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Fed-RAC: Resource-Aware Clustering for Tackling
Heterogeneity of Participants in Federated Learning

Rahul Mishra
and Sajal K. Das

Abstract—Federated Learning is a training framework that
enables multiple participants to collaboratively train a shared
model while preserving data privacy. The heterogeneity of devices
and networking resources of the participants delay the training
and aggregation. The paper introduces a novel approach to fed-
erated learning by incorporating resource-aware clustering. This
method addresses the challenges posed by the diverse devices and
networking resources among participants. Unlike static clustering
approaches, this paper proposes a dynamic method to determine
the optimal number of clusters using Dunn Indices. It enables
adaptability to the varying heterogeneity levels among participants,
ensuring a responsive and customized approach to clustering. Next,
the paper goes beyond empirical observations by providing a math-
ematical derivation of the communication rounds for convergence
within each cluster. Further, the participant assignment mechanism
adds a layer of sophistication and ensures that devices and network-
ing resources are allocated optimally. Afterwards, we incorporate
a leader-follower technique, particularly through knowledge dis-
tillation, which improves the performance of lightweight models
within clusters. Finally, experiments are conducted to validate
the approach and to compare it with state-of-the-art. The results
demonstrated an accuracy improvement of over 3% compared to
its closest competitor and a reduction in communication rounds of
around 10%.

Index Terms—Federated learning, heterogeneity, leader-
follower technique, resource aware clustering.

I. INTRODUCTION

EDERATED Learning (FL) is a newly emerging paradigm
I l that enables a distributed training framework where data
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collection and model training occur locally for each participant.
Thus, it preserves data privacy and reduces the communication
overhead of transmitting data to the server [1]. Unlike traditional
distributed training frameworks that require consensus after each
local iteration, either through server or peer communication, FL
minimizes the frequency of consensus among distributed partic-
ipants. FL is initiated by the central server, which broadcasts a
randomly initialized model to all participants. Each participant
trains the received model using their local dataset and sends the
Weight Parameter Matrices (WPM) to the server. The server
then aggregates the WPM received from multiple participants
and sends back the aggregated one, generating a robust and
generalized model [2].

FL participants exhibit significant heterogeneity in terms of
devices and networking resources, including processing speed,
available memory, and data transmission rate. Each participant
uses its resources to load the model and train it locally. The
availability of device resources among participants depends on
their respective configurations and installed services, leading
to irregular intervals between WPM generation [3], [4]. Fur-
thermore, the data transmission rate affects the time required
to upload WPM from participants to the server. Consequently,
participant heterogeneity hinders the simultaneous transmission
and aggregation of WPM. Thus, slower participants (i.e., strag-
glers) delay the entire training process. The server can mitigate
this issue by setting a Maximum Allowable Response (MAR)
time for training to minimise the delay caused by stragglers.
However, using a fixed MAR time can result in inadequate
training due to a reduced number of local updates.

Previous research on FL has addressed the challenge of par-
ticipant heterogeneity, excluding stragglers from the training
process [5]. However, this approach comes with a drawback,
as it prevents the system access to valuable datasets held by
stragglers, consequently diminishing the model’s generalization
ability. Next, cluster-based techniques have been proposed in the
literature to address participant heterogeneity in FL. These meth-
ods leverage various factors such as the relationship between
local datasets [5], the similarity of local updates [6], and social
relationships between participants [7] to form clusters. However,
anotable gap in these studies is the oversight of considering the
devices and networking resources of participants during the clus-
tering process. Further, the researchers [8] have highlighted the
challenge posed by heterogeneous devices in FL, restricting the
size of the global model to accommodate stragglers. Similarly, in
the proposal by [9], a technique named HeteroFL was introduced
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to address variations in computational and communication re-
sources by generating multiple-sized models and selecting the
optimal one for each participant. Despite these advancements,
neither [8] nor [9] have adequately tackled the issue of enhancing
the performance of lightweight models used by participants
with limited resources. Finally, the work presented in [10], [11]
has explored the application of Knowledge Distillation (KD) to
improve the performance of lightweight models, which is similar
to performance enhancement in the proposed work.

This paper presents a novel approach called Fed-RAC (short
for Federated learning with Resource Aware Clustering) to
address the negative impact of participant heterogeneity in
Federated Learning. We investigate the effect of participant
heterogeneity and determine an expression for the required com-
munication rounds per cluster. Fed-RAC is also designed to esti-
mate the error caused by inconsistent objective functions in the
presence of heterogeneous devices and networking resources.
In particular, we focus on investigating the following problem:
“How can we achieve satisfactory performance while training
local models on heterogeneous participants in FL within the
given MAR?” To this end, the major contributions and novelty
of this work are as follows:

e Resource aware clustering: The first contribution is to
conduct resource-aware clustering for identifying the most suit-
able number of clusters based on the devices and networking
resources available to the participants. The server first gathers
information regarding the processing speed, data transmission
rate, and available memory of all participants to create resource
vectors. These vectors are then subjected to unit-based nor-
malization to bring their values within the range of [0,1]. To
determine the optimal number of clusters, the server calculates
the Dunn Indices [12] among the normalized resource vectors
of all participants.

e Participants assignment to the clusters: The next contribu-
tion is the allocation of participants to the identified clusters,
ensuring that the model training within each cluster is per-
formed within a specified maximum allowable response time and
communication rounds. Additionally, a mathematical analysis
is carried out to derive the expression for the communication
round and error caused by an inconsistent objective function in
the presence of heterogeneous participants.

o Leader-follower technique: Further, our approach intro-
duces the leader-follower technique to enhance the performance
of the generic model in low-configuration clusters (followers)
by leveraging the model of the highest configuration cluster (
leader). In this technique, the leader model is initially trained,
and then it guides the training of follower models using knowl-
edge distillation to improve their performance.

o Experimental validation: In the end, we conduct experi-
mental evaluations to confirm the effectiveness of the Fed-RAC
approach. We validate our proposed method by comparing it
with existing baseline techniques [9], [13], [14], [15], using
various evaluation metrics and established datasets [16], [17],
[18], [19]. The results demonstrate that the proposed approach
achieves better performance in the presence of heterogeneous
participants.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Paper Organization: Section Il provides an overview of the re-
lated literature. Section III outlines the preliminary information
and problem statement of our proposed approach. Section IV
details the Fed-RAC approach and System Implementation in
Section V. Section VI evaluates the performance of our ap-
proach, while Section VII presents the discussion and future
directions for this work. Finally, Section VIII concludes the

paper.

II. BACKGROUND AND MOTIVATION

e Heterogeneous participants in FL: FL involves a signif-
icant number of participant devices with varying resources,
leading to degraded performance and increased convergence
time when running the same model on all participants. The
authors in [8] identified the problem of heterogeneous devices
in FL, which limits the size of the global model to accommodate
low-resource or slow participants. They proposed a dynamically
adaptive approach to model size called ordered dropout, FjORD.
HeteroFL [9] introduced the technique to handle variation in
computational and communication resources. TailorFL [20]
introduced a dual-personalized FL system to address system
and data heterogeneity, involving tailored model updates for
individual devices and a global aggregation. Next, the authors
in [21] involved adaptive model quantization to address device
heterogeneity, dynamically adjusting model precision during the
federated learning process for improved collaboration among
diverse devices. FedRolex [22] proposed FL with rolling sub-
model extraction, allowing devices with diverse model architec-
tures to collaboratively train, extract sub-models, and contribute
to a shared model.

In previous studies, mechanisms proposed to address the
issue of stragglers in FL, including asynchronous [23], [24] and
semi-synchronous [25] global update approaches. The authors
in [23] introduced an asynchronous algorithm to optimize the
FL-based training for stragglers. The algorithm solved the local
regularization to ensure convergence in finite time and per-
formed a weighted average to update the global model. Similarly,
the authors in [24] introduced the mechanism of asynchronous
learning and weighted temporal aggregation on participants and
server, respectively. To overcome the problem of higher waiting
time, the authors in [25] introduced the semi-asynchronous
mechanism, where the server aggregates the weight from a set
of participants as per their arrival order.

e Clustering in FL: The prior studies utilized the relationship
between local datasets [5], the similarity of local updates [6],
and social relationship between the participants [7] to form
clusters in FL. Authors in [5] exploited the intrinsic relationship
between local datasets of multiple participants and proposed a
similarity-aware system, namely ClusterFL. The system gen-
erated various clusters based on the similarity among local
datasets. In [6] authors introduced a modified FL approach,
where hierarchical clustering is performed as per the similarity of
local updates. Similarly, the authors in [ 14] proposed a tier-based
FL, TiFL, that operates by dividing participants into tiers based
on their computational capabilities. The authors in [15] utilized

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:03:45 UTC from IEEE Xplore. Restrictions apply.



MISHRA et al.: FED-RAC: RESOURCE-AWARE CLUSTERING FOR TACKLING HETEROGENEITY OF PARTICIPANTS IN FEDERATED LEARNING

a hierarchical FL approach by shaping data distribution at the
edge to enhance communication efficiency through a multi-level
aggregation.

e KD-based performance improvement: The existing litera-
ture introduced various techniques to improve the performance
of the lightweight model using a large-size model via KD [10],
[11]. The concept of KD was first introduced by the authors
in [10], where the knowledge of a large-size model (teacher) is
utilized to improve the performance of the lightweight model
(student). The authors in [26] proposed a method for achieving
personalized edge intelligence through federated learning and
self-knowledge distillation. Next, the authors in [11] introduced
pre-trained and scratch teacher-guided KD techniques to im-
prove the performance of students. In [27], the authors proposed
FedMD introduces a methodology for heterogeneous FL through
model distillation, leveraging a process where a central server
distils a unified model from various device-specific models with
diverse datasets. Further, the authors in [28] centred on utilizing
ensemble distillation to enhance model fusion in FL, involving
training an ensemble on global model updates and distilling
ensemble knowledge into a centralized model. FedGKT [29]
methodology focused on FL, utilizing group knowledge transfer
to facilitate the training of large convolutional neural networks
at the edge devices.

Motivation: We observed the following limitations in existing
literature. Prior studies discarded stragglers from the training to
cope up with the heterogeneity of the resources among partici-
pants in FL [5]. When the stragglers are discarded, their available
local datasets are not utilized during training, which reduces
the generalization ability of all the participants. In addition,
discarding slow participants hampered their performance im-
provement via FL. The asynchronous federated learning mecha-
nisms [23], [24] demand the server to wait for stragglers, leading
to significant waiting time. The semi-asynchronous global ag-
gregation mechanism [25] is more effective than synchronous,
but it discards some participants in each communication round.
Suppressing the communication round for aggregation [30] also
increases the stale models at participants. The existing work
exploited clustering in FL but not considered the devices and
networking resources [5], [6], [7].

Communication overhead due to a hierarchy and sensitivity to
edge device heterogeneity is observed in [15]. The knowledge
distillation poses potential information loss when the teacher
model is randomly initialized and training may be delayed
when dealing with large model sizes, depending on the resource
availability of participants in [27]. Additionally, concerns re-
garding computational overhead in ensemble training, as dis-
cussed in [28], further motivate the exploration of more efficient
approaches. Challenges encompassing dual-personalization, in-
creased computational demands, and sensitivity to system and
data variations, as indicated in [20], underscore the need for tai-
lored solutions. FedRolex [22], facing complexities in managing
heterogeneous models and communication overhead, highlights
the demand for effective sub-model compression. Finally, the is-
sues of increased computational demands, communication, and
the necessity for efficient coordination in knowledge transfer, as
evident in [29].
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III. PRELIMINARIES AND PROBLEM STATEMENT
A. Preliminaries

This work considers a set P of IV participants and a central
server, where P = {p1,...,pn}. We consider a multi-class
classification problem with a set (Q of ¢ classes, i.e., Q =
{1,...,c}. Each participant p; has a local dataset D; with n;
number of instances and set of () classes, where 1 < i < V. Let
(x4, yi;) denotes an instance of dataset D;, where 1 < j < n,.
During training the model on the participant p; learn the mapping
between x;; and y;;,Vj € {1 < j < n;},tobuild aclassifier IT;.
The classifier recognizes the class label of unidentified instances
in testing. Let B, denote the batch size used for the training
model on p;. Further, let 7; represent the number of Stochastic
Gradient Descent (SGD) operations performed in one round of
training on p;. 7; is estimated as: 7, = | En;/B; |, where E is
the number of local epochs to train on p;. We can change B; and
n; to change 7;.

B. FL With Heterogeneous Participants

FL begins with the generation and random initialization of a
model at the central server that further broadcasts the initialized
model to all the participants. Each participant p; receives and
trains the model using local dataset D; with n; instances, where
1 <4 < N. p; performs training for £ number of local epochs
on a batch size of B; over n; instances using SGD operations
7;. The participant minimizes the local loss function £;(w;),
where w; is the WPM of p;. £;(w;) is estimated as: £;(w;) =

L E](—l zj(wij)’ where Wi € Wy, 1< j <n;,and1 <1<
N The participant transfers estimated £, (-) and w; to the server
for global aggregation. Upon receiving a local loss and WPM
from all the participants, the server estimates global loss (L(w))
and WPM (w) as:

N n, N n,
ﬁ(W) ;(nl...n]v>£2(wz>’w ;<n1...n1\/>wl'

The server broadcasts w for the next round of training. The
process of local training and aggregation are orchestrated for R
iterations to achieve a trained model for all the participants. At
each global iteration ¢ € R the local loss function and WPM are
denoted as Lt( t) and w! for participant p;, respectively, where
1 <i < N.wt! at global iteration ¢ (t € R) of participant p; is
updated as: w! = w! ™! — nVLi(w?), where 7 is the learning
rate. Using the above equation, we can define the objective
function of FL as follows:

ZZ( . )ﬁi(wi)- (1)

t1 41

min £(w
WR

1) Heterogeneous Participants: The heterogeneous partici-
pants in FL require non-identical training and communication
time. Let T; denotes training and communication time of p;,
estimatedas: T; = T*.E + T7,Vi € {1,2,... N}, where T is
the training time for one local epoch, and T is the per-round
communication time for sharing WPM from p; to server. The
participants trained the local model and communicated WPM
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in parallel. Thus, for each iteration ¢ € R the training and com-
munication time 7" depends on the slowest participant, where
T* = max;<;<n{T;}. We obtain total training time, denoted as
T(N,E,R), as

T(N,E,R) ZTt

t1

Z max {7T}}. 2)

1<i<N

2) Objective Inconsistency: The server has a fixed MAR time
to complete the global iterations, which reduces the training
delay due to slow processing and communication of stragglers.
It also minimizes the idle time of faster participants. However,
the number of local SGD operations varies over heterogeneous
participants within the fixed MAR time. The faster participants
perform more local updates in contrast with stragglers. In addi-
tion, the number of local updates on the participants also varies
across the communication rounds. The objective function of FL
given in (1) relies upon the assumptions that the number of local
updates, 7; for p; Vi € {1,2,..., N}, remain the same for all
participants (7; = 7). However, the variation in the local updates
on the heterogeneous participants results in an inconsistent ob-
jective function for FL [31]. Let £(W”) denotes the inconsistent
objective function, where W is the aggregated WPM gener-
ated after R global iterations. The error (err) between actual
and inconsistent objective function is defined as err = |£(W"R)
— L(wWR)].

C. Problem Statement and Solution Overview

The fundamental challenges encountered while developing
an FL approach to mitigate the heterogeneity are: /) how to
reduce the training and communication time of the stragglers in
FL? 2) how to achieve adequate performance within the fixed
time interval for communication? and 3) how to minimize the
error gap between actual and inconsistent objective functions
due to heterogeneous participants. In this work, we investigate
and solve the problem of training the local model on all the
heterogeneous participants within a given maximum allowable
response time, achieving adequate performance and minimizing
error due to inconsistent objective function.

Apart from the standard FL workflow, the Fed-RAC trains
the local models on all the participants despite higher het-
erogeneity and reduces training time without compromising
performance. Fed-RAC starts with the estimation of the opti-
mal number of clusters to accommodate all N heterogeneous
participants. We named the step as resource aware cluster-
ing (Section IV-A). During clustering, a set K of k clus-
ters is first identified (Section IV-Al), followed by the gen-
eration of a generic model for each cluster (Section IV-A2).
Next, the participants are assigned to the empty clusters us-
ing participant assignment mechanism (Section IV-B). Fur-
ther, we introduce leader-follower technique (Section IV-C)
to enhance the performance of the generic models using
KD.
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IV. FED-RAC: FEDERATED LEARNING VIA RESOURCE AWARE
CLUSTERING

In this section, we first cover the details of the Federated
learning approach to mitigate the heterogeneity of participants
using Resource Aware Clustering (Fed-RAC). The workflow of
the Fed-RAC is shown in Fig. 1.

A. Resource Aware Clustering

This sub-section describes the mechanism of dividing the
set of N participants into k disjoint clusters. The clustering
is performed on the server to preserve the resources of the
participants. In doing so, the server fetches three resources from
all the participants, i.e., processing speed, data transmission
rate, and available memory, denoted as s;, r;, and a; for p;
(1 <@ < N), respectively. s; and a; are the machine-dependent
parameters that rely upon the configuration of the devices. The
data transmission rate r; depends on the bandwidth, channel
coefficient, and path loss between participant and server and
is estimated. The static information of s;, r;, and a; from
the participants are used to initialise the Fed-RAC approach.
Afterwards, the approach provides the opportunity to upgrade
or downgrade the cluster depending on the available dynamic
resources of the participants. If a participant is in the smallest
cluster and its resources are dynamically reduced then Fed-RAC
sets batch-size and local epochs to continue the training, as
discussed in Section IV-B3. It implies the Fed-RAC can easily
tackle the dynamic resources of the participants in FL.

All the participants of a cluster possess similar process-
ing speeds, transmission rates, and memory. However, it is
tedious to determine the similarity among the three inde-
pendent resources. Thus, we use a vector v; = [s;, 4, a;] for
participant p; (1 <¢ < N) to estimate similarity among re-
sources. We use normalize vector ©; = [$;, 7, a;] in place of

v;, to eliminate impact of biasness of high values. The bias

s;—min{s; }1N 1
max{s; } ¥ l—mln{s'
a; are also estimated similarly. We further estimate the sim-

ilarity (S;;) among any two participant p; and p; using nor-
malized vectors ©; and v, respectively, Vi,j € {1,2,..., N}
using euclidean distance. S;; is estimated as: S;; =
\/)\1(5_1‘ — S_j)2 -+ )ug(ﬂ — 7’_])2 + A.B(di — CL_j)2, where )\1, )\2
and X3 are the contributions of processing capacity, transmission
rate, and memory, respectively, A; + Ao + A3 = 1. A1, Ao, and
A3 can be obtained from [32], [33].

1) Estimating Optimal Number of Cluster k: We introduce
a modified version of the conventional Dunn and Dunn-like
Indices [12] to estimate the optimal number of clusters using
similarity. We use k-means clustering to determine the optimal
number of clusters. Dunn index identifies an optimal number of
clusters that hold compactness and provide good separation. Let
C'y and C, denote clustersin K (Cy, Cy € {Ch,...,Cy},Cy #
Cy). The least distance dist(Cy, Cy) among C'y and Cy is given
as:

value §; is estimated as: §; = T 7; and
=1

dist(Cy,Cy) = Sij- 3)

min
piGCf ,Pj eC_q,C’f;éC’g
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Fig. 1.  Workflow for Fed-RAC approach. o1—o4 steps for resource aware clustering, o5 generating generic model for each cluster, o6 participants assignment to

the clusters, and o7 leader follower technique to improve performance.

TABLE 1
ILLUSTRATION OF AN EXAMPLE SCENARIO HAVING TEN PARTICIPANTS WITH
RESOURCE VECTORS AND NORMALIZED RESOURCE VECTORS

Participant Resource vector Normalized resource vector
P1 1 = [100, 10, 20] 01 = [0.5,0.375, 0.5]
D2 ve = [50, 15, 30] o =[0,1,1]

P3 vz = [75,8, 25] U3 = [0.25,0.125,0.75]
Pa vy = [125,10, 15] U4 = [0.25,0.625,0.75]
5 vs = [150,7,10] U5 = [1,0,0]

D6 ve = [110, 10, 25] i = [0.6,0.375,0.75]
7 vy = [125,15, 20] o7 = [0.75,1,0.5]
P8 vg = [80, 10, 10] Ug = [0.30,0.375, 0]
P9 vg = [75, 15, 20] U9 = [0.25,1,0.5]
P10 v10 = [50, 10, 30] vio = [0,0.375,1]

The diameter dia(C}) of cluster Cy € {C1, ...,

Cy} is the

distance between participants in Cy. Let plf and p(]; be the two

participants in C'y (pl # D 1), dia(Cy) is estimated as:

dia(C’f) = ;

max
Dy pheC; 717{ #p)

f
st

Using (3) and (4), we estimate Dunn Index (DI (k)) as:

DI(k) =

min min
VCeK |VC, ek, Cp#C,

diSt(Cf7 Cg)

machf cK dia(Cf)

“)

) o

A high positive value of DI(-) indicates a compact and
adequate number of clusters. The divergence-based Dunn and
Dunn-like Indices start with & = 2 and terminate when DI(-)
achieves a higher positive value. We use the maximum number
of clusters kymqr < V'N as the rule of thumb, inspired from [34].
The complete steps to obtain the optimal number of clusters are
given in Procedure 1.

Example 1: Let there are 10 participants denoted as
P1, - - ., P1o- Theresource and normalized vectors of the example
are shown in Table I. Using Procedure 1 with A; = A9 = A3 =
1/3, we obtain k = 3 as optimal clusters.

Procedure 1: Optimal Number of Clusters.

Input: Set of N participants P in FL;
Output: Optimal set of k clusters £ = {C4,Ca, - -
Initialization: j < 0, Cs < [, C={}, k + 2;
for each participant p; € {p1,p2,---pn} do
L Server extracts information of s;, r;, and a; from p;;

,Cr}s

B W N =

Estimate resource vector v;;

]

for each participant p; € {p1,p2,---pn} do
6 L Estimate s;, 7;, and a; for p; and vector v;;

while & < /N do
Perform k-mean and estimate similarity among vectors;
for each pair Cy,Cy € {C1,C2,--- ,Ck},Cf # Cy do
10 L Estimate Dunn index (DI(k)) using (5);

11 Cs + append(DI(k)), k < k +1;

12 j < argmax(Cs), k < j + 1; /*Optimal number of clusters*/
13 return K = {C1,Cs, -+ ,Ci};

e ® 3

TABLE I
IMPACT OF CLUSTERING TECHNIQUES ON DI VALUES AND ACCURACY AT
DIFFERENT VALUES OF k USING MNIST DATASET

Cluster DI values
technique k=2 k=3 k=4 k=5 k=6
k-means 0.1517 0.1965 0.2165 0.2317 0.1750
DBSCAN 0.2231 0.1819 0.1642 0.1419 0.1236
OPTICS 0.1165 0.1208 0.1037 0.0839 0.0673
[ Accuracy (£0.30) | 94.39%  95.07%  96.32% 97.73%  95.67% |

Acc = accuracy.

Apart from k-means clustering, we also consider density-
based clustering to obtain the optimal number of clusters using
normalized resource vectors. We use Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) and Ordering
points to identify the clustering structure (OPTICS) [35] during
the experiment. Table II illustrates the DI-values and accuracy
for different k using k-means, DBSCAN, and OPTICS using the
resource vectors, discussed in Section VI-E1. From the results
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in the table, we observe that for DBSCAN clustering, the DI
value decreases with increasing k; thus, it predicts £ = 2 as an
optimal number of the cluster. However, the difference between
resources among the participants within a cluster is high, which
results in lower accuracy. Moreover, some participants with
the least resources can not accommodate a large-size model
assigned to the cluster. We can draw similar observations for
OPTICS, which gives the optimal number of clusters k = 3.
k-means clustering results in k£ = 5 optimal number of clusters,
where inter-cluster and intra-cluster distances are high and low,
respectively. It narrows down the gaps between the resources
of the participants within a cluster. Thus, all the participants
can easily accommodate the assigned model to a cluster. Such
narrow gapping also prevents the bucket effect, where a large
model is assigned to the participant with the smallest resources.

2) Generic Model for Each Cluster and Compaction of Clus-
ters: This work considers three resources, i.e., processing speed,
data transmission rate, and available memory, to obtain £ clus-
ters. However, the cumulative resources are unequal among all
the clusters. Thus, the size of the model on the clusters would
be non-identical in FL. This work develops a generic model
for each cluster and performs cluster compaction afterwards. In
doing so, we arrange the k clusters in descending order of their
available resources. In other words, the participants in cluster
(1 can train a large-size model and quickly transfer WPM to
the server, whereas C}, can train the smallest model and requires
more time to share WPM.

Let M denote the initial model generated and randomly
initialized by the server. We assume M can directly accommo-
date on (1, i.e., training and communication can be performed
within the given time. Let M7 denote the size of the model for
C1, where M = M. Beyond C other clusters require some
compression to train the model and share WPM. Let M5 denote
the compressed version of M that can be deployed on the
participants in C'5, consuming less training and communication
time. M3 — Mj, are generated for the remaining k& — 2 clusters.
In this work, we consider the model of any cluster C; is « times
smaller than C;_1, i.e., M;_1 = aM;, where o < 1. It implies
My = ak71M1 = M = aF=1M.

The compression rate « is not predetermined and invariant.
It is determined before the training phase by assessing the re-
source availability across all participants, and it remains constant
during the entire training process. Additionally, it adapts to
diverse scenarios, accounting for variations among participants
with different resources. Next, to ensure that the a-compressed
model aligns with the memory constraints of all participants
in real-world applications, our strategy incorporates a dynamic
adaptation. It assesses the available resources for each partici-
pant and adjusts the compression rate.

e Cluster compaction: The estimated k clusters and corre-
sponding models suit the resources of the participants; how-
ever, higher compression of the model results in performance
compromise. Thus, it is beneficial if all the participants can
accommodate in fewer clusters than &£. However, it introduces
the straggler effect, where slow participants do not participate.
To overcome the straggler effect, we merge some clusters out of
k to obtain m clusters, where & < m.
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B. Participants Assignment to the Clusters

This sub-section describes the mechanism of assigning N
participants to the m clusters. We first deduce the expression
to estimate the communication rounds required for the generic
model in m different clusters. Next, we define the optimization
error due to the heterogeneity of participants. Notably, Fed-RAC
initially checks the possibilities of assigning participants to the
higher cluster, decreasing as per the assignment criteria.

From Section IV-A2, we have m different models
My, Ms, ..., M, for clusters C1,C5,...,C,,, respectively,
where the size of models My > My > ... > M,, and M,, =
o™ M, = a™ M. The server decides Ri,Ra,...,Rm
communication rounds for training local models of the partic-
ipants in clusters C1, Co, . .., C,,, respectively. We first deter-
mine the expression for communication rounds R s for cluster
Cy,where 1 < f <m.

1) Communication Rounds Per Cluster: Let Py denotes
the set of F' participants to be assigned in C'y, where Py =
{p1,...,pr}, having loss functions Ly,...Lp, respectively.
We consider the assumptions given in [36] and applied on
Li,..., L to estimate the round R s for cluster C';.

Assumption 1: Loss L; € {L1,Ls,...Lp} is L-smooth;
therefore, for any two WPM w, and w; on p; €
Py, following inequality holds: L;(wg) < L;(wp) + (W —
w) TV L (wy) + £|lwa — wy||?, where 1 < j < F.

Assumption 2: L; is p-strongly convex; the inequality
holds:  Lj(wa) > Lj(wy) + (W — wp)TVL; (W) + &lwa
—wy|%.

Assumption 3: Let e§ denote the uniformly and randomly
selected sample from the local dataset D; of participant p; on
communication round ¢, where 1 <t < Ry. Let Vﬁj(sé-, wﬁ)
and VL;(w}) denote the gradients of loss function £;(-) on &}
samples and entire samples of the local dataset, respectively.
The variance of gradients on participant p; is bounded as:
[E||V£j(5§-,w§-) — vﬁj(W;-)HQ < O'J%.

Assumption 4: Expected square norm of loss gradient is uni-
formly bounded as E[|VL;(¢%, w)|? < G7,1 <t <R; and
I1<j<F.

Using Assumptions 1, 2, 3, and 4, we obtain a relation
between desired precision (g/), local epoch count Ey, and
global iterations R/ of cluster C' . The precision is defined as:
ql = E[L(wR)] — L, where w’ is the aggregated weight at
final global epoch R y and £ is minimum and unknown value of
Ly at the server. Let L7 is the minimum value of £; at p;, where
Vj € {1 <j < F}. In this work, we assume i.i.d datasets on
the participants; thus, I' = E} — Zle Cj- = 0, as given [36].
I" quantifies the degree of non-i.i.d and it goes to zero for i.i.d.
Let ¢; denotes the weight contribution of participant p; € Py.
Let 5 = max{8L/u, Es} and T} is the total SGD operations
on a participant then we obtain the following relation of desired
precision (q(Jf ) for cluster C'y [36]:

. L/2p®
E[L(wR)] — < Wf_l (43 + p?BE|| - ||2) , (6)
where, B = Zle ¢jo7 + 8(E — 1)*G%. Using upper bound

of ¢/ and Ty = R;Ey, we obtain number of communication
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round (R ¢) for cluster Cy (1 < f < m) as follows:

1L
T~ By 2u2q)

(4B + p*BE| w1 — wi|?) +1— 8] .
(7

From (7), we have fixed communication rounds R/ for given
precision threshold ¢/ and local epochs Ef for cluster C'y, where
1 < f < m.In addition, we have Ey = le';" ; it implies we can
change value of B;, 7;, and n; in such a manner, where F; and
Ry remains fixed for p; € Py and q/ changes. We set a threshold
over g/, denoted as ¢ for Cy.

2) Optimization Error Due to Participants Heterogeneity:
The set of participants Py to be assigned in cluster C'y pos-
sesses low inter-cluster and high intra-cluster heterogeneity.
Therefore, we obtain inconsistency in the objective function
of a cluster, discussed in Section III-B2, due to intra-cluster
heterogeneity despite using an effective clustering mechanism.
To estimate the value of error erry for cluster Cy, where
Cy € {C1,Cy,...,Cy}, we use the assumptions given in [31].
The previous assumptions, i.e., Assumptions 1 and 2 are
same for estimating erry. However, we need to define a new
Assumption 5 to calculate erry.

Assumption 5: Let {€1, €2, ...,ep} denote a set of weighted
contribution of participants in set Py of cluster C'y, where
25:1 ¢; =1and Cy € {C1,...,Cy}. There exists two con-
stants hy > 1 and hy > 0 such that Zle VL (wi)|]? <
MR 3251 €V L (wy)||? + h.

Using Assumptions 1, 2, and 5, we derive the expression for
err of cluster C'¢. In doing so, let o denote a non-negative vec-
tor and define how stochastic gradients are locally accumulated.
For example, o; = [1,...,1] € R for FedAvg [13]. |01 is
the /1-norm of o; and o[; 1) is the last element in vector o;.

Te = Zle 7;/F, 7; = | E¢nj/B;] and 7 is the learning rate,
where 1 < j < F.

AnLo2b
< 4b1 + n Uf 2
T nteRy F

+ 61> L*07bs + 120° L*h3bs,
®)

— /(0 * _ Fooefllogl3 , _ F
where bl = [[,(W ) — ‘Cf]7 bg —FTe Ej:l o; 2 7bg = Ej:l
¢j(lloj[13 — [0j,-1]%), ba = max;{[lo; |1 (lo 1 — [oj, 1]} A
small err ¢ indicates lower intra-heterogeneity among the partic-
ipants. We set error bound for each cluster, i.e., error erry < 0y
for C'y, where 1 < f < mand erry < 0.

3) Participants Assignment: Fed-RAC assigns each partic-
ipant to an optimal cluster per the available device and net-
working resources. Such assignment facilitates easier and faster
(within MAR time) training and inference of the local model on
each participant assigned to a specific cluster. In other words,
each participant trains the local model in [y communication
rounds (7) for cluster C'y, 1 < f < m. The assignment verifies
two conditions: a) precision (6) of cluster C'y must be less than
the threshold (¢f < 6 r)and b) optimization error (8) erry < 0.
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Further, we get two possible cases for assigning participants in
each cluster:

e Case 1 (Cluster is empty): p; assigns to empty cluster
Cy, if p; can train the model My in given epochs E; and
communication round [2;. The local epoch E} is high for a
single participant as one communication round is required to
train the model without multiple participants. In this case, the
condition of ¢/ < § t is only verified and the optimization error
is zero. It is because the constraint for homogeneity becomes
zero with a single participant in (8). If the participant is unable
to train My in MAR and Ry, it uses the following two steps:

1) p; reduces 7; and n;, while satisfying qg < dy.

2) IfgJ > 4 for C then the participant switches to the lower

cluster and repeats Step 1.

e Case 2 (Cluster is non-empty): We initially estimate ¢/
(6). Upon adding p; to C'y, q({ should be less than threshold ¢ ¢.
Similar to Case 1, if p; is incompetent in training M in MAR, 7;
and n; are adjusted until ¢/ < § 5 otherwise participant switches
to the lower cluster. Next, the error (8) is also estimated upon
adding p; to C. If estimated erry < ¢ then p; is added to C¥,
else p; switches to the lower cluster.

After successfully executing these two cases, N participants
are assigned to the m clusters. The assigned participants achieve
desired precision and optimization errors less than the corre-
sponding thresholds. The server optimally allocates each partic-
ipant to a specific cluster as per the resource, precision threshold,
and error threshold. Procedure 2 summarizes the steps involved
in assigning participants to the clusters.

We prioritize privacy to ensure that only aggregated and
anonymized performance data is transmitted to the server. In-
dividual participant details are not exposed, safeguarding the
privacy of device performance parameters; however, the server
can get the details externally. The first parameter, processing
speed, remains constant and is deterministically associated with
a specific device manufacturer. Consequently, the server can
readily authenticate the accuracy of the processing speed in-
formation provided by the participant’s device before the com-
mencement of the actual training. With the possibility of partici-
pants providing inaccurate information about their transmission
rates, the server implements a robust verification process, i.e.,
data transfer tests. The server initiates data transfer tests by
dispatching a randomly initialized weight parameter matrix to
all participants in the initial cluster, measuring the time it takes
for each device to download it. Subsequently, the server checks
the upload time of the trained model’s weight matrix after the
initial communication round. In cases where a participant re-
ports false information, the server employs its calculated values
to reassign it to a different cluster based on its transmission
rate.

Further, the participant may falsely report memory informa-
tion and get a larger model then it may send an updated weight
parameter matrix after a delay or can send a partially trained
or untrained weight parameter matrix. To circumvent this, the
server examines the time taken to receive updated weight matri-
ces from participants. Despite sufficient processing power and
transmission rate estimates, a participant consistently exhibits
delays in sending updates, and the server intelligently reassigns

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:03:45 UTC from IEEE Xplore. Restrictions apply.



1214

Procedure 2: Participants Assignment to the Clusters.

Input: Set of participants P = {p1, -+ ,pn};
1 Initialization: 7 < 1, f < 1;
2 for each participant p; € {p1,p2,---pn} do
3 for each cluster Cy € {C1,Cs,--- ,Cp} do
4 if isEmpty(Cy) == True then
5 if p; can accommodate My then
6 Check: Estimate precision g7 using (6);
7 if ¢ < dy then
8 L Assign p; to Cy;
9 else
10 | f<f+1
11 else
12 Reduce 7; and n; s.t., p; can run My;
13 Goto Check;
14 else
15 if p; can accommodate My then
16 Check-1: Estimate precision ¢f using (6);
17 Calculate error erry using (8);
18 if ¢f <6y and erry < 0; then
19 L Assign p; to Cy;
20 else
21 | f<f+1
22 else
23 Reduce 7; and n; s.t., p; can run My;
24 Goto Check-I,;

25 return Optimal participants in each cluster C'y, V1 < f < m;

the participant to a lower cluster, identifying and addressing
potential false information.

C. Leader-Follower Technique

This sub-section introduces the technique of improving the
performance of lightweight models Ms, ..., M, in clusters
{Cy,...,C,,} using generalization ability (or knowledge) of
large-size model M; in cluster C;. Along with the logits, the
feature information corresponding to the dataset is also provided
during the knowledge distillation process. We utilize the as-
sumption that the cluster C is the fastest and can accommodate
the server’s model without compression, i.e., M; = M. We use
the term leader for M; and follower for models My — M,,,
thus, named the technique as leader-follower for performance
improvement. The technique involves the KD technique [10]
to improve the performance of the follower model using the
trained leader model. MAR time (T, ) for training models on
all N participants and can be further divided as: T4, = 11 +
max{Th,T5,..., T}, where T is the MAR time for training
My on the participants of C'y, 1 < f < m. Since C,, is the
slowest cluster and (7 is the fastest cluster; thus, we can consider
the following relation similar to generic models: Ty = kT7,
where 1 < f <mandk < 1. Itimplies T} = K™ 1T, then we

obtain:
Toaw = 6™ T, + max{/fm’QTm, K™ 3T, . s Tt}

=K + Ty = (K" + 1) T, )
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In special cases, where M is leader of My, Ms is leader
of M3, and so on, i.e., the FL-based training is performed
sequentially for each cluster. In this case, T,,,4, 1s defined as:

-l]—mam - Hmile, + /im72Tm -+ ﬂmiSTm + ...+ Tm,

m

1—
={xm "B+ 1T, = , where £ < 1.

1-k

This work starts FL-based training from the fastest cluster Cy
with adequate devices and networking resources to train M.
We train M, for E; local epochs on the participants of C using
R1 communication rounds. The logits of trained M are next
supplied to all the remaining clusters to improve the performance
of their generic models using the KD. Algorithm 1 summarizes
the steps involved in the Fed-RAC.

By employing a leader model (M 1) and follower models (M2-
Mk), we aim to facilitate a more controlled and effective knowl-
edge transfer process. The benefits are a) hierarchical knowledge
transfer, b) adaptability to varied participant capabilities, and
¢) enhanced performance (detailed in supplementary [37]). We
adjust the learning rate for M2-Mk based on the performance
and confidence of M1. When M1’s knowledge is less reliable
due to a small participant population in C1, lower the learning
rate for M2-Mk to make them more receptive to M1’s guidance.
In addition, we establish clear criteria for model selection. If
M1 consistently outperforms M2-Mk on certain metrics, make
it a rule to favour M 1’s updates during the aggregation process.
Further, to ensure the higher performance of M1, we selectively
aggregate knowledge from the most competent participants to
mitigate the impact of a small participant set on the training
quality of M1. Additionally, when aggregating updates from
multiple models, assign different weights to M1 compared to
M2-Mk. This gives M1 a more significant influence on the
aggregation.

Fed-RAC commences the training process by training the
leader model in C1, followed by the concurrent training of other
models in the remaining clusters through knowledge distillation.
To mitigate the extra delay caused by training the leader model,
we introduce a workaround. Upon cluster formation, we conduct
preliminary local training for the leader model for a few epochs
before the actual training begins. To address differences in
resource availability among participants across diverse clusters,
we modify the sizes of the models. This adjustment aims to min-
imize delays in aggregation caused by stragglers or participants
with lower computational resources.

o Aggregation of the weight parameter matrices: To aggregate
information, the server employs a layer-wise averaging process
across the weight parameter matrices of various models received
from the clusters. For instance, let’s consider a scenario where
only three clusters (Cy, Co, and C3) and the server model ms
consist of seven layers: one input layer, five hidden layers,
and one output layer. Participants in C can train with the full
model (ml = ms), while participants in clusters C5 and Cj
require the removal of one and two hidden layers, respectively.
Consequently, the server conducts a layer-wise aggregation of
weight parameters, averaging over the available layers, detailed
in Supplementary file [37].
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Algorithm 1: Fed-RAC Algorithm.
Input: Set P of N participants with their local datasets;
1 Call Procedure 1 to determine a set /C of k clusters;
2 Merge clusters to obtain m clusters in /C,
{01, Cy, - 7Cm};
3 Generate m model for each cluster, { My, Ms, - -
4 [*Participants assignment to the clusters*/
5 Call Procedure 2 to assign optimal participants to m
clusters;

: 7Mm};

6 for each cluster Cy € {C1,Cs,--- ,Cy,} do

7 if f == 1 then

8 while communication rounds » < Ry do

9 Train local models in cluster C1;

10 L r<—r+1;

11 Obtained train model M; for participants in
cluster C7;

12 else

13 while communication rounds r < Ry do

14 Train local models in cluster C'y under the

guidance of model Mji;

15 r—r+1;

16 Obtained train model M for participants in
cluster C'y;

17 return Trained model on each participant;

V. SYSTEM IMPLEMENTATION

The Fed-RAC algorithm and associated procedures were im-
plemented using the Python programming language. The models
considered in the study were implemented using the functional
API of Keras in Python, chosen for its developer-friendly fea-
tures. To ensure a fair and comprehensive comparison, all base-
line models were reimplemented. Throughout the experiments,
the loss function was set to “categorical cross-entropy,” and a
batch size of 200 was employed. The hyperparameter £* ranged
between 0.01 and 0.05, with the number of participants denoted
as IV = 40. Local epochs varied across datasets, specifically
FE =1 — 5 for MNIST and HAR, and £ = 10 — 40 for CIFAR-
10 and SHL. The communication rounds were standardized at
200 for all clusters during the experiments.

Learning rate exploration involved varying it between 0.001
and 0.010. Convolutional layers were selectively compressed
to obtain follower models. A dropout of 0.5 was applied, with
subsequent layers using fractions of the previous layer’s dropout,
denoted as My = 0.5(M;), M3 = 0.5(My), and so forth. This
dropout strategy served a dual purpose, contributing to model
compression and enhancing training speed and transmission ef-
ficiency. The strategic application of dropout introduced regular-
ization, mitigating overfitting and promoting faster convergence
during training. The sparsity induced by dropout further aided
in reducing communication overhead. All experiments were
conducted on datasets built from scratch, with most simulations
executed using Colab Pro and some on a computer equipped
with an octa-core 17 processor and 32 GB RAM. For access
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to the Fed-RAC implementation, it is available on the GitHub
repository at: https://github.com/errahulm/Fed-RAC.

VI. PERFORMANCE EVALUATION
A. Datasets and Models

This work uses four public datasets, including MNIST [16],
HAR[17], CIFAR-10[18], and SHL [19]. MNIST is a handwrit-
ten digit dataset containing 50000 images of different digits from
0 — 9 for training. MNIST also has 10000 images for testing.
HAR was collected using the smartphone (Samsung Galaxy S
II) sensors, including a tri-axial accelerometer and gyroscope.
CIFAR-10 comprises 60000 images of ten different classes. The
dataset is balanced and correctly annotated with 6000 images for
each class and contains 50000 images for training and 10000 for
testing. SHL [19] dataset was collected from the onboard sensors
of HUAWEI Mate 9 smartphones to recognize the locomotion
modes of the users.

B. Baselines

We considered the existing techniques [9], [13], [14], [15]
as baselines, noted as HeteroFL [9], FedAvg [13], Tifl [14] and
Share [15], to evaluate and compare the performance. The details
of considered baselines are discussed the Section II.

C. Evaluation Strategy

The primary motive of FL is to improve the local performance

and generalization ability. We adopt these strategies:

1) Local performance: It determines: how well the local
model is trained on the dataset of the participants?

2) Cluster performance: It estimates: how well the partici-
pants can improve the cluster-wise performance through
the aggregation of WPM ?

3) Global performance: It is the simple average over cluster
performance and helps to determine: how much deviation
is observed in the cluster performance from the average
value?

D. Evaluation Metrics

We use the standard metrics, including accuracy and F1-
score, to evaluate the performance of the Fed-RAC. We also
introduce a new performance metric, namely rounds-to-reach
x% . Let I (x%) denote the symbolic representation of the metric.
I(x%) counts the number of iterations (or rounds) required for
achieving the performance of 2%. We finally use the leave-one-
out-test metric that trains the model for all class labels except
for one randomly chosen class label.

E. Ablation Studies

1) Impact of Resource Aware Clustering: This experiment
aims to assess the efficacy of resource-aware clustering. The
resource vectors of the devices used in the experiment are
shown in Table IIl. The resource vector comprises process-
ing capacity, transmission rate, and memory, and is obtained
from a survey conducted on 128 smartphone users, with prior
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TABLE III
AVAILABLE RESOURCES SET P OF 40 PARTICIPANTS

[P [ R Vector [ P [ R Vector [ P | R Vector [ P [ R Vector |
p1 ][1.6,10.88,8]] pi11 [[1.6,12.54,6] p21 [1.6,40,1] | p31 [[3.1,18.04,6]
p2 | [2.8,4.1,3] | p12 | [0.8,1.2,6] | p22 |[1.1,11.4,6]| p32 |2.5,44.13,6]
P3 [1.1, 1.13,6] P13 [1.3,28,41,6] P23 [2.5,25,6] P33 [2.3,645,6]
pa  [[1.6,11.45,3] p1a |[1.3,21.9,3]| p2a | [2.2,30,4] | p3a |2.1,60.21,6]
ps | [3-2,8.9,3] | p15 [3.1,25.99,6] p2s |[1.6,9.62,6]| pss |[2.1,61.3,8]
P6 [2.2,2,4] pe6 |[3-2,19.43,4] p2s |[2.2,23.27,6] p3s | [3.2,19,6]
p7 (3.1,8.7,1] | p17 [[1.0,20.98,3] p27 |[1.5,49.79,6] ps7 [2.7,32.05,6]
P8 [1.8,60,3] | p1s | [1.6,30,3] | p2s [1.7,37.65,6] pss |[2.9,6.52,6]
P9 [2.7,8.89,3]| p1o | [1.0,12,2] | pao [3.1,15.71,6] p3o |[0.8,38.8,6]
P10 [1.47 34.5, 8] P20 [2.7, 10, 6] P30 [2.6, 3, 6] P40 [241, 32, 6]

RV = Resource vector = [processing, transmission rate, and memory].

permission obtained from the relevant authorities. From this
survey, we randomly select 40 users to create different clusters
using the Fed-RAC approach, as discussed in Section IV-A.
Communication rounds are set to 200, and other parameters
are described in Section V. The effectiveness of resource-aware
clustering is evaluated using three types of resource vectors.
The first type uses unnormalized resource vectors of the partic-
ipants, whereas the second type uses normalized vectors with
X1 = A2 = A3 = 1/3. The third type is similar to the second but
withA; = 0.4, A2 = 0.4,and A3 = 0.2. Similarly, other versions
of A1, Ao, and A3 are in Table I'V.

Table IV presents the results of evaluating the impact of
normalizing resource vectors on estimating the optimal number
of clusters. The findings show that un-normalized vectors yield
a limited number of clusters, namely 4 (Cy — Cy), using Dunn
Indices. This is due to the dominance of the transmission rate
resource over other resources, resulting in non-optimal clusters.
By applying unit-based normalization, all resource values are
scaled into the range of [0,1]. The normalized values generate
an optimal number of clusters using Dunn Indices, as it removes
resource bias. We obtained 6 clusters (C; — Cg) by assigning
equal contributions of all resources, i.e., 1 (processing capacity)
= Ao (transmission rate) = A3 (memory) = 1/3. When we set the
contribution based on the analysis given in [32], [33], .1 = 0.4,
Ao = 0.4, and A3 = 0.2, we obtained 5 clusters (C; — C5).

Table IV presents the performance achieved by the Fed-RAC
approach using different types of resource vectors on MNIST,
HAR, CIFAR-10, and SHL datasets. The results show that
normalizing the resource vector leads to improved performance
compared to using unnormalized vectors. The normalization
process is essential because when using unnormalized vectors,
clustering relies on the dominating resource, leading to non-
optimal clusters. These clusters may contain participants with
non-identical resources that converge at irregular intervals, re-
sulting in reduced cluster performance. Moreover, when the con-
tributions of processing capacity (A1) and transmission rate (1)
are greater than memory (A3), i.e., A1 = Ao = 0.4 > A3 = 0.2,
the cluster performance is high. An observation is made that
an increase in memory contribution for cluster determination
results in a decrease in the number of disjoint clusters, particu-
larly when processing power and transmission rate parameters
are low. In this scenario, participants with higher memory al-
locations tend to be assigned to higher clusters, contributing
to a reduction in the overall cluster count. However, assigning
smaller weights to processing and transmission may result in
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Fig. 2. Impact of leader-follower technique on the performance of models in
different clusters using HAR and CIFAR-10 datasets.

insufficient and sub-optimal training, leading to a decrease in
performance.

2) Impact of Clusters Compaction: Table V illustrates the
impact of cluster compaction on the performance of Fed-RAC
using MNIST, HAR, CIFAR-10, and SHL datasets. Table V(a)
demonstrates the cluster accuracy when all five clusters, esti-
mated previously, are available. The results depicted that the fol-
lower clusters, Co — C5, achieved comparable performance in
contrast with Cy (leader cluster). Moreover, cluster C's3 achieved
a higher performance than C';. This performance enhancement
is due to the distillation of knowledge from leader to follower
clusters during training. The details experiment on the impact
of using knowledge distillation is elaborated in Section VI-E3.
Apart from Table V(a), and (b) illustrates the performance of
different clusters on considered datasets after compaction. The
results showed a clear margin of improvement in the global and
cluster-wise performance while using the cluster compaction in
the Fed-RAC. This is due to the increment in the number of
participants in each cluster.

3) Impact of Leader-Follower Technique: In this experiment,
we aim to evaluate the performance improvement of the follower
models assigned to each cluster (other than the leader cluster)
using the leader-follower technique discussed in Section IV-C.
We consider the four clusters, C'; — Cy4, obtained from the
compaction in the previous result. The communication round
is fixed at 200. However, to ensure brevity, we only present the
results on HAR and CIFAR-10.

Fig. 2 illustrates the impact of the leader-follower technique
on the performance of models in different follower clusters.
Clusters Cy — (4 gain significant improvement in performance
due to the distillation of knowledge from the leader model in
C1, as shown in Fig. 2(b) and (d). The results demonstrated that
the improvement in the model’s performance is significant at low
resource clusters (Cy) and reduced gradually to C. It is because
if the size of the cluster model is small then the logit difference
between leader and follower is higher. Contrarily, if the differ-
ence between the size of the cluster model and the leader model
is less, the logit difference is limited; thus, the performance gain
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TABLE IV
IMPACT OF RESOURCE AWARE CLUSTERING ON CONSIDERED MNIST, HAR, CIFAR-10, AND SHL DATASETS USING DIFFERENT TYPES OF RESOURCE VECTORS

Datasets

resoziszsvggtors ) clustersOf MNIST HAR CIFAR-10 SHL
Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Unnormalized K=4 97.13+0.30 | 98.06 £0.25 | 91.56 £0.45 | 92.47+0.35 | 90.12+£0.60 | 90.83 £0.30 | 89.23 +0.30 | 90.41 + 0.40
O :N/{’;“;al/{zei 1/3} K=6 | 97414025 | 98.1940.25 | 92.46 +0.40 | 93.38+0.30 | 90.67 +0.45 | 91.4140.30 | 89.59 +0.25 | 90.83 + 0.40
_ Normalized K=5 | 97.734£0.40 | 98.37£0.30 | 93.54+0.50 | 94.26+0.40 | 91.01 +0.30 | 92.13 £0.40 | 90.27 £ 0.30 | 91.19 = 0.40

{A\1 =2 =0.4,23 = 0.2}
o Noimallzed P K=4 97.29 +0.50 | 98.21 £0.40 | 91.92+0.50 | 92.61 +£0.45 | 90.27 £0.60 | 91.41 +0.50 | 89.73 £0.40 | 90.75 + 0.50

(A1 = A2 = 0.2, A3 = 0.6}
_ Noimallzed o K=4 97.47+0.50 | 98.154+0.30 | 92.15+0.40 | 93.07+0.35 | 90.67£0.30 | 91.87 +0.40 | 89.97£0.40 | 91.03 +0.30

(A1 = A2 = 0.3, A3 = 0.4}

The reported results depict the global accuracy and F1 score achieved by the different models.
TABLE V TABLE VI

IMPACT OF CLUSTER COMPACTION ON THE ACCURACY OF THE FED-RAC
USING DIFFERENT DATASETS (MNIST, HAR, CIFAR-10, AND SHL)

is low. Cluster C4 gains accuracy of ~ 8% for HAR and ~ 11%
for CIFAR-10 datasets, whereas the performance gain for Cs
is & 2% for both datasets. Furthermore, in FL-based training,
we considered participants with heterogeneous resources; thus,
participants with the highest and lowest resources, respectively,
achieved colossal and most minor performances. It also creates
a significant difference between the performance of the models
in the largest and smallest clusters, which aggregately results
in performance compromise despite clustering. Therefore, KD
is incorporated to enhance the performance of models in the
smaller clusters.

F. Sensitivity Analysis

This experiment aimed to investigate how the learning rate
affects the performance of Fed-RAC. MNIST, HAR, CIFAR-10,
and SHL datasets were used, and the communication rounds
were set to 5, 10, 20, and 20, respectively. The rounds were
restricted as the approach converged at any learning rate at higher
communication rounds.

Table VI provides a comprehensive overview of how varying
learning rates impact the model accuracy within the leader
cluster of Fed-RAC across MNIST, HAR, CIFAR-10, and SHL

IMPACT OF LEARNING RATE ON THE ACCURACY OF THE MODEL IN THE
LEADER CLUSTER

(a) Accuracy without compaction (cluster count = 5). Datasets CR Accuracy (in %) on learning rates

Cluster Accuracy (in %) on datasets 0.002 | 0.004 | 0.006 | 0.008 | 0.010
C 981\548N isg 50 | 93 3}1111{0 50 92‘C ;E;,Af E)lgo 91 4gHiLo 25 MNIST > 98.07 | 9644 | 93.32 | 9297 | 90.37
C, | 98.18£0.60 | 93.68£0.40 | 91.55+0.25 | 90.17 £0.30 CI;I:;{m ;O SZ'?&‘ 87'34 8(15'35 83';5 79‘?‘21
C; | 98141030 | 94.19L0.20 | 91.23 £0.40 | 91.76 £ 0.30 - 0 | &4 83.73 | 81.29 | 80.73 | T77.

Cy | 97.04£050 | 9355£0.50 | 90.58 £0.25 | 89.88 £0.40 SHL 20 | 82.14 | 80.71 | 79.64 | 79.32 | 74.23
Cs | 96.71£0.60 | 93.01£0.60 | 89.45+0.60 | 87.82 % 0.40 CR=Communication rounds.
Global | 97.73£0.40 | 93.54£0.30 | 91.01 £ 0.45 | 90.27 + 0.30
(b) Accuracy with compaction (clusters count = 4).
Accuracy (in %) on datasets © .

Cluster: MNIST HARy CIFAR-T0 SHL datasets. The observed outcomes underscore the significance of
Ci1 | 98.76£0.30 | 93.47£0.60 | 92.41+0.40 | 91.5240.30 selecting an appropriate learning rate for optimal model perfor-
Cy | 9873+£050 | 93.76 050 | 92.37£0.25 | 92.53 +0.40 Notabl lovi ler1 . 0.002
Cs | 98782020 | 9402040 | 92.69£0.35 | 92.02%040 mance. Notably, employing a smaller learning rate (e.g., 0.002)
Cy | 98.63£0.60 [ 9417£0.50 [ 91.73£0.30 [ 91.26£0.35 yielded favourable results for Fed-RAC across all datasets. The
Tobal ; ; ) . . . . . .

Global | 98.72+£0.25 | 94.08+0.35 | 92.30£0.30 | 91.83+0.30 lowest accuracy was recorded for the learning rate of 0.010
(c) Accuracy with compaction (cluster count = 3). due to faster convergence, which led to sub-optimal model

Cluster Accuracy (in %) on datasets .

MNIST HAR CIFAR-10 SHL performance. Particularly, the MNIST dataset demonstrated ac-
Ci | 98.37£045 | 93.111£040 | 91.81+£0.30 | 91.22+0.40 celerated convergence in Fed-RAC, achieving accuracy beyond
Cy | 97.49+£035 | 92.26+025 | 90.36 £0.35 | 89.77 £ 0.40 .
Cs | 95421040 | 89471035 | S7T.41E050 | 86.82£0.30 90% across all datasets after merely 5 communication rounds.

Global | 97.09+0.40 | 91.62+0.30 | 89.90+0.40 | 89.27+0.35 While the accuracy trend for the Fed-RAC approach generally

followed a linear pattern across different datasets, a nuanced
observation revealed plateaued behaviour for learning rates be-
tween 0.006 to 0.008. This plateau suggests a delicate balance in
selecting the learning rate to ensure optimal convergence without
compromising performance. Furthermore, the substantial dif-
ference of over 8% in cluster accuracy between the learning
rates of 0.002 and 0.010 underscores the critical importance
of judiciously choosing the learning rate during training. This
disparity highlights the direct impact of the learning rate on
the Fed-RAC approach’s efficacy and emphasizes the need for
careful consideration in achieving the desired balance between
convergence speed and model accuracy.

G. Performance Comparison

1) Impact of Communication Rounds: This experiment in-
vestigates the impact of different datasets on the convergence of
the Fed-RAC and considered baselines. All 40 participants were
involved in the FL operation, and thus FedAvg and Tifl utilized
the smallest follower model to ensure deployment and training
on all participants. The communication rounds for Fed-RAC
were determined as the rounds required for the convergence of
the leader model plus the maximum rounds required for the
convergence of the slowest follower model.
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TABLE VII
ILLUSTRATION OF IMPACT OF ROUNDS-TO-REACH 2% GLOBAL ACCURACY ON
CONSIDERED DATASETS

Fed-RAC (proposed) Al] A2| A3] A4
Cluster w/o KD Cluster w KD
Ch| Cy C3] C4TRR] C4| C3 C5] C4[TRR|

Dataset | x%

100 125 150 175 200
Communication rounds

(b) HAR dataset.

0 25 50 75 100 125 150 175 200 0 25 50 75
Communication rounds

(a) MNIST dataset.

©
S

@
&

HetroFL ——
Tifl ———

Accuracy (%)
Accuracy (%)

8

0 25 5 75
Communication rounds

(c) CIFAR-10 dataset.

100 125 150 175 200 0 25 50 75 100 125 150 175 200

Communication rounds

(d) SHL dataset.

Fig. 3. Illustration of impact of datasets on the convergence rounds of Fed-
RAC, FedAvg, HeteroFL, Tifl, and Shape.

Fig. 3 shows the impact of the considered datasets, namely
MNIST, HAR, CIFAR-10, and SHL, on the convergence of Fed-
RAC, FedAvg, HeteroFL, Tifl, and Shape. The learning curve
depicted in the figure displays a classic shape with a two-step
behaviour. Initially, the performance improves steeply until it
reaches a plateau value after some communication rounds. Then,
the accuracy increases with more communication rounds. Fed-
RAC outperforms the existing approaches on all communication
rounds during the experiment. The participants in the leader
cluster (C7) quickly converge due to sufficient resources to train
a large-size model. The Fed-RAC approach also incorporates
KD to train the models at the participants, leading to well-
behaved optimization steps compared to non-KD-based training
and reduced communication rounds. On the MNIST dataset, all
approaches achieved convergence at lower rounds with marginal
improvement afterwards, as shown in Fig. 3. This is due to the
balanced and sufficient number of instances for all classes in
MNIST. FedAvg achieved slower convergence with minimal
accuracy due to incompetence in handling heterogeneity among
the participants and using a small-size model to accommodate
all 40 participants during training. HeteroFL and Tifl achieved
comparable performance to Fed-RAC due to the strategy of
addressing heterogeneity.

2) Impact of Rounds-to-Reach X%: The objective of this
experiment is to investigate the effectiveness of the proposed
Fed-RAC in achieving a global accuracy of x% within a certain
number of communication rounds. To achieve this, we have
set the value of x to be 96, 92, 88, and 85 for MNIST, HAR,
CIFAR-10, and SHL datasets, respectively, taking into account
the convergence rates of these datasets. Fed-RAC involves train-
ing the model in the leader cluster followed by parallel training
of models in the follower clusters. As such, we define the Total
Required Rounds (TRR) for complete training as the sum of
rounds required to train the model in the leader cluster (C) and
the maximum rounds required to train the model in any of the
follower clusters (max rounds{Cs, Cs, Cy4}).

Table VII presents the results of the rounds-to-reach x%
metric on the datasets and illustrates the impact of this metric on

MNIST | 96 21 20 5| 9|11 2] 2| 3] 5|7 9] 11] 8 8

HAR 92 36| 47| -| - |83 36| 17| 29| 41|\77| 92| 102 79| 82
CIFAR-10| 88 51| 59| -| -|110| 51| 23| 37| 53|104] 112 121] 108 117
SHL 86 67] 74 - [141] 67| 34| 39| 61|128| 137 146) 139 141

TRR=Total Required Rounds= rounds(C,)+max rounds {C,, C;, C,}, Al= FedAvg, A2=HetroFL,
A3=Tifl, and A4=Shape.

"MNIST s HAR wu  CIFAR-10 mommm |
gg" § i
S70 | \ \
Without KD Fed-RAC FedAvg HetroFL Tifl Shape
Approaches
Fig. 4. Impact of leave-one-out test metric on MNIST, HAR, CIFAR-10, and

SHL datasets using Fed-RAC (without KD), Fed-RAC (with KD), FedAvg,
HeteroFL, Tifl, and Shape approaches.

the Fed-RAC. The results indicate that the Fed-RAC approach
(cluster-wise with KD) outperforms the baseline approaches,
including cluster-wise without KD. This can be attributed to
two main reasons. First, the participants in the leader cluster
(C1) have sufficient resources to train large models, which
leads to quicker convergence. Second, the Fed-RAC approach
incorporates KD to train the models at the participants, resulting
in well-behaved optimization steps compared to non-KD. Re-
garding the convergence of cluster-wise without KD, the results
are not reported for models in clusters C3 and Cy on HAR,
CIFAR-10, and SHL datasets. This is because, in the absence of
KD, the participants in clusters C's and C} are unable to achieve
the desired 2% accuracy within the cap of 200 communication
rounds. Further, we used small models in FedAvg, to involve
40 participants. Although the use of KD appears to incur higher
computational costs compared to the baselines that do not in-
corporate KD, Fed-RAC achieves the desired performance in
fewer communication rounds, thus reducing the computational
cost.

3) Leave-One-Out: The objective of this experiment was to
assess the overall performance of Fed-RAC and several baseline
approaches in a scenario where instances of a randomly selected
class label were not included in the training but appeared in the
testing. The class label with the highest number of instances
was selected as the leave-out class during the experiment. The
communication rounds were set to 200, and the parameters and
local epochs were determined according to the implementation
details discussed in Section V.

In Fig. 4, the impact of removing instances of one class label
from the training of all participants in FL is demonstrated. The
results show that Fed-RAC outperforms the existing approaches,
which is consistent with the performance pattern observed in
previous results. The approach that does not use KD clustering
(referred to as the “without KD clustering approach”) achieved
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TABLE VIIT
ILLUSTRATION OF TRAINING DURATION OF DIFFERENT APPROACHES ON THE
SEQUENTIAL MACHINE AND HAR DATASET WITH AVAILABLE 40
PARTICIPANTS

models using knowledge distillation. Experimental evaluation
is conducted to verify the approach’s effectiveness on existing
datasets, leading to several key findings: successful federated
learning requires proper management of participant heterogene-

the lowest performance, likely due to the small-size models
trained on follower clusters with a limited number of participants
in each cluster. This negatively impacted the overall performance
of the approach. The MNIST dataset achieved the highest perfor-
mance due to the large number of instances for classes other than
the excluded one. Conversely, the SHL dataset had the lowest
performance due to the excluded class having the highest number
of instances.

4) Training Duration: Inthis section, we analyze the training
time duration on a sequential machine, and the results are
presented in Table VIII. The findings indicate that the FedAvg
approach exhibits the shortest training time, while Tifl requires
the most time due to its two-level training and weight exchange
among participants. Notably, our proposed approach, Fed-RAC,
requires more training time than FedAvg, yet it ensures the
participation of all participants, akin to Tifl.

VII. DI1SCUSSION AND FUTURE WORK

In this section, issues are discussed that need to be addressed
in future work in conjunction with the proposed approach. The
approach uses a leader-follower technique where logits and
features from the leader cluster model are sent to the remaining
clusters. However, this could potentially expose private training
data or enable participants to reconstruct models. To address
these privacy concerns, future work on incorporating security
aspects is necessary. Furthermore, while Fed-RAC considers
participant heterogeneity, it does not account for noise in data
instances and labels. Therefore, future work will involve incor-
porating such noise into the model training process. Further,
we acknowledge the potential significance of fine-tuning this
parameter. We are actively exploring further experiments to
identify an optimal « value that could enhance the performance
of Fed-RAC in our future investigations.

VIII. CONCLUSION

In this paper, a federated learning approach called Fed-RAC
is proposed to address the negative impact of heterogeneous
participants. Unlike previous studies, Fed-RAC trains local
models on all participants despite differences in heterogeneity
and training time. The approach first identifies the optimal
number of clusters based on available devices and networking
resources, then generates and randomly initializes a model that
is used for compression to obtain models for all clusters. A
participant assignment mechanism and a leader-follower tech-
nique are introduced to improve the performance of lightweight
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