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Abstract—The proliferation of sensor-equipped smartphones
has led to the generation of vast amounts of GPS data, such as
timestamped location points, enabling a range of location-based
services. However, deciphering the spatio-temporal dynamics of
mobility to understand the underlying motivations behind travel
patterns presents a significant challenge. This paper focuses on how
individuals’ GPS traces (latitude, longitude, timestamp) interpret
the connection and correlations among different entities such as
people, locations or point-of-interests (POIs), and semantic con-
texts (trip-purpose). We introduce a mobility analytics framework,
named Mobilytics designed to identify trip purposes from individual
GPS traces by leveraging a “mobility knowledge graph” (MKG)
and a deep learning architecture that automatically annotates the
GPS log. Additionally, we propose a novel “transfer learning” ap-
proach to explore movement dynamics in a geographically distant
area by leveraging knowledge obtained from a comparable region,
such as an academic campus. In terms of major contributions and
novelty, this is the first work to present end-to-end daily mobility
trip purpose extraction and mobility knowledge transfer for trip
annotation and POI-tagging where the labeled data are insufficient.
Experimental results on real-life datasets of five different regions
demonstrate the efficacy of our proposed Mobilytics framework
which outperforms the baselines for trip-purpose extraction and
POI annotations by a significant margin (= 18% to =~ 30%).
Moreover, the analysis on huge volume of simulated traces (10,000
users) illustrates the scalability and robustness of the framework.

Index Terms—Mobility knowledge graph, POI (point-of-
interest), semantics, spatio-temporal trajectory, transfer learning.

I. INTRODUCTION

HE time-stamped sequence of location data (e.g., latitude,
longitude) of any moving agent such as people or vehicle, is

Manuscript received 21 March 2023; revised 27 February 2024; accepted
30 April 2024. Date of publication 12 June 2024; date of current version
5 November 2024. The work of Shreya Ghosh and Soumya K. Ghosh was
partially supported by the SPARC Phase III under Grant 3385. The work of
Sajal K Das was partially supported by the US National Science Foundation
(NSF) under Grant SCC-1952045, Grant CNS-2008878, Grant OAC-2104078,
and Grant EPCN-2319995. Recommended for acceptance by C. Assi. (Corre-
sponding author: Shreya Ghosh.)

Shreya Ghosh is with the Department of Computer Science and Engineering,
Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India (e-
mail: shreya.cst@gmail.com).

Soumya K. Ghosh is with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
(e-mail: skg@cse.iitkgp.ac.in).

Sajal K Das is with the Department of Computer Science, Missouri University
of Science and Technology, Rolla, MO 65409 USA (e-mail: sdas@mst.edu).

Prasenjit Mitra is with the College of Information Sciences and Technology,
Pennsylvania State University, University Park, PA 16802 USA (e-mail: pmitra
@psu.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2024.3413589, provided by the authors.

Digital Object Identifier 10.1109/TMC.2024.3413589

referred to as the trajectory. The huge volume of trajectory traces
facilitate location based services such as individual mobility-
based trip-recommendations, travel-time prediction, effective
road traffic monitoring by mobile crowdsourcing etc. [1], [2].
However, most of the applications require semantic descrip-
tion of users’ movement for better understanding of users’
activity. This opens up an important research question: how
to interpret the intention or reason (i.e., trip purpose) behind
individuals’ movements? Such trip-purposes are essential for
travel behaviour modelling and travel demand estimation, and
business investment decisions. Furthermore, it is the first step
to creating text descriptions from GPS log that may be useful
to develop an automated system for creating travel diary. How-
ever, extracting such interpretation of trajectory, and deriving
usable knowledge from raw GPS trajectory/log is very chal-
lenging due to the diverse nature of human movement patterns,
and deep learning based algorithms are inadequate in most of
the real-life scenarios due to scarcity of labels and training
data.

Our work generates a descriptive form of GPS trajectory
by providing trip-purposes and activities performed at each
trajectory segment and stay-point (see Section III for the def-
inition). We propose an end-to-end mobility analytics frame-
work, called Mobilytics, which is capable of extracting corre-
lations among points-of-interests (POIs), temporal-scale and
user’s trip-purposes in the movement log. For example, the GPS
footprint density of students’ hangout spot (/) in an academic
campus is closely related to the time-schedule of lectures and the
distance between the lecture-hall and H. The footprint density
at places like the library, sports facility, and cafeteria largely
depend on the time-stamp of a day as well as external contexts
(e.g., examinations, annual cultural-events). Furthermore, such
contexts significantly influence (or alter) the time spent and the
timestamp of visits at these stay-points.

The scarcity of labelled GPS logs (GPS trajectory with trip-
purpose annotated) is the major limitation in any supervised
learning technique to annotate trip-purposes. Transfer learn-
ing [3] is gaining significant attention for mitigating the gap
between an incomplete learning task due to insufficient training
data in the target region and extracted knowledge from the
learning task in the source region. In this regard: Can we map the
mobility knowledge consisting of interrelations and connections
among entities (users, POIs) from one academic campus (source
region) to another campus (target region) where the labeled
data (trip-purposes and POI-tags) is inadequate and achieve
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Fig. 1. General structure of mobility knowledge transfer set-up.
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Fig. 2. Snapshot of a typical Mobility Knowledge Graph in a ROI (academic-campus). It shows how Mobilytics can extract structured knowledge from varied

sources (GPS traces of individual users, aggregated footprint density, POI-types and related information directly from map services or using our analytics method)

in a cohesive manner.

accurate trip-purpose and POI identification? To this end, we
propose a mobility-knowledge graph (MKG) to capture the
interdependence and connections among the users’ movement
behavior and POIs (see Fig. 2) at different time-scales, and
subsequently transfer the extracted mobility knowledge to other
regions for mapping the intent of movements. The knowledge
graph [4] has the potential to model the complex relationship
among users with varied trajectory patterns and POIs with
different social functional spots.

However, the travel behavior changes based on the time,
and the context (e.g., same POI can be used for two different
activities at two different times of a day, or trip-purposes, such
as, commuting to work or visiting friends) significantly influ-
ences travel behavior and travel mode. Therefore, both the edge
label (e.g., trip-purpose, see Fig. 2) and node characteristics
(crowd flow or activity performed at a POI) change based
on time and day of a week). Most existing knowledge graph
techniques leverage the embeddings learned from knowledge
graphs as initial features ignoring the knowledge involved in
the user trajectory trace [4]. For instance, using spatio-temporal
features (e.g., time-duration spent, distance and time taken
to reach next POI, frequency of visit etc.) we can extract
trip-purposes and POI-types, which are essentially useful for
a number of applications, such as, travel demand modelling,
business settlement etc.

TABLE 1

MOBILITY KNOWLEDGE TRANSFER LEARNING: APPLICATION SETUP

Study Region Source Domain Target domain
Region-of-Interest NTKGP NITW
(22.3145,87.309) | (17.9837,79.53)
Area covered: Area covered:
8.534 Km? 1.189 Km?
Aggregated movement Available Available
pattern
Number of individuals’ 145 18
GPS log
Number of individuals’ 145 Not Available
labelled GPS log
Number and type of POIs 236 Not Available

A. Motivation

The real-life problems that we are attempting to solve are

identifying POI-type (activity spots of a region) and identifying
trip-purposes of individual users.

In the scenario depicted in Fig. 1 and Table I, we examine two
regions of interest (ROIs): a source ROI (denoted as SG) and
a target ROI (denoted as 7'G). We consider three primary data
sources: a road network (D1), labeled GPS traces of individuals
(D2), and crowd flow or aggregated GPS footprints (D3) within
different time scales of the ROIs. These data sources reveal
correlations in movement semantics between points of interest
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(POIs) across various time scales. Essentially, individuals move
with specific intentions that are closely tied to the type or
characteristics of the destination POI. The term “aggregated
GPS footprint” refers to the density of footprints at POIs during
different time intervals within a region, indicating the total
counts of footprints at each time interval (e.g., S-minute intervals
throughout a day). This aggregated data aids in determining
crowd flow at a POI by examining the intersections and overlaps
of trajectories, as illustrated in Fig. 2 where the “visit” and
“group” relations of the graph contribute to the aggregate count.
Our primary data source (D3) encompasses activities undertaken
at a specific location (e.g., attending a lecture) or the intention
behind a trip or movement (e.g., commuting for medical assis-
tance). Acquiring such annotations or labels can be challenging,
which is where “Mobilytics” comes into play. Mobilytics aims
to learn from the source ROI (SG) through domain adaptation,
enabling the mapping of this knowledge to another dispersed yet
potentially connected target ROI (7'G). This process allows for
the annotation of users’ unlabeled trajectories and the identifi-
cation of POIs within the target ROI.

Let us consider a couple of real-world applications.

(A) Urban Planning and Security: For urban planning, Mobi-
Iytics uses D2 and D3 to create semantically enriched maps that
inform the placement of new businesses or services, effectively
predicting where a new restaurant or hospital might best serve
the community. In security applications, the comparison of D2
against the backdrop of D1 and D3 aids in identifying anomalous
behaviors—movements that do not correspond with the typical
patterns associated with certain POIs, thus enhancing security
measures.

(B) Disaster Response and Management: Mobilytics can play
a crucial role in disaster-affected areas where the existing POI
information may become outdated or irrelevant due to changes
in the environment. For instance, after a natural disaster like a
flood or earthquake, the road networks and local landmarks may
be altered or rendered inaccessible. By analyzing real-time or
recent GPS traces (D2) and crowd-flow data (D3), Mobilytics
can quickly identify new navigational routes, temporary shelters,
and resource distribution points. This information is critical for
coordinating rescue and relief operations efficiently, ensuring
resources are directed where they are most needed. Moreover,
by comparing the pre-disaster and post-disaster mobility data,
Mobilytics can assist in assessing the impact on infrastructure
and community mobility, thereby facilitating a more informed
recovery and rebuilding process.

Specifically, Mobilytics can be applied to (a) map POIs of
a new city (where Google or other map services are not yet
reliable) and identify new POIs from movement semantics, (b)
understand trip-purposes and help identify specific areas that
are not disclosed due to, e.g., defense activities (by identifying
trips which do not have common mobility characteristics nor
correlate with associated POI-type). Furthermore, if we deduce
the usual trip-purposes and associated movement characteristics,
then anomalous trajectory can be identified, e.g., enhancing
security measures (such as the mobility behavioural difference
between a user and a pickpocket suspect [5]) (c) identifying
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different activities at a multi-storied building (which are often
not labelled by Map services), (d) Finally, Mobilytics may help
in creating a theoretical foundation on extracting and analysing
characteristics of different trip-purposes in a city region which
may help in creating semantically enriched synthetic trajectory
traces that can be used for research, simulation, and further
tool-building. Annotating trip-purposes is also instrumental for
allocating resources in advance or identifying suitable locations
for new business (POI, say, restaurant, hospital, etc.) settlement.

B. Our Contributions

The major contributions of this work are summarized below.

1) Mobility Knowledge Graph: We elaborately define and
develop a novel time-dependent mobility knowledge graph
(MKG) to model movement semantics among locations
and temporal information of the region. This is the first
work to develop a knowledge graph completion problem
where massive volume of trajectory traces, temporal in-
formation and POIs are jointly modelled and represented
to address mobility trip-purpose and POI identification
problems where only limited labelled trajectory data is
available. [See Section IV-B]

2) User Mobility Semantics: We describe a novel deep learn-
ing architecture for annotating GPS (movement) traces
with POI-tags and trip-purpose.

3) Mobility Knowledge Transfer: Mobilytics presents a
transfer learning technique for transferring mobility
knowledge from source region to target region and MKG
completion, which means the incomplete information of
the entities and relations are updated.

4) Performance Evaluation: The Mobilytics framework is
evaluated with real-life datasets from two academic cam-
puses in India, one campus in Australia, and GPS traces
from China [See section VI-A].2 The evaluation in terms
of accuracy, precision and execution time demonstrate
that our Mobilytics framework provides valuable insights
regarding the correlations of peoples’ moves, locations,
contexts and finally transferring knowledge (i.e., using
labelled MKG of source region to complete MKG in target
region). Further, we have carried out an extensive study on
simulated traces of 10,000 users to illustrate the scalability
of the Mobilytics framework.

The rest of the paper is organized as follows. Section II
summarizes related works. Preliminary concepts are introduced
in Section III, while the Mobilytics framework consisting of mo-
bility knowledge graph and deep learning modules are presented
in Sections IV and V, respectively. Experimental performance
evaluation is described in Section VI and conclusions are offered
in the final section.

!'The intuition is that the placement of POIs may be different, however the
spatio-temporal characteristics of similar trip-purposes are similar in source and
target regions.

>The datasets from India and Australian university have been collected
voluntarily.
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II. RELATED WORK

A. Semantic Trajectory Data Mining

Most trajectory analysis works in the literature represent
the trajectories as episodes of stop and move [1]. Neverthe-
less, semantic information, e.g., POI-type of stay-point, trans-
portation mode, needs to be augmented with the raw GPS
log to facilitate intelligent location based services (e.g., user-
profiling, trip recommendation etc.) to capture dynamic user
needs and provide meaningful suggestions. The formalization of
a semantic-enriched knowledge discovery process is described
in [6] for interpreting human movement behaviors. In [7], the
authors studied the regional movement patterns and developed
an efficient algorithm to find out such patterns in semantic
trajectories. A collective embedding framework is presented
in [8] to extract the community structure from spatio-temporal
graphs of human mobility. The authors proposed a probabilistic
propagation approach and used deep auto-encoder methods, and
showed two use cases to evaluate the efficacy of their approach.
In [9], a framework is introduced that can generate insightful
embeddings for points of interest (POIs) by incorporating se-
mantic and contextual information from diverse sources. Ad-
ditionally, Wang et al. [10] propose “FROST”, which focuses
on optimizing facility placement by analyzing user movement
patterns. However, while the aforementioned works primarily
address semantic trajectory data mining, there remains a gap
in the exploration of extracting trip purposes from historical
movement logs.

B. Knowledge Graph Embedding

The authors in [4] presented a spatial knowledge graph to
profile users’ mobility and predict the next location sequences.
By introducing an imitation-based criterion for profiling ac-
curacy, where the accuracy is highest when an autonomous
agent can mimic a user’s activity patterns, the authors propose
a framework where an agent plans next visits based on a user’s
profile, improving profiling through interactions between users,
spatial entities, and a spatial knowledge graph and demon-
strates enhanced performance in predicting human mobility
activities, showcasing its potential for incremental learning in
user profiling and other applications. However, the authors only
emphasized on users visiting specific locations without any
semantic labelling of the trips. In [11], an approach (TransR) for
entity and relation embedding is proposed for link prediction.
This novel approach for knowledge graph completion constructs
entity and relation embeddings in separate spaces, addressing the
limitations of previous models like TransE and TransH which
embed entities and relations in the same semantic space. TransR
improves upon these models by projecting entities from an
entity space to a corresponding relation space before performing
translations, demonstrating significant improvements in link
prediction, triple classification, and relational fact extraction
tasks over state-of-the-art baselines. Our proposed mobility
knowledge graph embedding is motivated by this work, however,
we defined new mobility relations and proposed a new embed-
ding technique to capture the movement semantics. Another
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work, named StructRL [12], formulates mobile user profiling by
deep representation learning. The authors deploy an adversarial
substructured learning framework for modelling activities of
users and forecasting next activities. However, the method needs
ample number of training data-instances to learn the parameters
of their proposed model.

C. Deep Learning Based Model

Deep learning has recently gained significant research atten-
tion in the trajectory data mining community [13]. An unsuper-
vised neural network based framework is proposed in [14] to
cluster similar mobility behaviours. A deep learning framework
in [15] identifies living patterns in a population effectively. A
semi-supervised deep learning model named, SECA, is proposed
in [16] for transportation mode identification. Since the unavail-
ability of labeled datasets is one of the major concerns in super-
vised learning techniques, the transfer learning paradigm [3]
offers a way forward, thereby reducing the expensive data-
labelling efforts. For instance, a transfer learning framework
is proposed in [17] for mobile traffic prediction leveraging gen-
erative adversarial network based transfer learning over spatio-
temporal data. A transfer learning technique presented in [18]
generates spatial trajectories in the target city where no mobility
data is present. This work mainly focuses on generating paths in
the new city by learning path preferences in the source city, how-
ever, does not study the trip-purpose or POI annotation aspect.
The authors in [19] estimate the Home-to-Work time for citizens
from the survey data of the source and target cities. A transfer
learning technique proposed in [20] detects parking hotspot by
exploiting multi-source data for discriminative feature learning.
The POI recommendation framework in [21] leverages transfer
learning of users’ movement behavior in the home country to
the new city visited.

D. LLM-Based Model

Recently, researchers have started to leverage large language
models (LLMs) for time-series analysis. The authors in [22]
introduces LLM-Mob, a method utilizing LLMs for predicting
human mobility by incorporating historical and contextual data,
showing superior prediction accuracy and interpretability, and
suggesting a shift towards using general-purpose LLMs in mo-
bility studies. GeoLLM [23] is a novel approach that leverages
LLMs and OpenStreetMap data to improve geospatial prediction
tasks. It demonstrated significant advancements in predicting
population density and economic indicators, surpassing tradi-
tional methods and matching satellite-based benchmarks. How-
ever, despite these successes, Large Language Models (LLMs)
require extensive pre-training on massive datasets, which may
not be directly applicable to specific tasks like trip purpose
detection that rely heavily on understanding spatial and temporal
semantics. On the other hand, integrating mobility knowledge
graphs (MKG) and transfer learning, as done in Mobilytics, can
significantly enhance LLMs’ performance in mobility analytics.
The MKG provides a structured framework that enriches LLMs
with domain-specific insights and contextual understanding nec-
essary for accurate trip purpose detection and POI tagging.
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Additionally, the transfer learning approach allows for the ap-
plication of knowledge from one geographic area to another,
compensating for LLMs’ limitations in dealing with sparse or
region-specific data.

To the best of our knowledge, there hasn’t been prior research
specifically dedicated to constructing a mobility knowledge
graph (MKG) aimed at interpreting user trip purposes and
transferring this mobility knowledge to another geographically
dispersed region, particularly in cases where labeled data are
limited. The concepts of MKG construction and knowledge
transfer utilizing deep learning architecture represent novel con-
tributions.

III. DEFINITIONS AND TERMINOLOGIES

GPS Trajectory (G): 1t refers to time-stamped location in-
formation represented by loc :< latitude, longitude > or (lat,
lon). This term is used interchangeably with GPS trace to denote
the path or movement recorded over time.

POI-taxonomy: Point-of-interest (POI) represents the
activity-spots or socio-functional region (e.g., residential
building, sports complex, etc.) of a city. The POIs of study
region has been represented in a tree-structured taxonomy
(POI-taxonomy). In this tree-based structure, the leaf nodes
hold specific addresses while the internal nodes represent more
generic POI-tags.

Region-of-interest (ROI): The bounding-box captures the ROI
which is divided into uniform square grids, of spatial resolution
is 100 x 100 m. This is determined by considering a balance
between spatial resolution and computational efficiency. This
size is particularly well-suited to urban and suburban environ-
ments where points of interest are densely packed and diverse
in function.

Stay-point (S) : Stay-point of a user trajectory is defined by a
set of GPS-points in spatial proximity and the time spent at this
point is greater than a temporal threshold (see Section IV-A).
Stay-point S(B, pl, T') is represented by the bounding box (B),
POI-tag (pl), and time-interval (7") of the visit. The bounding-
box is represented by polygon geometry [24] and encloses the
area covered by the user during 7'.

Trajectory Segment (I'raj_Seg): It is represented as:

Traj_Seg = {S1(B1,pli,T1) — (l1,t1) — -+ —
(ln, tn) — Sp(Bn, pln, Tn)} (1)

where S; and S,, are two stay-points. It’s important to observe
thateach T'rajseg is composed of consecutive stay-points along
with the GPS log between these stay-points. In cases where there
are no preceding or succeeding GPS points available for a user,
the starting and ending points of the trajectory are automatically
considered as default stay-points.

Movement Diary: The movement-diary is the log of the se-
mantic meaning or infent of a trip (e.g., visit from one stay-point
to the next stay-point). In this work, we consider 56 such
trip-purposes (see Appendix) and collect trip purposes from the
users using a web-based app (see Section VI-A).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Problem Definitions

Trajectory segmentation annotation: Given the trajectory
trace (timeseries data of latitude, longitude of an individual
user), the model outputs the corresponding labels of the stay-
point transitions? (e.g., commuting to workplace) and activity
type (attending lecture) at a specific stay-point/ POI-type
(e.g., academic department).

Mobility Knowledge Transfer: Given a source ROI (la-
belled movement traces and POIs) SG and the classifica-
tion task (trajectory annotation) PCsg, a target ROI T'G
(unlabelled movement traces) and classification task PCrg,
the proposed transfer learning module aims to improve the
learning of target function fp¢ in 7'G utilizing the knowledge
of SG and PCsg, where SG # T'G and PCsg = PCrg.

IV. TRAJECTORY PRE-PROCESSING AND MKG
A. GPS Error Removal and Trajectory Segmentation

In the initial step, the GPS log is pre-processed to guarantee
the increasing order of timestamp and remove duplicate points
with same timestamp.

li(laty,long, t1) — la(lata, long, ta) — 1, (lat,, lony, t,),

Jn) €G
(@)

The Kalman Filtering technique [1] is deployed to remove
the GPS errors due to low number of satellites in view or device
error (large scale error) and small scale random error (e.g., GPS
points out of the boundary of a POI or out of the road the vehicle
was actually driven). The measurement noise (v;) and process
noise (w;) are defined as:

where ty >1to > ... >tn,V(l1,l2,...

w; ~ N(0,Q;); v; ~N(0,R;) (3)

The process noise is represented by () and R denotes measure-
ment noise covariance matrix. In our experiment, GPS data log
is collected from individuals’ Google Map Timeline, where an
accuracy value indicating the measurement accuracy is logged
in the mobility data file (See Appendix A). Therefore, R; is the
function of this accuracy and @); is the amount of time elapsed
between two measurements ¢ and 7 — 1. We have followed the
detailed process of using kalman filtering in trajectory pre-
processing as proposed by Lee and Krumm [25]. The GPS points
are smoothed using the above-mentioned filtering technique.

Trajectory segmentation is the process of fragmenting the
complete path into different length of location sequences visited
by the moving agent. In this paper, we segment the trajecto-
ries such that a segment holds consecutive stay-points and the
path between the stay-points followed by the agent. To detect
the stay-points from the trajectory, two scale parameters are
required: distance (diss,) and time (t;) thresholds. Typically,
stay-point occurs if an individual stays stationary for atleast 4,
time. This mainly happens while people enter in a POI (building)
and the GPS signal is unavailable. In other cases, several GPS
points are logged within a certain spatial region (dis;y) for a
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period which means the user is wandering outside and attracted
by the surroundings. In this work, a spatio-temporal sequence
of GPS points GS' = (loca, ta); (locat1,tat);- - - (locy, tp) are
converted into a single stay-point, if ¢, — t, >= ty, and Va <
1 <= b, Distance(loc,,loc;) <= disy,. We set ty, = 08 mins
and dis;;, = 200m in the stay-point detection process. In the first
step, if a user stays more than 8mins within 200 m distance, then
itis detected as a stay-point. Next, the geotagg information of the
mean coordinate (3°__loc;.lat/|GS|, > y_, loc;.lon/|GS)|)
is extracted.

To label land use information, we employ a method known
as reverse geocoding, which involves utilizing the Google Place
API service to extract POI tags or geotags from Google Maps.
‘We mention the “opening_hours” (POI’s business hours) in the
parameter-list of the reverse-geotagging procedure. The . json
file returned by the API service consists of an array-list named
periods (a pair of day and time objects describing POI’s business
hours). We eliminate the POIs that are not open in the time of
stay-duration of the trajectory. If multiple landmarks or POIs (L:
list of landmarks) are found that remain open (or active), then the
nearest one from that GPS point is selected. Since the extraction
of geotags or POI information is time consuming, we extract all
the POI information within 200 m in the initial stage itself. It is
important to clarify that our methodology utilizes land use/ geo-
tagged information from Google Maps as an initial dataset for the
source region, ensuring that the data is comprehensive and up-to-
date. However, the core premise of Mobilytics is to leverage the
movement semantics from well-mapped source regions to learn
intricate mobility patterns and behaviors. Once these patterns
are comprehensively understood, the learned model can then be
applied or ‘transferred’ to target regions with potentially less
precise data. Moreover, we have shown that the performance of
Mobilytics can be further enhanced by combining data from two
or more source regions (See Table V). This approach provides a
robust fallback in situations where one region’s data might not be
as current or detailed, thereby ensuring the model’s effectiveness
and generalizability.

The OpenstreetMap (https://www.openstreetmap.org/) is
used to extract the road network structure. This information
provides geometric information of the road segments (length,
width) and the connectivity and continuity (e.g., intersection)
of the road network. The AntMapper map-matching algorithm,
introduced in [26], is utilized to align the raw GPS log with
the relevant road segments. This algorithm incorporates both
topological information and a global similarity value during
the mapping process. Subsequently, trajectory segments are
established by connecting any two consecutive pairs of stay-
points along with the path traversed by the individual. The
trajectory-pattern of individual over days is modeled using Dy-
namic Bayesian network (probabilistic graphical model) named
Traj_Window(V', E',T) where V' and E’ are the set of
stay-points and the direction of visit among different stay-points
respectively [27]; and T denotes the conditional probability
tables of the nodes (stay-points) representing the degrees of
dependence between variables. Here, Traj_Window is used to
model and represent the movement patterns of an individual,
rather than a single days’ trajectory. The key reason to utilize
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TABLE II
MKG RELATION NAMES AND DESCRIPTION

MKG relation name MKG relation

MRvisit {(Ui,POij), [ts,teLfﬂU}
MRgroup {(ui, U\ u;, I(poi1, ..., poim), [ts, te], fu}
s.t. VZMRvisit(ua,pOiL [ts, t/s])/\
MRyisit (Ua, poiz, [t2, t5]) - - - A
MRvisit(ua:pOimy [t'ﬂu tE])
MRflow (POihpOiz: [tsﬂfe}yfz)
mn

3(Ulv s ,Un)vj

X ’
MR’UiSit(ujpoZl? [t\??ts}? fz)
/\MRvisit(ujaPOiQ? [tevte}vfz) n>v

probabilistic graphical model is the conditional dependency of
stay-points in the movement path. Given that the user is present
ata POI (Py) attime (¢1), the probability of visiting the sequence
of POIs (say P, at t» time) are captured in the Traj_Window.
This Traj_Window is used to model the movement pattern of
an individual over time by modelling the relationships between
multiple time series and also different regimes of movement
behaviors.

B. Mobility Knowledge Graph (MKG) Construction

The mobility knowledge graph (MKG) captures the move-
ment semantics (individual movement behavior and POI char-
acteristics) of the region. Specifically, MKG is crucial for our
framework for several reasons. (i) We need to model the move-
ment semantics irrespective of the spatial (distance between
two academic units or residential places) and temporal (time
to travel from residential place to workplace) constraints. This
helps extract the movement behavior and correlate with similar
movement patterns at different region (where POI distribu-
tion is different); (ii) facilitate information retrieval and query-
processing (see mobility relations such as group, visit, flow,
and corresponding parameters defined later) by transforming
the mobility semantics into machine readable format (Mobility
traces can be easily stored and analysed as stop and move
that can be represented by nodes and edges of a graph); and
(iii) extracting previously unknown mobility patterns as well
anomalies by merging more than one relation of the graph.
(See mobility relations visit, flow from one node to another in
Table I1.)

1) MKG: Entities and Relations/ Facts: The mobility knowl-
edge graph is represented as a directed graph that is composed
of time-dependent mobility-relations (MR). Formally, MKG is
definedby < u, M R, p,t, f >, whereu, p, t are spatio-temporal
entities and f denotes the strength (probability that each fact
happens) of the correlation. The spatio-temporal entities consist
of users (u), places (poi) and time-intervals (¢, t.). The mobility
relations are extracted based on the historical movement log.
Table II denotes three different MRs used in this work: M R ;4i::
This relation captures the visits of users to points of interest
(POIs) within a specific time interval. It is represented as a
tuple containing the user identifier (u;), the point of interest
(poi;), the start and end times of the visit ([t,, t.]), and a function
fx that represents probability of the visit. This relation allows
the graph to capture individual user movements to specific
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locations. M Rgyoup: This relation represents a group mobility
pattern where multiple users visit a sequence of POIs together
within a given time frame. The visit sequence is represented
by a series of M R,;s;+ relations, each capturing a visit to one
of the m POIs in the sequence by user u, within specific
time intervals. This relation is useful for identifying social or
collective mobility patterns, such as a group of people moving
from one venue to another together. M Ry,,,: This relation
describes the movement flow between two POIs over a time
interval. It is defined by the existence of visits from a set of
users (1, - .. , uy) to the first POI (poiy ) starting within a given
time frame ([ts,t.]), and then to the second POI (pois) ending
within a specific time frame ([t.,.]). The M Ry;,,, relation is
essential for understanding traffic patterns or migration between
locations within the knowledge graph.

Fig. 2 illustrates a sample MKG in an academic-campus ROIL.
By constructing MKG, we attempt to model movement dynam-
ics of the ROI. The entities and some relations among the entities
namely visit, group, flow are shown in Fig. 2. In the knowledge
graph, the entities are users and POIs. Each of the entities has
some attributes, which are denoted by oval-shape object and
dotted line. For instance, the attributes of a user are user-category
(faculty/student/staff) and her permanent residence. Similarly,
the attributes of a POI are POI-tag, opening/closing hours of
the POI. The blue lines show the relations among the entities.
Here, we have introduced time-dependent facts since movement
dynamics can not be represented by static fact representation.
The relation trip-purpose is not embedded in the movement log
for all trips in the database. Therefore, this relation is marked
with different color. The left side of the figure depicts the features
of POIs, among which some of are directly extracted from the
information provided (such as location of the POI, POI-type and
opening/ closing hours from the geotagged information), and
some fact like GPS footprint variation in different time-scale
is observed by analyzing the aggregate movement trace in the
study-period. The right side of the figure mainly deals with users’
movement patterns and related facts such as visit-sequences,
group and trip-purpose. The relation connectedBy represents
the road-segments to connect any two POIs. This relation is
extracted by the map-matching process defined in Section IV-A.
The relation stores an arraylist containing the road-ids. The rela-
tion boundingBox represents the polygon coverage area of each
POL. In the reverse geo-tagging procedure, we extract the POIs
covering 200 m of any point. From this information, we find out
the coverage of each POI and compute the bounding-box. The
relation typically stores the lower left and upper right coordinates
of the bounding-box.

To capture the variation in GPS footprints over different
timescales, we divide a day into 15-minute time slots starting
from 8:00 in the morning. For each point of interest (POI) in
the knowledge graph, we represent the number of starting trips
(ST) and set-up trips (SU) at different time slots of a day (e.g.,
L1) using the vector notation:

STP* = (STLvPe ST vPe . ST/ P,

SUP = (SULPe SUSPe L SUSP) @)
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Next, we create two matrices for each POI representing
the counts of start and set-up trips by analyzing GPS logs
(L1,...,Lg) of d days. We then apply an autoregressive in-
tegrated moving average technique to determine the values of
start and set-up trips in different time slots based on historical
movement traces. This process enables us to capture the GPS
footprint variation (denoted as “hasVariation” mobility fact) of
different POI entities in the knowledge graph.

How MKG relations can be useful in realistic scenarios:
MKG relations (See Table II) are crucial for understanding
and analyzing mobility within a region by capturing individual
and collective movement patterns and the flow of movement
between different points of interest. They enable the translation
of raw mobility data into structured, query-able information that
can facilitate a range of applications from urban planning to
traffic forecasting and personalized location-based services. For
instance, in emergency response and disaster management, (a)
M R,;si¢ can help emergency services predict which areas are
likely to be most populated at certain times, allowing for more
efficient evacuation route planning and resource allocation, (b)
M R gy 0up: understanding group movement patterns (M R group)
can be critical for coordinating evacuation efforts. If certain
POIs are known to be gathering points for groups (e.g., schools
or community centers), these can be prioritized in evacuation
or emergency response planning, (c) M R, relations can be
analyzed to predict how people are likely to move between areas
during an emergency. This information can be vital for managing
congestion on evacuation routes and for planning emergency
response logistics, such as where to place ambulances and first
responders for the quickest access to those in need.

2) MKG: Embedding Technique: The MKG embedding has
three steps: (a) represent POIs and Users; (b) propose a scor-
ing function, and (c) learn the representations of POIs, users
and mobility-facts at different time-scales. The entities (POIs
and users) are usually represented as vectors and the rela-
tions (mobility-facts) are defined by operations in the vector
space [28]. Next, a scoring function measures the plausibility
of each mobility fact at different time intervals. In our MKG-
embedding, we propose a new embedding by augmenting Ro-
tation and Translation Embeddings (RotatE) [29] and semantic
matching model [30], with some modifications to adapt to the
movement semantics of a region. RotatE is known for its flex-
ibility and effectiveness in capturing various relation patterns
(e.g., symmetry/antisymmetry, inversion, and composition) in
a knowledge graph where the semantic matching model aims
to learn vector representations of entities and relations by cap-
turing the similarity between the related entities and relations.
We select TransE (Translation-based Embeddings), a semantic
matching model that represents mobility relations as translations
in the embedding space.

Given the fact M F; = < s;, 14, 0, [t1, t2], fz > of our MKG,
we represent two entities s; and o; respectively by complex-
valued vectors s; € C¥™ and o, € C%¥™, where dm is the di-
mensionality of the embeddings. The strength of the relation
(probability that the fact happens in that time-interval) is denoted
by f.. The spatial information is embedded by sp(s;, 0;) which
measures the spatial distance (Haversine distance) between the
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Fig. 3. Illustration of the training phase of Model 1.

head entity (if s, is a user, it considers the user’s present location)
and the tail entity (o;, a POI). The temporal vector (7), defined
by the time spent at the POI (Tspepq) and the time taken to visit
the POI (Ty;s;¢), measures the time taken by a user to reach the
POI from its previous location. These are combined as:

T(84, 04 [t1,t2]) = ¢ X (ta — t1) + ¢ X Tyisie(8i,0i)  (5)

where ¢ and ¢ are hyperparameters that control the importance
of time spent at the POI and the time taken to visit the POI, re-
spectively. Next, the scoring function (score(s;, 7, 04, [t1, t2]))
is defined as:

= — (wy *||s; x 7 —0i||1 + U * sp(s;,0;)
+1p* 7(si, 04, [t1,12]))
= — (wy x ||s; xr; — 0i]|1 + U x sp(s;,0;)

+ (¢ X (ta —t1) + ¢ X Tyisit(8i,0:))) (6)

where weight w, = exp(—A * f;) is introduced for each re-
lation based on the strength feature (0 < f, <1) and A is
the hyperparameter that controls the influence of the relation
strength on the weight. MK G embedding captures varied relation
patterns: (1) Symmetry/Antisymmetry: The “visit” relation is
considered symmetric, as it implies that if a user visits a POI,
the POI is also visited by the user, while the “flow” relation is
considered antisymmetric, as the flow of users from one POI
to another might not necessarily be the same in the opposite
direction. (2) Inversion: The “meet” relation is an example of
inverse relation, such as “part” (indicating that users part ways).
When users s; and s; meet (s;, meet, s;), it implies that they
were not together before (s;, part, s;). (3) Composition: The
“group” relation is a composition of two other relations, such as
“meet” and “visit”. By capturing these relation patterns, MKG
can represent the complexities of the relationships between users
and POIs, leading to a more accurate representation of the
movement semantics in the region.

The training objective in the MKG embedding is to minimize
the ranking loss (£) of the true triples (s;,r;,0;) and their
corrupted counterparts as follows:

ro
irTis

L(si,73,04, [t1,t2], s 03, [t1,t2]) = max(0, A

+ score(s;, i, 0i, [t1,t2]) — score(s;,rl, o, [t1,t2])) (7)

9 to
J
IEP

Discard the output at each time-s

11595

(label,) (label,) (labels) (label,) At end point of
trajectory

R

AtStartingpoine  (1aPel)  (labely) (label;)  (labels)
of trajectory

Teacher Forcing Strategy is Adopted

where A denotes non-negative hyperparameter that determines
the desired separation between true and corrupted triples. The
ranking loss function aims to ensure that the true triples have
lower (better) scores than the corrupted triples. The training
objective is to minimize the average ranking loss over all true
triples and their corresponding corrupted triples in the training
dataset using stochastic gradient descent (SGD). In summary,
MKG captures the intricate dynamics of user mobility and be
applied to various downstream tasks (such as mobility knowl-
edge completion, and transfer learning) in the mobility context.

V. DEEP LEARNING MODULES
A. Model I: Annotation of the Trajectory Segments

Fig. 3 illustrates the problem statement and the adaptation of
the basic encoder-decoder (many-to-many) model.

Here, we present the method of annotating (or labeling with
trip-purpose) the trajectory-segments of an user by the proposed
deep learning architecture (model I). To begin with, we define
the trip-purpose as a semantic label for the transition from one
stay-point to another (see Section VI-A for a few trip-purposes).
To extract trip-purposes, we assume the following facts: (1)
The stay-points of an individual are always either associated
with POIs or represent some group activities. This assumption
is realistic, since users spend a specific amount of time in the
stay-point. The reason behind this stay may be some activities
performed in the POIs (say, attending lectures in the lecture-hall)
or any group-activity with other users. (2) The semantic labels
of the trips provided by the individuals in their movement diaries
are accurate. This assumption is convincing since the intuition
behind any movement can be interpreted by the individuals
correctly. Also, in the data collection process, we provided a
fixed set (total 56) of trip-purposes as the labels. If an user finds
her trip-purpose is not present within the list, the user can select
“others” and provide additional label for that specific trajectory
segment. We found only a very few trajectory segments (= 2%)
were labelled as “other”. The synonymity problem is negligible.
(3) The day of the week, stay-duration, sequence of the visits,
timestamp of the visit directly influence the semantic-label or
the trip-purpose. However, the trip-purpose labelling task is not
straightforward. First, it’s important to note that two trajectories,
despite having significantly different spatial and temporal scales,
may exhibit similar movement behaviors. For example, one’s
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Fig. 4. Deep learning architecture for model 1.

commute to work may take fifteen minutes and the other may
take one hour. Moreover, the spatial and temporal scales of the
trajectories representing similar moving behaviors may not be
similar. For example, a one-hour commute may span only 5
miles (say with a bicycle) or 50 miles (say with a car). Even
for the same mode of transportation, we may have similar
commute times with different spatial scales due to traffic. Due
to these challenges, any approach relying on similarity mea-
sures using raw spatial and/or temporal features of a trajectory,
such as Dynamic Time Warping (DTW) or Longest Common
Subsequence (LCSS) distance [1], cannot be used as a robust
method for extracting similar movement behaviours that depend
on temporal and geographic context of the trajectory. Again, a
work commute happens on workdays, which usually starts in
the morning from a residential area to a business area and vice-
versa in the afternoon. There are also several external contexts
which significantly influence the movement behaviours of the
individuals and consequently the trip-purposes. For example, in
the examination-week of the semester or in the college festival
time the trip-purposes differ from the daily movement patterns.
These context-shifts must be captured and incorporated in the
model for an efficient intent mapping. Other existing trajectory
distance metrics (DTW, LCSS etc.) fall short to incorporate all
such contexts in the similarity measurements. To this end, deep
hierarchical models is one of the feasible solutions [14] which
can distinguish among several trip-purposes by learning the
latent representations of mobility data along with other contexts.

Our deep learning architecture is depicted in Fig. 4. The
collective task layer, implemented through a Convolutional
Neural Network (CNN), processes combined movement data
to categorize Points of Interest (POIs) within a given area. It
incorporates the analysis of the spatial patterns of visitation in-
tensity and the timing aspects (duration of stay and visit timing)
to perform this categorization task effectively. The incorporation
of MKG as graph attention layers serves to refine the accuracy of
POI classification further. Meanwhile, the individual task layer

processes annotated trajectory data (denoted as T'R, L), with
the model’s decoder generating corresponding classifications.
The approach adopts the teacher-forcing technique [31], which
improves classification efficiency by utilizing both actual train-
ing sequences and the model’s predicted outputs. To account for
the influence of preceding and subsequent points in a trajectory,
the model introduces the temporal-constraint gate (7G) and
spatial-constraint gate (D). Additionally, to capture spatial
and temporal relationships, the model employs the skip-gram
and paragraph vector models for crafting spatial and temporal
embedding modules, focusing on adjacent grid points denoted
as locy; and locy.

T

1

T Z log[p(loci—c, ..., locs_1,l0Ct i1, . .. loctyc|loct))
t=1

T
1
=7 Z Z log p(loci+ j|locy)

t=1 con

®)
ry = tanh([We®; + ba] © [Wrri + b, ] © [We (s + b¢]) (9)

wherecon: —c<j<c¢ j#0

Here, & denotes the concatenate operation. Using the embed-
ding vectors, we deploy a bidirectional LSTM layer by adding
two gates as follows:

TiGy = sigmoid(xy Wz + sigmoid(AtWya) + ba);
st Wy <0

TD; = sigmoid(x:W g + sigmoid(AdWip) + bp);
st Wop <0 (10)

In this context, the time and distance intervals are represented
by At and Ad, respectively. The conditions Wy < 0 and
W, p < 0 indicate that the influence is stronger when the time
and distance intervals are relatively small. In our study, the
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network is trained jointly to minimize the cross-entropy loss
between the predicted label and the ground truth label for both
POI class and trip-purpose category.

B. Model II: Transferring Mobility Knowledge

Transferring mobility knowledge from one region to another
geographically dispersed region is a promising area [17], [18] as
obtaining labeled mobility data is challenging. Table I represents
different data modalities and learning task in the target domain.
Note that although the task is similar (trip-annotation and POI
identification) but the ROIs (IITKGP, NITW) are different.
The mobility trace representation needs to be learnt followed
by domain adaptation. The aggregated movement pattern over
the underlying road network is initially mapped to find out
the footprint deviation in different temporal scales in varied
POls.

The moving agents (people or vehicle) depart from a region
(POI), arrive in the destination (POI) and spend time at stay-
points. These trips comprise the overall aggregated movement
flow of the complete study region (See “flow” mobility fact of
MKG and embeddings in Section IV-B2). This mobility flow
represent the semantics of the region and help to characterize
different POISs in a region. Our proposed model utilizes Trans-
ductive Transfer Learning [32] to classify the POIs and label the
trips of the users of the target domain.

A domain or Region of Interest (ROI) is defined by two
primary elements: (a) the feature space (&), and (b) the marginal
probability distribution P(X), where X = x1,9,...,2z, €
€3]

In our set-up, we assume that the ROIs (IITKGP, NITW, UoM,
MDC and GeoLife) have the same label space (the POI-tags and
trip-purposes are same), but with different marginal probability
distribution (spatial distribution of POIs, footprint density and
temporal information are different).

The concept of adapting feature spaces from a source domain
to a target Region of Interest (ROI) is known as feature represen-
tation transfer. This process involves acquiring spatio-temporal
feature representations from both the source and target domains
through deep learning frameworks, followed by dimensionality
reduction via a multilayer perceptron. The subsequent phase
focuses on knowledge transfer of instances by addressing the
challenge of empirical risk minimization, formulated as:

Kk = arg min E
K

(z,y)eTG

where P(G(SGQ)) represents the marginal probability distribu-
tion of the source region’s aggregated GPS data, I f(z,y, k) is
the loss function, and  denotes the optimal set of parameters
in the learning framework. Considering the disparity between the
target and source regions, thereby P(G(SG)) # P(G(TG)),
the optimization equation is modified as:

k" = arg min E
K

(z,9)eSG

PG(TG))

PG(sG)) (GG 1w y.x)

(12)
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5G;)
TG;)
each case. Initially, the Mobilytics framework employs a domain

adaptation strategy due to the differing distributions of source
and target data instances. The core idea is to leverage the labeled
data from the source ROI to classify unlabeled trajectory data
in the target ROIL. Mobilytics proposes a reinforcement learning
(RL)-based transfer learning method, emphasizing on instance
weighting and adaptation through the learning of rewards and
policies. Here, an agent aims to predict transitions between
stay-points and the duration of stays at different POIs, with
actions defined by a user’s visits and durations at POIs. The
environment is comprised of the users and POIs within the
Mobility Knowledge Graph (MKG), denoted as (M KG,u;).
The reward is determined by the spatial and temporal accuracy
between actual and predicted stay-point transitions. For the
learning of policies, a variant of the Deep Q-Network and a
potential-based reward shaping technique are employed, facili-
tating the application of transfer learning on the MKG. The key
components of the framework are described as follows:

Agent: Within Mobilytics, the agent is conceptualized as the
entity responsible for forecasting or planning the subsequent
movement of a user. Based on the user’s current location and
the surrounding environment as inputs, the agent is tasked with
determining the forthcoming transition, encompassing both the
travel distance necessary to arrive at the next point of stay and
the duration of time to be spent there.

Actions (a): The framework delineates actions in a dual
capacity: (i) a = (1,p,,1) signifies a user’s visit to point of
interest p, after covering a distance ¢, and (ii) « = (0, p,, t)
represents a user’s duration ¢ of stay at p,. The domain of actions
is constituted by the set of POIs, with the initial component of
« indicating the choice between transitioning to or remaining at
a POL

Environment (En) and State (se): The system’s environment
is structured as En = (M KG,U), encompassing the mobility
knowledge graph and the user community within the specified
region, including their mobility patterns. The interplay between
user behaviors of visiting and staying and the mobility knowl-
edge graph’s structure influences both entities reciprocally. The
state captures the mobility path of an individual user, encapsu-
lating the count of visited and stayed POIs, the duration of stays,
and the distances traversed between POIs.

Reward (Rd): Central to the reinforcement learning paradigm,
the reward function guides the optimization process. In this
framework, the reward is calculated as a weighted aggregate
of several criteria: (i) dtra, the inverse of the distance between
actual and forecasted POI visits; (ii) durS, the inverse of the
discrepancy between actual and predicted stay durations at a
POI; and (iii) act, reflecting the accuracy of predicting whether
the user’s action pertains to staying or transitioning at a POL.
Assuming the trajectory comprises of n stay-points, the reward
for the complete trajectory trace is computed as:

. T . P
To achieve this objective, it is necessary to estimate & (i for

(n—1) (n) (n)
Rd = wrq X Z dtra; +wry X ZdurSj + wrs X Zact
j=1

j=1 =1

(13)
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The reward function is designed to evaluate the predictions made
by the agent regarding the user’s mobility trace and is a weighted
sum of three components: (1) wry is the weight applied to dtra,
whichis the reciprocal of the distance traveled between the actual
and predicted Point of Interest (POI) visit. This term emphasizes
the accuracy of the location predictions. A higher weight for
wry will cause the agent to prioritize minimizing the distance
error in its predictions, which could lead to more precise POI
visit predictions. (2) wry weights durS;, the reciprocal of the
difference in time duration spent at the POI between the real
and predicted values. This weight controls how much the agent
focuses on accurately predicting the time a user spends at a
POL. If wry is increased, the agent is incentivized to improve
the accuracy of predicting the duration of stays at POIs. (3)
wrs is the weight for the action accuracy component act, which
represents whether the action of staying at or transitioning to a
POl is correctly predicted. By adjusting wrs, the reinforcement
learning algorithm can be fine-tuned to either reward the predic-
tion of user actions more or less, depending on which aspects of
the user’s mobility behavior are more critical to the application
at hand.

Given the present state (se) of the user, the goal of the agent
is to maximize the reward by correctly predicting the transitions
and stay-points of the user trajectory trace. Policy is the core
of the agent, which learns the mapping from state to an action
from the available data-instances. As mentioned earlier, Deep Q-
network is used for policy learning. Here, we propose two-phase
learning simultaneously in a feedback loop: in the first phase,
the agent attempts to learn the mapping from the source domain
training dataset; in the second phase, the available historical
records of the mobility data of target domain is used to refine
the policy (7).

Now, we have to find the policy () in a way:

T = ay such that mazrimize Rd,

= thrdt; where 0 < vy <1
t=0

(14)
where 7y is the discount factor. The deployed deep neural network
approximates the optimal action-value function Q*(se, «) as:

Q*(se,a) = max E[Rd;|se; = se,ar = «, 7|
= max E[rd; + yrdsi1 4+ Yrdiso

s5)

After an observation se and action «, the maximum sum of
rewards rd; at each time-step ¢ can be achieved by a policy
m = P(«|se). Based on the well-known Bellman equation, we
can re-write the optimal action-value function as:

+...|ser = se,ar = a, 7]

Q" (se,a) = max By [Rd + ymax Q" (s, o')[se,a]  (16)

The intuitive idea of any reinforcement learning algorithm
is to find out the action-value function by value iteration
method Q;y1(se, ) = Ego[Rd + ymaxy Qi(s€’, o)|se, a.
However, the basic approach is unrealistic as it converges at
t — oo. Therefore, a function approximator is needed. We
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deploy a neural network such that Q(se, a;w) = @ * (se, @),
where w denotes the weights, and the network is trained by the
loss function RLoss;(w;) at each iteration ¢ as:

RLossi(wi) = Ege anp(sa(y(Rd +vmaxQ(se’,a';w; 1)
— Q(se, 3 w;)?]

Since the source data instances are drawn as training samples,
the gradient of the loss function is computed as:

A7)

Ve RLossi(wi) = E(Rd +ymax Q(se’,o';w; 1)

(18)

In the subsequent phase, our focus is to leverage relational
knowledge. Given that the mobility knowledge graph (MKG)
outlines the interconnections between mobility flows and Points
of Interest (POIs) within a specific area, we leverage this frame-
work to facilitate the transfer of relational insights from the
source area to the target area, aiming to augment incomplete
labels within the MKG of the target region. Drawing inspiration
from the methodology proposed by Mihalkova et al. [33], which
employs Markov logic networks [34] for mapping relational
dynamics from one domain to another, our approach diverges
by utilizing the inherent mobility relationships or facts encoded
within the MKG, as opposed to relying on Markov logic net-
works.

To summarize, our approach employs Transductive Transfer
Learning to assign labels to trajectory segments and Points of
Interest (POIs) in the target domain based on the learned rep-
resentation. For domain adaptation, we utilize a Reinforcement
Learning (RL) agent to capture the movement behavior of users
in the target region by leveraging knowledge from the source
region. While prior works have made various attempts at transfer
learning, the majority of them have focused on text or image
classification. Our work, on the other hand, aims to predict
missing labels and mobility behaviour relationships.

— Q(se, a;w;) Vu, Q(se, 05 w;)]

VI. PERFORMANCE EVALUATION

This section presents the efficacy of the various components of
the proposed architecture. Through comprehensive experimen-
tal analysis on real-world datasets, Mobilytics’s performance
is evaluated and benchmarked against a range of foundational
methods across diverse scenarios. The implementation of these
modules was carried out on a deep learning virtual machine
(VM) configuration provided by Google Cloud Platform
(GCP), equipped with 2 x NVIDIA Tesla T4 GPUs and
2vCPUs + 13 GB memory (nl — highmem — 2).  The
development was undertaken using Python, with TensorFlow
Enterprise 2.3 (CUDA 11.0) serving as the backbone for the
deep learning framework.

A. Datasets

We have used five trajectory datasets from different regions

for validating Mobilytics.
¢ Indian dataset: The datasets are collected from residents
of two indian academic campuses: Indian Institute of
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Technology, Kharagpur (IITKGP) and National Institute of
Technology, Warangal (NITW) where GPS traces of 145
and 72 volunteers are collected for 28 months. Total 56 such
labels (trip-purpose or activity) are listed in the web-based
survey, and the participants select the appropriate labels
from the list. The mobility datasets contain continuous GPS
logs of individuals for the studied time-period. Each indi-
vidual’s daily GPS log consists of average 11 trajectory-
segments and 85% of the log capture mobility data in a
very high-sampling rate of 60 secs. The POIs of these two
campuses are initially mapped from Google Place APIL.
Further, three residents of the campus refined the POI-tag
database manually. It is discovered that a few buildings
are utilized for both academic and administration purposes
that are not captured by Google Place API. This process en-
riched POI-tags and built a more accurate POI-taxonomy.
To the best of our knowledge, huge amount of labelled
GPS traces are not available. There exist a few publicly
available GPS trace datasets (e.g., GeoLife, TDrive [1]);
however they do not contain any semantic information.
We aim to collect and prepare the labeled GPS traces in
this work.*

e Campus dataset (University of Melbourne): GPS logs col-
lected from 25 users for 3 months.

® GeoLife dataset [1]: GPS trajectory of 182 users for one
year in Beijing.

e Nokia MDC dataset [35]: GPS traces of 200 individuals for
9 months in the Lake Geneva region, Switzerland region.

B. Semantic Mobility Knowledge Extraction

The Adam algorithm updates the network weights iteratively
to optimize the parameters using cell size 64 and batch size 10.

Since the datasets have the “label” or “trip-purpose” in-
formation, we can testify whether Mobilytics can predict the
trip-purposes accurately by comparing the output with ground-
truth data. To the best of our knowledge, the literature presents
a limited number of studies focused exclusively on deriving
trip purposes from individuals’ mobility logs. Nonetheless, our
analysis includes a comparison of Mobilytics against the most
closely related existing contributionsIn the implementation of
baselines on next location prediction, we have slightly modi-
fied the output as next trip-purpose detection. and baselines as
follows:

¢ LDA: Each trajectory segment is considered as a document
where each POI is a word. Then, topic model LDA is used
to learn the topic distribution of each trajectory segment
followed by labelling to a specific class (trip-purpose).

e POI2Vec [36]: Mapping geographical and temporal im-
pacts using POI embedding-based method to learn POI
representations.

¢ Flashback [37]: RNN-based mobility model to search the
periodic movement patterns from historical data followed
by matching in the hidden states.

#Codebase and sample data available: https://drive.google.com/drive/folders/
1BpM-K3cIH6XYpSHkFe12aGsG8n1Acll4?usp=sharing
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TABLE III
DIFFERENT IDENTIFIED POI-TYPES IN NITW CAMPUS AND NEIGHBOURING
AREAS AFTER TRANSFER LEARNING (TC: TOTAL COUNT, NC: NUMBER OF
CORRECTLY IDENTIFIED POI)

POI-type TC | NC POI-type TC | NC
Academic Building | 18 16 Hospital 1 1
Student Hall 23 21 ATM 3 2
Residence (Staff) 3 1 Bank 2 2
Student Canteen 6 5 Guest House 1 0
Auditorium 3 1 Library 1 1
Department 11 9 Sports Complex 2 1
Restaurant 6 5 Medical Store/ Center 3 2
Cafeteria 3 2 Post-office 1 1
Parking Area 25 23 Shopping Complex 3 3

e VANext [38]: Exploits individual’s periodical mobility and
recent movement paths using variational attention and a
CNN to encode users’ moving patterns.

® DeepMove [39]: Utilizes RNN and attention mechanism
to encode human movement dynamics.

e Soares et al. [40]: Novel KDD method to detect the travel
mode and predict the purpose (home, work, education,
shopping, leisure, other) of a trip.

e STR [41]: Spatio-temporal regularity based model using
Markov random field to find the best annotations maxi-
mizing the consistency of annotated trips.

e MoveSim [42]: Self-attention based sequential modeling
network for encoding the temporal transitions in human
movement patterns exploiting the prior knowledge and
generative adversarial learning framework for pre-training.

e SML-TUL [43]: Self-supervised mobility learning frame-
work to characterize the inherent movement correlations
and classify trajectories.

e NCF [44]: Annotate the POIs associated with raw user-
generated mobility records using neural context fusion
approach considering POI-visiting behaviors and represen-
tation learning.

e Wheels [45]: Trip purpose prediction (9 categories) using
vehicle GPS traces, public POI check-in data.

Evaluations of these methodologies were conducted utilizing

popular metrics: ACC@Q1, ACC@5, macro-P, macro-R, and
macro-F1. The performance outcomes of Mobilytics alongside
other techniques are consolidated in Table IV. Among the
contenders, NCF, which employs a neural context fusion and
attention mechanism, alongside Wheel, demonstrate superior
performance across various test cases. Yet, Mobilytics surpasses
NCF by a notable margin of approximately 15%. It is also
observed that NCF’s performance drops to roughly 61% when
trained with only 10% of the data, indicating its limitations under
data scarcity. Despite the limited POI categories considered by
the authors [44], their evaluation on public datasets from NYC
and Beijing showcased a minimum of 32% higher accuracy
over existing methods, underscoring the potential scalability
of our framework. Additionally, SML-TUL, which leverages
trajectory augmentation and a self-supervised mobility learning
framework for trajectory classification, exhibited commendable
performance. An ablation study was conducted to dissect the
contributions of specific components within Mobilytics, such
as MKG and Transfer Learning, revealing an enhancement in
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TABLE IV
COMPARATIVE ANALYSIS OF SEMANTIC LABEL (TRIP-PURPOSE) ANNOTATION

ITKGP Dataset NITW Dataset
Method ACCQ@1 ACCQ@5 macro-P  macro-R  macro-F1 | ACCQ1 ACCQ@5 macro-P  macro-R macro-FI
LDA 62.91% 73.53% 61.77% 59.45% 60.52% 61.37% 72.08% 60.55% 58.48% 59.25%
POI2Vec 65.53% 76.29% 63.22% 62.66% 62.82% 64.19% 75.71% 62.15% 61.85% 62.09%
Flashback 66.21% 77.81% 64.90% 64.12% 64.55% 65.67% 77.13% 63.21% 63.14% 63.46%
VANext 68.78% 80.02% 66.72% 65.30% 66.21% 67.12% 79.82% 65.24% 64.11% 64.70%
DeepMov 66.98% 78.20% 65.12% 64.90% 64.77% 63.08% 74.86% 64.27% 62.16% 63.19%
Soares et al. [40] 66.48% 79.91% 65.02% 63.87% 64.43% 66.48% 78.25% 61.99% 60.02% 60.98%
STR 72.02% 83.99% 71.42% 69.78% 70.81% 71.42% 82.57% 67.95% 66.51% 67.27%
MoveSim 69.12% 81.62% 68.55% 67.06% 67.82% 65.70% 79.31% 63.21% 62.55% 62.86%
SML-TUL 72.88% 85.14% 71.45% 69.70% 70.46% 71.22% 82.62% 68.53% 67.41% 67.85%
NCF 73.54% 84.29% 71.60% 70.21% 70.29% 72.86% 84.15% 69.57% 68.12% 68.53%
Wheel 71.02% 84.61% 72.10% 71.08% 71.58% 73.42% 83.18% 70.06% 69.11% 69.58%
Mobilytics (w/o MKG) | 84.06% 91.01% 76.56% 79.20% 77.85% 80.62% 88.71% 76.12% 78.02% 77.05%
Mobilytics (w/o MKG) | 76.18% 74.02% 73.08% 74.16% 73.61% 77.01% 82.06% 72.09% 74.18% 73.12%
(limited data at Target) Transferred knowledge from NITW to IITKGP Transferred knowledge from IITKGP to NITW
Mobilytics (Full) 87.02% 92.51% 84.24% 81.08% 82.62% 84.18% 90.05% 82.86% 81.21% 82.02%
Mobilytics (Full) 83.20% 87.18% 80.61% 78.11% 79.34% 83.66% 88.10% 80.21% 80.52% 80.36%
(limited data at Target) Transferred knowledge from NITW to ITKGP Transferred knowledge from IITKGP to NITW

Learning cost: ~6 hr (IITKGP data), ~2 hr (NITW data); Model size: 6.2 MB w/o Transfer learning module, 8.6 MB w/ Transfer learning model

The evaluation encompasses all baseline methods using the full dataset. In contrast, the scenario labeled as limited data at target refers to the training process conducted with only

10% of the data accessible in the target region.

TABLE V
POI ANNOTATIONS COMPARISONS USING TRANSFER LEARNING FOR ALL FIVE
REGIONS OF INTEREST

TABLE VI
COMPARISON OF POI-CLASSIFICATION

Approach Accuracy
Target domain | Source domain ACC@5 macro-F1 Transfer Learning with Naive Bayes 51.05%
NITW IIT KGP 88.08% 78.02% Transfer Learning with Hierarchical Bayesian network 60.58%
1T KGP GeoLife+NITW  91.06% 84.11% Transfer Learning in Mobilytics (Proposed) 83.58%
Tsinghua IT KGP+UoM  89.06% 85.01%
UoM IIT KGP 85.81% 80.05%
MDC UoM 83.21% 76.02% TABLE VII

performance margins ranging from approximately 18% to 30%
over the baseline methods.

We also carried out a comprehensive analysis on selection of
domains. For all five different domains (different geographical
regions), we evaluated for all 14 combinations of source domain
selection. Table V represents the best scores amongst all source
domain combinations. It is interesting to note that the integration
of two domains produced better accuracy for a few of the cases.

To depict the efficacy of the transfer learning module, we
carry out the POI-classification task with only 18 labelled GPS
traces of NITW and using the proposed approach to identify
and classify POIs by utilizing the mobility semantics of ITKGP
campus. Table III shows the count of correctly identified POIs in
NITW campus. The accuracy of the POI-identification is almost
83.58% on average. To depict the significance of the proposed
transfer learning technique, we implement five well-known clas-
sifiers namely K-nearest neighbour(kNN), naive Bayes, decision
tree, support vector machine (SVM) and backward propagation
neural network (BP).

To evaluate the classifiers, we used as features: (i) the number
of trips starting in each 30mins (n;) averaged over days. Itis a
vector of 96 dimensions, with 48 dimensions for weekdays and
48 dimensions for weekends (or holidays); (ii) the number of
trips set-down (end) in each 30mins (n2) averaged over days: It
is a vector of 96 dimensions, where 48 dimensions for weekdays
and 48 dimensions for weekends (or holidays); (iii) the ratio of

COMPARISON OF POI-CLASSIFICATION (A: 72 PARTICIPANTS’ LABELLED
TRACE, B: 18 PARTICIPANTS’ LABELLED TRACE)

Classifier | kNN | Naive | Decision | SVM BP P-F
Bayes Tree

Accuracy | 81.56 80.08 84.5 88.02 | 84.86 | 92.51

(A) (%)

Accuracy | 54.02 42.3 44.61 38.73 34.2 83.58

(B) (%)

starting trip and set-up trips in each 30mins (n3); and (iv) the
average stay-duration (n4) in each day of a week.

The SVM classifier uses Gaussian kernel function. Since
the problem is a multi-class classification, m(m — 2)/2 binary
classifiers are trained, where m is the number of classes. The
final classification result is obtained by voting through all binary
classifiers, and the class with majority-vote is selected. We have
implemented three-layer BP network.

To measure the dissimilarities, all samples (POIs) are rep-
resented by the vector input, each having four attributes as
mentioned above. Then, attribute-wise euclidean distance is
computed and the class label assigned to a test example is
determined by the majority vote of its k nearest neighbors. The
weights of all attributes are kept same. The k-values are checked
from 1 — 10, where the accuracy is maximized in £ = 4. It may
be noted that all parameters of the experiments are optimized.
The toolkit Scikit-learn 0.19.2 of python is used to implement
all these classical classifiers.

Table VII shows the POI-classification accuracy of our pro-
posed framework (P-F) with five classifiers. The experiment is
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1000-2000 hrs of a day (c) Three similar movement behaviours shown in different colors.

carried out in two set-ups: (i) with all labelled GPS traces of 72
participants and (ii) with only 18 participants. It is observed
that all other classifiers perform poorly with fewer labelled
traces, however with the transfer learning module our proposed
framework achieves more than 27% accuracy measure than all
other baselines.

We implement other transfer learning approach namely, trans-
fer learning using Naive Bayes and transfer learning using Hi-
erarchical Bayesian model to map the mobility knowledge from
source to target. The naive Bayes transfer learning (NBTL) clas-
sification algorithm for text categorization is presented in [46].
Raykaretal. [47] present the Bayesian multiple instance learning
(MIL) algorithm, which is capable of feature selection and
classifier construction parallelly. Table VI shows the accuracy
measure of Mobilytics compared to others. It is observed that our
transfer learning set-up has outperformed these two baselines.
The key reason is the assumption of feature independence of
naive Bayes does not hold for semantic label classification. On
the other side, our proposed method achieves better result. The
deep architecture has helped to produce the feature representa-
tion and map the knowledge more effectively.

Another interesting finding is the classification of a few POIs
into multiple labels. For example, a few multi-storey buildings
are utilized as administrative work and lecture hall, or audito-
rium and administrative office. The reverse geo-coding process
using Google Place API fails to detect such cases. This issue is
solved by Mobilytics framework, since it does not rely on the
crowd-sourced data, rather it extracts underlying semantics of
the place and classify them. Mobilytics was capable of extracting
12 such places in IITKGP and 5 places in NITW campus.
Hence Mobilytics can also be used in activity-type annotations
in building information modeling to predict activity-spots of
multi-storey building.

C. Visualization

We illustrate some real samples of the dataset and experimen-
tal results here. Fig. 5(a) represents a sample .json file extracted

from Google Map Timeline, where timestamp, latitude, longi-
tude and accuracy value are shown. This sensor accuracy value is
used in the Kalman filtering process. Fig. 5(b) shows trajectory
traces of 10 users in a typical weekday in the time-interval
1000 - 2000 hrs. The trajectory traces of the individuals are
converted into heatmap representation on Google Map surface.
At a particular time-instance, the overlapping locations create
the higher density and give each area a color value. It is used to
depict the intensity (footprint density) of the location sequences,
where areas of higher intensity are shown in red colour, and areas
of lower intensity appear in green. The obtained clusters from
these traces are shown in Fig. 5(c). These clusters represent
similar moving behaviour, where three colors represent three
different movement behaviours, such as, red-colored traces rep-
resent commuting to lecture-hall, blue-colored traces represent
commuting to market and green-colored traces represent com-
muting to cafeteria. It may be noted that the trajectories span
in different spatial and temporal scales, however our proposed
algorithm is able to group the traces based on the trip-purposes.
There are total 56 semantic labels of trajectory trips in the dataset
and we have listed top 20 labels of the mobility traces and their
respective counts in Appendix.

D. Discussions and Simulation Study

This work aims to extract mobility semantics from the move-
ment log of individuals. There are several challenges to capture
this movement semantics. The proposed framework, Mobilytics,
deals with these issues deploying a deep learning architec-
ture, and is able to effectively extract the movement seman-
tics for automatic annotations of trajectories. (refer Table IV,
Sections V-A and V-B) The experimental result depicts promis-
ing accuracy and precision measures for identifying the move-
ment semantics of users.

The key challenges to extract mobility semantics are two-
folds: (i) first, it is not feasible to use conventional statistical
analysis to model travel behaviours as this analysis may fall short
to extract underlying complex dynamics of the mobility features.
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(i1) And without labelled training data, it is not possible to carry
out any supervised learning task at a new region. Mobilytics has
shown that adapting a proper transfer learning technique can
provision the mobility knowledge transfer to a geographically
dispersed region. The proposed framework achieved promising
accuracy for classifying POIs in the target region with very
few labelled data compared to the baseline methods. [Refer
Tables V-VII]

We collected real datasets consisting of 145 volunteers from
IIT Kgp and 72 volunteers from NITW. However, due to privacy
concerns, it is difficult to obtain large-scale mobility traces of
individuals. To depict the scalability of the proposed frame-
work, we have simulated a huge amount of mobility traces
using MATSim (https://www.matsim.org/) simulator. The major
observations are as follows: Mobilytics framework is scalable
— the performance does not degrade with increase in data-load
(simulated carried out up to 10 K users). It has been observed
that there is an improvement of accuracy in semantic label
annotation with more training data samples. It proves that the
deep learning architecture and the transfer learning modules
are capable to fine-tune the parameters when more training
data is available. The precision and recall measures of anno-
tation of few semantic labels (namely, L3, L5, L7, L10, L16
and L17) show better result with synthetic dataset. These are
mostly the group-activities of users. (Detailed discussion in
Appendix.)

VII. CONCLUSION

This paper represents a conceptual framework Mobilytics
conducive to extract mobility semantics of people and classify
several points of interest (POIs). The contributions are manifold.
First, the mobility knowledge graph (MKG) captures the under-
lying semantic correlations of movement patterns in different
spatial and temporal scales. Our paper is the first effort to apply
mobility knowledge transfer across geographically distinct re-
gions for the purpose of classifying Points of Interest (POISs) in
the context of scarce labeled data. Second, a deep architecture is
deployed to represent users’ mobility behaviours and extract the
trip-purposes or movement semantics. Further, Mobilytics has
outperformed the baseline methods in terms of recall, accuracy,
and precision. The POI identification results have also shown
promising outcomes. Third, through different domain selections,
Mobilytics can be extended to a city region for annotating
individuals’ trips and POI classification. As future work, the
proposed transfer learning module can be extended to contextual
information such as Call Data Record and social network traces
across geographical regions. At present, our work is limited to
academic campus, and we plan to deploy the framework across
cities and enhance the present architecture effectively leveraging
heterogeneous data sources.
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