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Abstract—Urban Air Mobility (UAM) encompasses both pi-
loted and autonomous aerial vehicles, spanning from small un-
manned aerial vehicles (UAVs) like drones to passenger-carrying
personal air vehicles (PAVs), to revolutionize smart transporta-
tion in congested urban areas. This emerging paradigm is
anticipated to offer disruptive solutions to the mobility challenges
in congested cities. In this context, a pivotal concern centers on
the sustainability of transitioning to this mode of transportation,
especially with the focus on incorporating clean technology into
developing innovative solutions from the ground up. Recent
studies highlight that a significant portion of the total energy
consumption in UAM can be attributed to the flight operations
of the aircraft. To address this challenge, this paper introduces a
framework POSCA aimed at meeting the energy requirements of
UAM flights. It delves into a complex and dynamic route-planning
problem. It introduces a novel concept called the Phototropic
Index, calculated by considering the traversal distance and solar
coverage along the route. To solve the path planning problem,
we propose two solutions, S-POSCA and D-POSCA, catering to
static and dynamic setups. Simulation results confirm an average
increase of 8.81% in static conditions and 10.64% in the dynamic
condition for the cumulative Global Horizontal Irradiance (GHI)
compared to the baseline approaches.

Index Terms—Urban air mobility, vertical take-off and landing
vehicles, dynamic route-planning, path optimization, solar energy.

I. INTRODUCTION

With rapid urbanization and migration of a large fraction

of rural populations to major cities, some new and unique

fundamental computational challenges have emerged. Some of

them include developing stable, manageable, safe, and efficient

transportation networks. Due to urban sprawl, the existing

transportation capabilities of a city can become saturated,

proving insufficient for supporting the increased mobility

needs [1]. Major cities experience unusually large average

travel times due to traffic. New York City experienced an

average travel time of (24min 50s)/10km while London had

the worst traffic in the world requiring (37min 20s)/10km
trip in 2023 [2]. Thus, to enhance the capacity of existing

transportation networks while providing feasible economic and

reliable solutions, alternative transport modes are needed.

Urban Air Mobility (UAM) is envisioned to encompass

various categories of vehicles designed for specific purposes.

These vehicles may range from small unmanned aerial vehi-

cles (UAVs), such as drones, to passenger-carrying vehicles

having higher payload capacity and robust autonomous capa-

bilities [1]. In the current aviation industry, flight schedules,

Fig. 1. An instance of an On Demand UAM flight reducing travel time to
15 minutes instead of 50 minutes in a congested road network.

routes, and demands are well-defined, and various commercial

aircraft are designed and allocated accordingly. However, the

UAM market is expected to be dominated by ‘on-demand’

flights (Fig. 1), resulting in frequently changing flight demands

for flight routes, making vertical take-off and landing (VTOL)

vehicles are the primary contenders for UAM.

There has been a recent surge in the research and devel-

opment of electric VTOL (eVTOL) vehicles with the UAM

market getting closer to realization owing to the advancement

of distributed propulsion technology. Examples include the

ALIA-250, an aircraft jointly developed by Blade and Beta [3],

which conducted its first test flight in February 2023 in New

York City and Alef Aeronautics is a SpaceX-backed startup

based in San Mateo, California. Alef Aeronautics recently

unveiled their flying car concept, capable of running on the

road as a normal car while transitioning into sustained flight as

an eVTOL [4]. The UAM market is expected to be dominated

by piloted aircraft initially, followed by remotely operated

aircraft with a one-to-one correspondence between the pilot

and vehicle. This pilot-to-vehicle ratio is expected to decrease

over time, paving the way for fully autonomous vehicles.

The UAM market is projected to grow from US $3 billion in

2021 to US $8.91 billion in 2028 [5]. Since UAM is expected

to occupy a large share of the transportation market by volume,

efforts need to be made to reduce the ecological footprint

of this new technology by adopting sustainable, eco-friendly

6

2024 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/24/$31.00 ©2024 IEEE
DOI 10.1109/SMARTCOMP61445.2024.00023

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

m
ar

t C
om

pu
tin

g 
(S

M
AR

TC
OM

P)
 |

 9
79

-8
-3

50
3-

49
94

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
M

AR
TC

OM
P6

14
45

.2
02

4.
00

02
3

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:13:14 UTC from IEEE Xplore.  Restrictions apply. 



practices right from its inception. The sustainability of this

new transportation paradigm has been studied to a considerable

extent in [6], [7]. The analysis done in [8] reveals that most of

the energy is consumed during the flight of UAM aircraft as

opposed to ground operations, posing a big challenge to the

sustainability of its operation. Also, efficient path planning of

UAM vehicles from source to destination depends on weather

and traffic conditions in the airspace, which are often dynamic.

Though nearing commercialization, UAM is still at the plan-

ning stage thereby, no concrete regulation as to the structure

and management of the UAM airspace is available. Some

preliminary work in planning 3D airspace [9] and estimation of

demand for UAM [10] provide valuable insights. At the outset,

the path planning problem appears to be facile; however,

there are some intrinsic challenges. To elaborate, the problem

undertaken in this paper encompasses ameliorating the solar

cover during the trip, keeping the deviation from the shortest

path to a minimum to meet traversal time constraints. This is a

variant of the Multi-Objective Shortest Path (MOSP) problem,

proven to be NP-Hard [11].

Our Contributions: Motivated by the above research chal-

lenges and limitations of the existing literature, we in this

paper address the sustainability aspect of UAM, presenting a

novel framework POSCA§ with the following contributions.

• We propose a sustainable method of charging UAM

vehicles by integrating the harnessing of solar energy in

the path planning stage itself.

• We introduce a novel Phototropic Index to characterize

the charging capacity of a sector and the tendency of

a UAM vehicle to fly towards it in the airspace, which

draws inspiration from the natural phenomenon of pho-

totropism observed in plants.

• Based on the Phototropic Index of sectors, we solve a

dynamic route planning problem for finding the optimal

path from source to destination such that solar energy is

harvested to the maximum extent possible while meeting

the traversal time constraint of the aerial vehicle.

• We convert MOSP to a Single-Objective Shortest Path

(SOSP) problem by incorporating the Phototropic Index

as a heuristic modification of the edge weights in the

modified airspace graph. The resulting SOSP is solved

using two different strategies: S-POSCA (static variant)

and D-POSCA (dynamic variant). Through exhaustive

simulations, we observe an average increase of 8.81%

in static condition and 10.64% in the dynamic condition

in the cumulative Global Horizontal Irradiance (GHI).

The paper is structured as follows: Section II reviews related

work, while Section III outlines the system model and problem

formulation. Section IV elaborates on the adopted solution

approach. Results are analyzed in Section V, with a sample

case study provided in Section VI. The features and limitations

of POSCA are discussed in Section VII. Finally, Section VIII

offers concluding remarks.

§Posca: an ancient roman energy drink commonly used by the soldiers on
the battlefield.

II. RELATED WORK

There has been some general work related to the design

and development of UAM vehicles, and it also focuses on

harnessing solar energy, which is discussed here.

A. The Case for Solar Energy

UAM is expected to rely heavily on eVTOL vehicles, as

it offers a renewable energy-based solution that reduces the

ecological footprint. Even though charging stations are the

conventional means of replenishing the exhausted electrical

energy of electric power-train-equipped vehicles, it translates

to the vehicles being grounded for a considerable time to get

recharged. This might mean financial loss for the organization

operating these vehicles in the form of missed customer trips

or the deployment of more aircraft to cater to the same

amount of passengers. Using solar energy for charging allows

harnessing a clean and freely available energy source. It

allows the charging of such crafts without being physically

plugged into a conventional charging station, paving the way

for charging the vehicle during traversal [12].

For autonomous aerial vehicles especially, solar energy can

be of greater significance as it allows the vehicle to charge via

solar panels, which does away with the need to plug in, thereby

removing the necessity of human intervention for charging.

This leads to indefinitely extending the presence and mission

duration [13]. In [13], this concept was used to develop an

aircraft capable of charging itself off of solar energy while

hibernating on the ground. This allowed the vehicle to carry

out its operations again the next day after being fully charged

by the Sun, thereby increasing the duration of the autonomous

mission. Even though it is very useful in some scenarios that

require repetition of similar flight behavior in a given area, it

is not suitable for carrying passengers in the scope of UAM

because: (i) the route or area of coverage of the vehicle is

not fixed, as UAM is characterized by on demand nature of

flights, (ii) it might not always be feasible to enter into a state

of hibernation on the ground in between or even during flights.

B. Challenges Specific to UAM

There is a need to develop solutions that reduce the time the

vehicle spends on the ground for charging. This requirement

has given birth to the sub-field of perpetual-flight solar-

powered fixed-wing aircraft, typically defined as High-Altitude

Long-Endurance (HALE) [14], [15]. In this design ideology,

the aircraft are characterized by the need to remain in the

air for long periods, even extending to transoceanic flights.

Therefore, these aerial vehicles are usually equipped with

large wing aspect ratios to accommodate a large array of

solar cells to achieve feasible charging capability and generate

enough aerodynamic lift, thereby harnessing the advantages of

conventional fixed-wing aircraft.

However, this design ideology cannot be applied to UAM

because of the following reasons: (1) UAM is not expected

to cover transoceanic flights and so the flight duration does

need to be as long as in HALE; (2) UAM needs smaller,

agile aircraft capable of ferrying passengers from congested
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road networks via a designated, comparatively low-altitude

airspace: and (3) HALE aircraft require much larger and

stronger air-frames that are not required for UAM air taxis,

which are required to be moderately sized for carrying passen-

gers on comparatively shorter trips and also be economically

feasible and accessible to a much larger population.

C. Research Gap in Existing Work

In [14], the focus is on designing an aircraft capable

of achieving maximum input-to-output power ratio so that

maximum energy efficiency can be obtained, given enough

sunlight. But this assumes that there is enough sunlight during

the charging period of the craft.

Most of the work done in this area till now has been aimed

at the vehicle design aspect, as in [16]. However, the utility of

such aircraft can be increased by looking into computational

aspects which may be able to guide them or even smaller ones

having less efficient solar charging capacities through a path

that provides maximum sunlight while passing through areas

with varying weather conditions.

A step in this direction is exhibited in [17], where the

altitude of a solar-powered aircraft is varied to minimize the

energy losses during flight and enable travel along the fastest

possible way from source to destination without utilizing

battery power provided the solar energy available is sufficient

for the flight. So, this dealt with optimizing energy loss by

controlling the altitude. In contrast, this paper aims to optimize

the flight route to facilitate maximal charging en route while

meeting the flight’s arrival time deadline.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the airspace model and phototropic

index computation, and formulate the problem.

A. Airspace Model

The airspace model, as shown in Fig. 2, can be envisioned as

a homogeneous and contiguous set of sectors captured in the

set S = {s1, s2, ..., sn} [18], where si ∈ S uniquely identifies

the sector ‘i’. Note that the airspace can be transformed into a

weighted undirected graph GA = (VA, EA), wherein VA is the

set of vertices corresponding to the centroids of the sectors and

EA captures the edges connecting the adjacent sectors. For a

sector si ∈ S , the subset N (si) ⊂ S represents the neighbors

of si. A route from si to any of its neighbour sj ∈ N (si) is

captured via an edge ei,j , such that ei,j ∈ EA.

UAM Flight Parameters: An UAM flight trip is represented

by the tuple < so, sd, τ, v > where so represents the origin

sector of the flight; sd represents the destination sector; τ
represents the traversal time limit, i.e., the time by which the

flight is to reach sector sd; and v is taken to be a constant

velocity at which the VTOL travels through the route

Note that v is considered constant throughout the flight trip

for this work. To the best of our knowledge, no traffic flow

model exists specifically designed for UAM.

Fig. 2. Illustration of a Sample Airspace with 27 identical hexagonal sectors.

B. Phototropic Index

We propose using a potential energy surface [19] over

the UAM airspace to find points with the lowest potential,

which cause the path of aerial vehicles to be naturally directed

towards them. Consequently, we construct the potential func-

tion so that the destination point (or sector in our scenario)

has the lowest global potential, favorably zero. Accordingly,

a potential function is proposed based on the normalized

Euclidean Distance r(si, sd) of the sector si to the destination

sector sd and the amount of sunlight measured in terms of

Global Horizontal Irradiance (GHI) of a sector. To combine it

with r(si, sd), we use the normalized GHI denoted by G(si).
This potential function is termed as the “Phototropic Index”

of the sector and is computed as per Eq. (1).

Π(si) = k · r(si, sd)
G(si)

; ∀ i, d ∈ [1, n] (1)

where k is a proportional constant (in m). It is to be noted

that a sector closer to the destination will have lower potential,

thereby attracting the trajectory of vehicles towards itself,

acting as a global minimum of the airspace having Π(si) = 0.

A sector with greater GHI value attracts the UAM vehicle

towards itself, exhibiting positive phototropism.

However, if the airspace is being traversed by multiple aerial

vehicles at a time, which presents a more practical scenario,

such a definition of the Phototropic Index would mean that

every vehicle selects the same flight path to the destination

provided they are using the same algorithm for path selection.

In reality, there is a limit to the number of aircraft that can be

accommodated, rather than allowed to safely occupy a given

sector si at any point in time, referred to as the sector capacity,

denoted by C(si). A sector occupied by several aircraft P(si)
equal to its capacity can be treated as blocked to find the flight

path. In other words, the cost to travel to this sector should

be ∞. To incorporate this into the expression of Π(si), we

modify Eq. (1) and obtain Eq. (2).

Π(si) = k · r(si, sd)

I(si) ·G(si)
; ∀ i, d ∈ [1, n] (2)

where,

I(si) =
{

0, If C(si)− P(si) = 0

1, Otherwise

8
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Here I(si) is an indicator variable which equals 0 when a

sector is filled, making Π(si) = ∞ and distributing the entire

traffic over various routes by putting a cap on the number

of aircraft allowed in a sector at any given time. This sector

capacity is usually set and enforced by the administrative body

governing airspace operations.

Now we map the Phototropic Index of the sectors as

mentioned in Eq. (2) to the cost of traveling between two

sectors, which are nothing but the edge weights in the graph

of the airspace GA(VA, EA), where ei,j = (si, sj) ∈ EA.

Based on the condition for edge costs in D* Lite Algo-

rithm [20], the edge cost to transit from si to sj is in the range

0 < c(si, sj) ≤ ∞. The edge costs of an edge connecting si
to sj in the modified graph G′A is derived as per Eq. (3).

c(si, sj) = r(si, sj) + Π(sj) (3)

C. Problem Formulation

A path from origin so to destination sd is a sequence of

sectors given by P =< so, s1, s2, . . . , si, si+1, sd >, where

(si, si+1) is an edge ei,j ∈ EA. The overall problem is

captured in Eq. (4a), the traversal time constraint in Eq. (4b),

and the feasible range of decision variables in Eqs. (4c)-(4f).

minimize
∑

ei,j∈P

c(si, sj) (4a)

s.t.

∑

ei,j∈P r(si, sj)

v
≤ τ (4b)

I(si) ∈ {0, 1} (4c)

0 < c(si, sj) ≤ ∞ (4d)

0 ≤ P(si) ≤ C(si) (4e)

∀ i, j ∈ [1, n] (4f)

The MOSP problem is proven to be NP-Hard [11]. The

problem is transformed into SOSP via the Phototropic Index

captured by edge weights in G′A. This effectively captures the

bi-objective problem of the shortest path while improving the

solar cover, facilitating a polynomial time solution.

IV. PROPOSED SOLUTION APPROACH

Since we modeled the airspace as hexagonal sectors iden-

tical in size and shape [18] [21], we first view the considered

airspace as a graph as illustrated in Fig. 3. The centroid of

each sector is taken to be the position of the corresponding

vertex, and the physical distance between any two sectors is

the distance between their respective centroids.

The scope of this work is divided into two major parts:

static, where the condition of the sectors is considered to

be constant in terms of GHI values and traffic condition

(occupancy of a sector by vehicles at an instant) and dynamic,

which resembles a more practical scenario where the weather

and traffic conditions can change while the aircraft is in transit.

Fig. 3. Graph constructed for chosen airspace: each vertex represents a sector,
and only adjacent sectors are connected by an edge. The distance between
any adjacent sectors is a constant (denoted by a).

A. Static-POSCA (S-POSCA)

The overall execution of S-POSCA follows Algorithm 1.

The airspace graph (GA), source (so) and destination (sd)

sector, and the capacity (C(si)), population (P(si)) and co-

ordinates ((xi, yi)) of each sector are taken as inputs to the

algorithm. The algorithm outputs the shortest path from the

source to the destination in P . The algorithm is initiated by

computing the Phototropic Index and subsequently updating

the edge weights in an updated graph (G′A) (Steps 2-3). Next,

Dijkstra’s Algorithm is executed on the updated graph and

the path from so to sd is returned as output. Note that we

use the regular Dijkstra’s Algorithm to obtain the shortest

path [22]. Algorithm 1 can be executed for two cases: with

traffic congestion (as per Eq. (2)), and without the traffic

consideration (as per Eq. (1)).

Algorithm 1: S-POSCA

Input: GA, so, sd, G(si), C(si), P(si), (xi, yi) ∀ si ∈ S
Result: P � Shortest Path

1 Initialize: Π(si) = Φ, ∀ si ∈ S; P = Φ
2 Calculate Π(si) ∀ si ∈ S as per Eq. (1) or (2)

3 Update edge costs c(si, sj) as per Eq. (3) ∀ ei,j ∈ EA to get

updated graph G′A

4 P = Dijkstra(G′A, so, sd) � Regular Dijkstra
5 return P

B. Dynamic-POSCA (D-POSCA)

For the dynamic condition, we employ the D* Lite Algo-

rithm [20], owing to its efficiency in identifying modified

edge weights and updating only the ones that matter when

calculating the path from source to destination. The overall

working of D-POSCA is captured in Algorithm 2. The inputs

to the algorithm include the the airspace graph (GA), source

(so) and destination (sd) sector, and the capacity (C(si)),
population (P(si)) and coordinates ((xi, yi)) of each sector.

The algorithm outputs the shortest path from the source to the

destination in P sc . The algorithm is initiated by computing

the Phototropic Index and subsequently updating the edge

weights in an updated graph (G′A) (Steps 2-3). Next, D* Lite
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executes on the updated graph, and an initial path from so
to sd is obtained and retained in Pso . As per Psc (same as

Pso initially), the traversal of the UAM vehicle starts. On

reaching the current sector (sc), the next sector to be visited

is checked using Peep(.), retained in sc using Pop(.), and

appended to the list P T using Append(.). In the next step,

the algorithm gets the updated GHI values and consequently

recomputes Π(si) for un-traversed sectors. As per the updated

Π(si) values, D* Lite is again invoked and executed from

Peep(P sc) to sd. Depending on the total traversal time either

of the cases are encountered: (i.) the traversal time requirement

(τ ) is satisfied, (ii.) not satisfied. In the former, the algorithm

continues execution with an updated P sc , whereas in the latter

the algorithm terminates with the current path (Steps 6-14).

Algorithm 2: D-POSCA

Input: GA, so, sd, G(si), C(si), P(si), (xi, yi), ∀ si ∈ S
Result: P sc � Shortest Path

1 Initialize: Π(si) = Φ, ∀ si ∈ S; P sc = Φ,P T = Φ, sc = so
2 Calculate Π(si), ∀ si ∈ S as per Eq. (2)

3 Update edge costs c(si, sj) as per Eq. (3), ∀ ei,j ∈ EA to get

updated graph G′A

4 P so = D* Lite(G′A, so, sd) � D* Lite
5 P sc = P so ;
6 while (Peep(P sc ) �= sd) do

7 sc = Pop(P sc ) � When vehicle at sc
8 P T = Append(P T , sc) � Add sc to traversed path
9 Get updated values of G(si), ∀si ∈ S

10 Re-calculate Π(si), ∀ si ∈ S as per Eq. (2)

11 P
′
sc = D* Lite(G′A,Peep(P sc ), sd)

12 if
(|P T |+ |P ′

sc |)× a

v
> τ then

13 return P sc

14 P sc = P
′
sc

Theorem 1. The Phototropic Index Π(si) ensures that the cost

of travel to a sector si is always less than that to sector si′

(i �= i′) where G(si) > G(si′) provided all other properties

are equal between the two.

Proof: We consider the current node (or sector) to be s0,

from which we have two best possible options si and si′ , both

equidistant from s0. We consider that si and si′ are equidistant

from the goal vertex (or sector). Also C(si) = C(si′) and

P(si) = P(si′), and G(si) > G(si′). Thus Π(si) < Π(si′).
As per Eq. (3):

c(s0, si) = r(s0, si) + Π(si) and

c(s0, si′) = r(s0, si′) + Π(si′).

Subtracting the second expression from the first, we get,

c(s0, si)− c(s0, si′) = Π(si)−Π(si′)

[as r(s0, si) = r(s0, si′)].

∴ c(s0, si) < c(s0, si′)

Hence, the cost of travel to si is less than that to si′ when

G(si) > G(si′), and all other sector properties are equal.

Theorem 2. (Time Complexity): S-POSCA has an asymptotic

complexity of O(|VA| log |VA|), which is polynomial.

Proof: S-POSCA first calculates the Phototropic Index

Π(si) for all sectors in O(|VA|). Next, Dijkstra’s Algo-

rithm executes on the modified graph G′A in O((|VA| +
|EA|) log |VA|) as adjacency list is used for graph repre-

sentation. Since G′A has a maximum degree of 6, |EA| ≈
6|VA|, making the overall time complexity of Dijkstra’s

O(|VA| log |VA|). So the total complexity is O(|VA|) +
O(|VA| log |VA|) = O(|VA| log |VA|).
Theorem 3. (Time Complexity): D-POSCA has an asymptotic

complexity of O(6
√

|VA|).

Proof: D-POSCA relies on the D* Lite algorithm to cal-

culate the shortest path to the destination after each successive

sector hop of the UAM vehicle. After each sector hop, the

Π(si) values are updated for all sectors in O(|VA|) time. Now,

since the D* Lite is selected based on its efficiency to compute

only upon the nodes affected by modified edge weights in

the graph that are significant in calculating the shortest path

to destination sd, there is no fixed time complexity of the

algorithm. It depends on the extent of the dynamic changes in

edge weights of G′A and the efficiency of the heuristic used.

Considering the worst-case scenario where all of the edge

weights change due to changes in respective G(si) values, the

time complexity of D* Lite approaches the order of O(bd) as

in the case of a standard uninformed search like Depth-First-

Search (DFS). However, due to the nature of GA, the branching

factor b is limited to 6 (maximum degree of a sector) and

d is the path length, which in the worst case would involve

traversing G′A along the boundary nodes, from a corner to

another corner of the airspace. So given an airspace having

VA sectors, the longest path would be of O(
√

|VA|), thereby

limiting the complexity of D-POSCA to O(6
√

|VA|).

V. PERFORMANCE EVALUATION

The components of the experimental setup are discussed,

along with the dataset used for mimicking real-world GHI

values, and the results obtained are presented.

A. Experimental Setup

Fig. 2 shows the airspace under consideration for exper-

imentation. A node represents each of the sectors, and the

resulting graph in Fig. 3 is used as the input to the algorithm.

To demonstrate the advantage of using the Phototropic Index

to increase solar cover, the same set of origin and destination

sectors are used for calculating the shortest paths based on a

conventional graph, where the edge weights are the physical

distances between sectors (2 km in our setup) and on a

modified version of the same graph having the same topology

but updated edge weights as per Eq. (3). For closer inspection

of the variation in path due to consideration of just the solar

cover vs that of both solar cover and traffic congestion, we

use both expressions of Π(si) as given by equations (1) and

(2) to update the edge costs. Deviation in flight path from the

shortest path (obtained from Dijkstra’s Algorithm) is shown

for both cases in Fig. 4 and 5 for an instance where the origin

sector is s18 and s11 the destination.
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Fig. 4. Shortest Path without and with S-POSCA. Pale yellow sectors
have less GHI, orange ones have greater values, and dark red ones have
the maximum. Blue sectors represent insignificant GHI values.

Fig. 5. Shortest Path considering traffic Congestion without and with
S-POSCA.

B. NSRDB Dataset

Fig. 6. Global Horizontal Irradiance NSRDB Map.

The GHI values for each of the sectors in the chosen

airspace for experimental analysis are based on real-world

observations extracted from the National Solar Radiation

Database (NSRDB) dataset [23], [24]. This database is main-

tained by the National Renewable Energy Laboratory (NREL)

and has the Global Horizontal Irradiance (GHI) values of

various regions worldwide. Each region is approximately of

the dimension 4km × 4km. The map in Fig. 6 provides the

daily mean GHI value of a certain region all over the USA in

kWh/m2/Day, which is the conventional unit to denote the

amount of solar energy available based on GHI.
For our experimental purpose, however, we use the most

recent data of the year 2022 for a small area in Missouri,

encompassing the cities of Rolla and St. James. The database

has the GHI values of various locations in the said area

recorded at every 30-minute interval, thereby providing us

with a realistic dataset for the simulation of a flight in UAM.

In this work, the average GHI values at every 30-minute

mark over a randomly chosen set of specific locations within

said area were considered. Careful observation shows that

TABLE I
CONVERSION TABLE FOR GHI UNITS.

Input Unit Conversion Factor Output Unit

W/m2 0.024 kWh/m2/Day

kWh/m2/Day 41.666 W/m2

the most GHI values recorded (around 80%) lie in the (50-

600) W/m2 range, which translates to a range of (1.2-19.2)

kWh/m2/Day (conversion factor mentioned in Table I).

Global Horizontal Irradiance (GHI) denotes the total

amount of incoming solar radiation received by a surface hori-

zontal to the ground. It is the sum of Direct Normal Irradiance

(DNI) and Diffuse Horizontal Irradiance (DIF). Since a solar-

charging capable aircraft is expected to fly through the airspace

by exhibiting a variety of maneuvers necessary for stable

flight, there is no guarantee that the photovoltaic surfaces on

the aerial vehicle will always face the sun directly. So, the GHI

values are considered to account for the entire amount of solar

radiation incident, both directly and through diffusion. For the

experiment, we use the range of GHI values mentioned in the

dataset.Since we run the experiment for arbitrary airspace, we

randomly choose each sector’s GHI values from the range of

values, thereby preserving the realistic nature of GHI values.

C. Experimental Results

The flight paths obtained from applying Dijkstra’s Algo-

rithm on the airspace graph GA give the shortest paths solely

in terms of edge cost or distance traveled by the aircraft. The

S-POSCA algorithm provides a path that maximizes the solar

cover while ensuring that the aerial vehicle does not stray away

from approaching the destination, owing to the phototropic

index used in the system model. On running the algorithm

for different sets of origin and destination sectors (referred to

as routes) for randomly chosen values of G(si), C(si) and

P(si), we observe an increase in the mean cumulative GHI of

the flight path for S-POSCA as compared to regular Dijkstra,
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Fig. 7. Mean Cumulative GHI (without traffic). Fig. 8. Mean Cumulative GHI (with traffic).
Fig. 9. Mean Cumulative GHI for Static and
Dynamic Implementation of D-POSCA.

thus translating to increased solar charging of the aerial vehicle

when used in real applications.

For analysis, 10 different iterations with different G(si)
values were run for each flight route. The mean cumulative

GHI values obtained for regular Dijkstra and S-POSCA for

each route without considering traffic congestion are shown

in Fig. 7, where S-POSCA achieves an average increase of

20.58% in the mean cumulative GHI over all the routes. While

considering traffic congestion, the same was repeated where

in each iteration the C(si) and P(si) were different, chosen at

random (Fig. 8). In this case, the average increase in the mean

cumulative GHI was observed to be 8.81%, thus signifying

considerable improvement in solar cover in both cases.

The D-POSCA algorithm was employed for application in

a dynamic scenario, where the G(si) values of the sectors

can change while the vehicle is in transit. When the vehicle

starts its trip, the algorithm initially provides a path from so
to sd. On running 300 iterations, we observed that this was

the same path suggested by S-POSCA to be used in the static

condition. However, for examining the efficiency and viability

of using the D-POSCA algorithm to account for the dynamic

nature of GHI in the sectors, the path is recalculated after each

transition the vehicle makes from one sector to the next, as per

the path output in the previous step. Thus, the final path that

the vehicle undertakes is the result of recalculating the path

from each sector to the destination sd, which might be different

from the path initially suggested by the same algorithm at

the beginning of the trip. Fig. 9 compares the results of these

two outputs, indicating improvement of the dynamic condition

over the static one, exhibiting an average increase in the mean

cumulative GHI by 10.64%. The distribution of the cumulative

GHI values for various routes is shown in Fig. 10.

VI. CASE STUDY OF ALIA-250

To illustrate the significant gain in electrical power achiev-

able by our proposed method, we consider a commercially

available solar cell, the MaxeonTM C60, which has an area

of 153cm2 and is at least 23% efficient [25]. Considering

application in a commercial eVTOL aircraft such as the ALIA-

250, which has a wingspan of 50ft [26], we assume an

average chord length of 4ft, which is pretty standard in

the aerospace industry (as its actual value is not publicly

Fig. 10. Cumulative GHI Distribution for different Routes.

available), thereby having a wing area of 200ft2, or 18.58.m2.

Thus, approximately 1214 C60 solar cells can be combined

to form a solar panel mounted on the wing. Considering an

example of a cumulative GHI of 100W/m2 obtained without

using POSCA, we consider the increase of 10.64% in the GHI

amounting to 110.64W/m2. In such a scenario, the ALIA-250,

with the solar panel configuration mentioned earlier, will have

10.64W/m2 × 0.0153m2 × 0.23 × 1214 = 45.45W of extra

electrical power available as a result of using POSCA. Even

though it might not seem too significant, it is to be noted that

this is just for one UAM vehicle for one trip. Considering

a very initial level implementation of UAM where a vehicle

completes 10 trips per day, and there are 20 such vehicles in

operation, it translates to 45.45×10×20 = 9090W or around

9KW of electrical power harnessed from solar energy daily.

VII. FEATURES AND LIMITATIONS OF POSCA

POSCA exhibits two important features. Namely, it provides

a path to maximize solar charging while meeting the travel

time constraint, ensuring that the increase in travel time by

straying from the shortest path solely in terms of distance is

bounded and does not adversely affect the user’s travel time

experience. Furthermore, POSCA is not restricted to operating

only in areas with adequate solar cover. In areas with no

or insignificant solar cover (like nighttime), the Phototropic

Index’s contribution to the airspace graph’s edge weights will

be similar for all sectors. Hence, POSCA reduces to regular

Dijkstra, constrained by only the sector capacities.

The limitations of POSCA are listed below.
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• The aircraft movement is assumed to be from center

to center of each sector, which is restrictive. Thus,

POSCA can be augmented with advanced path-planning

algorithms that consider more flexible trajectories.

• Relevant traffic flow models tailored to UAM can be

incorporated into POSCA to accurately model the move-

ment of other aircraft in the shared airspace.

• The model’s scalability can be tested over a larger

airspace while incorporating parameters such as wind

speed and direction. Additionally, POSCA can be tested

over a real-world test bed for prototyping, paving the way

for commercialization in the future.

• POSCA can be extended to incorporate vertical transi-

tions, offering exciting possibilities for three-dimensional

(3D) path-planning algorithms utilizing multiple levels of

airspace for UAM. Mobile agent-based communications

[27] for the 3D airspace can also be explored.

VIII. CONCLUSION

This paper introduces POSCA, a novel Phototropic Index-

driven path planning framework, addressing two problem

variants, static and dynamic, using S-POSCA and D-POSCA.

While Dijkstra’s algorithm inspires S-POSCA, D-POSCA cap-

italizes on the efficiency of D* Lite to dynamically re-plan

flight paths after each sector traversal, adapting to varying sun-

light conditions. Simulation results reveal an 8.81% increase

in total GHI encountered by the UAM vehicle in static weather

conditions and a 10.64% increase in dynamic conditions. The

significance of this improvement is exemplified in the case

study undertaken wherein a 10.64% increase translates to

harnessing about 9KW of electrical power from solar energy

daily. This shows the viability of large-scale use of this scheme

to increase UAM’s sustainability quotient.
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