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Abstract—Federated Learning is a training framework that
enables multiple participants to collaboratively train a shared
model while preserving data privacy. The heterogeneity of devices
and networking resources of the participants delay the training
and aggregation. The paper introduces a novel approach to fed-
erated learning by incorporating resource-aware clustering. This
method addresses the challenges posed by the diverse devices and
networking resources among participants. Unlike static clustering
approaches, this paper proposes a dynamic method to determine
the optimal number of clusters using Dunn Indices. It enables
adaptability to the varying heterogeneity levels among participants,
ensuring a responsive and customized approach to clustering. Next,
the paper goes beyond empirical observations by providing a math-
ematical derivation of the communication rounds for convergence
within each cluster. Further, the participant assignment mechanism
adds a layer of sophistication and ensures that devices and network-
ing resources are allocated optimally. Afterwards, we incorporate
a leader-follower technique, particularly through knowledge dis-
tillation, which improves the performance of lightweight models
within clusters. Finally, experiments are conducted to validate
the approach and to compare it with state-of-the-art. The results
demonstrated an accuracy improvement of over 3% compared to
its closest competitor and a reduction in communication rounds of
around 10%.

Index Terms—Federated learning, heterogeneity, leader-
follower technique, resource aware clustering.

I. INTRODUCTION

F
EDERATED Learning (FL) is a newly emerging paradigm

that enables a distributed training framework where data
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collection and model training occur locally for each participant.

Thus, it preserves data privacy and reduces the communication

overhead of transmitting data to the server [1]. Unlike traditional

distributed training frameworks that require consensus after each

local iteration, either through server or peer communication, FL

minimizes the frequency of consensus among distributed partic-

ipants. FL is initiated by the central server, which broadcasts a

randomly initialized model to all participants. Each participant

trains the received model using their local dataset and sends the

Weight Parameter Matrices (WPM) to the server. The server

then aggregates the WPM received from multiple participants

and sends back the aggregated one, generating a robust and

generalized model [2].

FL participants exhibit significant heterogeneity in terms of

devices and networking resources, including processing speed,

available memory, and data transmission rate. Each participant

uses its resources to load the model and train it locally. The

availability of device resources among participants depends on

their respective configurations and installed services, leading

to irregular intervals between WPM generation [3], [4]. Fur-

thermore, the data transmission rate affects the time required

to upload WPM from participants to the server. Consequently,

participant heterogeneity hinders the simultaneous transmission

and aggregation of WPM. Thus, slower participants (i.e., strag-

glers) delay the entire training process. The server can mitigate

this issue by setting a Maximum Allowable Response (MAR)

time for training to minimise the delay caused by stragglers.

However, using a fixed MAR time can result in inadequate

training due to a reduced number of local updates.

Previous research on FL has addressed the challenge of par-

ticipant heterogeneity, excluding stragglers from the training

process [5]. However, this approach comes with a drawback,

as it prevents the system access to valuable datasets held by

stragglers, consequently diminishing the model’s generalization

ability. Next, cluster-based techniques have been proposed in the

literature to address participant heterogeneity in FL. These meth-

ods leverage various factors such as the relationship between

local datasets [5], the similarity of local updates [6], and social

relationships between participants [7] to form clusters. However,

a notable gap in these studies is the oversight of considering the

devices and networking resources of participants during the clus-

tering process. Further, the researchers [8] have highlighted the

challenge posed by heterogeneous devices in FL, restricting the

size of the global model to accommodate stragglers. Similarly, in

the proposal by [9], a technique named HeteroFL was introduced
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to address variations in computational and communication re-

sources by generating multiple-sized models and selecting the

optimal one for each participant. Despite these advancements,

neither [8] nor [9] have adequately tackled the issue of enhancing

the performance of lightweight models used by participants

with limited resources. Finally, the work presented in [10], [11]

has explored the application of Knowledge Distillation (KD) to

improve the performance of lightweight models, which is similar

to performance enhancement in the proposed work.

This paper presents a novel approach called Fed-RAC (short

for Federated learning with Resource Aware Clustering) to

address the negative impact of participant heterogeneity in

Federated Learning. We investigate the effect of participant

heterogeneity and determine an expression for the required com-

munication rounds per cluster. Fed-RAC is also designed to esti-

mate the error caused by inconsistent objective functions in the

presence of heterogeneous devices and networking resources.

In particular, we focus on investigating the following problem:

“How can we achieve satisfactory performance while training

local models on heterogeneous participants in FL within the

given MAR?” To this end, the major contributions and novelty

of this work are as follows:

• Resource aware clustering: The first contribution is to

conduct resource-aware clustering for identifying the most suit-

able number of clusters based on the devices and networking

resources available to the participants. The server first gathers

information regarding the processing speed, data transmission

rate, and available memory of all participants to create resource

vectors. These vectors are then subjected to unit-based nor-

malization to bring their values within the range of [0,1]. To

determine the optimal number of clusters, the server calculates

the Dunn Indices [12] among the normalized resource vectors

of all participants.

• Participants assignment to the clusters: The next contribu-

tion is the allocation of participants to the identified clusters,

ensuring that the model training within each cluster is per-

formed within a specified maximum allowable response time and

communication rounds. Additionally, a mathematical analysis

is carried out to derive the expression for the communication

round and error caused by an inconsistent objective function in

the presence of heterogeneous participants.

• Leader-follower technique: Further, our approach intro-

duces the leader-follower technique to enhance the performance

of the generic model in low-configuration clusters (followers)

by leveraging the model of the highest configuration cluster (

leader). In this technique, the leader model is initially trained,

and then it guides the training of follower models using knowl-

edge distillation to improve their performance.

• Experimental validation: In the end, we conduct experi-

mental evaluations to confirm the effectiveness of the Fed-RAC

approach. We validate our proposed method by comparing it

with existing baseline techniques [9], [13], [14], [15], using

various evaluation metrics and established datasets [16], [17],

[18], [19]. The results demonstrate that the proposed approach

achieves better performance in the presence of heterogeneous

participants.

Paper Organization: Section II provides an overview of the re-

lated literature. Section III outlines the preliminary information

and problem statement of our proposed approach. Section IV

details the Fed-RAC approach and System Implementation in

Section V. Section VI evaluates the performance of our ap-

proach, while Section VII presents the discussion and future

directions for this work. Finally, Section VIII concludes the

paper.

II. BACKGROUND AND MOTIVATION

• Heterogeneous participants in FL: FL involves a signif-

icant number of participant devices with varying resources,

leading to degraded performance and increased convergence

time when running the same model on all participants. The

authors in [8] identified the problem of heterogeneous devices

in FL, which limits the size of the global model to accommodate

low-resource or slow participants. They proposed a dynamically

adaptive approach to model size called ordered dropout, FjORD.

HeteroFL [9] introduced the technique to handle variation in

computational and communication resources. TailorFL [20]

introduced a dual-personalized FL system to address system

and data heterogeneity, involving tailored model updates for

individual devices and a global aggregation. Next, the authors

in [21] involved adaptive model quantization to address device

heterogeneity, dynamically adjusting model precision during the

federated learning process for improved collaboration among

diverse devices. FedRolex [22] proposed FL with rolling sub-

model extraction, allowing devices with diverse model architec-

tures to collaboratively train, extract sub-models, and contribute

to a shared model.

In previous studies, mechanisms proposed to address the

issue of stragglers in FL, including asynchronous [23], [24] and

semi-synchronous [25] global update approaches. The authors

in [23] introduced an asynchronous algorithm to optimize the

FL-based training for stragglers. The algorithm solved the local

regularization to ensure convergence in finite time and per-

formed a weighted average to update the global model. Similarly,

the authors in [24] introduced the mechanism of asynchronous

learning and weighted temporal aggregation on participants and

server, respectively. To overcome the problem of higher waiting

time, the authors in [25] introduced the semi-asynchronous

mechanism, where the server aggregates the weight from a set

of participants as per their arrival order.

• Clustering in FL: The prior studies utilized the relationship

between local datasets [5], the similarity of local updates [6],

and social relationship between the participants [7] to form

clusters in FL. Authors in [5] exploited the intrinsic relationship

between local datasets of multiple participants and proposed a

similarity-aware system, namely ClusterFL. The system gen-

erated various clusters based on the similarity among local

datasets. In [6] authors introduced a modified FL approach,

where hierarchical clustering is performed as per the similarity of

local updates. Similarly, the authors in [14] proposed a tier-based

FL, TiFL, that operates by dividing participants into tiers based

on their computational capabilities. The authors in [15] utilized
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a hierarchical FL approach by shaping data distribution at the

edge to enhance communication efficiency through a multi-level

aggregation.

• KD-based performance improvement: The existing litera-

ture introduced various techniques to improve the performance

of the lightweight model using a large-size model via KD [10],

[11]. The concept of KD was first introduced by the authors

in [10], where the knowledge of a large-size model (teacher) is

utilized to improve the performance of the lightweight model

(student). The authors in [26] proposed a method for achieving

personalized edge intelligence through federated learning and

self-knowledge distillation. Next, the authors in [11] introduced

pre-trained and scratch teacher-guided KD techniques to im-

prove the performance of students. In [27], the authors proposed

FedMD introduces a methodology for heterogeneous FL through

model distillation, leveraging a process where a central server

distils a unified model from various device-specific models with

diverse datasets. Further, the authors in [28] centred on utilizing

ensemble distillation to enhance model fusion in FL, involving

training an ensemble on global model updates and distilling

ensemble knowledge into a centralized model. FedGKT [29]

methodology focused on FL, utilizing group knowledge transfer

to facilitate the training of large convolutional neural networks

at the edge devices.

Motivation: We observed the following limitations in existing

literature. Prior studies discarded stragglers from the training to

cope up with the heterogeneity of the resources among partici-

pants in FL [5]. When the stragglers are discarded, their available

local datasets are not utilized during training, which reduces

the generalization ability of all the participants. In addition,

discarding slow participants hampered their performance im-

provement via FL. The asynchronous federated learning mecha-

nisms [23], [24] demand the server to wait for stragglers, leading

to significant waiting time. The semi-asynchronous global ag-

gregation mechanism [25] is more effective than synchronous,

but it discards some participants in each communication round.

Suppressing the communication round for aggregation [30] also

increases the stale models at participants. The existing work

exploited clustering in FL but not considered the devices and

networking resources [5], [6], [7].

Communication overhead due to a hierarchy and sensitivity to

edge device heterogeneity is observed in [15]. The knowledge

distillation poses potential information loss when the teacher

model is randomly initialized and training may be delayed

when dealing with large model sizes, depending on the resource

availability of participants in [27]. Additionally, concerns re-

garding computational overhead in ensemble training, as dis-

cussed in [28], further motivate the exploration of more efficient

approaches. Challenges encompassing dual-personalization, in-

creased computational demands, and sensitivity to system and

data variations, as indicated in [20], underscore the need for tai-

lored solutions. FedRolex [22], facing complexities in managing

heterogeneous models and communication overhead, highlights

the demand for effective sub-model compression. Finally, the is-

sues of increased computational demands, communication, and

the necessity for efficient coordination in knowledge transfer, as

evident in [29].

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

This work considers a set P of N participants and a central

server, where P = {p1, . . . , pN}. We consider a multi-class

classification problem with a set Q of c classes, i.e., Q =
{1, . . . , c}. Each participant pi has a local dataset Di with ni

number of instances and set of Q classes, where 1 ≤ i ≤ N . Let

(xij , yij) denotes an instance of dataset Di, where 1 ≤ j ≤ ni.

During training the model on the participantpi learn the mapping

betweenxij and yij ,∀j ∈ {1 ≤ j ≤ ni}, to build a classifierΠi.

The classifier recognizes the class label of unidentified instances

in testing. Let Bi denote the batch size used for the training

model on pi. Further, let τi represent the number of Stochastic

Gradient Descent (SGD) operations performed in one round of

training on pi. τi is estimated as: τi = �Eni/Bi�, where E is

the number of local epochs to train on pi. We can change Bi and

ni to change τi.

B. FL With Heterogeneous Participants

FL begins with the generation and random initialization of a

model at the central server that further broadcasts the initialized

model to all the participants. Each participant pi receives and

trains the model using local dataset Di with ni instances, where

1 ≤ i ≤ N . pi performs training for E number of local epochs

on a batch size of Bi over ni instances using SGD operations

τi. The participant minimizes the local loss function Li(wi),
where wi is the WPM of pi. Li(wi) is estimated as: Li(wi) =
1
ni

∑ni

j←1 Lij(wij), where wij ∈ wi, 1 ≤ j ≤ ni, and 1 ≤ i ≤
N . The participant transfers estimatedLi(·) andwi to the server

for global aggregation. Upon receiving a local loss and WPM

from all the participants, the server estimates global loss (L(w))
and WPM (w) as:

L(w)=

N
∑

i←1

(

ni

n1 . . . nN

)

Li(wi),w =

N
∑

i←1

(

ni

n1 . . . nN

)

wi.

The server broadcasts w for the next round of training. The

process of local training and aggregation are orchestrated for R
iterations to achieve a trained model for all the participants. At

each global iteration t ∈ R the local loss function and WPM are

denoted asLt
i(w

t
i) andwt

i for participant pi, respectively, where

1 ≤ i ≤ N . wt
i at global iteration t (t ∈ R) of participant pi is

updated as: wt
i = w

t−1
i − η∇Lt

i(w
t
i), where η is the learning

rate. Using the above equation, we can define the objective

function of FL as follows:

min
w

R
L(wR) =

R
∑

t←1

N
∑

i←1

(

ni

n1 + . . .+ nN

)

Lt
i(w

t
i). (1)

1) Heterogeneous Participants: The heterogeneous partici-

pants in FL require non-identical training and communication

time. Let Ti denotes training and communication time of pi,
estimated as: Ti = T a

i .E + T c
i , ∀i ∈ {1, 2, . . . N}, where T a

i is

the training time for one local epoch, and T c
i is the per-round

communication time for sharing WPM from pi to server. The

participants trained the local model and communicated WPM
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in parallel. Thus, for each iteration t ∈ R the training and com-

munication time T t depends on the slowest participant, where

T t = max1≤i≤N{Ti}. We obtain total training time, denoted as

T(N,E,R), as:

T(N,E,R) =

R
∑

t←1

T t =

R
∑

t←1

max
1≤i≤N

{Ti}. (2)

2) Objective Inconsistency: The server has a fixed MAR time

to complete the global iterations, which reduces the training

delay due to slow processing and communication of stragglers.

It also minimizes the idle time of faster participants. However,

the number of local SGD operations varies over heterogeneous

participants within the fixed MAR time. The faster participants

perform more local updates in contrast with stragglers. In addi-

tion, the number of local updates on the participants also varies

across the communication rounds. The objective function of FL

given in (1) relies upon the assumptions that the number of local

updates, τi for pi ∀i ∈ {1, 2, . . . , N}, remain the same for all

participants (τi = τ ). However, the variation in the local updates

on the heterogeneous participants results in an inconsistent ob-

jective function for FL [31]. Let L̄(w̄R) denotes the inconsistent

objective function, where w̄
R is the aggregated WPM gener-

ated after R global iterations. The error (err) between actual

and inconsistent objective function is defined as err = |L̄(w̄R)
− L(wR)|.

C. Problem Statement and Solution Overview

The fundamental challenges encountered while developing

an FL approach to mitigate the heterogeneity are: 1) how to

reduce the training and communication time of the stragglers in

FL? 2) how to achieve adequate performance within the fixed

time interval for communication? and 3) how to minimize the

error gap between actual and inconsistent objective functions

due to heterogeneous participants. In this work, we investigate

and solve the problem of training the local model on all the

heterogeneous participants within a given maximum allowable

response time, achieving adequate performance and minimizing

error due to inconsistent objective function.

Apart from the standard FL workflow, the Fed-RAC trains

the local models on all the participants despite higher het-

erogeneity and reduces training time without compromising

performance. Fed-RAC starts with the estimation of the opti-

mal number of clusters to accommodate all N heterogeneous

participants. We named the step as resource aware cluster-

ing (Section IV-A). During clustering, a set K of k clus-

ters is first identified (Section IV-A1), followed by the gen-

eration of a generic model for each cluster (Section IV-A2).

Next, the participants are assigned to the empty clusters us-

ing participant assignment mechanism (Section IV-B). Fur-

ther, we introduce leader-follower technique (Section IV-C)

to enhance the performance of the generic models using

KD.

IV. FED-RAC: FEDERATED LEARNING VIA RESOURCE AWARE

CLUSTERING

In this section, we first cover the details of the Federated

learning approach to mitigate the heterogeneity of participants

using Resource Aware Clustering (Fed-RAC). The workflow of

the Fed-RAC is shown in Fig. 1.

A. Resource Aware Clustering

This sub-section describes the mechanism of dividing the

set of N participants into k disjoint clusters. The clustering

is performed on the server to preserve the resources of the

participants. In doing so, the server fetches three resources from

all the participants, i.e., processing speed, data transmission

rate, and available memory, denoted as si, ri, and ai for pi
(1 ≤ i ≤ N ), respectively. si and ai are the machine-dependent

parameters that rely upon the configuration of the devices. The

data transmission rate ri depends on the bandwidth, channel

coefficient, and path loss between participant and server and

is estimated. The static information of si, ri, and ai from

the participants are used to initialise the Fed-RAC approach.

Afterwards, the approach provides the opportunity to upgrade

or downgrade the cluster depending on the available dynamic

resources of the participants. If a participant is in the smallest

cluster and its resources are dynamically reduced then Fed-RAC

sets batch-size and local epochs to continue the training, as

discussed in Section IV-B3. It implies the Fed-RAC can easily

tackle the dynamic resources of the participants in FL.

All the participants of a cluster possess similar process-

ing speeds, transmission rates, and memory. However, it is

tedious to determine the similarity among the three inde-

pendent resources. Thus, we use a vector vi = [si, ri, ai] for

participant pi (1 ≤ i ≤ N ) to estimate similarity among re-

sources. We use normalize vector v̄i = [s̄i, r̄i, āi] in place of

vi, to eliminate impact of biasness of high values. The bias

value s̄i is estimated as: s̄i =
si−min{si}Ni=1

max{si}Ni=1
−min{si}Ni=1

, r̄i and

āi are also estimated similarly. We further estimate the sim-

ilarity (Sij) among any two participant pi and pj using nor-

malized vectors v̄i and v̄j , respectively, ∀i, j ∈ {1, 2, . . . , N}
using euclidean distance. Sij is estimated as: Sij =
√

λ1(s̄i − s̄j)2 + λ2(r̄i − r̄j)2 + λ3(āi − āj)2, where λ1, λ2

and λ3 are the contributions of processing capacity, transmission

rate, and memory, respectively, λ1 + λ2 + λ3 = 1. λ1, λ2, and

λ3 can be obtained from [32], [33].

1) Estimating Optimal Number of Cluster k: We introduce

a modified version of the conventional Dunn and Dunn-like

Indices [12] to estimate the optimal number of clusters using

similarity. We use k-means clustering to determine the optimal

number of clusters. Dunn index identifies an optimal number of

clusters that hold compactness and provide good separation. Let

Cf and Cg denote clusters in K (Cf , Cg ∈ {C1, . . . , Ck}, Cf 	=
Cg). The least distancedist(Cf , Cg) amongCf andCg is given

as:

dist(Cf , Cg) = min
pi∈Cf ,pj∈Cg,Cf 	=Cg

Sij . (3)
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Fig. 1. Workflow for Fed-RAC approach. ◦1–◦4 steps for resource aware clustering, ◦5 generating generic model for each cluster, ◦6 participants assignment to
the clusters, and ◦7 leader follower technique to improve performance.

TABLE I
ILLUSTRATION OF AN EXAMPLE SCENARIO HAVING TEN PARTICIPANTS WITH

RESOURCE VECTORS AND NORMALIZED RESOURCE VECTORS

The diameter dia(Cf ) of cluster Cf ∈ {C1, . . . , Ck} is the

distance between participants in Cf . Let pfl and pfq be the two

participants in Cf (pfl 	= pfq ), dia(Cf ) is estimated as:

dia(Cf ) = max
p
f

l
,p

f
q∈Cf ,p

f

l
	=p

f
q

Sf
lq. (4)

Using (3) and (4), we estimate Dunn Index (DI(k)) as:

DI(k) = min
∀Cf∈K

[

min
∀Cg∈K,Cf 	=Cg

(

dist(Cf , Cg)

max∀Cf∈K dia(Cf )

)]

. (5)

A high positive value of DI(·) indicates a compact and

adequate number of clusters. The divergence-based Dunn and

Dunn-like Indices start with k = 2 and terminate when DI(·)
achieves a higher positive value. We use the maximum number

of clusters kmax ≤
√
N as the rule of thumb, inspired from [34].

The complete steps to obtain the optimal number of clusters are

given in Procedure 1.

Example 1: Let there are 10 participants denoted as

p1, . . . , p10. The resource and normalized vectors of the example

are shown in Table I. Using Procedure 1 with λ1 = λ2 = λ3 =
1/3, we obtain k = 3 as optimal clusters.

Procedure 1: Optimal Number of Clusters.

TABLE II
IMPACT OF CLUSTERING TECHNIQUES ON DI VALUES AND ACCURACY AT

DIFFERENT VALUES OF k USING MNIST DATASET

Apart from k-means clustering, we also consider density-

based clustering to obtain the optimal number of clusters using

normalized resource vectors. We use Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) and Ordering

points to identify the clustering structure (OPTICS) [35] during

the experiment. Table II illustrates the DI-values and accuracy

for different k using k-means, DBSCAN, and OPTICS using the

resource vectors, discussed in Section VI-E1. From the results
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in the table, we observe that for DBSCAN clustering, the DI

value decreases with increasing k; thus, it predicts k = 2 as an

optimal number of the cluster. However, the difference between

resources among the participants within a cluster is high, which

results in lower accuracy. Moreover, some participants with

the least resources can not accommodate a large-size model

assigned to the cluster. We can draw similar observations for

OPTICS, which gives the optimal number of clusters k = 3.

k-means clustering results in k = 5 optimal number of clusters,

where inter-cluster and intra-cluster distances are high and low,

respectively. It narrows down the gaps between the resources

of the participants within a cluster. Thus, all the participants

can easily accommodate the assigned model to a cluster. Such

narrow gapping also prevents the bucket effect, where a large

model is assigned to the participant with the smallest resources.

2) Generic Model for Each Cluster and Compaction of Clus-

ters: This work considers three resources, i.e., processing speed,

data transmission rate, and available memory, to obtain k clus-

ters. However, the cumulative resources are unequal among all

the clusters. Thus, the size of the model on the clusters would

be non-identical in FL. This work develops a generic model

for each cluster and performs cluster compaction afterwards. In

doing so, we arrange the k clusters in descending order of their

available resources. In other words, the participants in cluster

C1 can train a large-size model and quickly transfer WPM to

the server, whereas Ck can train the smallest model and requires

more time to share WPM.

Let M denote the initial model generated and randomly

initialized by the server. We assume M can directly accommo-

date on C1, i.e., training and communication can be performed

within the given time. Let M1 denote the size of the model for

C1, where M = M1. Beyond C1 other clusters require some

compression to train the model and share WPM. Let M2 denote

the compressed version of M that can be deployed on the

participants in C2, consuming less training and communication

time. M3 −Mk are generated for the remaining k − 2 clusters.

In this work, we consider the model of any cluster Ci is α times

smaller than Ci−1, i.e., Mi−1 = αMi, where α < 1. It implies

Mk = αk−1M1 ⇒ Mk = αk−1M .

The compression rate α is not predetermined and invariant.

It is determined before the training phase by assessing the re-

source availability across all participants, and it remains constant

during the entire training process. Additionally, it adapts to

diverse scenarios, accounting for variations among participants

with different resources. Next, to ensure that the α-compressed

model aligns with the memory constraints of all participants

in real-world applications, our strategy incorporates a dynamic

adaptation. It assesses the available resources for each partici-

pant and adjusts the compression rate.

• Cluster compaction: The estimated k clusters and corre-

sponding models suit the resources of the participants; how-

ever, higher compression of the model results in performance

compromise. Thus, it is beneficial if all the participants can

accommodate in fewer clusters than k. However, it introduces

the straggler effect, where slow participants do not participate.

To overcome the straggler effect, we merge some clusters out of

k to obtain m clusters, where k < m.

B. Participants Assignment to the Clusters

This sub-section describes the mechanism of assigning N
participants to the m clusters. We first deduce the expression

to estimate the communication rounds required for the generic

model in m different clusters. Next, we define the optimization

error due to the heterogeneity of participants. Notably, Fed-RAC

initially checks the possibilities of assigning participants to the

higher cluster, decreasing as per the assignment criteria.

From Section IV-A2, we have m different models

M1,M2, . . . ,Mm for clusters C1, C2, . . . , Cm, respectively,

where the size of models M1 > M2 > . . . > Mm and Mm =
αm−1M1 = αm−1M . The server decides R1,R2, . . . ,Rm

communication rounds for training local models of the partic-

ipants in clusters C1, C2, . . . , Cm, respectively. We first deter-

mine the expression for communication rounds Rf for cluster

Cf , where 1 ≤ f ≤ m.

1) Communication Rounds Per Cluster: Let Pf denotes

the set of F participants to be assigned in Cf , where Pf =
{p1, . . . , pF }, having loss functions L1, . . .LF , respectively.

We consider the assumptions given in [36] and applied on

L1, . . . ,LF to estimate the round Rf for cluster Cf .

Assumption 1: Loss Lj ∈ {L1,L2, . . .LF } is L-smooth;

therefore, for any two WPM wa and wb on pj ∈
Pf , following inequality holds: Lj(wa) ≤ Lj(wb) + (wa −
wb)

T∇Lj(wb) +
L
2 ‖wa −wb‖2, where 1 ≤ j ≤ F .

Assumption 2: Lj is μ-strongly convex; the inequality

holds: Lj(wa) ≥ Lj(wb) + (wa −wb)
T∇Lj(wb) +

μ
2 ‖wa

−wb‖2.

Assumption 3: Let εtj denote the uniformly and randomly

selected sample from the local dataset Dj of participant pj on

communication round t, where 1 ≤ t ≤ Rf . Let ∇Lj(ε
t
j ,w

t
j)

and ∇Lj(w
t
j) denote the gradients of loss function Lj(·) on εtj

samples and entire samples of the local dataset, respectively.

The variance of gradients on participant pj is bounded as:

E‖∇Lj(ε
t
j ,w

t
j)−∇Lj(w

t
j)‖2 ≤ σ2

f .

Assumption 4: Expected square norm of loss gradient is uni-

formly bounded as E‖∇Lj(φ
t
j ,w

t
j)‖2 ≤ G2

f , 1 ≤ t ≤ Rf and

1 ≤ j ≤ F .

Using Assumptions 1, 2, 3, and 4, we obtain a relation

between desired precision (qfo ), local epoch count Ef , and

global iterations Rf of cluster Cf . The precision is defined as:

qfo = E[L(wRf )]− L∗
f , where wRf is the aggregated weight at

final global epochRf andL∗
f is minimum and unknown value of

Lf at the server. Let L∗
j is the minimum value of Lj at pj , where

∀j ∈ {1 ≤ j ≤ F}. In this work, we assume i.i.d datasets on

the participants; thus, Γ = L∗
f −∑F

i=1 L∗
j = 0, as given [36].

Γ quantifies the degree of non-i.i.d and it goes to zero for i.i.d.

Let εj denotes the weight contribution of participant pj ∈ Pf .

Let β = max{8L/μ,Ef} and Tf is the total SGD operations

on a participant then we obtain the following relation of desired

precision (qfo ) for cluster Cf [36]:

E[L(wRf )]− L∗
f ≤ L/2μ2

β + Tf − 1

(

4B + μ2βE‖ · ‖2
)

, (6)

where, B =
∑F

j=1 ε
2
jσ

2
f + 8(E − 1)2G2

f . Using upper bound

of qfo and Tf = RfEf , we obtain number of communication
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round (Rf ) for cluster Cf (1 ≤ f ≤ m) as follows:

Rf =
1

Ef

[

L

2μ2qfo

(

4B + μ2βE‖w1 −w
∗
f‖2

)

+ 1− β

]

.

(7)

From (7), we have fixed communication rounds Rf for given

precision threshold qfo and local epochsEf for clusterCf , where

1 ≤ f ≤ m. In addition, we have Ef =
Bjτj
nj

; it implies we can

change value of Bj , τj , and nj in such a manner, where Ef and

Rf remains fixed for pj ∈ Pf and qfo changes. We set a threshold

over qfo , denoted as δf for Cf .

2) Optimization Error Due to Participants Heterogeneity:

The set of participants Pf to be assigned in cluster Cf pos-

sesses low inter-cluster and high intra-cluster heterogeneity.

Therefore, we obtain inconsistency in the objective function

of a cluster, discussed in Section III-B2, due to intra-cluster

heterogeneity despite using an effective clustering mechanism.

To estimate the value of error errf for cluster Cf , where

Cf ∈ {C1, C2, . . . , Cm}, we use the assumptions given in [31].

The previous assumptions, i.e., Assumptions 1 and 2 are

same for estimating errf . However, we need to define a new

Assumption 5 to calculate errf .

Assumption 5: Let {ε1, ε2, . . . , εF } denote a set of weighted

contribution of participants in set Pf of cluster Cf , where
∑F

j=1 εj = 1 and Cf ∈ {C1, . . . , Cm}. There exists two con-

stants h1 ≥ 1 and h2 ≥ 0 such that
∑F

j=1 εj‖∇Lj(wj)‖2 ≤
h2
1‖

∑F
j=1 εj∇Lj(wj)‖2 + h2

2.
Using Assumptions 1, 2, and 5, we derive the expression for

errf of clusterCf . In doing so, let oj denote a non-negative vec-

tor and define how stochastic gradients are locally accumulated.

For example, oj = [1, . . . , 1] ∈ R
τj for FedAvg [13]. ‖oj‖1 is

the l1-norm of oj and o[j,−1] is the last element in vector oj .

τe =
∑F

j=1 τj/F , τj = �Efnj/Bj� and η is the learning rate,

where 1 ≤ j ≤ F .

errf = min
t∈Rf

E
[

‖∇L̄(w̄t)‖2
]

≤ 4b1
ητeRf

+
4ηLσ2

fb2

F
+ 6η2L2σ2

fb3 + 12η2L2h2
2b4,

(8)

where b1=[L̄(w̄0)− L∗
f ], b2=Fτe

∑F
j=1

ε2j‖oj‖22
‖oj‖21

, b3 =
∑F

j=1

εj(‖oj‖22 − [oj,−1]
2), b4 = maxj{‖oj‖1(‖oj‖1 − [oj,−1])}. A

small errf indicates lower intra-heterogeneity among the partic-

ipants. We set error bound for each cluster, i.e., error errf ≤ θf
for Cf , where 1 ≤ f ≤ m and errf ≤ θf .

3) Participants Assignment: Fed-RAC assigns each partic-

ipant to an optimal cluster per the available device and net-

working resources. Such assignment facilitates easier and faster

(within MAR time) training and inference of the local model on

each participant assigned to a specific cluster. In other words,

each participant trains the local model in Rf communication

rounds (7) for cluster Cf , 1 ≤ f ≤ m. The assignment verifies

two conditions: a) precision (6) of cluster Cf must be less than

the threshold (qfo ≤ δf ) and b) optimization error (8) errf ≤ θf .

Further, we get two possible cases for assigning participants in

each cluster:

• Case 1 (Cluster is empty): pi assigns to empty cluster

Cf , if pi can train the model Mf in given epochs Ef and

communication round Rf . The local epoch Ef is high for a

single participant as one communication round is required to

train the model without multiple participants. In this case, the

condition of qfo < δf is only verified and the optimization error

is zero. It is because the constraint for homogeneity becomes

zero with a single participant in (8). If the participant is unable

to train Mf in MAR and Rf , it uses the following two steps:

1) pi reduces τi and ni, while satisfying qfo ≤ δf .

2) If qfo ≥ δf forCf then the participant switches to the lower

cluster and repeats Step 1.

• Case 2 (Cluster is non-empty): We initially estimate qfo
(6). Upon adding pi to Cf , qfo should be less than threshold δf .

Similar to Case 1, if pi is incompetent in trainingMf in MAR, τi
andni are adjusted until qfo < δf ; otherwise participant switches

to the lower cluster. Next, the error (8) is also estimated upon

adding pi to Cf . If estimated errf ≤ θf then pi is added to Cf ,

else pi switches to the lower cluster.

After successfully executing these two cases, N participants

are assigned to them clusters. The assigned participants achieve

desired precision and optimization errors less than the corre-

sponding thresholds. The server optimally allocates each partic-

ipant to a specific cluster as per the resource, precision threshold,

and error threshold. Procedure 2 summarizes the steps involved

in assigning participants to the clusters.

We prioritize privacy to ensure that only aggregated and

anonymized performance data is transmitted to the server. In-

dividual participant details are not exposed, safeguarding the

privacy of device performance parameters; however, the server

can get the details externally. The first parameter, processing

speed, remains constant and is deterministically associated with

a specific device manufacturer. Consequently, the server can

readily authenticate the accuracy of the processing speed in-

formation provided by the participant’s device before the com-

mencement of the actual training. With the possibility of partici-

pants providing inaccurate information about their transmission

rates, the server implements a robust verification process, i.e.,

data transfer tests. The server initiates data transfer tests by

dispatching a randomly initialized weight parameter matrix to

all participants in the initial cluster, measuring the time it takes

for each device to download it. Subsequently, the server checks

the upload time of the trained model’s weight matrix after the

initial communication round. In cases where a participant re-

ports false information, the server employs its calculated values

to reassign it to a different cluster based on its transmission

rate.

Further, the participant may falsely report memory informa-

tion and get a larger model then it may send an updated weight

parameter matrix after a delay or can send a partially trained

or untrained weight parameter matrix. To circumvent this, the

server examines the time taken to receive updated weight matri-

ces from participants. Despite sufficient processing power and

transmission rate estimates, a participant consistently exhibits

delays in sending updates, and the server intelligently reassigns
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Procedure 2: Participants Assignment to the Clusters.

the participant to a lower cluster, identifying and addressing

potential false information.

C. Leader-Follower Technique

This sub-section introduces the technique of improving the

performance of lightweight models M2, . . . ,Mm in clusters

{C2, . . . , Cm} using generalization ability (or knowledge) of

large-size model M1 in cluster C1. Along with the logits, the

feature information corresponding to the dataset is also provided

during the knowledge distillation process. We utilize the as-

sumption that the cluster C1 is the fastest and can accommodate

the server’s model without compression, i.e., M1 = M . We use

the term leader for M1 and follower for models M2 −Mm,

thus, named the technique as leader-follower for performance

improvement. The technique involves the KD technique [10]

to improve the performance of the follower model using the

trained leader model. MAR time (Tmax) for training models on

all N participants and can be further divided as: Tmax = T1 +
max{T2, T3, . . . , Tm}, where Tf is the MAR time for training

Mf on the participants of Cf , 1 ≤ f ≤ m. Since Cm is the

slowest cluster andC1 is the fastest cluster; thus, we can consider

the following relation similar to generic models: Tf−1 = κTf ,

where 1 ≤ f ≤ m and κ < 1. It implies T1 = κm−1Tm then we

obtain:

Tmax = κm−1Tm +max{κm−2Tm, κm−3Tm, . . . , Tm}},

= κm−1Tm + Tm = (κm−1 + 1)Tm. (9)

In special cases, where M1 is leader of M2, M2 is leader

of M3, and so on, i.e., the FL-based training is performed

sequentially for each cluster. In this case, Tmax is defined as:

Tmax = κm−1Tm + κm−2Tm + κm−3Tm + . . .+ Tm,

= {κm−1 + κm−3 + . . .+ 1}Tm =
1− κm

1− κ
, where κ < 1.

This work starts FL-based training from the fastest cluster C1

with adequate devices and networking resources to train M1.

We train M1 for E1 local epochs on the participants of C1 using

R1 communication rounds. The logits of trained M1 are next

supplied to all the remaining clusters to improve the performance

of their generic models using the KD. Algorithm 1 summarizes

the steps involved in the Fed-RAC.

By employing a leader model (M1) and follower models (M2-

Mk), we aim to facilitate a more controlled and effective knowl-

edge transfer process. The benefits are a) hierarchical knowledge

transfer, b) adaptability to varied participant capabilities, and

c) enhanced performance (detailed in supplementary [37]). We

adjust the learning rate for M2-Mk based on the performance

and confidence of M1. When M1’s knowledge is less reliable

due to a small participant population in C1, lower the learning

rate for M2-Mk to make them more receptive to M1’s guidance.

In addition, we establish clear criteria for model selection. If

M1 consistently outperforms M2-Mk on certain metrics, make

it a rule to favour M1’s updates during the aggregation process.

Further, to ensure the higher performance of M1, we selectively

aggregate knowledge from the most competent participants to

mitigate the impact of a small participant set on the training

quality of M1. Additionally, when aggregating updates from

multiple models, assign different weights to M1 compared to

M2-Mk. This gives M1 a more significant influence on the

aggregation.

Fed-RAC commences the training process by training the

leader model in C1, followed by the concurrent training of other

models in the remaining clusters through knowledge distillation.

To mitigate the extra delay caused by training the leader model,

we introduce a workaround. Upon cluster formation, we conduct

preliminary local training for the leader model for a few epochs

before the actual training begins. To address differences in

resource availability among participants across diverse clusters,

we modify the sizes of the models. This adjustment aims to min-

imize delays in aggregation caused by stragglers or participants

with lower computational resources.

•Aggregation of the weight parameter matrices: To aggregate

information, the server employs a layer-wise averaging process

across the weight parameter matrices of various models received

from the clusters. For instance, let’s consider a scenario where

only three clusters (C1, C2, and C3) and the server model ms
consist of seven layers: one input layer, five hidden layers,

and one output layer. Participants in C1 can train with the full

model (m1 = ms), while participants in clusters C2 and C3

require the removal of one and two hidden layers, respectively.

Consequently, the server conducts a layer-wise aggregation of

weight parameters, averaging over the available layers, detailed

in Supplementary file [37].
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Algorithm 1: Fed-RAC Algorithm.

V. SYSTEM IMPLEMENTATION

The Fed-RAC algorithm and associated procedures were im-

plemented using the Python programming language. The models

considered in the study were implemented using the functional

API of Keras in Python, chosen for its developer-friendly fea-

tures. To ensure a fair and comprehensive comparison, all base-

line models were reimplemented. Throughout the experiments,

the loss function was set to “categorical cross-entropy,” and a

batch size of 200 was employed. The hyperparameter L∗ ranged

between 0.01 and 0.05, with the number of participants denoted

as N = 40. Local epochs varied across datasets, specifically

E = 1− 5 for MNIST and HAR, and E = 10− 40 for CIFAR-

10 and SHL. The communication rounds were standardized at

200 for all clusters during the experiments.

Learning rate exploration involved varying it between 0.001

and 0.010. Convolutional layers were selectively compressed

to obtain follower models. A dropout of 0.5 was applied, with

subsequent layers using fractions of the previous layer’s dropout,

denoted as M2 = 0.5(M1), M3 = 0.5(M2), and so forth. This

dropout strategy served a dual purpose, contributing to model

compression and enhancing training speed and transmission ef-

ficiency. The strategic application of dropout introduced regular-

ization, mitigating overfitting and promoting faster convergence

during training. The sparsity induced by dropout further aided

in reducing communication overhead. All experiments were

conducted on datasets built from scratch, with most simulations

executed using Colab Pro and some on a computer equipped

with an octa-core i7 processor and 32 GB RAM. For access

to the Fed-RAC implementation, it is available on the GitHub

repository at: https://github.com/errahulm/Fed-RAC.

VI. PERFORMANCE EVALUATION

A. Datasets and Models

This work uses four public datasets, including MNIST [16],

HAR [17], CIFAR-10 [18], and SHL [19]. MNIST is a handwrit-

ten digit dataset containing 50000 images of different digits from

0− 9 for training. MNIST also has 10000 images for testing.

HAR was collected using the smartphone (Samsung Galaxy S

II) sensors, including a tri-axial accelerometer and gyroscope.

CIFAR-10 comprises 60000 images of ten different classes. The

dataset is balanced and correctly annotated with 6000 images for

each class and contains 50000 images for training and 10000 for

testing. SHL [19] dataset was collected from the onboard sensors

of HUAWEI Mate 9 smartphones to recognize the locomotion

modes of the users.

B. Baselines

We considered the existing techniques [9], [13], [14], [15]

as baselines, noted as HeteroFL [9], FedAvg [13], Tifl [14] and

Share [15], to evaluate and compare the performance. The details

of considered baselines are discussed the Section II.

C. Evaluation Strategy

The primary motive of FL is to improve the local performance

and generalization ability. We adopt these strategies:

1) Local performance: It determines: how well the local

model is trained on the dataset of the participants?

2) Cluster performance: It estimates: how well the partici-

pants can improve the cluster-wise performance through

the aggregation of WPM?

3) Global performance: It is the simple average over cluster

performance and helps to determine: how much deviation

is observed in the cluster performance from the average

value?

D. Evaluation Metrics

We use the standard metrics, including accuracy and F1-

score, to evaluate the performance of the Fed-RAC. We also

introduce a new performance metric, namely rounds-to-reach

x%. Let I(x%)denote the symbolic representation of the metric.

I(x%) counts the number of iterations (or rounds) required for

achieving the performance of x%. We finally use the leave-one-

out-test metric that trains the model for all class labels except

for one randomly chosen class label.

E. Ablation Studies

1) Impact of Resource Aware Clustering: This experiment

aims to assess the efficacy of resource-aware clustering. The

resource vectors of the devices used in the experiment are

shown in Table III. The resource vector comprises process-

ing capacity, transmission rate, and memory, and is obtained

from a survey conducted on 128 smartphone users, with prior
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TABLE III
AVAILABLE RESOURCES SET P OF 40 PARTICIPANTS

permission obtained from the relevant authorities. From this

survey, we randomly select 40 users to create different clusters

using the Fed-RAC approach, as discussed in Section IV-A.

Communication rounds are set to 200, and other parameters

are described in Section V. The effectiveness of resource-aware

clustering is evaluated using three types of resource vectors.

The first type uses unnormalized resource vectors of the partic-

ipants, whereas the second type uses normalized vectors with

λ1 = λ2 = λ3 = 1/3. The third type is similar to the second but

with λ1 = 0.4, λ2 = 0.4, and λ3 = 0.2. Similarly, other versions

of λ1, λ2, and λ3 are in Table IV.

Table IV presents the results of evaluating the impact of

normalizing resource vectors on estimating the optimal number

of clusters. The findings show that un-normalized vectors yield

a limited number of clusters, namely 4 (C1 − C4), using Dunn

Indices. This is due to the dominance of the transmission rate

resource over other resources, resulting in non-optimal clusters.

By applying unit-based normalization, all resource values are

scaled into the range of [0,1]. The normalized values generate

an optimal number of clusters using Dunn Indices, as it removes

resource bias. We obtained 6 clusters (C1 − C6) by assigning

equal contributions of all resources, i.e., λ1 (processing capacity)

= λ2 (transmission rate)= λ3 (memory)=1/3. When we set the

contribution based on the analysis given in [32], [33], λ1 = 0.4,

λ2 = 0.4, and λ3 = 0.2, we obtained 5 clusters (C1 − C5).

Table IV presents the performance achieved by the Fed-RAC

approach using different types of resource vectors on MNIST,

HAR, CIFAR-10, and SHL datasets. The results show that

normalizing the resource vector leads to improved performance

compared to using unnormalized vectors. The normalization

process is essential because when using unnormalized vectors,

clustering relies on the dominating resource, leading to non-

optimal clusters. These clusters may contain participants with

non-identical resources that converge at irregular intervals, re-

sulting in reduced cluster performance. Moreover, when the con-

tributions of processing capacity (λ1) and transmission rate (λ2)

are greater than memory (λ3), i.e., λ1 = λ2 = 0.4 > λ3 = 0.2,

the cluster performance is high. An observation is made that

an increase in memory contribution for cluster determination

results in a decrease in the number of disjoint clusters, particu-

larly when processing power and transmission rate parameters

are low. In this scenario, participants with higher memory al-

locations tend to be assigned to higher clusters, contributing

to a reduction in the overall cluster count. However, assigning

smaller weights to processing and transmission may result in

Fig. 2. Impact of leader-follower technique on the performance of models in
different clusters using HAR and CIFAR-10 datasets.

insufficient and sub-optimal training, leading to a decrease in

performance.

2) Impact of Clusters Compaction: Table V illustrates the

impact of cluster compaction on the performance of Fed-RAC

using MNIST, HAR, CIFAR-10, and SHL datasets. Table V(a)

demonstrates the cluster accuracy when all five clusters, esti-

mated previously, are available. The results depicted that the fol-

lower clusters, C2 − C5, achieved comparable performance in

contrast withC1 ( leader cluster). Moreover, clusterC3 achieved

a higher performance than C1. This performance enhancement

is due to the distillation of knowledge from leader to follower

clusters during training. The details experiment on the impact

of using knowledge distillation is elaborated in Section VI-E3.

Apart from Table V(a), and (b) illustrates the performance of

different clusters on considered datasets after compaction. The

results showed a clear margin of improvement in the global and

cluster-wise performance while using the cluster compaction in

the Fed-RAC. This is due to the increment in the number of

participants in each cluster.

3) Impact of Leader-Follower Technique: In this experiment,

we aim to evaluate the performance improvement of the follower

models assigned to each cluster (other than the leader cluster)

using the leader-follower technique discussed in Section IV-C.

We consider the four clusters, C1 − C4, obtained from the

compaction in the previous result. The communication round

is fixed at 200. However, to ensure brevity, we only present the

results on HAR and CIFAR-10.

Fig. 2 illustrates the impact of the leader-follower technique

on the performance of models in different follower clusters.

Clusters C2 − C4 gain significant improvement in performance

due to the distillation of knowledge from the leader model in

C1, as shown in Fig. 2(b) and (d). The results demonstrated that

the improvement in the model’s performance is significant at low

resource clusters (C4) and reduced gradually to C2. It is because

if the size of the cluster model is small then the logit difference

between leader and follower is higher. Contrarily, if the differ-

ence between the size of the cluster model and the leader model

is less, the logit difference is limited; thus, the performance gain

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:03:45 UTC from IEEE Xplore.  Restrictions apply. 



MISHRA et al.: FED-RAC: RESOURCE-AWARE CLUSTERING FOR TACKLING HETEROGENEITY OF PARTICIPANTS IN FEDERATED LEARNING 1217

TABLE IV
IMPACT OF RESOURCE AWARE CLUSTERING ON CONSIDERED MNIST, HAR, CIFAR-10, AND SHL DATASETS USING DIFFERENT TYPES OF RESOURCE VECTORS

TABLE V
IMPACT OF CLUSTER COMPACTION ON THE ACCURACY OF THE FED-RAC

USING DIFFERENT DATASETS (MNIST, HAR, CIFAR-10, AND SHL)

is low. Cluster C4 gains accuracy of ≈ 8% for HAR and ≈ 11%
for CIFAR-10 datasets, whereas the performance gain for C2

is ≈ 2% for both datasets. Furthermore, in FL-based training,

we considered participants with heterogeneous resources; thus,

participants with the highest and lowest resources, respectively,

achieved colossal and most minor performances. It also creates

a significant difference between the performance of the models

in the largest and smallest clusters, which aggregately results

in performance compromise despite clustering. Therefore, KD

is incorporated to enhance the performance of models in the

smaller clusters.

F. Sensitivity Analysis

This experiment aimed to investigate how the learning rate

affects the performance of Fed-RAC. MNIST, HAR, CIFAR-10,

and SHL datasets were used, and the communication rounds

were set to 5, 10, 20, and 20, respectively. The rounds were

restricted as the approach converged at any learning rate at higher

communication rounds.

Table VI provides a comprehensive overview of how varying

learning rates impact the model accuracy within the leader

cluster of Fed-RAC across MNIST, HAR, CIFAR-10, and SHL

TABLE VI
IMPACT OF LEARNING RATE ON THE ACCURACY OF THE MODEL IN THE

LEADER CLUSTER

datasets. The observed outcomes underscore the significance of

selecting an appropriate learning rate for optimal model perfor-

mance. Notably, employing a smaller learning rate (e.g., 0.002)

yielded favourable results for Fed-RAC across all datasets. The

lowest accuracy was recorded for the learning rate of 0.010

due to faster convergence, which led to sub-optimal model

performance. Particularly, the MNIST dataset demonstrated ac-

celerated convergence in Fed-RAC, achieving accuracy beyond

90% across all datasets after merely 5 communication rounds.

While the accuracy trend for the Fed-RAC approach generally

followed a linear pattern across different datasets, a nuanced

observation revealed plateaued behaviour for learning rates be-

tween 0.006 to 0.008. This plateau suggests a delicate balance in

selecting the learning rate to ensure optimal convergence without

compromising performance. Furthermore, the substantial dif-

ference of over 8% in cluster accuracy between the learning

rates of 0.002 and 0.010 underscores the critical importance

of judiciously choosing the learning rate during training. This

disparity highlights the direct impact of the learning rate on

the Fed-RAC approach’s efficacy and emphasizes the need for

careful consideration in achieving the desired balance between

convergence speed and model accuracy.

G. Performance Comparison

1) Impact of Communication Rounds: This experiment in-

vestigates the impact of different datasets on the convergence of

the Fed-RAC and considered baselines. All 40 participants were

involved in the FL operation, and thus FedAvg and Tifl utilized

the smallest follower model to ensure deployment and training

on all participants. The communication rounds for Fed-RAC

were determined as the rounds required for the convergence of

the leader model plus the maximum rounds required for the

convergence of the slowest follower model.
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Fig. 3. Illustration of impact of datasets on the convergence rounds of Fed-
RAC, FedAvg, HeteroFL, Tifl, and Shape.

Fig. 3 shows the impact of the considered datasets, namely

MNIST, HAR, CIFAR-10, and SHL, on the convergence of Fed-

RAC, FedAvg, HeteroFL, Tifl, and Shape. The learning curve

depicted in the figure displays a classic shape with a two-step

behaviour. Initially, the performance improves steeply until it

reaches a plateau value after some communication rounds. Then,

the accuracy increases with more communication rounds. Fed-

RAC outperforms the existing approaches on all communication

rounds during the experiment. The participants in the leader

cluster (C1) quickly converge due to sufficient resources to train

a large-size model. The Fed-RAC approach also incorporates

KD to train the models at the participants, leading to well-

behaved optimization steps compared to non-KD-based training

and reduced communication rounds. On the MNIST dataset, all

approaches achieved convergence at lower rounds with marginal

improvement afterwards, as shown in Fig. 3. This is due to the

balanced and sufficient number of instances for all classes in

MNIST. FedAvg achieved slower convergence with minimal

accuracy due to incompetence in handling heterogeneity among

the participants and using a small-size model to accommodate

all 40 participants during training. HeteroFL and Tifl achieved

comparable performance to Fed-RAC due to the strategy of

addressing heterogeneity.

2) Impact of Rounds-to-Reach X%: The objective of this

experiment is to investigate the effectiveness of the proposed

Fed-RAC in achieving a global accuracy of x% within a certain

number of communication rounds. To achieve this, we have

set the value of x to be 96, 92, 88, and 85 for MNIST, HAR,

CIFAR-10, and SHL datasets, respectively, taking into account

the convergence rates of these datasets. Fed-RAC involves train-

ing the model in the leader cluster followed by parallel training

of models in the follower clusters. As such, we define the Total

Required Rounds (TRR) for complete training as the sum of

rounds required to train the model in the leader cluster (C1) and

the maximum rounds required to train the model in any of the

follower clusters (max rounds{C2, C3, C4}).

Table VII presents the results of the rounds-to-reach x%
metric on the datasets and illustrates the impact of this metric on

TABLE VII
ILLUSTRATION OF IMPACT OF ROUNDS-TO-REACH x% GLOBAL ACCURACY ON

CONSIDERED DATASETS

Fig. 4. Impact of leave-one-out test metric on MNIST, HAR, CIFAR-10, and
SHL datasets using Fed-RAC (without KD), Fed-RAC (with KD), FedAvg,
HeteroFL, Tifl, and Shape approaches.

the Fed-RAC. The results indicate that the Fed-RAC approach

(cluster-wise with KD) outperforms the baseline approaches,

including cluster-wise without KD. This can be attributed to

two main reasons. First, the participants in the leader cluster

(C1) have sufficient resources to train large models, which

leads to quicker convergence. Second, the Fed-RAC approach

incorporates KD to train the models at the participants, resulting

in well-behaved optimization steps compared to non-KD. Re-

garding the convergence of cluster-wise without KD, the results

are not reported for models in clusters C3 and C4 on HAR,

CIFAR-10, and SHL datasets. This is because, in the absence of

KD, the participants in clusters C3 and C4 are unable to achieve

the desired x% accuracy within the cap of 200 communication

rounds. Further, we used small models in FedAvg, to involve

40 participants. Although the use of KD appears to incur higher

computational costs compared to the baselines that do not in-

corporate KD, Fed-RAC achieves the desired performance in

fewer communication rounds, thus reducing the computational

cost.

3) Leave-One-Out: The objective of this experiment was to

assess the overall performance of Fed-RAC and several baseline

approaches in a scenario where instances of a randomly selected

class label were not included in the training but appeared in the

testing. The class label with the highest number of instances

was selected as the leave-out class during the experiment. The

communication rounds were set to 200, and the parameters and

local epochs were determined according to the implementation

details discussed in Section V.

In Fig. 4, the impact of removing instances of one class label

from the training of all participants in FL is demonstrated. The

results show that Fed-RAC outperforms the existing approaches,

which is consistent with the performance pattern observed in

previous results. The approach that does not use KD clustering

(referred to as the “without KD clustering approach”) achieved
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TABLE VIII
ILLUSTRATION OF TRAINING DURATION OF DIFFERENT APPROACHES ON THE

SEQUENTIAL MACHINE AND HAR DATASET WITH AVAILABLE 40
PARTICIPANTS

the lowest performance, likely due to the small-size models

trained on follower clusters with a limited number of participants

in each cluster. This negatively impacted the overall performance

of the approach. The MNIST dataset achieved the highest perfor-

mance due to the large number of instances for classes other than

the excluded one. Conversely, the SHL dataset had the lowest

performance due to the excluded class having the highest number

of instances.

4) Training Duration: In this section, we analyze the training

time duration on a sequential machine, and the results are

presented in Table VIII. The findings indicate that the FedAvg

approach exhibits the shortest training time, while Tifl requires

the most time due to its two-level training and weight exchange

among participants. Notably, our proposed approach, Fed-RAC,

requires more training time than FedAvg, yet it ensures the

participation of all participants, akin to Tifl.

VII. DISCUSSION AND FUTURE WORK

In this section, issues are discussed that need to be addressed

in future work in conjunction with the proposed approach. The

approach uses a leader-follower technique where logits and

features from the leader cluster model are sent to the remaining

clusters. However, this could potentially expose private training

data or enable participants to reconstruct models. To address

these privacy concerns, future work on incorporating security

aspects is necessary. Furthermore, while Fed-RAC considers

participant heterogeneity, it does not account for noise in data

instances and labels. Therefore, future work will involve incor-

porating such noise into the model training process. Further,

we acknowledge the potential significance of fine-tuning this

parameter. We are actively exploring further experiments to

identify an optimal α value that could enhance the performance

of Fed-RAC in our future investigations.

VIII. CONCLUSION

In this paper, a federated learning approach called Fed-RAC

is proposed to address the negative impact of heterogeneous

participants. Unlike previous studies, Fed-RAC trains local

models on all participants despite differences in heterogeneity

and training time. The approach first identifies the optimal

number of clusters based on available devices and networking

resources, then generates and randomly initializes a model that

is used for compression to obtain models for all clusters. A

participant assignment mechanism and a leader-follower tech-

nique are introduced to improve the performance of lightweight

models using knowledge distillation. Experimental evaluation

is conducted to verify the approach’s effectiveness on existing

datasets, leading to several key findings: successful federated

learning requires proper management of participant heterogene-

ity, resource-aware clustering helps identify the optimal number

of clusters, the number of data instances significantly affects

cluster performance, and the leader-follower technique enhances

performance based on model size.
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