in continuous

operation time in the early stage. When the number of epochs

is around 18 000, the UAV can fly for a full 200 time slots

without going out of bounds. After that, there will be no

situation where the UAV flies out of the designated area. This

also means that the UAV has learned how to fly reasonably

and stay within the designated boundary area in the later stage.

The experimental results for varying numbers of UAVs are

investigated in Fig. 6. As illustrated in Fig. 6, the random

method exhibits higher energy consumption compared to the

other two methods. With an increasing number of drones,

all methods experience an increase in energy consumption.

However, MAUP still demonstrates relatively low-energy con-

sumption relative to the other two methods, while the random

method consistently yields the highest energy consumption.

This can be attributed to the fact that actions in the random

method are selected randomly and do not represent a compara-

tively superior strategy. Nevertheless, as drone count increases,

there is a gradual deterioration in effectiveness observed with

DDPG method; indicating that drone count has a certain

influence on DDPG’s performance and suggesting that our

proposed approach is more suitable for this scenario.

The impact of mission duration (number of time slots) on

the final outcomes for a UAV count of two is illustrated in

Fig. 7. The number of time slots ranges from 100 to 200.

As depicted in Fig. 7, the total energy consumption of the

UAV escalates with an increase in the number of time slots,

indicating a prolonged execution period for the traffic mission.

Nevertheless, our proposed method surpasses both DDPG and

random methods.

The energy consumption of the UAV at different flight

speeds is illustrated in Fig. 8. This study investigates the

Fig. 7. Impact of the number of time slots on energy consumption.

Fig. 8. Impact of the UAV flight speed on energy consumption.

energy consumption of the UAV within a range of flight speeds

from 10 to 30 m/s. It can be observed that at lower speeds,

specifically 10 and 15 m/s, the overall energy consumption

remains relatively low with minimal variation. However, as

the UAV’s speed increases, there is a corresponding increase

in its overall energy consumption.

VI. CONCLUSION

In this article, the path planning problem of UAVs per-

forming road traffic monitoring tasks with limited range is

studied for the main purpose of optimizing the flight and

hovering energy consumption of UAVs. By analyzing the

energy consumption problem during UAV traffic monitoring,

the energy optimization problem is defined. Subsequently,

through an analysis of the optimization problem, the UAV

energy optimization problem is transformed into a reinforce-

ment learning problem, and a UAV path planning algorithm

based on MADDPG is designed. Subsequently, we proceed to

adjust the neurons in the hidden layers and perform pruning

based on L1 norm pruning. Finally, simulation experiments

are conducted to compare the proposed algorithm with other

algorithms in order to validate its effectiveness. The size of our

model is smaller compared to the standard one. The simulation

results demonstrate that the algorithm presented in this article

can effectively reduce the energy consumption of UAVs during

flight and hovering. Experimental results also point to the

suitability of the MADDPG method for designing scenarios

with a set of sequential decision problems.

However, this study only considers the energy consumption

of UAVs during flight and hovering, without taking into
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account the communication energy consumption of the UAVs.

Additionally, this article does not consider the issue of task

offloading for UAVs, and the optimization objective only

focuses on energy consumption, implying a single-objective

optimization problem. In future research, it would be beneficial

to consider task offloading, taking into account both the path

planning problem for UAVs during traffic monitoring and the

offloading of information collected by the UAVs to nearby

edge servers. Moreover, a multiobjective optimization problem

could be designed, incorporating not only the optimization of

UAV energy consumption but also the consideration of Age

of Information (AoI). For the Tiny ML component, we will

first train a large-scale model, followed by conducting model

compression and subsequently comparing its effect with that

of a smaller model.
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