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Abstract—Urban Air Mobility (UAM) encompasses both pi-
loted and autonomous aerial vehicles, spanning from small un-
manned aerial vehicles (UAVs) like drones to passenger-carrying
personal air vehicles (PAVs), to revolutionize smart transporta-
tion in congested urban areas. This emerging paradigm is
anticipated to offer disruptive solutions to the mobility challenges
in congested cities. In this context, a pivotal concern centers on
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the sustainability of transitioning to this mode of transportation, L
especially with the focus on incorporating clean technology into -
developing innovative solutions from the ground up. Recent Trip Ends
studies highlight that a significant portion of the total energy Q
consumption in UAM can be attributed to the flight operations =

of the aircraft. To address this challenge, this paper introduces a a—> ;‘?;
framework POSCA aimed at meeting the energy requirements of mé
UAM flights. It delves into a complex and dynamic route-planning \/
problem. It introduces a novel concept called the Phototropic Destination

Index, calculated by considering the traversal distance and solar
coverage along the route. To solve the path planning problem,
we propose two solutions, S-POSCA and D-POSCA, catering to
static and dynamic setups. Simulation results confirm an average
increase of 8.81% in static conditions and 10.64% in the dynamic
condition for the cumulative Global Horizontal Irradiance (GHI)
compared to the baseline approaches.

Index Terms—Urban air mobility, vertical take-off and landing
vehicles, dynamic route-planning, path optimization, solar energy.

I. INTRODUCTION

With rapid urbanization and migration of a large fraction
of rural populations to major cities, some new and unique
fundamental computational challenges have emerged. Some of
them include developing stable, manageable, safe, and efficient
transportation networks. Due to urban sprawl, the existing
transportation capabilities of a city can become saturated,
proving insufficient for supporting the increased mobility
needs [1]. Major cities experience unusually large average
travel times due to traffic. New York City experienced an
average travel time of (24min 50s)/10km while London had
the worst traffic in the world requiring (37min 20s)/10km
trip in 2023 [2]. Thus, to enhance the capacity of existing
transportation networks while providing feasible economic and
reliable solutions, alternative transport modes are needed.

Urban Air Mobility (UAM) is envisioned to encompass
various categories of vehicles designed for specific purposes.
These vehicles may range from small unmanned aerial vehi-
cles (UAVs), such as drones, to passenger-carrying vehicles
having higher payload capacity and robust autonomous capa-
bilities [1]. In the current aviation industry, flight schedules,

L ETA via road network: 50 mins

Fig. 1. An instance of an On Demand UAM flight reducing travel time to
15 minutes instead of 50 minutes in a congested road network.

routes, and demands are well-defined, and various commercial
aircraft are designed and allocated accordingly. However, the
UAM market is expected to be dominated by ‘on-demand’
flights (Fig. 1), resulting in frequently changing flight demands
for flight routes, making vertical take-off and landing (VTOL)
vehicles are the primary contenders for UAM.

There has been a recent surge in the research and devel-
opment of electric VTOL (eVTOL) vehicles with the UAM
market getting closer to realization owing to the advancement
of distributed propulsion technology. Examples include the
ALIA-250, an aircraft jointly developed by Blade and Beta [3],
which conducted its first test flight in February 2023 in New
York City and Alef Aeronautics is a SpaceX-backed startup
based in San Mateo, California. Alef Aeronautics recently
unveiled their flying car concept, capable of running on the
road as a normal car while transitioning into sustained flight as
an eVTOL [4]. The UAM market is expected to be dominated
by piloted aircraft initially, followed by remotely operated
aircraft with a one-to-one correspondence between the pilot
and vehicle. This pilot-to-vehicle ratio is expected to decrease
over time, paving the way for fully autonomous vehicles.

The UAM market is projected to grow from US $3 billion in
2021 to US $8.91 billion in 2028 [5]. Since UAM is expected
to occupy a large share of the transportation market by volume,
efforts need to be made to reduce the ecological footprint
of this new technology by adopting sustainable, eco-friendly
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practices right from its inception. The sustainability of this
new transportation paradigm has been studied to a considerable
extent in [6], [7]. The analysis done in [8] reveals that most of
the energy is consumed during the flight of UAM aircraft as
opposed to ground operations, posing a big challenge to the
sustainability of its operation. Also, efficient path planning of
UAM vehicles from source to destination depends on weather
and traffic conditions in the airspace, which are often dynamic.

Though nearing commercialization, UAM is still at the plan-
ning stage thereby, no concrete regulation as to the structure
and management of the UAM airspace is available. Some
preliminary work in planning 3D airspace [9] and estimation of
demand for UAM [10] provide valuable insights. At the outset,
the path planning problem appears to be facile; however,
there are some intrinsic challenges. To elaborate, the problem
undertaken in this paper encompasses ameliorating the solar
cover during the trip, keeping the deviation from the shortest
path to a minimum to meet traversal time constraints. This is a
variant of the Multi-Objective Shortest Path (MOSP) problem,
proven to be A'P-Hard [11].

Our Contributions: Motivated by the above research chal-
lenges and limitations of the existing literature, we in this
paper address the sustainability aspect of UAM, presenting a
novel framework POSCA® with the following contributions.

o We propose a sustainable method of charging UAM
vehicles by integrating the harnessing of solar energy in
the path planning stage itself.

o We introduce a novel Phototropic Index to characterize
the charging capacity of a sector and the tendency of
a UAM vehicle to fly towards it in the airspace, which
draws inspiration from the natural phenomenon of pho-
totropism observed in plants.

o Based on the Phototropic Index of sectors, we solve a
dynamic route planning problem for finding the optimal
path from source to destination such that solar energy is
harvested to the maximum extent possible while meeting
the traversal time constraint of the aerial vehicle.

o« We convert MOSP to a Single-Objective Shortest Path
(SOSP) problem by incorporating the Phototropic Index
as a heuristic modification of the edge weights in the
modified airspace graph. The resulting SOSP is solved
using two different strategies: S-POSCA (static variant)
and D-POSCA (dynamic variant). Through exhaustive
simulations, we observe an average increase of 8.81%
in static condition and 10.64% in the dynamic condition
in the cumulative Global Horizontal Irradiance (GHI).

The paper is structured as follows: Section II reviews related

work, while Section III outlines the system model and problem
formulation. Section IV elaborates on the adopted solution
approach. Results are analyzed in Section V, with a sample
case study provided in Section VI. The features and limitations
of POSCA are discussed in Section VII. Finally, Section VIII
offers concluding remarks.

$Posca: an ancient roman energy drink commonly used by the soldiers on
the battlefield.
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II. RELATED WORK

There has been some general work related to the design
and development of UAM vehicles, and it also focuses on
harnessing solar energy, which is discussed here.

A. The Case for Solar Energy

UAM is expected to rely heavily on eVTOL vehicles, as
it offers a renewable energy-based solution that reduces the
ecological footprint. Even though charging stations are the
conventional means of replenishing the exhausted electrical
energy of electric power-train-equipped vehicles, it translates
to the vehicles being grounded for a considerable time to get
recharged. This might mean financial loss for the organization
operating these vehicles in the form of missed customer trips
or the deployment of more aircraft to cater to the same
amount of passengers. Using solar energy for charging allows
harnessing a clean and freely available energy source. It
allows the charging of such crafts without being physically
plugged into a conventional charging station, paving the way
for charging the vehicle during traversal [12].

For autonomous aerial vehicles especially, solar energy can
be of greater significance as it allows the vehicle to charge via
solar panels, which does away with the need to plug in, thereby
removing the necessity of human intervention for charging.
This leads to indefinitely extending the presence and mission
duration [13]. In [13], this concept was used to develop an
aircraft capable of charging itself off of solar energy while
hibernating on the ground. This allowed the vehicle to carry
out its operations again the next day after being fully charged
by the Sun, thereby increasing the duration of the autonomous
mission. Even though it is very useful in some scenarios that
require repetition of similar flight behavior in a given area, it
is not suitable for carrying passengers in the scope of UAM
because: (i) the route or area of coverage of the vehicle is
not fixed, as UAM is characterized by on demand nature of
flights, (ii) it might not always be feasible to enter into a state
of hibernation on the ground in between or even during flights.

B. Challenges Specific to UAM

There is a need to develop solutions that reduce the time the
vehicle spends on the ground for charging. This requirement
has given birth to the sub-field of perpetual-flight solar-
powered fixed-wing aircraft, typically defined as High-Altitude
Long-Endurance (HALE) [14], [15]. In this design ideology,
the aircraft are characterized by the need to remain in the
air for long periods, even extending to transoceanic flights.
Therefore, these aerial vehicles are usually equipped with
large wing aspect ratios to accommodate a large array of
solar cells to achieve feasible charging capability and generate
enough aerodynamic lift, thereby harnessing the advantages of
conventional fixed-wing aircraft.

However, this design ideology cannot be applied to UAM
because of the following reasons: (1) UAM is not expected
to cover transoceanic flights and so the flight duration does
need to be as long as in HALE; (2) UAM needs smaller,
agile aircraft capable of ferrying passengers from congested
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road networks via a designated, comparatively low-altitude
airspace: and (3) HALE aircraft require much larger and
stronger air-frames that are not required for UAM air taxis,
which are required to be moderately sized for carrying passen-
gers on comparatively shorter trips and also be economically
feasible and accessible to a much larger population.

C. Research Gap in Existing Work

In [14], the focus is on designing an aircraft capable
of achieving maximum input-to-output power ratio so that
maximum energy efficiency can be obtained, given enough
sunlight. But this assumes that there is enough sunlight during
the charging period of the craft.

Most of the work done in this area till now has been aimed
at the vehicle design aspect, as in [16]. However, the utility of
such aircraft can be increased by looking into computational
aspects which may be able to guide them or even smaller ones
having less efficient solar charging capacities through a path
that provides maximum sunlight while passing through areas
with varying weather conditions.

A step in this direction is exhibited in [17], where the
altitude of a solar-powered aircraft is varied to minimize the
energy losses during flight and enable travel along the fastest
possible way from source to destination without utilizing
battery power provided the solar energy available is sufficient
for the flight. So, this dealt with optimizing energy loss by
controlling the altitude. In contrast, this paper aims to optimize
the flight route to facilitate maximal charging en route while
meeting the flight’s arrival time deadline.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the airspace model and phototropic
index computation, and formulate the problem.

A. Airspace Model

The airspace model, as shown in Fig. 2, can be envisioned as
a homogeneous and contiguous set of sectors captured in the
set S = {s1, $2, ..., 5, } [18], where s; € S uniquely identifies
the sector ‘i’. Note that the airspace can be transformed into a
weighted undirected graph GA = (VA, £4), wherein V4 is the
set of vertices corresponding to the centroids of the sectors and
EA captures the edges connecting the adjacent sectors. For a
sector s; € S, the subset AV'(s;) C S represents the neighbors
of s;. A route from s; to any of its neighbour s; € N(s) is
captured via an edge e; ;, such that ¢; ; € EA.

UAM Flight Parameters: An UAM flight trip is represented
by the tuple < s,, sq,7,v > where s, represents the origin
sector of the flight; s; represents the destination sector; 7
represents the traversal time limit, i.e., the time by which the
flight is to reach sector sg4; and v is taken to be a constant
velocity at which the VTOL travels through the route

Note that v is considered constant throughout the flight trip
for this work. To the best of our knowledge, no traffic flow
model exists specifically designed for UAM.
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Fig. 2. Illustration of a Sample Airspace with 27 identical hexagonal sectors.

B. Phototropic Index

We propose using a potential energy surface [19] over
the UAM airspace to find points with the lowest potential,
which cause the path of aerial vehicles to be naturally directed
towards them. Consequently, we construct the potential func-
tion so that the destination point (or sector in our scenario)
has the lowest global potential, favorably zero. Accordingly,
a potential function is proposed based on the normalized
Euclidean Distance 7(s;, sq) of the sector s; to the destination
sector sq and the amount of sunlight measured in terms of
Global Horizontal Irradiance (GHI) of a sector. To combine it
with 7(s;, s4), we use the normalized GHI denoted by G(s;).
This potential function is termed as the “Phototropic Index”
of the sector and is computed as per Eq. (1).

7(;%7 5q)
G(si) ’

where k is a proportional constant (in m). It is to be noted
that a sector closer to the destination will have lower potential,
thereby attracting the trajectory of vehicles towards itself,
acting as a global minimum of the airspace having II(s;) = 0.
A sector with greater GHI value attracts the UAM vehicle
towards itself, exhibiting positive phototropism.

However, if the airspace is being traversed by multiple aerial
vehicles at a time, which presents a more practical scenario,
such a definition of the Phototropic Index would mean that
every vehicle selects the same flight path to the destination
provided they are using the same algorithm for path selection.
In reality, there is a limit to the number of aircraft that can be
accommodated, rather than allowed to safely occupy a given
sector s; at any point in time, referred to as the sector capacity,
denoted by C(s;). A sector occupied by several aircraft P(s;)
equal to its capacity can be treated as blocked to find the flight
path. In other words, the cost to travel to this sector should
be oo. To incorporate this into the expression of II(s;), we
modify Eq. (1) and obtain Eq. (2).
?(Si, Sd)

Z(si) - G(si)

T(s:) = {?

II(s;) =k - Vi, d € [1,n] (1)

I(s;) = k- ) Vi,d e (1,0 )

where,
Otherwise
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Here Z(s;) is an indicator variable which equals 0 when a
sector is filled, making II(s;) = oo and distributing the entire
traffic over various routes by putting a cap on the number
of aircraft allowed in a sector at any given time. This sector
capacity is usually set and enforced by the administrative body
governing airspace operations.

Now we map the Phototropic Index of the sectors as
mentioned in Eq. (2) to the cost of traveling between two
sectors, which are nothing but the edge weights in the graph
of the airspace GA(VA, E4), where e, ; = (s;,8;) € EA

Based on the condition for edge costs in D* Lite Algo-
rithm [20], the edge cost to transit from s; to s; is in the range
0 < ¢(si,sj) < oo. The edge costs of an edge connecting s;
to s; in the modified graph G’ A is derived as per Eq. (3).

c(si,85) = 1(s4,55) +11(s5) 3)

C. Problem Formulation

A path from origin s, to destination sy is a sequence of
sectors given by P =< s,,51,52,...,Si,Sit+1,S4 >, Where
(si,8i41) is an edge e;; € EA. The overall problem is
captured in Eq. (4a), the traversal time constraint in Eq. (4b),
and the feasible range of decision variables in Eqs. (4c)-(4f).

minimize Z c(si, s5) (4a)
e ;j€EP
St M <7 (4b)
I(s:) € {0,1} (4¢)
0 < c(ss,85) < o0 (4d)
Vi, j € [1,n] (41)

The MOSP problem is proven to be AN'P-Hard [11]. The
problem is transformed into SOSP via the Phototropic Index
captured by edge weights in G'A. This effectively captures the
bi-objective problem of the shortest path while improving the
solar cover, facilitating a polynomial time solution.

IV. PROPOSED SOLUTION APPROACH

Since we modeled the airspace as hexagonal sectors iden-
tical in size and shape [18] [21], we first view the considered
airspace as a graph as illustrated in Fig. 3. The centroid of
each sector is taken to be the position of the corresponding
vertex, and the physical distance between any two sectors is
the distance between their respective centroids.

The scope of this work is divided into two major parts:
static, where the condition of the sectors is considered to
be constant in terms of GHI values and traffic condition
(occupancy of a sector by vehicles at an instant) and dynamic,
which resembles a more practical scenario where the weather
and traffic conditions can change while the aircraft is in transit.

9

Fig. 3. Graph constructed for chosen airspace: each vertex represents a sector,
and only adjacent sectors are connected by an edge. The distance between
any adjacent sectors is a constant (denoted by a).

A. Static-POSCA (S-POSCA)

The overall execution of S-POSCA follows Algorithm 1.
The airspace graph (GA), source (s,) and destination (sg)
sector, and the capacity (C(s;)), population (P(s;)) and co-
ordinates ((x;,%;)) of each sector are taken as inputs to the
algorithm. The algorithm outputs the shortest path from the
source to the destination in P. The algorithm is initiated by
computing the Phototropic Index and subsequently updating
the edge weights in an updated graph (G"*) (Steps 2-3). Next,
Dijkstra’s Algorithm is executed on the updated graph and
the path from s, to sq is returned as output. Note that we
use the regular Dijkstra’s Algorithm to obtain the shortest
path [22]. Algorithm 1 can be executed for two cases: with
traffic congestion (as per Eq. (2)), and without the traffic
consideration (as per Eq. (1)).

Algorithm 1: S-POSCA

Input: G4, so, 54, G(s:), C(s:), P(si), (zi,yi) ¥V 5; €S
Result: P > Shortest Path
1 Initialize: [I(s;) = ®, Vs, €S; P=®
2 Calculate II(s;) V s; € S as per Eq. (1) or (2)
3 Update edge costs c(s;, s;) as per Eq. 3) V e; ; € EA to get
updated graph G'A
4 P = Dijkstra(G'A, s,, sq)
5 return P

> Regular Dijkstra

B. Dynamic-POSCA (D-POSCA)

For the dynamic condition, we employ the D* Lite Algo-
rithm [20], owing to its efficiency in identifying modified
edge weights and updating only the ones that matter when
calculating the path from source to destination. The overall
working of D-POSCA is captured in Algorithm 2. The inputs
to the algorithm include the the airspace graph (G*1), source
(so) and destination (s;) sector, and the capacity (C(s;)),
population (P(s;)) and coordinates ((x;,y;)) of each sector.
The algorithm outputs the shortest path from the source to the
destination in P,_. The algorithm is initiated by computing
the Phototropic Index and subsequently updating the edge
weights in an updated graph (G') (Steps 2-3). Next, D* Lite
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executes on the updated graph, and an initial path from s,
to sq is obtained and retained in Ps,. As per P, (same as
Ps, initially), the traversal of the UAM vehicle starts. On
reaching the current sector (s.), the next sector to be visited
is checked using Peep(.), retained in s. using Pop(.), and
appended to the list Pp using Append(.). In the next step,
the algorithm gets the updated GHI values and consequently
recomputes II(s;) for un-traversed sectors. As per the updated
II(s;) values, D* Lite is again invoked and executed from
Peep(P;_) to sq. Depending on the total traversal time either
of the cases are encountered: (i.) the traversal time requirement
() is satisfied, (ii.) not satisfied. In the former, the algorithm
continues execution with an updated P,_, whereas in the latter
the algorithm terminates with the current path (Steps 6-14).

Algorithm 2: D-POSCA

Input: G4, s,, 54, G(s:), C(s:), P(si), (xi,y:),V 5 €S

Result: P > Shortest Path

Initialize: II(s;) = ®,V s; € S; Ps, = ®, Pp = ®,5. = 5o

Calculate I1(s;), V s; € S as per Eq. (2)

Update edge costs c(s;, s;) as per Eq. (3), V e;,j € EA to get
updated graph G/

W =

P = Append(Pr, s¢) > Add s to traversed path
Get updated values of G(s;), Vs; € S
10 Re-calculate I1(s;), V s; € S as per Eq. (2)
1 P’ = D* Lite(G'A, Peep(Ps.), 54)
P P’
o | (Prl+ 1P xa
v
13 L return Py,

14 P, =P,

4 Pg, = D* Lite(G'4, 50, 54) > D* Lite
5 1:.3C = Pso;

6 while (Peep(Ps, ) # sq) do

7 se = Pop(Ps,) > When vehicle at s
8

9

> 7 then

Theorem 1. The Phototropic Index 11(s;) ensures that the cost
of travel to a sector s; is always less than that to sector sy
(i # i) where G(s;) > G(sy) provided all other properties
are equal between the two.

Proof: We consider the current node (or sector) to be s,
from which we have two best possible options s; and s;/, both
equidistant from sg. We consider that s; and s;, are equidistant
from the goal vertex (or sector). Also C(s;) = C(s;) and
P(SZ) = ,P(Sl'/), and G(Sl) > G(Sll) Thus H(Sl) < H(Si/).
As per Eq. (3):

c(s0,8:) =1(s0,8:) +1I(s;) and
6(807 81‘/) = 7“(8()7 81‘/) + H(S,‘/).
Subtracting the second expression from the first, we get,
c(s0, si) — (80, 87) = (s;) — II(sy)
[as  7(s0,8:) = r(so,si)].

(0, 8i) < c(s0,5)

Hence, the cost of travel to s; is less than that to s;; when
G(s;) > G(sy), and all other sector properties are equal. B

Theorem 2. (Time Complexity): S-POSCA has an asymptotic
complexity of O(|VA|log |VA|), which is polynomial.
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Proof: S-POSCA first calculates the Phototropic Index
II(s;) for all sectors in O(|VA|). Next, Dijkstra’s Algo-
rithm executes on the modified graph G'* in O((|VA| +
|EA|) log [VA|) as adjacency list is used for graph repre-
sentation. Since G has a maximum degree of 6, |£4| ~
6/V4|, making the overall time complexity of Dijkstra’s
O([VA|log |[VA|). So the total complexity is O(|V4]) +
O([VA]log [VA]) = O(|V*|log [V4)). =

Theorem 3. (Time Complexity): D-POSCA has an asymptotic
complexity of O(6V V),

Proof: D-POSCA relies on the D* Lite algorithm to cal-
culate the shortest path to the destination after each successive
sector hop of the UAM vehicle. After each sector hop, the
I1(s;) values are updated for all sectors in O(|V*|) time. Now,
since the D* Lite is selected based on its efficiency to compute
only upon the nodes affected by modified edge weights in
the graph that are significant in calculating the shortest path
to destination sg4, there is no fixed time complexity of the
algorithm. It depends on the extent of the dynamic changes in
edge weights of G’* and the efficiency of the heuristic used.
Considering the worst-case scenario where all of the edge
weights change due to changes in respective G(s;) values, the
time complexity of D* Lite approaches the order of O(b%) as
in the case of a standard uninformed search like Depth-First-
Search (DFS). However, due to the nature of G4, the branching
factor b is limited to 6 (maximum degree of a sector) and
d is the path length, which in the worst case would involve
traversing G along the boundary nodes, from a corner to
another corner of the airspace. So given an airspace having
VA sectors, the longest path would be of O(+/|V4]), thereby

limiting the complexity of D-POSCA to O(6V V1), |

V. PERFORMANCE EVALUATION

The components of the experimental setup are discussed,
along with the dataset used for mimicking real-world GHI
values, and the results obtained are presented.

A. Experimental Setup

Fig. 2 shows the airspace under consideration for exper-
imentation. A node represents each of the sectors, and the
resulting graph in Fig. 3 is used as the input to the algorithm.
To demonstrate the advantage of using the Phototropic Index
to increase solar cover, the same set of origin and destination
sectors are used for calculating the shortest paths based on a
conventional graph, where the edge weights are the physical
distances between sectors (2 km in our setup) and on a
modified version of the same graph having the same topology
but updated edge weights as per Eq. (3). For closer inspection
of the variation in path due to consideration of just the solar
cover vs that of both solar cover and traffic congestion, we
use both expressions of II(s;) as given by equations (1) and
(2) to update the edge costs. Deviation in flight path from the
shortest path (obtained from Dijkstra’s Algorithm) is shown
for both cases in Fig. 4 and 5 for an instance where the origin
sector is s1g and s1; the destination.
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Shortest Path obtained from Dijkstra's Algorithm
Total GHI = 21.65 kWh/m?/Day

Shortest Path obtained from S-POSCA
Total GHI = 24.18 kWh/m2/Day

Fig. 4. Shortest Path without and with S-POSCA. Pale yellow sectors
have less GHI, orange ones have greater values, and dark red ones have
the maximum. Blue sectors represent insignificant GHI values.

B. NSRDB Dataset

Shortest Path considering Traffic Congestion only
Total GHI = 22.28 kWh/m?/Day

e w o Shortest Path considering Traffic Congestion and Solar Cover
Total GHI = 24.01 kWh/m?/Day

Fig. 5. Shortest Path considering traffic Congestion without and with
S-POSCA.

Global Horizontal Solar Irradiance
i Solar Radiation Database Physical Solar Model

Fig. 6. Global Horizontal Irradiance NSRDB Map.

The GHI values for each of the sectors in the chosen
airspace for experimental analysis are based on real-world
observations extracted from the National Solar Radiation
Database (NSRDB) dataset [23], [24]. This database is main-
tained by the National Renewable Energy Laboratory (NREL)
and has the Global Horizontal Irradiance (GHI) values of
various regions worldwide. Each region is approximately of
the dimension 4km x 4km. The map in Fig. 6 provides the
daily mean GHI value of a certain region all over the USA in
kW h/m?/Day, which is the conventional unit to denote the
amount of solar energy available based on GHI.

For our experimental purpose, however, we use the most
recent data of the year 2022 for a small area in Missouri,
encompassing the cities of Rolla and St. James. The database
has the GHI values of various locations in the said area
recorded at every 30-minute interval, thereby providing us
with a realistic dataset for the simulation of a flight in UAM.
In this work, the average GHI values at every 30-minute
mark over a randomly chosen set of specific locations within
said area were considered. Careful observation shows that
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TABLE I
CONVERSION TABLE FOR GHI UNITS.
Input Unit Conversion Factor Output Unit
W/m? 0.024 EWh/m?/Day
EWh/m?/Day 41.666 W/m?

the most GHI values recorded (around 80%) lie in the (50-
600) W/m2 range, which translates to a range of (1.2-19.2)
kWh/m?/Day (conversion factor mentioned in Table I).
Global Horizontal Irradiance (GHI) denotes the total
amount of incoming solar radiation received by a surface hori-
zontal to the ground. It is the sum of Direct Normal Irradiance
(DNI) and Diffuse Horizontal Irradiance (DIF). Since a solar-
charging capable aircraft is expected to fly through the airspace
by exhibiting a variety of maneuvers necessary for stable
flight, there is no guarantee that the photovoltaic surfaces on
the aerial vehicle will always face the sun directly. So, the GHI
values are considered to account for the entire amount of solar
radiation incident, both directly and through diffusion. For the
experiment, we use the range of GHI values mentioned in the
dataset.Since we run the experiment for arbitrary airspace, we
randomly choose each sector’s GHI values from the range of
values, thereby preserving the realistic nature of GHI values.

C. Experimental Results

The flight paths obtained from applying Dijkstra’s Algo-
rithm on the airspace graph G give the shortest paths solely
in terms of edge cost or distance traveled by the aircraft. The
S-POSCA algorithm provides a path that maximizes the solar
cover while ensuring that the aerial vehicle does not stray away
from approaching the destination, owing to the phototropic
index used in the system model. On running the algorithm
for different sets of origin and destination sectors (referred to
as routes) for randomly chosen values of G(s;), C(s;) and
P(si), we observe an increase in the mean cumulative GHI of
the flight path for S-POSCA as compared to regular Dijkstra,
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thus translating to increased solar charging of the aerial vehicle
when used in real applications.

For analysis, 10 different iterations with different G(s;)
values were run for each flight route. The mean cumulative
GHI values obtained for regular Dijkstra and S-POSCA for
each route without considering traffic congestion are shown
in Fig. 7, where S-POSCA achieves an average increase of
20.58% in the mean cumulative GHI over all the routes. While
considering traffic congestion, the same was repeated where
in each iteration the C(s;) and P(s;) were different, chosen at
random (Fig. 8). In this case, the average increase in the mean
cumulative GHI was observed to be 8.81%, thus signifying
considerable improvement in solar cover in both cases.

The D-POSCA algorithm was employed for application in
a dynamic scenario, where the G(s;) values of the sectors
can change while the vehicle is in transit. When the vehicle
starts its trip, the algorithm initially provides a path from s,
to sq. On running 300 iterations, we observed that this was
the same path suggested by S-POSCA to be used in the static
condition. However, for examining the efficiency and viability
of using the D-POSCA algorithm to account for the dynamic
nature of GHI in the sectors, the path is recalculated after each
transition the vehicle makes from one sector to the next, as per
the path output in the previous step. Thus, the final path that
the vehicle undertakes is the result of recalculating the path
from each sector to the destination s4, which might be different
from the path initially suggested by the same algorithm at
the beginning of the trip. Fig. 9 compares the results of these
two outputs, indicating improvement of the dynamic condition
over the static one, exhibiting an average increase in the mean
cumulative GHI by 10.64%. The distribution of the cumulative
GHI values for various routes is shown in Fig. 10.

VI. CASE STUDY OF ALIA-250

To illustrate the significant gain in electrical power achiev-
able by our proposed method, we consider a commercially
available solar cell, the Maxeon™ C60, which has an area
of 153cm? and is at least 23% efficient [25]. Considering
application in a commercial eVTOL aircraft such as the ALIA-
250, which has a wingspan of 50ft [26], we assume an
average chord length of 4ft¢, which is pretty standard in
the aerospace industry (as its actual value is not publicly
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available), thereby having a wing area of 200 f¢2, or 18.58.m2.
Thus, approximately 1214 C60 solar cells can be combined
to form a solar panel mounted on the wing. Considering an
example of a cumulative GHI of 100WW/m? obtained without
using POSCA, we consider the increase of 10.64% in the GHI
amounting to 110.64W/m?. In such a scenario, the ALIA-250,
with the solar panel configuration mentioned earlier, will have
10.64W/m? x 0.0153m? x 0.23 x 1214 = 45.45W of extra
electrical power available as a result of using POSCA. Even
though it might not seem too significant, it is to be noted that
this is just for one UAM vehicle for one trip. Considering
a very initial level implementation of UAM where a vehicle
completes 10 trips per day, and there are 20 such vehicles in
operation, it translates to 45.45 x 10 x 20 = 9090W or around
9KW of electrical power harnessed from solar energy daily.

VII. FEATURES AND LIMITATIONS OF POSCA

POSCA exhibits two important features. Namely, it provides
a path to maximize solar charging while meeting the travel
time constraint, ensuring that the increase in travel time by
straying from the shortest path solely in terms of distance is
bounded and does not adversely affect the user’s travel time
experience. Furthermore, POSCA is not restricted to operating
only in areas with adequate solar cover. In areas with no
or insignificant solar cover (like nighttime), the Phototropic
Index’s contribution to the airspace graph’s edge weights will
be similar for all sectors. Hence, POSCA reduces to regular
Dijkstra, constrained by only the sector capacities.

The limitations of POSCA are listed below.
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o The aircraft movement is assumed to be from center
to center of each sector, which is restrictive. Thus,
POSCA can be augmented with advanced path-planning
algorithms that consider more flexible trajectories.

o Relevant traffic flow models tailored to UAM can be
incorporated into POSCA to accurately model the move-
ment of other aircraft in the shared airspace.

o The model’s scalability can be tested over a larger
airspace while incorporating parameters such as wind
speed and direction. Additionally, POSCA can be tested
over a real-world test bed for prototyping, paving the way
for commercialization in the future.

e« POSCA can be extended to incorporate vertical transi-
tions, offering exciting possibilities for three-dimensional
(3D) path-planning algorithms utilizing multiple levels of
airspace for UAM. Mobile agent-based communications
[27] for the 3D airspace can also be explored.

VIII. CONCLUSION

This paper introduces POSCA, a novel Phototropic Index-
driven path planning framework, addressing two problem
variants, static and dynamic, using S-POSCA and D-POSCA.
While Dijkstra’s algorithm inspires S-POSCA, D-POSCA cap-
italizes on the efficiency of D* Lite to dynamically re-plan
flight paths after each sector traversal, adapting to varying sun-
light conditions. Simulation results reveal an 8.81% increase
in total GHI encountered by the UAM vehicle in static weather
conditions and a 10.64% increase in dynamic conditions. The
significance of this improvement is exemplified in the case
study undertaken wherein a 10.64% increase translates to
harnessing about 9K'W of electrical power from solar energy
daily. This shows the viability of large-scale use of this scheme
to increase UAM’s sustainability quotient.
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