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Abstract. Automated relation extraction without extensive human-
annotated data is a crucial yet challenging task in text mining. Existing
studies typically use lexical patterns to label a small set of high-precision
relation triples and then employ distributional methods to enhance detec-
tion recall. This precision-first approach works well for common relation
types but struggles with unconventional and infrequent ones. In this work,
we propose a recall-first approach that first leverages high-recall patterns
(e.g., a per:siblings relation normally requires both the head and tail
entities in the person type) to provide initial candidate relation triples
with weak labels and then clusters these candidate relation triples in a
latent spherical space to extract high-quality weak supervisions. Specifi-
cally, we present a novel framework, RCLUS, where each relation triple is
represented by its head/tail entity type and the shortest dependency path
between the entity mentions. RCLUS first applies high-recall patterns to
narrow down each relation type’s candidate space. Then, it embeds candi-
date relation triples in a latent space and conducts spherical clustering to
further filter out noisy candidates and identify high-quality weakly-labeled
triples. Finally, RCLUS leverages the above-obtained triples to prompt-
tune a pre-trained language model and utilizes it for improved extrac-
tion coverage. We conduct extensive experiments on three public datasets
and demonstrate that RCLUS outperforms the weakly-supervised base-
lines by a large margin and achieves generally better performance than
fully-supervised methods in low-resource settings.

Keywords: Relation Extraction - Weak Supervision - Latent Space
Clustering

1 Introduction

Relation extraction, which aims to extract semantic relationships between the
head and tail entities as shown in Fig. 1, is crucial to various downstream tasks
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Relation Extraction Task Setting: Dependency Parsing Tree & Dependency Path:
Sentence: /t’s a meeting of L.C.K., a civil meeting

rights organization founded by Shawn. It * % > [L'E-K’]/y(eml

Head Entity: L.C.K. - ,

Tail Entity: Shawn of

a rights
civil  [Shawn],;

Relation between Head & Tail Entities:
org:founded_by

by

Fig. 1. Sentence’s relation is explicitly contained in the dependency path. Head entities
are indicated in blue while tail entities are indicated in red. The shortest dependency
path connecting each pair of head entity and tail entity is indicated in light yellow.
(Color figure online)

including hypernymy detection [33], knowledge base construction [25], and ques-
tion answering [34,38,40]. A common practice of relation extraction is to fine-
tune pre-trained language models with massive human annotations as full super-
visions. As human annotations are expensive to acquire, potentially outdated
or even noisy, such supervised methods are unable to scale. Instead of relying
on massive human annotations, weakly-supervised relation extraction has been
explored to tackle the data scarcity issue [24,26,47]. To improve the efficiency
and minimize the expense of obtaining annotations, weakly-supervised relation
extraction leverages only an incomplete set of pre-defined patterns to automat-
ically annotate a portion of the corpus with weak labels as supervision [14,27].

In general, weakly-supervised relation extraction methods can be divided
into two types: alignment-based and distributional. Alignment-based approaches
obtain weak labels by exactly aligning pre-defined lexical patterns (e.g., certain
tokens between entities or entity co-occurrence) with unlabeled examples from
the corpus [14,20,24,28]. However, due to such context-agnostic hard matching
process, the labels annotated by alignment-based approaches are noisy and suf-
fer from limited recall and semantic drift [8]. Distributional approaches try to
tackle such issues by encoding textual patterns with neural models so that the
pattern matching can be conducted in a soft matching way [5,26,47]. Typically,
distributional approaches utilize the alignment-based weak supervision or scarce
human annotations at the initial stage to train neural encoder models [33]. How-
ever, such dependence introduces the severe problem of initial noise propagation
[44,45]. Besides, the dependence on the initial alignment-based weak supervision
along with the noise propagation also causes such distributional approaches to
suffer from semantic drift and generalization problems.

To tackle the above mentioned high precision but low recall issue, we propose
a novel recall-first framework RCLUS for weakly-supervised relation extraction
which takes the sentence, head entity and tail entity as input and return the
extracted relations as output (see Fig.1 for an example). Instead of sticking
to the traditional precision-first philosophy for weak supervision, RCLUS starts
with initial weak supervisions with high recall and then further refines the weak
supervision. Our RCLUS framework features three key designs as follows.
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First, instead of relying on annotated data, RCLUS utilizes pre-defined pat-
terns to obtain weak labels. To maximize the recall of weak supervision, RCLUS
uses entity types along with relation-indicative words as relation identifiers for
weak supervision. The head and tail entity types are usually fixed for a spe-
cific relation type. For example, the relation org:founded_by generally specifies
the head entity as an organization and the tail entity as a person. Utilizing the
entity requirements along with occurrence of relation-indicative words, such as
“founder” and “establish”, maximizes the recall of the weak supervision.

Second, based on the maximized recall, RCLUS tries to compensate the
precision by presenting a novel representation of relation triples and conduct-
ing clustering on the representations. As utilizing relation-indicative words
for weak supervision ignores the complete semantics for the relation expres-
sion, RCLUS adopts the shortest dependency path as the relation-related con-
text within which the relation-indicative words will be searched. For exam-
ple, the shortest dependency path in Fig.1 helps neglecting irrelevant infor-
mation including It’s a meeting of and civil rights. The shortest dependency
path is adopted as it retains the most relevant information to the target rela-
tion which is hence beneficial to the precision [7,12,35,42]. Furthermore, as the
above alignment-based weakly-supervised extraction only focuses on local indica-
tive words in the relation-related contexts, the assigned weak labels still suffer
from noise. For example, William talks with the founder team of the company
D.M.. will give {(org.,company — founder_team — talks, person) which satisfies
the entity requirements and contains the indicated word “founder” of relation
org:founded _by. However, based on the complete semantics from the sentence
expression, it’s unclear whether D.M. is founded by William or not. To pre-
vent such noisy extractions, RCLUS proposes to cluster on a latent space which
accommodates the objective to highlight the salient relation-related contexts
across the corpus to isolate noisy contexts.

Third, in order to generalize to implicit and other varied expression patterns
of relations to further improve the recall of the whole system, RCLUS prompt-
tunes a pre-trained language model based on the limited but quality samples
selected from the clustering space. To consolidate the pre-defined rules as the
foundation for generalization, RCLUS selects quality samples from the clustering
for tuning as these samples are noise-reduced and well represent the pre-defined
patterns for relations. Meanwhile, RCLUS aggregates sub-prompts to extract
relation-related components from the entire sentence and to improve context
understanding. Compared with fine-tuning, prompt-tuning has a closer objec-
tive to the pre-training objective of language models. Thus, RCLUS can more
efficiently distill the knowledge acquired from pre-training for generalizing the
relation patterns under low resource setting.

To summarize, our main contributions are as follows: (1) We have proposed
a weakly-supervised relation extraction framework based on the novel recall-first
philosophy of weak supervision construction and then improve precision to tackle
the data scarcity issue, (2) we have designed the relation triple representation
extraction and the latent space clustering to mitigate the noisy labeling and
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noise propagation issues and we have incorporated prompt-tuning to mitigate
the generalization issues, and (3) we have conducted extensive experiments on
three relation extraction datasets to verify the effectiveness of our framework.

Relation Patterns Salient Relation Mentions  Newly Discovered Relation
Mentions
org:founded_by
It’s a meeting of
L.CK., a civil rights
............ organization founded
by Shawn.
a

Head Type Relation-Indicative Words Tail Type
per:siblings Person brother, sister, sibling...  Person

org:founded_by
William joined the

startup team of the
company D.M..

Pattern Matching

1t’s a meeting of [L.C.K.)heaa Infe
- o] nference
L.CK., acivil organization
 rights organization org:found
founded by Shawn. Jounded
é Sampling
S [Shawnltan | [ ____- for

in front of the
winners' podium,
Hamilton sprayed
his team in

Syntactic
R [Ha Training .
Parsing Pre-trained

brother = Language Model

[Nicolas);an

champagne.
Unlabeled Corpus Initial Weak Supervision Weak Supervision Noise Generalization via
for Training Extraction Reduction via Clustering Prompt-Tuning

Fig. 2. Framework overview. Our model mainly consists of three steps: (1) relation
triple representation extraction, (2) latent space clustering, and (3) prompt-tuning
with sub-prompts.

2 Problem Formulation

Let corpus S := {51, ..., Sy} be a set of sentences with each sentence S; consists
of a word sequence [w; 1, ...,w; n,]. For relation extraction, it is assumed that
for each sentence S;, a head entity W} ; and a tail entity W, ; are given, and
both of them are represented by a sub-sequence of the sentence. Given S;, Wy, ;
and Wy ;, the goal of relation extraction is to predict the relation y; € ) between
Wh,,; and W ; which is the most appropriate based on the sentence, where Y is
a set of pre-defined relations.

3 Methodology

In Fig. 2, we outline our framework that extracts relations from corpus in three
major steps: (1) initial weak supervision extraction which matches the extracted
representations of relation triple with pre-defined patterns to obtain weak labels
with high recall (Sect.3.2), (2) weak supervision noise reduction via clustering
in a latent spherical space which mines salient relation-related contexts to filter
the noisy weak labels for improving precision (Sect. 3.3), and (3) generalization
via prompt-tuning which leverages salient samples from the clustering space to
recall implicit and varied relation expressions (Sect. 3.4).
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3.1 Representation of Relation Triple

We first introduce the concept of representations of relation triples which is
fundamental for our initial weak supervision extraction. Then we introduce the
method to construct the corresponding embeddings for representations of rela-
tion triple which will be used for latent space clustering.

Representation of Relation Triple. The relation triple is defined to be in
the form of (head entity,relation, tail entity). Based on the definition of rela-
tion triples, we further define the representation of relation triple which is the
example-specific triple containing the essential relation-related information. The
formulation of relation triple representations is aimed to automatically annotate
examples with most suitable weak labels while maximally reducing the noise
under the low resource setting. To assign weak relation labels with maximal suit-
ability, the head and tail entity types along with the relation-indicative words
serve as strong relation identifiers. For example, instead of using only the entity
mentions L.C.K. and Shawn in Fig. 1, the entity types organization and person
together with the word founded also indicate the relation label founded_by. How-
ever, directly matching the relation-indicative words (e.g. founded above) in the
whole sentence will likely get distracted by the noise from parts of sentence which
are irrelevant to the target entities’ relationship. Previous studies suggest that
shortest dependency paths between head and tail entities retain the most rele-
vant information to their relation [7,12,35,42] which makes it perfect to isolate
noise from irrelevant contexts. As shown in Fig. 1, the semantics of founded in
the shortest dependency path between L.C.K. and Shawn is clearly relevant to
entities’ semantic relationship. Meanwhile, other parts of the sentence beyond
the shortest dependency path such as “a civil right organization” is not relevant
to the semantic relationship. Therefore the use of shortest dependency paths
further avoids noise from directly matching with relation-indicative words.

Based on the above intuitions, we define a representation of relation triple
K as (h,r,t) where h indicates the head entity type, ¢ indicates the tail entity
type, and r indicates the shortest dependency path starting from head entity
mention to tail entity mention. Each valid representation of relation triple K
is associated with a relation y. For the sentence in Fig. 1, a representation of
relation triple would be (org.,organization- founded, person) associated with
relation org:founded_by.

Embedding for Representation of Relation Triple. Suppose relation
triple representation extraction gives M representations of relation triples
{Kji,..., Ky} For each relation triple representation K; = (h;, r;, t;), we acquire
its initial features in the form of relation triple representation embeddings
<i_ihi,i_in,i_iti> which includes: head entity embedding f_ihi, dependency path

embedding ﬁm and tail entity embedding l_it
Head/Tail Entity Embedding: We derive the embedding for head or tail
entity based on their entity type surface names. Namely, head entity embedding
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i_ihi € Hy, is obtained by retrieving and averaging pre-trained token embeddings’
of the head entity type surface name h;. The tail entity embedding i_it € H; is
constructed likewise. Here Hy, and Hy denote the semantic spaces for head and
tail entities respectively.

Dependency Path Embedding: To capture the complete semantics of the
dependency information, we construct the contextualized embedding Hﬁ‘mt as one

component of the dependency path embedding Hr To accommodate the word
choice variation of the dependency path (e.g., “founded” and “established” alter-
natively for the same relation org:founded by), we construct masked language
modeling embedding ﬁ;’j“k with BERT [10] to obtain the other component of

the dependency path embedding ﬁm

Assume the dependency path r; is composed of m,, words {wi,1,...,
Wig m,., } from original sentence S;,. € S which are not necessarily consecutive in
Si, but are necessarily consecutive in the dependency parse tree by definition.
To obtain hﬁf”t, we feed sentence S;,, to pre-trained language model and retrieve
h }. he™ can be

the corresponding encoded vecors of r; as {huw,,_ ;- -,

wiK'"“'i
calculated with average pooling.

To obtain h:’j“k, we replace each word in the dependency path with a mask
token [MASK], feed the masked sentence to the pre-trained language model and

retrieve the corresponding encoded vectors of r; as {hmask,;K Lo

. hmaskiK,mri }
hmas}C can be similarly calculated with average pooling.

Finally, the dependency path embedding is constructed by the concatenation
of two components: h,. [h’”‘“k hc"”t] € H, where H, denotes the semantic
space for dependency path

After the above feature acquisition process, for each extracted representa-

tion of the relation triple K;, we have obtained the relation triple embedding

<i_ihi,i_im,i_iti> € Hy, x H, x H; for relation triple representation clustering.

3.2 Initial Weak Supervision Extraction

Based on weakly-supervised setting and the formulation of relation triple repre-
sentation, we maintain corresponding entity types and a limited set of relation-
indicative words for each relation to construct the pre-defined relation patterns
(see the table in Fig. 2 as an example). In contrast to previous weakly-supervised
approaches that applies pattern matching in a precision-first manner, we first
adopts the philosophy of recall-first and later improve the precision for weak
supervision. Given our pursuit of high recall, we assign weak labels once the
entity types are matched and the relation-indicative words are captured in the
shortest dependency path.

Utilizing the pre-defined relation patterns for constructing initial weak super-
vision, we first conduct dependency parsing and named entity typing® on each

! For simplicity in feature acquisitions, we adopts BERT-Large [10] as the pre-trained
language model for all the encoding.
2 For convenience, we use the Stanford CoreNLP toolkit [19].
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sentence S; € S. Based on the parsing results, we find the shortest dependency
path between each pair of head entity W ; and tail entity W, ; so that each
sentence S; will correspond to one candidate representation of relation triple.
Second, we align the pre-defined relation patterns and the relation triple rep-
resentation candidates so that relation triple representations which have the
matched entity types and the indicative words will be assigned with a weak
label.

3.3 Weak Supervision Noise Reduction via Clustering

As the matching-based extraction of the initial weak supervision only focuses
on in-sentence indicative words which leads to noisy weak labels and hence
low precision, RCLUS introduces latent space clustering which highlights salient
relation-related contexts across the corpus for noise filtering. Given the seman-
tic spaces of the head entity, the tail entity and the relation-related context,
RCLUS fuses the three semantic spaces onto a joint latent spherical space of
much lower dimensionality for clustering. The rationale for such fusing method
for clustering are two folds: (1) Angular similarity in spherical space is more
effective than Euclidean metrics to capture word semantics [21,23], and (2) clus-
tering while optimizing the projection onto a joint lower dimensional space can
force the RCLUS to model the interactions between the head entity, the tail
entity and the relation related contexts, discarding irrelevant information in the
relation-related contexts. In contrast, a naive clustering method on the dimen-
sion reduced or simply concatenated semantic spaces of the relation triple rep-
resentations without integrating any clustering promoting objective is weak to
guarantee the above suitability.

Clustering Model. We use the clustering model to regularize the interactions
between the head entity and the tail entity and discard noise in relation-related
contexts. We assume that there exists a latent space Z C S~ 13 with C clusters.
Each cluster corresponds to one relation and is represented by a von Mises-Fisher
(VMF) distribution [4].

The vMF distribution is controlled by a mean vector u € Z and a concen-
tration parameter x € R* U {0}. The vMF probability density function for a
unit vector z is given by p(z|u, k) = ng(k) - exp(k - cos(z, u)). Here ng(k) is the
normalization constant defined as

d/2-1

nd(fi) = m» (1)

where I;/5_1(-) represents the modified Bessel function of the first kind at order
d/2 —1.

With the assumption on the relation clusters, we further make assumptions
on the generation of relation triple embeddings <ﬁhi, Hm I;tl> as follows: (1) A

3 8971 .= {2 € RY||z|| = 1}. We assume that d < min(dim(Hp), dim(H,), dim(Hy)).
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relation type ¢ is uniformly sampled over C' relations: ¢ ~ Uniform(C), (2) a
latent embedding z; is generated from the vMF distribution with mean vector
e and concentration parameter k: z; ~ VMF 4(pc, k), (3) three functions gp(-),
9r(1)s gt (+) respectlvely map the latent embeddlng z; to the original relation triple
embeddings hh” hr and ht hh = gh(zz) hm = gr(zz) ht = gt(zz)

To enhance joint optimization, we follow the autoencoder structure [15] to
jointly optimize the decoding mappings gn, : Z — Hyp, 9, : Z — H,, g, : Z — H,
and an encoding mapping f: H, x H, x Hy — Z.

Model Training. To optimize the salient context mining without supervision,
we adopt a pre-training and EM optimization process [9] with the reconstruction
objective and the clustering-promoting objective.

In the E-step, we update the clustering assignment estimation q(u.|z;) by
computing the posterior distribution as

2) = p(zi|pe)p(pic) _ exp(k - 2l - pie) )
iel=) Z§=1 p(2ilpe )p(pter) ZS=1 exp(k - 21 - pier) 2)

The target distribution is derived as q(fc|z;):

P(NC‘Z"L)2/SC (3)

qpel2i) = =&
Y P(per|2i)? /ser

with s, := ZJK:l P(tte|2;). The squaring-then-normalizing formulation is shown

to introduce a sharpening effect which shifts the estimation towards the most

confident area so that different clusters will have more distinct separation [22,41].
The corresponding clustering-promoting objective is defined as

clus Z Z Q(Mc |ZJ Ing(:u’C |ZJ) (4)

j=1lc/'=1

and the reconstruction objective is defined as

K
Orecon = Z Z COS(hlj P gl(f(hhj 5 h?"j P htj ))) (5)

j=lle{h,rt}

The reconstruction objective leads the model to preserve the input space seman-
tics while conducting mappings.

In the M-step, the mapping functions g (-), ¢-(), g:(+), f(-) and cluster dis-
tribution parameters are updated by maximizing O, ccon + )\Oclus.

After convergence, there are C' well-separated clusters {y }$_,. Each cluster

centroid . is associated with a cluster of relation triples { K ](-C )}jw{ where M,/

denotes the number of relation triples affiliated with cluster centroid y..
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3.4 Generalization via Prompt-Tuning

Even with high recall and the improved precision, the weak supervision still
suffer from following deficiencies. First of all, the weak supervision extraction
by hard matching the pre-defined patterns with the extracted relation triple
representations is deficient to handle implicitly expressed relations that need
to be inferred from the whole sentence context beyond dependency path. One
example for the relation per:grandparent is Alice, the wife of Mike, gave birth to
Beck three months before Mike’s father, John, visited her. This example sentence
indicates John is the grandparent of Beck by incorporating the per:mother,
per:spouse and per:father relations and it is hard to cover such complicated
and implicit patterns for applying weak supervision. Second, the pre-defined
relation patterns suffer from limited coverage due to the hard matching nature
of the weak supervision construction. For example, the set of relation-indicative
words for org:founded_ by is far from completeness.

To tackle the first deficiency, we select samples with salient relation-related
contexts from the clustering space for tuning pre-trained language models?.
These high-quality samples well represent the pre-defined patterns whose noise
from initial weak supervision construction is largely reduced after clustering.
By tuning the pre-trained language models leveraging these samples, RCLUS is
capable to learn the essence of the pre-defined patterns and to generalize to other
implicit relation patterns that need to be reasoned from the context.

To tackle the second deficiency, instead of fine-tuning, we tune the language
models with prompts. As prompt-tuning has a much closer objective to the pre-
training objective, RCLUS is hence much more efficient in distilling the knowl-
edge acquired from pre-training for generalizing the high-quality patterns under
low resource setting. Sticking to our philosophy of designing the pre-defined rela-
tion patterns, we follow [13] to aggregate three sub-prompts to jointly contribute
to the inference of prompt-tuning. As each target relation is generally equivalent
to the combination of the head entity type, the tail entity type and the semantic
relationship between the head and the tail. The three sub-prompts are hence
designed corresponding: (1) the sub-prompt for inferring the head entity type
and it consists of a mask and the head entity mention, (2) the sub-prompt for
inferring the semantic relationship independent to entity types (e.g., “gave birth
t0”) and it consists of three masks, and (3) the sub-prompt for inferring the
tail entity type same as (1). The original sentence and the three sub-prompts
will be concatenated in order to tune the pre-trained language model. RCLUS
integrates the inference of the three sub-prompts to give the extracted relation.
As an example, to give the relation org:founded_ by, the three sub-prompts will
need to predict the head entity as an organization, the tail entity as a person
and the semantic relationship between entities as “was founded by”.

* For this work, we use RoOBERTa_Large [48] as the backbone model and maintain the
consistency between baselines in experiments.
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4 Experiments

In the following® we first show the effectiveness of RCLUS on three rela-
tion extraction datasets (Sect.4.1) and the data sampling for prompt-tuning
(Sect.4.2). Then, we illustrate the clustering results utilizing t-SNE [18]
(Sect. 4.3) and study the importance of each component of RCLUS with an abla-
tion study (Sect. 4.4).

4.1 Relation Extraction

Datasets: We carry out the experiments on three relation extraction datasets:
(1) TACRED [46] which is the most widely used large scale dataset for sentence-
level relation extraction. There are 41 common relations and 1 NA® label for
negative samples which are defined to have relations beyond labeled relations..
(2) TACREV [3] which corrects labels of part of dev and test set of TACRED.
(3) ReTACRED ([36] which refactors the TACRED and modifies some relations
for suitability.

Without loss of generality, we sampled 30 relations from original rela-
tions of each dataset for the convenience of designing weak supervisions.
27 relations are shared across 3 datasets. For the left 3 relations, the
org:country_of _headquarters, the org:stateorprovince_of_headquarters
and the org:city_of_headquarters, ReTACRED modifies the headquarters to
branch. The statistics are shown in Table 2.

Baselines: We compare RCLUS with: (1) EXACT MATCHING: prediction is
given by pre-defined relation patterns. (2) COSINE [44]: weakly-supervised

Table 1. F; scores (%) on full test set with different sizes (K = 4, 8, 16) for each
relation label. 3 seeds (212, 32, 96) are used for uniformly random sampling and the
median value is taken as the final result for robustness against extreme values. Note that
- means for that setting, no size limitation on labeled samples for training is assumed
and the evaluation results will be indicated under Mean column. Models under such
setting is also indicated with *.

Model TACRED TACREV ReTACRED

K 4 8 |16 |Mean 4 |8 |16 |Mean|4 |8 |16 |Mean
w/ weak supervision

EXACT MATCHING* | — - - 48.87 | — - - 53.67 | - - - 54.86
COSINE 23.28 [26.60 | 37.16 |29.01 |21.43 |30.85 |41.21 |31.16 | 28.12 |35.00 | 44.54 |35.89
COSINE* - - - 58.88 | — - - 60.80 | — - - 68.59
RCrus Noisy 45.35 |50.94 | 55.73 | 50.67 | 50.41 | 61.67 | 66.85 59.64 | 56.89 |65.81 |71.09 |64.60
RCLUS BALANCED |45.19 |55.71 |59.33 |53.41 | 55.36 |58.74 |64.56 |59.55 |53.84 |65.27 |71.03 |63.38
RCLus 49.89 | 56.65 | 60.26 | 55.60 | 56.94  63.75 66.50 | 62.40 | 61.03 | 68.78 | 72.23|67.35
w/ ground truth supervision

FINE-TUNING 13.62 26.09 |32.07 [23.93 |18.75 |25.21 |35.12 |26.36 | 17.36 |31.77 |42.63 |30.59
GDPNET 13.79 1 28.42 |43.11 |28.44 | 15.61 |24.59 |42.12 |27.44 |19.20 |35.79 |52.84 |35.94
PTR 39.16 |49.46 |54.67 |47.76 |47.18 |51.58 |59.17 | 52.64 |51.27 | 62.60 |71.11 |61.66

® The code for this work is available at https://github.com/KevinSRR/RClus.
% no_relation for TACREV and ReTACRED.
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model that utilizes contrastive self-training to extend labeled dataset and de-
noise. (3) FINE-TUNING: a RoBERTa_Large [48] backbone plus a classification
head whose input is the sequence classification embedding concatenated with
the averaged embeddings of head and tail entities. (4) GDPNET [43]: it con-
structs a multi-view graph on top of BERT. (5) PTR [13]: RCLUS’s backbone
prompt-tuning model except for some modifications. For training with weak
supervision, we assume the negative samples in the train set are known but only
2 x K x Number of Positive Labels of negative samples can be used.

As RCLUS requires applying pre-defined patterns on positive examples, there
will be examples that match with zero or multiple patterns. RCLUS will ignore
such examples while RCLUS Noisy will respectively assign negative label and
the first matched relation, only not using them for clustering. This is the only
difference between RCLUS and RCLuUS Noisy. For RCLUS, as prompt-tuning
requires data sampled from clusters, it involves sampling of both positive and
negative samples whose details are in Sect. 4.2.

For fair comparisons, we study the low-resource setting performance. For
weakly-supervised baselines without being denoted with * we provide small
training sets as weakly-labeled data while leaving the remaining data as unla-
beled data. For fine-tuning based or prompt-tuning baselines, we provide same
sizes of training sets but with ground truth labels. The difference between RCLUS
and RCLUS BALANCED is that, after positive data sampling, RCLUS compensate
the relations with samples fewer than K using weak supervisions until reaching
K while RCLUS BALANCED will cut down exceeded samples at the same time
to keep sample size of each positive relations as K.

Evaluation Metrics: We follows the micro F; metric adopted by most of
the works that experiment on three datasets. Note that mainstream approaches
calculate this metric over positive samples only. We set the training epochs as 20
and the evaluation frequency on dev set as once every 2 epochs. Best checkpoint
on dev set is chosen for evaluation.

Table 2. Statistics of datasets Table 3. Ablation study of RCLUS
Dataset F#train | #dev | #test Model TACREV
Precision | Recall | F1
TACRED 65,044 | 21,226 | 14,637 4500
TACREV 65,044 | 21,238 | 14,681 w/ Weak 59.30  |49.02 |53.67
ReTACRED | 49,419 15,780 | 10,375 ¥/ Prompt 4825 | 75.73 | 58.95
w/ Weak + Prompt 58.80 72.07 | 64.76
w/ Weak + Cluster 63.62 40.61 |49.57
w/ Weak + Cluster + Prompt | 60.76 74.29 |66.85
w/ Weak + Cluster + Prompt* | 57.85 78.47 | 66.61

Ezperiment Setups: Baseline implementation details and the pre-defined pat-
terns of RCLUS are uploaded with source codes”. Before applying patterns, NER

" https://github.com/KevinSRR/RClus.
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will be leveraged for typing head and tail entity mentions. Sentences with unrec-
ognized mentions will not be considered for training and will be seen as negative
sample if in test set.

For the clustering model’s decoding function g;(-) with [ € {h,r,t}, we imple-
ment them as feed-forward neural networks with each layer followed by ReLU
activation [1]. We adopt 100, 1000, 2000, 1000, dim; for the hidden states dimen-
sions of each layer. The dim; is 1024 for head/tail entity embeddings and 2048
for dependency path embeddings. For encoding mapping f, we basically reverse
the layout of the three decoding functions and concatenate them to form the
latent space vector z € R3%, For the clustering, the concentration parameter
K of each vMIf distribution is set as 10, the A is chosen as 5. During training,
the batchsize is 256 while the learning rate is 5e — 4. Additionally, we set the
tolerance threshold for optimization convergence as 0.001 which means when the
ratio of the examples with changed cluster assignment is fewer than this thresh-
old, the training will stop. The pre-training epochs with only objective Oyecon
is set as 100, and the interval for updating the target assignment distribution
q(pe|zi) is set as 100. The remaining experiment setups are similar to [31].

For prompt-tuning with sub-prompts, we used the verbalizer and the label
word set from [13] except that we have modified some prompt templates and
search the learning rate from {3e — 5,4e — 5} and we search the max input
sequence length from {256,512}.

The hyperparameter search space for sampling interval I is {2,3} and the
Myegative 18 {10000,20000,30000}. A found good combination is I as 3 and
M egative as 30000.

Main Analysis: The results are shown in Table 1. Generally, compared with
weakly-supervised baselines and supervised baselines with ground truth, our
model achieves better performances under low-resource scenarios. The advan-
tage is more significant when compared to weakly-supervised baselines, demon-
strating the overall effectiveness.

Compared with PTR which is the backbone of our prompt-tuning method,
RCLus, with weak supervision and clustering, has improved PTR’s performance
by a large margin. Additionally, RCLUS can be easily adapted for integrat-
ing other more powerful prompt-tuning backbones for better performance. This
shows the effectiveness of the whole pipeline design as well as the further poten-
tial of RCLUS.

Considering different levels of data scarcity, RCLUS’s advantage over base-
lines with ground truth supervision is most significant when ground truth sam-
ples are scarce, as the pre-defined patterns and the pattern generalizability of
RCLus will reach a limit while baselines with ground truth supervision can
access more patterns from more samples.
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Fig. 3. Number of false negative samples among first M samples with smallest max-
assignment-probability (consider both negative examples and weakly labeled positive
examples).

4.2 Positive and Negative Samples

To obtain quality samples for prompt-tuning, RCLUS adopts sampling with inter-
vals. Based on the cluster assignment probability by Eq. 2, sampling with interval
I means for each cluster, starting from highest assignment probability in descend-
ing order, taking one sample among every I candidate samples. The purpose is
to avoid repetitions of similar samples as there are numerous similar or reused
samples from the datasets.

As relation triple representation extraction and clustering is targeted at pos-
itive samples that fall into the range of defined relations, for model training,
RCLUS also needs to obtain quality negative samples. RCLUS follows a min
max approach. After the latent space clustering on extracted relation triple
representations with positive relations, we apply the trained mapping function
f:Hyp xH, x Hy — Z to project the unextracted relation triple representations
(or negative samples) and sort by their maximal assignment probability among
all clusters given by Eq.2 in ascending order. Then negative relation triples are
sampled uniformly from the first M cgqtive Sorted relation triple representations.

This method follows the intuition that clusters trained using positive samples
well represent the salient features of positive relations. Therefore, negative sam-
ples will be projected as outliers. To further enhance the prompt-tuning effective-
ness, the range of first My, cgqtive Samples guarantees minimal distinction between
the sampled negative and positive samples. While uniform sampling introduces
different levels of difficulty for prompt-tuning to distinguish the sampled positive
and negative samples. Figure 3 verifies our intuition as the ratios of false nega-
tive samples are 0.070%, 0.093%, and 5.46%, against the overall negative sample
ratios as 9.92%, 9.54%, and 15.43% for TACRED, TACREV and ReTACRED
respectively.



Corpus-Based Relation Extraction 33

4.3 Cluster Visualization
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Fig. 4. Visualization of the clusters with t-SNE. For clarity, we sample 6 cluster cen-
troids for TACREV dataset and visualize them along with first 40 data points closest
to each centroid.

Clustering result visualized with t-SNE [18] is shown in Fig. 4. We can see that
clusters generally have well separated boundaries, which means that the clus-
ters well capture the salient features of different relation patterns. In rare cases,
relations that have semantically close patterns might have close latent represen-
tations. For example, the patterns of org:employee_of and org:shareholders
share the same head and tail entity types and the two relations can generally
have similar contexts. So they are in the same cluster as shown by Fig.4. As
our clustering is unsupervised, some clusters may represent more than one rela-
tion. However, instead of being leveraged to assign labels, our clustering is only
used to filter noisy relation triple representations which are expected to be out-
liers after clustering. Hence such problem will not influence any relation extrac-
tion results. For example, even the above discussed cluster contains samples of
org:employee_of and org:shareholders, we will only sample them with their
labels assigned by pattern matching as long as they are not outliers.

4.4 Ablation Study

In order to show the importance of each component of RCLUS, an ablation study
is conducted with results shown in Table 3. Note that we take 16 for few-shot
settings and the seed as 212 if needed. Weak refers to weak supervision, Prompt
refers to prompt-tuning, and Cluster refers to latent space clustering. And *
denotes RCLUS BALANCED. Generally, each component is indispensable to the
whole framework based on the evaluation performance. Specifically, it can be seen
that the weak supervision and the clustering are both important for the precision
metric as they capture certain patterns and reduce initial weak supervision noise.
The weak supervision provides relatively high recall while the clustering provides
high precision. Additionally, the prompt-tuning is important for boosting recall
as it helps comprehend the whole context, generalize the patterns and infer the
implicit relations. This is in accordance with design expectations.
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5 Related Work

De-noising for Weakly-Supervised Learning: Previous methods design
probabilistic models to aggregate multiple weak supervisions to achieve de-
noising yet ignoring the contexts for further improvement [2,27,37]. Other stud-
ies either focus on noise transitions without dealing with instance-level de-noising
or require too much supervision to be suitable for weakly-supervised relation
extraction [29,39]. A recent study proposes a contrastive self-training based de-
noising method but cannot bypass potential issues of noise propagations from
initial weak supervision [44]. Different from them, RCLUS adopts unsupervised
relation triple representation clustering which captures salient semantic features
of relation expressions to filter noises from weak supervision.

Prompt-Tuning for Low-Resource Settings: Enhanced by the birth
of GPT-3 [6], prompt-tuning has introduced various studies [11,16,17,30,32].
KNOWPROMPT tries to include prior knowledge on labels into prompts for
relation extraction. They focused on extending prompt models’ generalizability
without making use of weak supervision to boost the performance. In contrast,
RCLUS adopts prompt-tuning to achieve generalizability with a strong base on
learnt noise-reduced patterns.

6 Conclusions

In this work, we propose a novel weakly-supervised relation extraction frame-
work. Specifically, our framework: (1) has designed new relation patterns for a
novel recall-first philosophy for weak supervision construction, (2) designed a
novel representation of relation triple for initial weak supervision construction
for high recall and then utilized clustering to mine salient contexts to improve
precision, (3) leveraged the samples from clusters for prompt-tuning to enhance
generalization and context understanding. Experiments show RCLUS largely out-
performs the weakly-supervised baselines and achieves better performance than
fully-supervised methods under low-resource settings. We also show the impor-
tance of each component of RCLUS and verify design expectations quantitatively
and qualitatively.
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