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Abstract—The proliferation of sensor-equipped smartphones
has led to the generation of vast amounts of GPS data, such as
timestamped location points, enabling a range of location-based
services. However, deciphering the spatio-temporal dynamics of
mobility to understand the underlying motivations behind travel
patterns presents a significant challenge. This paper focuses on how
individuals’ GPS traces (latitude, longitude, timestamp) interpret
the connection and correlations among different entities such as
people, locations or point-of-interests (POIs), and semantic con-
texts (trip-purpose). We introduce a mobility analytics framework,
named Mobilytics designed to identify trip purposes from individual
GPS traces by leveraging a “mobility knowledge graph” (MKG)
and a deep learning architecture that automatically annotates the
GPS log. Additionally, we propose a novel “transfer learning” ap-
proach to explore movement dynamics in a geographically distant
area by leveraging knowledge obtained from a comparable region,
such as an academic campus. In terms of major contributions and
novelty, this is the first work to present end-to-end daily mobility
trip purpose extraction and mobility knowledge transfer for trip
annotation and POI-tagging where the labeled data are insufficient.
Experimental results on real-life datasets of five different regions
demonstrate the efficacy of our proposed Mobilytics framework
which outperforms the baselines for trip-purpose extraction and
POI annotations by a significant margin (≈ 18% to ≈ 30%).
Moreover, the analysis on huge volume of simulated traces (10,000
users) illustrates the scalability and robustness of the framework.

Index Terms—Mobility knowledge graph, POI (point-of-
interest), semantics, spatio-temporal trajectory, transfer learning.

I. INTRODUCTION

T
HE time-stamped sequence of location data (e.g., latitude,

longitude) of any moving agent such as people or vehicle, is
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referred to as the trajectory. The huge volume of trajectory traces

facilitate location based services such as individual mobility-

based trip-recommendations, travel-time prediction, effective

road traffic monitoring by mobile crowdsourcing etc. [1], [2].

However, most of the applications require semantic descrip-

tion of users’ movement for better understanding of users’

activity. This opens up an important research question: how

to interpret the intention or reason (i.e., trip purpose) behind

individuals’ movements? Such trip-purposes are essential for

travel behaviour modelling and travel demand estimation, and

business investment decisions. Furthermore, it is the first step

to creating text descriptions from GPS log that may be useful

to develop an automated system for creating travel diary. How-

ever, extracting such interpretation of trajectory, and deriving

usable knowledge from raw GPS trajectory/log is very chal-

lenging due to the diverse nature of human movement patterns,

and deep learning based algorithms are inadequate in most of

the real-life scenarios due to scarcity of labels and training

data.

Our work generates a descriptive form of GPS trajectory

by providing trip-purposes and activities performed at each

trajectory segment and stay-point (see Section III for the def-

inition). We propose an end-to-end mobility analytics frame-

work, called Mobilytics, which is capable of extracting corre-

lations among points-of-interests (POIs), temporal-scale and

user’s trip-purposes in the movement log. For example, the GPS

footprint density of students’ hangout spot (H) in an academic

campus is closely related to the time-schedule of lectures and the

distance between the lecture-hall and H . The footprint density

at places like the library, sports facility, and cafeteria largely

depend on the time-stamp of a day as well as external contexts

(e.g., examinations, annual cultural-events). Furthermore, such

contexts significantly influence (or alter) the time spent and the

timestamp of visits at these stay-points.

The scarcity of labelled GPS logs (GPS trajectory with trip-

purpose annotated) is the major limitation in any supervised

learning technique to annotate trip-purposes. Transfer learn-

ing [3] is gaining significant attention for mitigating the gap

between an incomplete learning task due to insufficient training

data in the target region and extracted knowledge from the

learning task in the source region. In this regard: Can we map the

mobility knowledge consisting of interrelations and connections

among entities (users, POIs) from one academic campus (source

region) to another campus (target region) where the labeled

data (trip-purposes and POI-tags) is inadequate and achieve
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Fig. 1. General structure of mobility knowledge transfer set-up.

Fig. 2. Snapshot of a typical Mobility Knowledge Graph in a ROI (academic-campus). It shows how Mobilytics can extract structured knowledge from varied
sources (GPS traces of individual users, aggregated footprint density, POI-types and related information directly from map services or using our analytics method)
in a cohesive manner.

accurate trip-purpose and POI identification? To this end, we

propose a mobility-knowledge graph (MKG) to capture the

interdependence and connections among the users’ movement

behavior and POIs (see Fig. 2) at different time-scales, and

subsequently transfer the extracted mobility knowledge to other

regions for mapping the intent of movements. The knowledge

graph [4] has the potential to model the complex relationship

among users with varied trajectory patterns and POIs with

different social functional spots.

However, the travel behavior changes based on the time,

and the context (e.g., same POI can be used for two different

activities at two different times of a day, or trip-purposes, such

as, commuting to work or visiting friends) significantly influ-

ences travel behavior and travel mode. Therefore, both the edge

label (e.g., trip-purpose, see Fig. 2) and node characteristics

(crowd flow or activity performed at a POI) change based

on time and day of a week). Most existing knowledge graph

techniques leverage the embeddings learned from knowledge

graphs as initial features ignoring the knowledge involved in

the user trajectory trace [4]. For instance, using spatio-temporal

features (e.g., time-duration spent, distance and time taken

to reach next POI, frequency of visit etc.) we can extract

trip-purposes and POI-types, which are essentially useful for

a number of applications, such as, travel demand modelling,

business settlement etc.

TABLE I
MOBILITY KNOWLEDGE TRANSFER LEARNING: APPLICATION SETUP

A. Motivation

The real-life problems that we are attempting to solve are

identifying POI-type (activity spots of a region) and identifying

trip-purposes of individual users.

In the scenario depicted in Fig. 1 and Table I, we examine two

regions of interest (ROIs): a source ROI (denoted as SG) and

a target ROI (denoted as TG). We consider three primary data

sources: a road network (D1), labeled GPS traces of individuals

(D2), and crowd flow or aggregated GPS footprints (D3) within

different time scales of the ROIs. These data sources reveal

correlations in movement semantics between points of interest
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(POIs) across various time scales. Essentially, individuals move

with specific intentions that are closely tied to the type or

characteristics of the destination POI. The term “aggregated

GPS footprint” refers to the density of footprints at POIs during

different time intervals within a region, indicating the total

counts of footprints at each time interval (e.g., 5-minute intervals

throughout a day). This aggregated data aids in determining

crowd flow at a POI by examining the intersections and overlaps

of trajectories, as illustrated in Fig. 2 where the “visit” and

“group” relations of the graph contribute to the aggregate count.

Our primary data source (D2) encompasses activities undertaken

at a specific location (e.g., attending a lecture) or the intention

behind a trip or movement (e.g., commuting for medical assis-

tance). Acquiring such annotations or labels can be challenging,

which is where “Mobilytics” comes into play. Mobilytics aims

to learn from the source ROI (SG) through domain adaptation,

enabling the mapping of this knowledge to another dispersed yet

potentially connected target ROI (TG). This process allows for

the annotation of users’ unlabeled trajectories and the identifi-

cation of POIs within the target ROI.

Let us consider a couple of real-world applications.

(A) Urban Planning and Security: For urban planning, Mobi-

lytics uses D2 and D3 to create semantically enriched maps that

inform the placement of new businesses or services, effectively

predicting where a new restaurant or hospital might best serve

the community. In security applications, the comparison of D2

against the backdrop of D1 and D3 aids in identifying anomalous

behaviors–movements that do not correspond with the typical

patterns associated with certain POIs, thus enhancing security

measures.

(B) Disaster Response and Management: Mobilytics can play

a crucial role in disaster-affected areas where the existing POI

information may become outdated or irrelevant due to changes

in the environment. For instance, after a natural disaster like a

flood or earthquake, the road networks and local landmarks may

be altered or rendered inaccessible. By analyzing real-time or

recent GPS traces (D2) and crowd-flow data (D3), Mobilytics

can quickly identify new navigational routes, temporary shelters,

and resource distribution points. This information is critical for

coordinating rescue and relief operations efficiently, ensuring

resources are directed where they are most needed. Moreover,

by comparing the pre-disaster and post-disaster mobility data,

Mobilytics can assist in assessing the impact on infrastructure

and community mobility, thereby facilitating a more informed

recovery and rebuilding process.

Specifically, Mobilytics can be applied to (a) map POIs of

a new city (where Google or other map services are not yet

reliable) and identify new POIs from movement semantics, (b)

understand trip-purposes and help identify specific areas that

are not disclosed due to, e.g., defense activities (by identifying

trips which do not have common mobility characteristics nor

correlate with associated POI-type). Furthermore, if we deduce

the usual trip-purposes and associated movement characteristics,

then anomalous trajectory can be identified, e.g., enhancing

security measures (such as the mobility behavioural difference

between a user and a pickpocket suspect [5]) (c) identifying

different activities at a multi-storied building (which are often

not labelled by Map services), (d) Finally, Mobilytics may help

in creating a theoretical foundation on extracting and analysing

characteristics of different trip-purposes in a city region which

may help in creating semantically enriched synthetic trajectory

traces that can be used for research, simulation, and further

tool-building. Annotating trip-purposes is also instrumental for

allocating resources in advance or identifying suitable locations

for new business (POI, say, restaurant, hospital, etc.) settlement.

B. Our Contributions

The major contributions of this work are summarized below.

1) Mobility Knowledge Graph: We elaborately define and

develop a novel time-dependent mobility knowledge graph

(MKG) to model movement semantics among locations

and temporal information of the region. This is the first

work to develop a knowledge graph completion problem

where massive volume of trajectory traces, temporal in-

formation and POIs are jointly modelled and represented

to address mobility trip-purpose and POI identification

problems where only limited labelled trajectory data is

available. [See Section IV-B]

2) User Mobility Semantics: We describe a novel deep learn-

ing architecture for annotating GPS (movement) traces

with POI-tags and trip-purpose.

3) Mobility Knowledge Transfer: Mobilytics presents a

transfer learning technique for transferring mobility

knowledge from source region to target region and MKG

completion, which means the incomplete information of

the entities and relations are updated.1

4) Performance Evaluation: The Mobilytics framework is

evaluated with real-life datasets from two academic cam-

puses in India, one campus in Australia, and GPS traces

from China [See section VI-A].2 The evaluation in terms

of accuracy, precision and execution time demonstrate

that our Mobilytics framework provides valuable insights

regarding the correlations of peoples’ moves, locations,

contexts and finally transferring knowledge (i.e., using

labelled MKG of source region to complete MKG in target

region). Further, we have carried out an extensive study on

simulated traces of 10,000 users to illustrate the scalability

of the Mobilytics framework.

The rest of the paper is organized as follows. Section II

summarizes related works. Preliminary concepts are introduced

in Section III, while the Mobilytics framework consisting of mo-

bility knowledge graph and deep learning modules are presented

in Sections IV and V, respectively. Experimental performance

evaluation is described in Section VI and conclusions are offered

in the final section.

1The intuition is that the placement of POIs may be different, however the
spatio-temporal characteristics of similar trip-purposes are similar in source and
target regions.

2The datasets from India and Australian university have been collected
voluntarily.
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II. RELATED WORK

A. Semantic Trajectory Data Mining

Most trajectory analysis works in the literature represent

the trajectories as episodes of stop and move [1]. Neverthe-

less, semantic information, e.g., POI-type of stay-point, trans-

portation mode, needs to be augmented with the raw GPS

log to facilitate intelligent location based services (e.g., user-

profiling, trip recommendation etc.) to capture dynamic user

needs and provide meaningful suggestions. The formalization of

a semantic-enriched knowledge discovery process is described

in [6] for interpreting human movement behaviors. In [7], the

authors studied the regional movement patterns and developed

an efficient algorithm to find out such patterns in semantic

trajectories. A collective embedding framework is presented

in [8] to extract the community structure from spatio-temporal

graphs of human mobility. The authors proposed a probabilistic

propagation approach and used deep auto-encoder methods, and

showed two use cases to evaluate the efficacy of their approach.

In [9], a framework is introduced that can generate insightful

embeddings for points of interest (POIs) by incorporating se-

mantic and contextual information from diverse sources. Ad-

ditionally, Wang et al. [10] propose “FROST”, which focuses

on optimizing facility placement by analyzing user movement

patterns. However, while the aforementioned works primarily

address semantic trajectory data mining, there remains a gap

in the exploration of extracting trip purposes from historical

movement logs.

B. Knowledge Graph Embedding

The authors in [4] presented a spatial knowledge graph to

profile users’ mobility and predict the next location sequences.

By introducing an imitation-based criterion for profiling ac-

curacy, where the accuracy is highest when an autonomous

agent can mimic a user’s activity patterns, the authors propose

a framework where an agent plans next visits based on a user’s

profile, improving profiling through interactions between users,

spatial entities, and a spatial knowledge graph and demon-

strates enhanced performance in predicting human mobility

activities, showcasing its potential for incremental learning in

user profiling and other applications. However, the authors only

emphasized on users visiting specific locations without any

semantic labelling of the trips. In [11], an approach (TransR) for

entity and relation embedding is proposed for link prediction.

This novel approach for knowledge graph completion constructs

entity and relation embeddings in separate spaces, addressing the

limitations of previous models like TransE and TransH which

embed entities and relations in the same semantic space. TransR

improves upon these models by projecting entities from an

entity space to a corresponding relation space before performing

translations, demonstrating significant improvements in link

prediction, triple classification, and relational fact extraction

tasks over state-of-the-art baselines. Our proposed mobility

knowledge graph embedding is motivated by this work, however,

we defined new mobility relations and proposed a new embed-

ding technique to capture the movement semantics. Another

work, named StructRL [12], formulates mobile user profiling by

deep representation learning. The authors deploy an adversarial

substructured learning framework for modelling activities of

users and forecasting next activities. However, the method needs

ample number of training data-instances to learn the parameters

of their proposed model.

C. Deep Learning Based Model

Deep learning has recently gained significant research atten-

tion in the trajectory data mining community [13]. An unsuper-

vised neural network based framework is proposed in [14] to

cluster similar mobility behaviours. A deep learning framework

in [15] identifies living patterns in a population effectively. A

semi-supervised deep learning model named, SECA, is proposed

in [16] for transportation mode identification. Since the unavail-

ability of labeled datasets is one of the major concerns in super-

vised learning techniques, the transfer learning paradigm [3]

offers a way forward, thereby reducing the expensive data-

labelling efforts. For instance, a transfer learning framework

is proposed in [17] for mobile traffic prediction leveraging gen-

erative adversarial network based transfer learning over spatio-

temporal data. A transfer learning technique presented in [18]

generates spatial trajectories in the target city where no mobility

data is present. This work mainly focuses on generating paths in

the new city by learning path preferences in the source city, how-

ever, does not study the trip-purpose or POI annotation aspect.

The authors in [19] estimate the Home-to-Work time for citizens

from the survey data of the source and target cities. A transfer

learning technique proposed in [20] detects parking hotspot by

exploiting multi-source data for discriminative feature learning.

The POI recommendation framework in [21] leverages transfer

learning of users’ movement behavior in the home country to

the new city visited.

D. LLM-Based Model

Recently, researchers have started to leverage large language

models (LLMs) for time-series analysis. The authors in [22]

introduces LLM-Mob, a method utilizing LLMs for predicting

human mobility by incorporating historical and contextual data,

showing superior prediction accuracy and interpretability, and

suggesting a shift towards using general-purpose LLMs in mo-

bility studies. GeoLLM [23] is a novel approach that leverages

LLMs and OpenStreetMap data to improve geospatial prediction

tasks. It demonstrated significant advancements in predicting

population density and economic indicators, surpassing tradi-

tional methods and matching satellite-based benchmarks. How-

ever, despite these successes, Large Language Models (LLMs)

require extensive pre-training on massive datasets, which may

not be directly applicable to specific tasks like trip purpose

detection that rely heavily on understanding spatial and temporal

semantics. On the other hand, integrating mobility knowledge

graphs (MKG) and transfer learning, as done in Mobilytics, can

significantly enhance LLMs’ performance in mobility analytics.

The MKG provides a structured framework that enriches LLMs

with domain-specific insights and contextual understanding nec-

essary for accurate trip purpose detection and POI tagging.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:05:24 UTC from IEEE Xplore.  Restrictions apply. 



11592 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Additionally, the transfer learning approach allows for the ap-

plication of knowledge from one geographic area to another,

compensating for LLMs’ limitations in dealing with sparse or

region-specific data.

To the best of our knowledge, there hasn’t been prior research

specifically dedicated to constructing a mobility knowledge

graph (MKG) aimed at interpreting user trip purposes and

transferring this mobility knowledge to another geographically

dispersed region, particularly in cases where labeled data are

limited. The concepts of MKG construction and knowledge

transfer utilizing deep learning architecture represent novel con-

tributions.

III. DEFINITIONS AND TERMINOLOGIES

GPS Trajectory (G): It refers to time-stamped location in-

formation represented by loc :< latitude, longitude > or (lat,

lon). This term is used interchangeably with GPS trace to denote

the path or movement recorded over time.

POI-taxonomy: Point-of-interest (POI) represents the

activity-spots or socio-functional region (e.g., residential

building, sports complex, etc.) of a city. The POIs of study

region has been represented in a tree-structured taxonomy

(POI-taxonomy). In this tree-based structure, the leaf nodes

hold specific addresses while the internal nodes represent more

generic POI-tags.

Region-of-interest (ROI): The bounding-box captures the ROI

which is divided into uniform square grids, of spatial resolution

is 100m× 100m. This is determined by considering a balance

between spatial resolution and computational efficiency. This

size is particularly well-suited to urban and suburban environ-

ments where points of interest are densely packed and diverse

in function.

Stay-point (S) : Stay-point of a user trajectory is defined by a

set of GPS-points in spatial proximity and the time spent at this

point is greater than a temporal threshold (see Section IV-A).

Stay-point S(B, pl, T ) is represented by the bounding box (B),

POI-tag (pl), and time-interval (T ) of the visit. The bounding-

box is represented by polygon geometry [24] and encloses the

area covered by the user during T .

Trajectory Segment (Traj_Seg): It is represented as:

Traj_Seg = {S1(B1, pl1, T1) −→ (l1, t1) −→ · · · −→

(ln, tn) −→ Sn(Bn, pln, Tn)} (1)

where S1 and Sn are two stay-points. It’s important to observe

that eachTrajSeg is composed of consecutive stay-points along

with the GPS log between these stay-points. In cases where there

are no preceding or succeeding GPS points available for a user,

the starting and ending points of the trajectory are automatically

considered as default stay-points.

Movement Diary: The movement-diary is the log of the se-

mantic meaning or intent of a trip (e.g., visit from one stay-point

to the next stay-point). In this work, we consider 56 such

trip-purposes (see Appendix) and collect trip purposes from the

users using a web-based app (see Section VI-A).

Problem Definitions

Trajectory segmentation annotation: Given the trajectory

trace (timeseries data of latitude, longitude of an individual

user), the model outputs the corresponding labels of the stay-

point transitions3 (e.g., commuting to workplace) and activity

type (attending lecture) at a specific stay-point/ POI-type

(e.g., academic department).

Mobility Knowledge Transfer: Given a source ROI (la-

belled movement traces and POIs) SG and the classifica-

tion task (trajectory annotation) PCSG , a target ROI TG
(unlabelled movement traces) and classification task PCT G ,

the proposed transfer learning module aims to improve the

learning of target function fPC inTG utilizing the knowledge

of SG and PCSG , where SG �= TG and PCSG = PCT G .

IV. TRAJECTORY PRE-PROCESSING AND MKG

A. GPS Error Removal and Trajectory Segmentation

In the initial step, the GPS log is pre-processed to guarantee

the increasing order of timestamp and remove duplicate points

with same timestamp.

l1(lat1, lon1, t1) → l2(lat2, lon2, t2) → ln(latn, lonn, tn),

where t1 > t2 > . . . > tn, ∀(l1, l2, . . . , ln) ∈ G
(2)

The Kalman Filtering technique [1] is deployed to remove

the GPS errors due to low number of satellites in view or device

error (large scale error) and small scale random error (e.g., GPS

points out of the boundary of a POI or out of the road the vehicle

was actually driven). The measurement noise (vi) and process

noise (wi) are defined as:

wi ∼ N(0, Qi); vi ∼ N(0, Ri) (3)

The process noise is represented byQ andR denotes measure-

ment noise covariance matrix. In our experiment, GPS data log

is collected from individuals’ Google Map Timeline, where an

accuracy value indicating the measurement accuracy is logged

in the mobility data file (See Appendix A). Therefore, Ri is the

function of this accuracy and Qi is the amount of time elapsed

between two measurements i and i− 1. We have followed the

detailed process of using kalman filtering in trajectory pre-

processing as proposed by Lee and Krumm [25]. The GPS points

are smoothed using the above-mentioned filtering technique.

Trajectory segmentation is the process of fragmenting the

complete path into different length of location sequences visited

by the moving agent. In this paper, we segment the trajecto-

ries such that a segment holds consecutive stay-points and the

path between the stay-points followed by the agent. To detect

the stay-points from the trajectory, two scale parameters are

required: distance (disth) and time (tth) thresholds. Typically,

stay-point occurs if an individual stays stationary for atleast tth
time. This mainly happens while people enter in a POI (building)

and the GPS signal is unavailable. In other cases, several GPS

points are logged within a certain spatial region (disth) for a
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period which means the user is wandering outside and attracted

by the surroundings. In this work, a spatio-temporal sequence

of GPS pointsGS = (loca, ta); (loca+1, ta+1); . . . (locb, tb) are

converted into a single stay-point, if tb − ta >= tth and ∀a <
i <= b, Distance(loca, loci) <= disth. We set tth = 08 mins

and disth = 200m in the stay-point detection process. In the first

step, if a user stays more than 8mins within 200 m distance, then

it is detected as a stay-point. Next, the geotagg information of the

mean coordinate (
∑b

i=a loci.lat/|GS|,
∑b

i=a loci.lon/|GS|)
is extracted.

To label land use information, we employ a method known

as reverse geocoding, which involves utilizing the Google Place

API service to extract POI tags or geotags from Google Maps.

We mention the “opening_hours” (POI’s business hours) in the

parameter-list of the reverse-geotagging procedure. The . json

file returned by the API service consists of an array-list named

periods (a pair of day and time objects describing POI’s business

hours). We eliminate the POIs that are not open in the time of

stay-duration of the trajectory. If multiple landmarks or POIs (L:

list of landmarks) are found that remain open (or active), then the

nearest one from that GPS point is selected. Since the extraction

of geotags or POI information is time consuming, we extract all

the POI information within 200 m in the initial stage itself. It is

important to clarify that our methodology utilizes land use/ geo-

tagged information from Google Maps as an initial dataset for the

source region, ensuring that the data is comprehensive and up-to-

date. However, the core premise of Mobilytics is to leverage the

movement semantics from well-mapped source regions to learn

intricate mobility patterns and behaviors. Once these patterns

are comprehensively understood, the learned model can then be

applied or ‘transferred’ to target regions with potentially less

precise data. Moreover, we have shown that the performance of

Mobilytics can be further enhanced by combining data from two

or more source regions (See Table V). This approach provides a

robust fallback in situations where one region’s data might not be

as current or detailed, thereby ensuring the model’s effectiveness

and generalizability.

The OpenstreetMap (https://www.openstreetmap.org/) is

used to extract the road network structure. This information

provides geometric information of the road segments (length,

width) and the connectivity and continuity (e.g., intersection)

of the road network. The AntMapper map-matching algorithm,

introduced in [26], is utilized to align the raw GPS log with

the relevant road segments. This algorithm incorporates both

topological information and a global similarity value during

the mapping process. Subsequently, trajectory segments are

established by connecting any two consecutive pairs of stay-

points along with the path traversed by the individual. The

trajectory-pattern of individual over days is modeled using Dy-

namic Bayesian network (probabilistic graphical model) named

Traj_Window(V ′, E ′,Υ) where V ′ and E ′ are the set of

stay-points and the direction of visit among different stay-points

respectively [27]; and Υ denotes the conditional probability

tables of the nodes (stay-points) representing the degrees of

dependence between variables. Here, Traj_Window is used to

model and represent the movement patterns of an individual,

rather than a single days’ trajectory. The key reason to utilize

TABLE II
MKG RELATION NAMES AND DESCRIPTION

probabilistic graphical model is the conditional dependency of

stay-points in the movement path. Given that the user is present

at a POI (P1) at time (t1), the probability of visiting the sequence

of POIs (say P2 at t2 time) are captured in the Traj_Window.

This Traj_Window is used to model the movement pattern of

an individual over time by modelling the relationships between

multiple time series and also different regimes of movement

behaviors.

B. Mobility Knowledge Graph (MKG) Construction

The mobility knowledge graph (MKG) captures the move-

ment semantics (individual movement behavior and POI char-

acteristics) of the region. Specifically, MKG is crucial for our

framework for several reasons. (i) We need to model the move-

ment semantics irrespective of the spatial (distance between

two academic units or residential places) and temporal (time

to travel from residential place to workplace) constraints. This

helps extract the movement behavior and correlate with similar

movement patterns at different region (where POI distribu-

tion is different); (ii) facilitate information retrieval and query-

processing (see mobility relations such as group, visit, flow,

and corresponding parameters defined later) by transforming

the mobility semantics into machine readable format (Mobility

traces can be easily stored and analysed as stop and move

that can be represented by nodes and edges of a graph); and

(iii) extracting previously unknown mobility patterns as well

anomalies by merging more than one relation of the graph.

(See mobility relations visit, flow from one node to another in

Table II.)

1) MKG: Entities and Relations/ Facts: The mobility knowl-

edge graph is represented as a directed graph that is composed

of time-dependent mobility-relations (MR). Formally, MKG is

defined by< u,MR, p, t, f >, whereu, p, t are spatio-temporal

entities and f denotes the strength (probability that each fact

happens) of the correlation. The spatio-temporal entities consist

of users (u), places (poi) and time-intervals (ts, te). The mobility

relations are extracted based on the historical movement log.

Table II denotes three different MRs used in this work:MRvisit:

This relation captures the visits of users to points of interest

(POIs) within a specific time interval. It is represented as a

tuple containing the user identifier (ui), the point of interest

(poij), the start and end times of the visit ([ts, te]), and a function

fx that represents probability of the visit. This relation allows

the graph to capture individual user movements to specific

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:05:24 UTC from IEEE Xplore.  Restrictions apply. 



11594 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

locations. MRgroup: This relation represents a group mobility

pattern where multiple users visit a sequence of POIs together

within a given time frame. The visit sequence is represented

by a series of MRvisit relations, each capturing a visit to one

of the m POIs in the sequence by user ua within specific

time intervals. This relation is useful for identifying social or

collective mobility patterns, such as a group of people moving

from one venue to another together. MRflow: This relation

describes the movement flow between two POIs over a time

interval. It is defined by the existence of visits from a set of

users (u1, . . . , un) to the first POI (poi1) starting within a given

time frame ([ts, t
′
s]), and then to the second POI (poi2) ending

within a specific time frame ([te, t
′
e]). The MRflow relation is

essential for understanding traffic patterns or migration between

locations within the knowledge graph.

Fig. 2 illustrates a sample MKG in an academic-campus ROI.

By constructing MKG, we attempt to model movement dynam-

ics of the ROI. The entities and some relations among the entities

namely visit, group, flow are shown in Fig. 2. In the knowledge

graph, the entities are users and POIs. Each of the entities has

some attributes, which are denoted by oval-shape object and

dotted line. For instance, the attributes of a user are user-category

(faculty/student/staff) and her permanent residence. Similarly,

the attributes of a POI are POI-tag, opening/closing hours of

the POI. The blue lines show the relations among the entities.

Here, we have introduced time-dependent facts since movement

dynamics can not be represented by static fact representation.

The relation trip-purpose is not embedded in the movement log

for all trips in the database. Therefore, this relation is marked

with different color. The left side of the figure depicts the features

of POIs, among which some of are directly extracted from the

information provided (such as location of the POI, POI-type and

opening/ closing hours from the geotagged information), and

some fact like GPS footprint variation in different time-scale

is observed by analyzing the aggregate movement trace in the

study-period. The right side of the figure mainly deals with users’

movement patterns and related facts such as visit-sequences,

group and trip-purpose. The relation connectedBy represents

the road-segments to connect any two POIs. This relation is

extracted by the map-matching process defined in Section IV-A.

The relation stores an arraylist containing the road-ids. The rela-

tion boundingBox represents the polygon coverage area of each

POI. In the reverse geo-tagging procedure, we extract the POIs

covering 200 m of any point. From this information, we find out

the coverage of each POI and compute the bounding-box. The

relation typically stores the lower left and upper right coordinates

of the bounding-box.

To capture the variation in GPS footprints over different

timescales, we divide a day into 15-minute time slots starting

from 8:00 in the morning. For each point of interest (POI) in

the knowledge graph, we represent the number of starting trips

(ST ) and set-up trips (SU ) at different time slots of a day (e.g.,

L1) using the vector notation:

ST pa

L1
= (STL1,pa

t0
, STL1,pa

t1
, . . . , STL1,pa

tm
);

SUpa

L1
= (SUL1,pa

t0
, SUL1,pa

t1
, . . . , SUL1,pa

tm
) (4)

Next, we create two matrices for each POI representing

the counts of start and set-up trips by analyzing GPS logs

(L1, . . . , Ld) of d days. We then apply an autoregressive in-

tegrated moving average technique to determine the values of

start and set-up trips in different time slots based on historical

movement traces. This process enables us to capture the GPS

footprint variation (denoted as “hasVariation” mobility fact) of

different POI entities in the knowledge graph.

How MKG relations can be useful in realistic scenarios:

MKG relations (See Table II) are crucial for understanding

and analyzing mobility within a region by capturing individual

and collective movement patterns and the flow of movement

between different points of interest. They enable the translation

of raw mobility data into structured, query-able information that

can facilitate a range of applications from urban planning to

traffic forecasting and personalized location-based services. For

instance, in emergency response and disaster management, (a)

MRvisit can help emergency services predict which areas are

likely to be most populated at certain times, allowing for more

efficient evacuation route planning and resource allocation, (b)

MRgroup: understanding group movement patterns (MRgroup)
can be critical for coordinating evacuation efforts. If certain

POIs are known to be gathering points for groups (e.g., schools

or community centers), these can be prioritized in evacuation

or emergency response planning, (c) MRflow relations can be

analyzed to predict how people are likely to move between areas

during an emergency. This information can be vital for managing

congestion on evacuation routes and for planning emergency

response logistics, such as where to place ambulances and first

responders for the quickest access to those in need.

2) MKG: Embedding Technique: The MKG embedding has

three steps: (a) represent POIs and Users; (b) propose a scor-

ing function, and (c) learn the representations of POIs, users

and mobility-facts at different time-scales. The entities (POIs

and users) are usually represented as vectors and the rela-

tions (mobility-facts) are defined by operations in the vector

space [28]. Next, a scoring function measures the plausibility

of each mobility fact at different time intervals. In our MKG-

embedding, we propose a new embedding by augmenting Ro-

tation and Translation Embeddings (RotatE) [29] and semantic

matching model [30], with some modifications to adapt to the

movement semantics of a region. RotatE is known for its flex-

ibility and effectiveness in capturing various relation patterns

(e.g., symmetry/antisymmetry, inversion, and composition) in

a knowledge graph where the semantic matching model aims

to learn vector representations of entities and relations by cap-

turing the similarity between the related entities and relations.

We select TransE (Translation-based Embeddings), a semantic

matching model that represents mobility relations as translations

in the embedding space.

Given the fact MFi =< si, ri, oi, [t1, t2], fx > of our MKG,

we represent two entities si and oi respectively by complex-

valued vectors si ∈ C
dm and oi ∈ C

dm, where dm is the di-

mensionality of the embeddings. The strength of the relation

(probability that the fact happens in that time-interval) is denoted

by fx. The spatial information is embedded by sp(si, oi) which

measures the spatial distance (Haversine distance) between the
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Fig. 3. Illustration of the training phase of Model I.

head entity (if si is a user, it considers the user’s present location)

and the tail entity (oi, a POI). The temporal vector (τ ), defined

by the time spent at the POI (Tspend) and the time taken to visit

the POI (Tvisit), measures the time taken by a user to reach the

POI from its previous location. These are combined as:

τ(si, oi, [t1, t2]) = ζ × (t2 − t1) + φ× Tvisit(si, oi) (5)

where ζ and φ are hyperparameters that control the importance

of time spent at the POI and the time taken to visit the POI, re-

spectively. Next, the scoring function (score(si, ri, oi, [t1, t2]))
is defined as:

= − (wr ∗ ‖si ∗ ri − oi‖1 +Ψ ∗ sp(si, oi)

+ ψ ∗ τ(si, oi, [t1, t2]))

= − (wr ∗ ‖si ∗ ri − oi‖1 +Ψ ∗ sp(si, oi)

+ ψ ∗ (ζ × (t2 − t1) + φ× Tvisit(si, oi))) (6)

where weight wr = exp(−λ ∗ fx) is introduced for each re-

lation based on the strength feature (0 ≤ fx ≤ 1) and λ is

the hyperparameter that controls the influence of the relation

strength on the weight. MKG embedding captures varied relation

patterns: (1) Symmetry/Antisymmetry: The “visit” relation is

considered symmetric, as it implies that if a user visits a POI,

the POI is also visited by the user, while the “flow” relation is

considered antisymmetric, as the flow of users from one POI

to another might not necessarily be the same in the opposite

direction. (2) Inversion: The “meet” relation is an example of

inverse relation, such as “part” (indicating that users part ways).

When users si and sj meet (si,meet, sj), it implies that they

were not together before (sj , part, si). (3) Composition: The

“group” relation is a composition of two other relations, such as

“meet” and “visit”. By capturing these relation patterns, MKG

can represent the complexities of the relationships between users

and POIs, leading to a more accurate representation of the

movement semantics in the region.

The training objective in the MKG embedding is to minimize

the ranking loss (L) of the true triples (si, ri, oi) and their

corrupted counterparts as follows:

L(si, ri, oi, [t1, t2], s
′
i, r

′
i, o

′
i, [t1, t2]) = max(0,Λ

+ score(si, ri, oi, [t1, t2])− score(s′i, r
′
i, o

′
i, [t1, t2])) (7)

where Λ denotes non-negative hyperparameter that determines

the desired separation between true and corrupted triples. The

ranking loss function aims to ensure that the true triples have

lower (better) scores than the corrupted triples. The training

objective is to minimize the average ranking loss over all true

triples and their corresponding corrupted triples in the training

dataset using stochastic gradient descent (SGD). In summary,

MKG captures the intricate dynamics of user mobility and be

applied to various downstream tasks (such as mobility knowl-

edge completion, and transfer learning) in the mobility context.

V. DEEP LEARNING MODULES

A. Model I: Annotation of the Trajectory Segments

Fig. 3 illustrates the problem statement and the adaptation of

the basic encoder-decoder (many-to-many) model.

Here, we present the method of annotating (or labeling with

trip-purpose) the trajectory-segments of an user by the proposed

deep learning architecture (model I). To begin with, we define

the trip-purpose as a semantic label for the transition from one

stay-point to another (see Section VI-A for a few trip-purposes).

To extract trip-purposes, we assume the following facts: (1)

The stay-points of an individual are always either associated

with POIs or represent some group activities. This assumption

is realistic, since users spend a specific amount of time in the

stay-point. The reason behind this stay may be some activities

performed in the POIs (say, attending lectures in the lecture-hall)

or any group-activity with other users. (2) The semantic labels

of the trips provided by the individuals in their movement diaries

are accurate. This assumption is convincing since the intuition

behind any movement can be interpreted by the individuals

correctly. Also, in the data collection process, we provided a

fixed set (total 56) of trip-purposes as the labels. If an user finds

her trip-purpose is not present within the list, the user can select

“others” and provide additional label for that specific trajectory

segment. We found only a very few trajectory segments (≈ 2%)

were labelled as “other”. The synonymity problem is negligible.

(3) The day of the week, stay-duration, sequence of the visits,

timestamp of the visit directly influence the semantic-label or

the trip-purpose. However, the trip-purpose labelling task is not

straightforward. First, it’s important to note that two trajectories,

despite having significantly different spatial and temporal scales,

may exhibit similar movement behaviors. For example, one’s
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Fig. 4. Deep learning architecture for model I.

commute to work may take fifteen minutes and the other may

take one hour. Moreover, the spatial and temporal scales of the

trajectories representing similar moving behaviors may not be

similar. For example, a one-hour commute may span only 5

miles (say with a bicycle) or 50 miles (say with a car). Even

for the same mode of transportation, we may have similar

commute times with different spatial scales due to traffic. Due

to these challenges, any approach relying on similarity mea-

sures using raw spatial and/or temporal features of a trajectory,

such as Dynamic Time Warping (DTW) or Longest Common

Subsequence (LCSS) distance [1], cannot be used as a robust

method for extracting similar movement behaviours that depend

on temporal and geographic context of the trajectory. Again, a

work commute happens on workdays, which usually starts in

the morning from a residential area to a business area and vice-

versa in the afternoon. There are also several external contexts

which significantly influence the movement behaviours of the

individuals and consequently the trip-purposes. For example, in

the examination-week of the semester or in the college festival

time the trip-purposes differ from the daily movement patterns.

These context-shifts must be captured and incorporated in the

model for an efficient intent mapping. Other existing trajectory

distance metrics (DTW, LCSS etc.) fall short to incorporate all

such contexts in the similarity measurements. To this end, deep

hierarchical models is one of the feasible solutions [14] which

can distinguish among several trip-purposes by learning the

latent representations of mobility data along with other contexts.

Our deep learning architecture is depicted in Fig. 4. The

collective task layer, implemented through a Convolutional

Neural Network (CNN), processes combined movement data

to categorize Points of Interest (POIs) within a given area. It

incorporates the analysis of the spatial patterns of visitation in-

tensity and the timing aspects (duration of stay and visit timing)

to perform this categorization task effectively. The incorporation

of MKG as graph attention layers serves to refine the accuracy of

POI classification further. Meanwhile, the individual task layer

processes annotated trajectory data (denoted as TR,L), with

the model’s decoder generating corresponding classifications.

The approach adopts the teacher-forcing technique [31], which

improves classification efficiency by utilizing both actual train-

ing sequences and the model’s predicted outputs. To account for

the influence of preceding and subsequent points in a trajectory,

the model introduces the temporal-constraint gate (T iG) and

spatial-constraint gate (DG). Additionally, to capture spatial

and temporal relationships, the model employs the skip-gram

and paragraph vector models for crafting spatial and temporal

embedding modules, focusing on adjacent grid points denoted

as loct+j and loct.

1

T

T∑

t=1

log[p(loct−c, . . . , loct−1, loct+1, . . . , loct+c|loct)]

=
1

T

T∑

t=1

∑

con

log p(loct+j |loct)

where con : −c ≤ j ≤ c, j �= 0 (8)

xt = tanh([WΦΦt + bΦ]⊕ [Wτ τt + bτ ]⊕ [Wζζt + bζ ]) (9)

Here, ⊕ denotes the concatenate operation. Using the embed-

ding vectors, we deploy a bidirectional LSTM layer by adding

two gates as follows:

T iGt = sigmoid(xtWxt + sigmoid(∆tWtiG) + bG);

s.t.WtiG ≤ 0

TDt = sigmoid(xtWxd + sigmoid(∆dWtD) + bD);

s.t.WtD ≤ 0 (10)

In this context, the time and distance intervals are represented

by ∆t and ∆d, respectively. The conditions WtiG ≤ 0 and

WtD ≤ 0 indicate that the influence is stronger when the time

and distance intervals are relatively small. In our study, the
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network is trained jointly to minimize the cross-entropy loss

between the predicted label and the ground truth label for both

POI class and trip-purpose category.

B. Model II: Transferring Mobility Knowledge

Transferring mobility knowledge from one region to another

geographically dispersed region is a promising area [17], [18] as

obtaining labeled mobility data is challenging. Table I represents

different data modalities and learning task in the target domain.

Note that although the task is similar (trip-annotation and POI

identification) but the ROIs (IITKGP, NITW) are different.

The mobility trace representation needs to be learnt followed

by domain adaptation. The aggregated movement pattern over

the underlying road network is initially mapped to find out

the footprint deviation in different temporal scales in varied

POIs.

The moving agents (people or vehicle) depart from a region

(POI), arrive in the destination (POI) and spend time at stay-

points. These trips comprise the overall aggregated movement

flow of the complete study region (See “flow” mobility fact of

MKG and embeddings in Section IV-B2). This mobility flow

represent the semantics of the region and help to characterize

different POIs in a region. Our proposed model utilizes Trans-

ductive Transfer Learning [32] to classify the POIs and label the

trips of the users of the target domain.

A domain or Region of Interest (ROI) is defined by two

primary elements: (a) the feature space (ξ), and (b) the marginal

probability distribution P (X), where X = x1, x2, . . . , xn ∈
ξ [3].

In our set-up, we assume that the ROIs (IITKGP, NITW, UoM,

MDC and GeoLife) have the same label space (the POI-tags and

trip-purposes are same), but with different marginal probability

distribution (spatial distribution of POIs, footprint density and

temporal information are different).

The concept of adapting feature spaces from a source domain

to a target Region of Interest (ROI) is known as feature represen-

tation transfer. This process involves acquiring spatio-temporal

feature representations from both the source and target domains

through deep learning frameworks, followed by dimensionality

reduction via a multilayer perceptron. The subsequent phase

focuses on knowledge transfer of instances by addressing the

challenge of empirical risk minimization, formulated as:

κ∗ = argmin
κ

∑

(x,y)∈TG

P (G(TG)) · lf(x, y, κ) (11)

where P (G(SG)) represents the marginal probability distribu-

tion of the source region’s aggregated GPS data, lf(x, y, κ) is

the loss function, and κ denotes the optimal set of parameters

in the learning framework. Considering the disparity between the

target and source regions, thereby P (G(SG)) �= P (G(TG)),
the optimization equation is modified as:

κ∗ = argmin
κ

∑

(x,y)∈SG

P (G(TG))

P (G(SG))
P (G(SG)) · lf(x, y, κ)

(12)

To achieve this objective, it is necessary to estimate
P (xSGi

)

P (xTGi
) for

each case. Initially, the Mobilytics framework employs a domain

adaptation strategy due to the differing distributions of source

and target data instances. The core idea is to leverage the labeled

data from the source ROI to classify unlabeled trajectory data

in the target ROI. Mobilytics proposes a reinforcement learning

(RL)-based transfer learning method, emphasizing on instance

weighting and adaptation through the learning of rewards and

policies. Here, an agent aims to predict transitions between

stay-points and the duration of stays at different POIs, with

actions defined by a user’s visits and durations at POIs. The

environment is comprised of the users and POIs within the

Mobility Knowledge Graph (MKG), denoted as 〈MKG,ui〉.
The reward is determined by the spatial and temporal accuracy

between actual and predicted stay-point transitions. For the

learning of policies, a variant of the Deep Q-Network and a

potential-based reward shaping technique are employed, facili-

tating the application of transfer learning on the MKG. The key

components of the framework are described as follows:

Agent: Within Mobilytics, the agent is conceptualized as the

entity responsible for forecasting or planning the subsequent

movement of a user. Based on the user’s current location and

the surrounding environment as inputs, the agent is tasked with

determining the forthcoming transition, encompassing both the

travel distance necessary to arrive at the next point of stay and

the duration of time to be spent there.

Actions (α): The framework delineates actions in a dual

capacity: (i) α = (1, pa, i) signifies a user’s visit to point of

interest pa after covering a distance i, and (ii) α = (0, pa, t)
represents a user’s duration t of stay at pa. The domain of actions

is constituted by the set of POIs, with the initial component of

α indicating the choice between transitioning to or remaining at

a POI.

Environment (En) and State (se): The system’s environment

is structured as En = (MKG,U), encompassing the mobility

knowledge graph and the user community within the specified

region, including their mobility patterns. The interplay between

user behaviors of visiting and staying and the mobility knowl-

edge graph’s structure influences both entities reciprocally. The

state captures the mobility path of an individual user, encapsu-

lating the count of visited and stayed POIs, the duration of stays,

and the distances traversed between POIs.

Reward (Rd): Central to the reinforcement learning paradigm,

the reward function guides the optimization process. In this

framework, the reward is calculated as a weighted aggregate

of several criteria: (i) dtra, the inverse of the distance between

actual and forecasted POI visits; (ii) durS, the inverse of the

discrepancy between actual and predicted stay durations at a

POI; and (iii) act, reflecting the accuracy of predicting whether

the user’s action pertains to staying or transitioning at a POI.

Assuming the trajectory comprises of n stay-points, the reward

for the complete trajectory trace is computed as:

Rd = wr1 ×

(n−1)∑

j=1

dtraj + wr2 ×

(n)∑

j=1

durSj + wr3 ×

(n)∑

j=1

act

(13)
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The reward function is designed to evaluate the predictions made

by the agent regarding the user’s mobility trace and is a weighted

sum of three components: (1)wr1 is the weight applied to dtraj ,

which is the reciprocal of the distance traveled between the actual

and predicted Point of Interest (POI) visit. This term emphasizes

the accuracy of the location predictions. A higher weight for

wr1 will cause the agent to prioritize minimizing the distance

error in its predictions, which could lead to more precise POI

visit predictions. (2) wr2 weights durSj , the reciprocal of the

difference in time duration spent at the POI between the real

and predicted values. This weight controls how much the agent

focuses on accurately predicting the time a user spends at a

POI. If wr2 is increased, the agent is incentivized to improve

the accuracy of predicting the duration of stays at POIs. (3)

wr3 is the weight for the action accuracy component act, which

represents whether the action of staying at or transitioning to a

POI is correctly predicted. By adjusting wr3, the reinforcement

learning algorithm can be fine-tuned to either reward the predic-

tion of user actions more or less, depending on which aspects of

the user’s mobility behavior are more critical to the application

at hand.

Given the present state (se) of the user, the goal of the agent

is to maximize the reward by correctly predicting the transitions

and stay-points of the user trajectory trace. Policy is the core

of the agent, which learns the mapping from state to an action

from the available data-instances. As mentioned earlier, Deep Q-

network is used for policy learning. Here, we propose two-phase

learning simultaneously in a feedback loop: in the first phase,

the agent attempts to learn the mapping from the source domain

training dataset; in the second phase, the available historical

records of the mobility data of target domain is used to refine

the policy (π).

Now, we have to find the policy (π) in a way:

π = αt such that maximize Rdt

=
∑

t=0

γtrdt; where 0 ≤ γ < 1 (14)

whereγ is the discount factor. The deployed deep neural network

approximates the optimal action-value function Q∗(se, α) as:

Q∗(se, α) = max
π

E[Rdt|set = se, αt = α, π]

= max
π

E[rdt + γrdt+1 + γ2rdt+2

+ . . . |set = se, αt = α, π] (15)

After an observation se and action α, the maximum sum of

rewards rdt at each time-step t can be achieved by a policy

π = P (α|se). Based on the well-known Bellman equation, we

can re-write the optimal action-value function as:

Q∗(se, α) = max
π

Ese′ [Rd+ γmax
α′

Q∗(se′, α′)|se, α] (16)

The intuitive idea of any reinforcement learning algorithm

is to find out the action-value function by value iteration

method Qj+1(se, α) = Ese′ [Rd+ γmaxα′ Qi(se
′, α′)|se, α].

However, the basic approach is unrealistic as it converges at

i → ∞. Therefore, a function approximator is needed. We

deploy a neural network such that Q(se, α;ω) ≈ Q ∗ (se, α),
where ω denotes the weights, and the network is trained by the

loss function RLossi(ωi) at each iteration i as:

RLossi(ωi) = Ese,α∼P (SG(.))[(Rd+ γmax
α′

Q(se′, α′;ωi−1)

−Q(se, α;ωi)
2] (17)

Since the source data instances are drawn as training samples,

the gradient of the loss function is computed as:

�ωi
RLossi(ωi) = E(Rd+ γmax

α′
Q(se′, α′;ωi−1)

−Q(se, α;ωi)�ωi
Q(se, α;ωi)] (18)

In the subsequent phase, our focus is to leverage relational

knowledge. Given that the mobility knowledge graph (MKG)

outlines the interconnections between mobility flows and Points

of Interest (POIs) within a specific area, we leverage this frame-

work to facilitate the transfer of relational insights from the

source area to the target area, aiming to augment incomplete

labels within the MKG of the target region. Drawing inspiration

from the methodology proposed by Mihalkova et al. [33], which

employs Markov logic networks [34] for mapping relational

dynamics from one domain to another, our approach diverges

by utilizing the inherent mobility relationships or facts encoded

within the MKG, as opposed to relying on Markov logic net-

works.

To summarize, our approach employs Transductive Transfer

Learning to assign labels to trajectory segments and Points of

Interest (POIs) in the target domain based on the learned rep-

resentation. For domain adaptation, we utilize a Reinforcement

Learning (RL) agent to capture the movement behavior of users

in the target region by leveraging knowledge from the source

region. While prior works have made various attempts at transfer

learning, the majority of them have focused on text or image

classification. Our work, on the other hand, aims to predict

missing labels and mobility behaviour relationships.

VI. PERFORMANCE EVALUATION

This section presents the efficacy of the various components of

the proposed architecture. Through comprehensive experimen-

tal analysis on real-world datasets, Mobilytics’s performance

is evaluated and benchmarked against a range of foundational

methods across diverse scenarios. The implementation of these

modules was carried out on a deep learning virtual machine

(VM) configuration provided by Google Cloud Platform

(GCP), equipped with 2×NV IDIA Tesla T4 GPUs and

2 vCPUs + 13 GB memory (n1− highmem− 2). The

development was undertaken using Python, with TensorFlow

Enterprise 2.3 (CUDA 11.0) serving as the backbone for the

deep learning framework.

A. Datasets

We have used five trajectory datasets from different regions

for validating Mobilytics.
� Indian dataset: The datasets are collected from residents

of two indian academic campuses: Indian Institute of
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Technology, Kharagpur (IITKGP) and National Institute of

Technology, Warangal (NITW) where GPS traces of 145

and 72 volunteers are collected for 28 months. Total 56 such

labels (trip-purpose or activity) are listed in the web-based

survey, and the participants select the appropriate labels

from the list. The mobility datasets contain continuous GPS

logs of individuals for the studied time-period. Each indi-

vidual’s daily GPS log consists of average 11 trajectory-

segments and 85% of the log capture mobility data in a

very high-sampling rate of 60 secs. The POIs of these two

campuses are initially mapped from Google Place API.

Further, three residents of the campus refined the POI-tag

database manually. It is discovered that a few buildings

are utilized for both academic and administration purposes

that are not captured by Google Place API. This process en-

riched POI-tags and built a more accurate POI-taxonomy.

To the best of our knowledge, huge amount of labelled

GPS traces are not available. There exist a few publicly

available GPS trace datasets (e.g., GeoLife, TDrive [1]);

however they do not contain any semantic information.

We aim to collect and prepare the labeled GPS traces in

this work.4

� Campus dataset (University of Melbourne): GPS logs col-

lected from 25 users for 3 months.
� GeoLife dataset [1]: GPS trajectory of 182 users for one

year in Beijing.
� Nokia MDC dataset [35]: GPS traces of 200 individuals for

9 months in the Lake Geneva region, Switzerland region.

B. Semantic Mobility Knowledge Extraction

The Adam algorithm updates the network weights iteratively

to optimize the parameters using cell size 64 and batch size 10.

Since the datasets have the “label” or “trip-purpose” in-

formation, we can testify whether Mobilytics can predict the

trip-purposes accurately by comparing the output with ground-

truth data. To the best of our knowledge, the literature presents

a limited number of studies focused exclusively on deriving

trip purposes from individuals’ mobility logs. Nonetheless, our

analysis includes a comparison of Mobilytics against the most

closely related existing contributionsIn the implementation of

baselines on next location prediction, we have slightly modi-

fied the output as next trip-purpose detection. and baselines as

follows:
� LDA: Each trajectory segment is considered as a document

where each POI is a word. Then, topic model LDA is used

to learn the topic distribution of each trajectory segment

followed by labelling to a specific class (trip-purpose).
� POI2Vec [36]: Mapping geographical and temporal im-

pacts using POI embedding-based method to learn POI

representations.
� Flashback [37]: RNN-based mobility model to search the

periodic movement patterns from historical data followed

by matching in the hidden states.

4Codebase and sample data available: https://drive.google.com/drive/folders/
1BpM-K3clH6XYpSHkFe12aGsG8n1AclI4?usp=sharing

TABLE III
DIFFERENT IDENTIFIED POI-TYPES IN NITW CAMPUS AND NEIGHBOURING

AREAS AFTER TRANSFER LEARNING (TC: TOTAL COUNT, NC: NUMBER OF

CORRECTLY IDENTIFIED POI)

� VANext [38]: Exploits individual’s periodical mobility and

recent movement paths using variational attention and a

CNN to encode users’ moving patterns.
� DeepMove [39]: Utilizes RNN and attention mechanism

to encode human movement dynamics.
� Soares et al. [40]: Novel KDD method to detect the travel

mode and predict the purpose (home, work, education,

shopping, leisure, other) of a trip.
� STR [41]: Spatio-temporal regularity based model using

Markov random field to find the best annotations maxi-

mizing the consistency of annotated trips.
� MoveSim [42]: Self-attention based sequential modeling

network for encoding the temporal transitions in human

movement patterns exploiting the prior knowledge and

generative adversarial learning framework for pre-training.
� SML-TUL [43]: Self-supervised mobility learning frame-

work to characterize the inherent movement correlations

and classify trajectories.
� NCF [44]: Annotate the POIs associated with raw user-

generated mobility records using neural context fusion

approach considering POI-visiting behaviors and represen-

tation learning.
� Wheels [45]: Trip purpose prediction (9 categories) using

vehicle GPS traces, public POI check-in data.

Evaluations of these methodologies were conducted utilizing

popular metrics: ACC@1, ACC@5, macro-P, macro-R, and

macro-F1. The performance outcomes of Mobilytics alongside

other techniques are consolidated in Table IV. Among the

contenders, NCF, which employs a neural context fusion and

attention mechanism, alongside Wheel, demonstrate superior

performance across various test cases. Yet, Mobilytics surpasses

NCF by a notable margin of approximately 15%. It is also

observed that NCF’s performance drops to roughly 61% when

trained with only 10% of the data, indicating its limitations under

data scarcity. Despite the limited POI categories considered by

the authors [44], their evaluation on public datasets from NYC

and Beijing showcased a minimum of 32% higher accuracy

over existing methods, underscoring the potential scalability

of our framework. Additionally, SML-TUL, which leverages

trajectory augmentation and a self-supervised mobility learning

framework for trajectory classification, exhibited commendable

performance. An ablation study was conducted to dissect the

contributions of specific components within Mobilytics, such

as MKG and Transfer Learning, revealing an enhancement in
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TABLE IV
COMPARATIVE ANALYSIS OF SEMANTIC LABEL (TRIP-PURPOSE) ANNOTATION

TABLE V
POI ANNOTATIONS COMPARISONS USING TRANSFER LEARNING FOR ALL FIVE

REGIONS OF INTEREST

performance margins ranging from approximately 18% to 30%

over the baseline methods.

We also carried out a comprehensive analysis on selection of

domains. For all five different domains (different geographical

regions), we evaluated for all 14 combinations of source domain

selection. Table V represents the best scores amongst all source

domain combinations. It is interesting to note that the integration

of two domains produced better accuracy for a few of the cases.

To depict the efficacy of the transfer learning module, we

carry out the POI-classification task with only 18 labelled GPS

traces of NITW and using the proposed approach to identify

and classify POIs by utilizing the mobility semantics of IITKGP

campus. Table III shows the count of correctly identified POIs in

NITW campus. The accuracy of the POI-identification is almost

83.58% on average. To depict the significance of the proposed

transfer learning technique, we implement five well-known clas-

sifiers namely K-nearest neighbour(kNN), naive Bayes, decision

tree, support vector machine (SVM) and backward propagation

neural network (BP).

To evaluate the classifiers, we used as features: (i) the number

of trips starting in each 30mins (n1) averaged over days. It is a

vector of 96 dimensions, with 48 dimensions for weekdays and

48 dimensions for weekends (or holidays); (ii) the number of

trips set-down (end) in each 30mins (n2) averaged over days: It

is a vector of 96 dimensions, where 48 dimensions for weekdays

and 48 dimensions for weekends (or holidays); (iii) the ratio of

TABLE VI
COMPARISON OF POI-CLASSIFICATION

TABLE VII
COMPARISON OF POI-CLASSIFICATION (A: 72 PARTICIPANTS’ LABELLED

TRACE, B: 18 PARTICIPANTS’ LABELLED TRACE)

starting trip and set-up trips in each 30mins (n3); and (iv) the

average stay-duration (n4) in each day of a week.

The SVM classifier uses Gaussian kernel function. Since

the problem is a multi-class classification, m(m− 2)/2 binary

classifiers are trained, where m is the number of classes. The

final classification result is obtained by voting through all binary

classifiers, and the class with majority-vote is selected. We have

implemented three-layer BP network.

To measure the dissimilarities, all samples (POIs) are rep-

resented by the vector input, each having four attributes as

mentioned above. Then, attribute-wise euclidean distance is

computed and the class label assigned to a test example is

determined by the majority vote of its k nearest neighbors. The

weights of all attributes are kept same. The k-values are checked

from 1− 10, where the accuracy is maximized in k = 4. It may

be noted that all parameters of the experiments are optimized.

The toolkit Scikit-learn 0.19.2 of python is used to implement

all these classical classifiers.

Table VII shows the POI-classification accuracy of our pro-

posed framework (P-F) with five classifiers. The experiment is
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Fig. 5. Sample illustration of Trajectory-traces and obtained clusters based on movement behaviors (a) Sample. json file (b) Trajectory traces of 10 users in
1000-2000 hrs of a day (c) Three similar movement behaviours shown in different colors.

carried out in two set-ups: (i) with all labelled GPS traces of 72

participants and (ii) with only 18 participants. It is observed

that all other classifiers perform poorly with fewer labelled

traces, however with the transfer learning module our proposed

framework achieves more than 27% accuracy measure than all

other baselines.

We implement other transfer learning approach namely, trans-

fer learning using Naive Bayes and transfer learning using Hi-

erarchical Bayesian model to map the mobility knowledge from

source to target. The naive Bayes transfer learning (NBTL) clas-

sification algorithm for text categorization is presented in [46].

Raykar et al. [47] present the Bayesian multiple instance learning

(MIL) algorithm, which is capable of feature selection and

classifier construction parallelly. Table VI shows the accuracy

measure of Mobilytics compared to others. It is observed that our

transfer learning set-up has outperformed these two baselines.

The key reason is the assumption of feature independence of

naive Bayes does not hold for semantic label classification. On

the other side, our proposed method achieves better result. The

deep architecture has helped to produce the feature representa-

tion and map the knowledge more effectively.

Another interesting finding is the classification of a few POIs

into multiple labels. For example, a few multi-storey buildings

are utilized as administrative work and lecture hall, or audito-

rium and administrative office. The reverse geo-coding process

using Google Place API fails to detect such cases. This issue is

solved by Mobilytics framework, since it does not rely on the

crowd-sourced data, rather it extracts underlying semantics of

the place and classify them. Mobilytics was capable of extracting

12 such places in IITKGP and 5 places in NITW campus.

Hence Mobilytics can also be used in activity-type annotations

in building information modeling to predict activity-spots of

multi-storey building.

C. Visualization

We illustrate some real samples of the dataset and experimen-

tal results here. Fig. 5(a) represents a sample .json file extracted

from Google Map Timeline, where timestamp, latitude, longi-

tude and accuracy value are shown. This sensor accuracy value is

used in the Kalman filtering process. Fig. 5(b) shows trajectory

traces of 10 users in a typical weekday in the time-interval

1000 - 2000 hrs. The trajectory traces of the individuals are

converted into heatmap representation on Google Map surface.

At a particular time-instance, the overlapping locations create

the higher density and give each area a color value. It is used to

depict the intensity (footprint density) of the location sequences,

where areas of higher intensity are shown in red colour, and areas

of lower intensity appear in green. The obtained clusters from

these traces are shown in Fig. 5(c). These clusters represent

similar moving behaviour, where three colors represent three

different movement behaviours, such as, red-colored traces rep-

resent commuting to lecture-hall, blue-colored traces represent

commuting to market and green-colored traces represent com-

muting to cafeteria. It may be noted that the trajectories span

in different spatial and temporal scales, however our proposed

algorithm is able to group the traces based on the trip-purposes.

There are total 56 semantic labels of trajectory trips in the dataset

and we have listed top 20 labels of the mobility traces and their

respective counts in Appendix.

D. Discussions and Simulation Study

This work aims to extract mobility semantics from the move-

ment log of individuals. There are several challenges to capture

this movement semantics. The proposed framework, Mobilytics,

deals with these issues deploying a deep learning architec-

ture, and is able to effectively extract the movement seman-

tics for automatic annotations of trajectories. (refer Table IV,

Sections V-A and V-B) The experimental result depicts promis-

ing accuracy and precision measures for identifying the move-

ment semantics of users.

The key challenges to extract mobility semantics are two-

folds: (i) first, it is not feasible to use conventional statistical

analysis to model travel behaviours as this analysis may fall short

to extract underlying complex dynamics of the mobility features.
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(ii) And without labelled training data, it is not possible to carry

out any supervised learning task at a new region. Mobilytics has

shown that adapting a proper transfer learning technique can

provision the mobility knowledge transfer to a geographically

dispersed region. The proposed framework achieved promising

accuracy for classifying POIs in the target region with very

few labelled data compared to the baseline methods. [Refer

Tables V–VII]

We collected real datasets consisting of 145 volunteers from

IIT Kgp and 72 volunteers from NITW. However, due to privacy

concerns, it is difficult to obtain large-scale mobility traces of

individuals. To depict the scalability of the proposed frame-

work, we have simulated a huge amount of mobility traces

using MATSim (https://www.matsim.org/) simulator. The major

observations are as follows: Mobilytics framework is scalable

– the performance does not degrade with increase in data-load

(simulated carried out up to 10 K users). It has been observed

that there is an improvement of accuracy in semantic label

annotation with more training data samples. It proves that the

deep learning architecture and the transfer learning modules

are capable to fine-tune the parameters when more training

data is available. The precision and recall measures of anno-

tation of few semantic labels (namely, L3, L5, L7, L10, L16
and L17) show better result with synthetic dataset. These are

mostly the group-activities of users. (Detailed discussion in

Appendix.)

VII. CONCLUSION

This paper represents a conceptual framework Mobilytics

conducive to extract mobility semantics of people and classify

several points of interest (POIs). The contributions are manifold.

First, the mobility knowledge graph (MKG) captures the under-

lying semantic correlations of movement patterns in different

spatial and temporal scales. Our paper is the first effort to apply

mobility knowledge transfer across geographically distinct re-

gions for the purpose of classifying Points of Interest (POIs) in

the context of scarce labeled data. Second, a deep architecture is

deployed to represent users’ mobility behaviours and extract the

trip-purposes or movement semantics. Further, Mobilytics has

outperformed the baseline methods in terms of recall, accuracy,

and precision. The POI identification results have also shown

promising outcomes. Third, through different domain selections,

Mobilytics can be extended to a city region for annotating

individuals’ trips and POI classification. As future work, the

proposed transfer learning module can be extended to contextual

information such as Call Data Record and social network traces

across geographical regions. At present, our work is limited to

academic campus, and we plan to deploy the framework across

cities and enhance the present architecture effectively leveraging

heterogeneous data sources.
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