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ABSTRACT
Rigid bodies, made of smaller composite beads, are commonly used to simulate anisotropic particles with molecular dynamics or Monte
Carlo methods. To accurately represent the particle shape and to obtain smooth and realistic effective pair interactions between two rigid
bodies, each body may need to contain hundreds of spherical beads. Given an interacting pair of particles, traditional molecular dynamics
methods calculate all the inter-body distances between the beads of the rigid bodies within a certain distance. For a system containing many
anisotropic particles, these distance calculations are computationally costly and limit the attainable system size and simulation time. However,
the effective interaction between two rigid particles should only depend on the distance between their center of masses and their relative
orientation. Therefore, a function capable of directly mapping the center of mass distance and orientation to the interaction energy between
the two rigid bodies would completely bypass inter-bead distance calculations. It is challenging to derive such a general function analytically
for almost any non-spherical rigid body. In this study, we have trained neural nets, powerful tools to fit nonlinear functions to complex
datasets, to achieve this task. The pair configuration (center of mass distance and relative orientation) is taken as an input, and the energy,
forces, and torques between two rigid particles are predicted directly. We show that molecular dynamics simulations of cubes and cylinders
performed with forces and torques obtained from the gradients of the energy neural-nets quantitatively match traditional simulations that
use composite rigid bodies. Both structural quantities and dynamic measures are in agreement, while achieving up to 23 times speedup over
traditional molecular dynamics, depending on hardware and system size. The method presented here can, in principle, be applied to any
irregular concave or convex shape with any pair interaction, provided that sufficient training data can be obtained.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206636

I. INTRODUCTION

Advances in chemistry have made it possible to synthe-
size many non-spherical colloidal particles.1 Those anisotropic
colloidal building blocks can self-assemble into various targeted
nano-structures with desirable structural, optical, or electronic
properties.2,3 In the environment, pollutants such as microplas-
tics or engineered nanoparticles can occur in different shapes.4,5

In addition, particles with non-spherical morphologies are central

to several biological processes.6 Thus, capturing anisotropic fea-
tures of particles is essential to accurately simulate and understand
the fundamentals of a wide range of phenomena in science and
engineering.

Traditional particle based simulations, such as molecular
dynamics (MD) and Monte Carlo (MC) simulations, often treat
particles as perfect spheres; however, there are several methods avail-
able that can take non-spherical geometric features of particles into
account. For athermal systems, where particles interact with hard
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repulsion only, calculating the pairwise potential reduces to the task
of finding whether the two particles or shapes overlap or not. In
such systems, where the self-assembly is driven by entropic effects,
powerful methods and analytical solutions to calculate the interac-
tions for many geometries exist.7–10 Donev11 introduced an event-
driven MD algorithm that can efficiently calculate the overlap
between non-spherical geometries. This method has been used
to find closed-packing structures and phase behavior of hard
superballs.12,13 De Michele14 developed an alternative event-driven
approach to simulate systems of generic convex hard rigid bod-
ies. Damasceno et al.15 and others16–18 have simulated a wide range
of polyhedra with hard-particle MC and investigated their self-
assembly and phase behavior using different methods to calculate
the overlap or contact between the shapes.19 However, for systems
where the self-assembly is driven by enthalpic forces (i.e., attrac-
tive interactions), different methods are required. The Gay–Berne20
potential is commonly used to simulate ellipsoids with pairwise
attractive interactions, depending on the orientations of the parti-
cles in addition to the distance between their center of masses. It is
convenient for MD simulations, as forces and torques can be calcu-
lated analytically; however, it is limited to ellipsoid shapes only. The
anisotropic Lennard-Jones potential21 extends this to polyhedra.

By using a composite bead approach, any particle shape with
attractive and hard repulsive interactions can be simulated. Due to
its flexibility in both shape and interaction, this method is com-
monly used. Here, smaller, spherical beads, often called composite
beads, are held together with stiff harmonic bonds and angle poten-
tials to keep the geometry of the larger composite shape the same
throughout the simulation. Alternatively, rigid body constraints
between the composite beads can be applied. Popular MD soft-
ware applications, such as HOOMD-blue22–24 and LAMMPS,25 have
implemented rigid body constraints to simulate non-spherical par-
ticles or molecules made out of smaller beads.23,26 The composite
bead approach is flexible, as almost any concave or convex shape
can be simulated with it. The self-assembly behavior of nanoparti-
cles can be affected by small morphological details.27 To obtain a
precise geometry including sharp corners and edges, the shape often
needs to contain many beads. The interaction between two bodies
or shapes is now given by the double sum of all pairwise interactions
between the composite beads that make up the two bodies. Thus,
rigid bodies containing many composite beads significantly increase
the computational cost in both coarse-grained and atomistic simu-
lations. A similar computational cost challenge arises, for example,
to calculate the total van der Waals (vdW) interaction between two
non-spherical particles. Most notably, Lee and Arya28 devised an
analytical method to approximate the vdW interactions between two
cubic rigid bodies bypassing the cumbersome double sum. Their
method allows for MC simulations of cubes, but it is limited in
its application to MD since forces and torques cannot be obtained
with it. There are several similar efforts in the literature to calculate
the vdW interaction for non-spherical bodies.29–33 Recent work34
has calculated vdW forces and torques for cubes with a numerical
method. Ramasubramani et al.21 introduced a Lennard-Jones-like
potential that can be used for different polyhedra.

Machine Learning (ML) techniques are already applied to
spherically symmetric particles, especially to bridge quantum
mechanical calculations and classical atomistic MD simulations.35,36

Some possibilities that ML offers for anisotropic interactions have

recently been discovered. Campos-Villalobos et al.37 developed sym-
metry functions that can be used to construct ML potentials for
cylindrically symmetric particles. Anisotropic and rigid molecules
like benzene were coarse-grained by matching forces and torques
to accelerate all-atom condensed-phase MD simulations using a lin-
ear model38 and neural networks.39 Recent work40 has used several
ML models to detect whether or not two composite rigid bodies are
overlapping, bypassing explicit distance calculations between pri-
mary beads of the rigid bodies. However, this method does not allow
attractive interactions.

In this work, we use fully connected feed-forward neural nets
to predict the total interaction between two example geometries of
composite rigid bodies: cubes and cylinders. We focus on forces and
torques, since these are the necessary inputs for a MD simulation.
Here, we describe our generic method of data sampling and process-
ing and test the neural-net predictions for simple example particle
shapes. We show that the MD simulations performed with forces
and torques from the trained neural nets accurately reproduce struc-
tural and dynamic properties of traditional rigid body simulations,
which were performed with explicit distance calculations. Depend-
ing on the system simulated (number of particles, temperature, etc.)
and hardware available, neural-net assisted simulations are faster
than traditional MD simulations. Our method is entirely agnostic
to the particle shape and can be, in principle, applied to any irregu-
lar composite particle geometry with a wide range of both attractive
and repulsive pair interactions.

II. METHODS AND MOTIVATION
To calculate the total potential U between a pair of composite-

rigid bodies that are made out of smaller beads (as in Fig. 1) that
interact with pairwise potentials ubead(r), the distances between each
pair of beads need to be calculated,

U =
N

∑

i=1

N

∑

j=1
ubead(rij).

For two rigid bodies, each consisting of N beads, calculating N2 dis-
tances rij can be computationally costly for high values of N. For

FIG. 1. A pair of cylindrical rigid bodies made out of 639 smaller beads.
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example, the shapes investigated here contain 666 and 639 beads
for the cube and cylinder, respectively. The cylinder is shown in
Fig. 1, and a depiction of the cube can be found in the supplementary
material. The number of beads N used to represent a rigid-body
depends on several factors, including the geometry of the particle
and how accurate one would like to reproduce that geometry. For
example, to perform a systematic study of particle shapes that range
from a perfect cube to a sphere with several super-ball shapes in
between, edges and corners of the cube must be smoothed out grad-
ually as the shape approaches to sphere and this requires a high
resolution of beads. Simulationmethods that are used to incorporate
a background fluid and hydrodynamic interactions such as multi-
particle collision dynamics41 may also require a high resolution of
shape surface for accurate coupling between the colloid and solvent
particles.42,43 Another factor is the type of interaction between the
shapes. For hard-core repulsion interactions or WCA-like44 interac-
tions, where there is no attraction, one can place beads at the surface
of the shape only and leave the core empty, thereby reducing N and
saving computational time. However, this approach may not work
for attractive interactions. By only having surface beads, or shapes
with a small number of beads, it may not be possible to reproduce the
desired effective interaction between the two shapes in such cases.
N may need to be on the order of 102 to accurately represent the
shape and reproduce the desired effective interaction. We refer to
the supplementary material for a detailed illustration of this issue.

In the following, we outline an alternative route to reduce
computational costs associated with the composite bead method
by bypassing explicit distance calculations, while keeping the full
flexibility of the different shapes that can be used. Any pair config-
uration of 3D bodies can be expressed as a function of six numbers.
The position and orientation of the first body define a coordinate
frame. The position of the second body x(x1, x2, x3) and its orien-
tation Ω(Ω1, Ω2, Ω3) in the relative coordinate frame of the first
body are then sufficient to uniquely define any pair configuration.
Thus, the total interaction between the two composite-rigid bodies
is essentially a function of six numbers,

U = g(x,Ω) = g(x1, x2, x3,Ω1,Ω2,Ω3).

However, this function is quite complex and its general analyti-
cal solution is not available even for simple shapes such as cubes
or non-aligned cylinders.28 We follow a data-driven approach and
use neural nets (gNN) to approximate the function g relating
the pair configuration directly to the interaction energy, force, or
torque,

U =
N

∑

i=1

N

∑

j=1
ubead(rij) = g(x,Ω) ≈ gNNU (x,Ω),

thus allowing us to skip the costly distance calculations at the
expense of the inference and training cost of a neural net. We
demonstrate themethod on two particle geometries: cylinder (Fig. 1)
and cube (Fig. 1 of the supplementary material).

We are using half-power half-cosine as a base function,

ubead(r) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

ε((b − r)/σ)p − 2A, r ≤ b
−A cos (c(r − b)) − A, r > b
0, r > π/c + b

(1)

for the bead-to-bead potential as detailed in Sec. 4 of the
supplementary material with the following parameters: A
= 0.000 35ε, b = 1.463 75σ, c = 3.3833σ−1, and p = 2.5 for both
cylinders and cubes. The cutoff distance is rcut = π/c + b. When
summed up over the beads of the two interacting cubes, we
effectively obtain a Lennard-Jones-like interaction between the
two cubes as illustrated in Fig. 3. We used the size of the smaller
composite beads σ, as a unit of length. Energy is given in units of ε.
In the remainder of this work, we use reduced units.

Training and testing data for the neural net were sampled from
traditional composite-rigid body MD simulations that were per-
formed at a wide range of temperatures, starting fromT = 0.2ε/kB up
to 2.0ε/kB. Both energetically favorable (i.e., pairs that are strongly
attracting, for example two cubes with their faces aligned) and
unfavorable (i.e., pairs that are slightly overlapping or touching,
physically less likely to occur) pair configurations can be efficiently
sampled at low and high temperatures, respectively. Sampled body
pairs and their calculated energy, force, and torque vectors are then
subjected to geometric transformations and operations in order to
express each pair as a function ofΩ and x and tomake use of the geo-
metrical symmetries of the shapes. This process is explained in detail
in Sec. 1 of the supplementary material, and the code is publicly
available at https://github.com/stattlab/NNAssistedRigidBodyMD.
Here, we only mention that unlike other 3D bodies, a pair of
cylinders can be expressed as a function of four numbers only
g(x(x1, x2),Ω(Ω1, Ω2)), thanks to their cylindrical symmetry.

Training a single neural-net that can predict the energy would
be sufficient to perform Monte Carlo simulations. For MD simu-
lations, force f = ( f1, f2, f3) and torque τ = (τ1, τ2, τ3) vectors are
required to integrate the equations of motion forward in time. We
have used two different methods to obtain f and τ. First, for cylin-
ders, five separate neural nets were trained for each component of
f = ( f1, f2, f3) and (τ1, τ2) and used directly in the simulation. The
torque around the axis of the cylinder, τ3, is not needed. This leads
to the following approximations:

fi ≈ gNN fi
, τi ≈ gNNτi

with i = 1, 2, 3.

Second, for cubes of side length ∼3.2σ, the forces and torques were
calculated from the gradients of the energy neural-net as explained
in Sec. 6 of the supplementarymaterial. The secondmethod can pro-
vide the same accuracy as the first one, and it is more practical to
implement. In addition, using one neural net for energy also helps
us ensure that the components of the forces and torques obey energy
conversation. The method was not tested for non-thermostatted
simulations and should be used with caution in NVE due to pos-
sible jumps and kinks in the predicted energy landscape (Fig. 9 of
the supplementary material), which may result in violation of over-
all energy conservation. Simple fully connected feed-forward neural
nets of width 60 and depth 6 are used for the regression tasks in the
cube system. The details can be found in the supplementarymaterial.

III. RESULTS AND DISCUSSION
Generally, accurate force–torque prediction from our model

should result in correct molecular dynamics simulations. Before
comparing the traditional and neural-net assisted simulation results,
we are presenting a more direct measure of ML accuracy, namely
parity plots obtained from the test data. In Fig. 2, the predicted values
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FIG. 2. Parity plot of true vs predicted fx values for the cylinder (left) and cube
(right) systems. For the cylinder, fx is the direct output of the force neural net gNN fi

;
for the cube, it is obtained from the gradient of the energy neural net gNNU

. The
dashed lines indicate the 10% error line.

of the x-component of the net force ( fx) vs the true value between
two cylinders and cubes are plotted. The other force components
follow the same trends. For both shapes, data points outside the 10%
error lines were frequent, especially for values close to zero. We note
that using separate neural networks to predict fi for cubes, instead
of taking the gradient of gNNU , results in a much lower rate of error,
as we show in Sec. 5 of the supplementary material. However, since
the accuracy of the MD simulation results is similar for both meth-
ods, the results obtained from cube simulations assisted by gNN fi

and
gNNτi

are not presented here.
In Fig. 3, traditionally calculated and neural-net predicted ener-

gies of cubes are compared. Here, we show the energies of three
different relative orientations as a function of their center of mass
distances. Overall, there is good agreement over a wide range of
center of mass distances, with noticeable deviations for small dis-
tances and high interaction energies. These short distances are less
likely to occur in a molecular dynamics simulation but might play
a significant role in simulations under highly dense conditions or
temperatures above those used to generate the training dataset.

The next step is to compare the results of neural-net assisted
simulations with traditional molecular dynamics simulations. For
this, we performed two sets of simulations, one using HOOMD-
blue 2.9.4 with traditional molecular dynamics simulations of rigid
bodies in the NVT ensemble and the other with the C++ code

FIG. 3. Interaction energy U(r) as a function of center of mass distance r for
three different cube configurations, as shown next to the curves. Each cube had
an approximate side length of 3.2σ and is composed of 666 small spherical beads.

using neural-net forces and torques for the molecular dynamics
simulation.

The temperature was kept constant using a Nosé–Hoover ther-
mostat with a time step of 0.005 τ. We equilibrated the system for
2500τ, where τ = σ

√

m/ε is the unit of time. The particle volume
fraction ϕ = N ∗Vparticle/V of all simulations was set to ϕ = 0.16. The
cubes have an approximate side length of 3.2σ, and the cylinders are
∼2.75σ in diameter and 5.3σ long.

To assess the accuracy of our simulations, a measure for the
structure of the system was used, the pair correlation function g(r)
of the center of mass of the simulated shapes. In Fig. 4, g(r) of
cylinders was plotted for both nn-assisted and traditional MD simu-
lations. While qualitative agreement between the two curves can be
observed, and nn-assisted simulations reproduced the peaks at cor-
rect positions, the height of the first peak is underestimated. The first
peak in g(r) corresponds to the pair configuration where two cylin-
ders are aligned along their main axis and are close to each other.
We attribute the mismatch at the first peak to the assumption in nn-
assisted simulations that the cylinders are symmetric around their
main axis. Even though the cylinders were comprised of many com-
posite beads for the traditional MD simulations, the surface was still
rough and rotations around the main axis might at close distances
result in different interactions. This roughness is effectively coarse-
grained out in the neural-net assisted simulations, since the neural
net cannot account for rotations around the main axis by the design
of the input variables. This effect is the strongest when two cylinders
are closest to each other, almost touching, and decays as the distance
increased, as shown in Fig. S6 of the supplementary material.

Next, we tested the structural accuracy of the cube simulations.
In Fig. 5, the g(r) curves for the center of mass of cubes are plotted
for simulations performed at temperatures of T = 0.5ε/kB, 0.6ε/kB,
and 0.7ε/kB. There is quantitative match at all temperatures simu-
lated. The nn-assisted simulations accurately capture the significant
structural changes observed in this temperature window, ranging
from a non-aggregated suspension of cubes at high temperatures T
= 0.7ε/kB, down to an aggregated face-centered, cubic structure at
low temperatures T = 0.5ε/kB. Unlike in the case of cylinders, where
we ignore rotations around the main axis, rotations in the cube con-
figurations are represented explicitly and we speculate that this is
part of the reason for the improved match of the first peak in g(r).

FIG. 4. Pair correlation function g(r) at T = 1ε/kb for a cylinder system. The tra-
ditional simulation result is shown as dashed line, and the nn-assisted simulation
result is shown as filled symbols.
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FIG. 5. Pair correlation functions g(r) for three different temperatures: 0.5ε/kB
(top), 0.6ε/kB (middle), and 0.7ε/kB (bottom) for cubes. The dashed lines show
the result from traditional simulations, and the filled symbols show the result
of the nn-assisted simulations. The insets are representative snapshots of the
corresponding structures at these temperatures.

We also assessed the accuracy of dynamics in the neural-net
assisted simulations. For consistency, the mass of the cube rigid-
body is set to be the same in HOOMD and neural-net assisted
simulations. In Fig. 6, mean square displacements (MSDs) of cubes
at different temperatures for both neural-net assisted and traditional
simulations are shown. At all temperatures, good agreement can be
found. The estimates for diffusion coefficients are obtained using the
slope of MSD vs time data, at longer times. The diffusion coefficients
are 0.16σ2/τ, 0.54σ2/τ, 1.36σ2/τ, and 1.88σ2/τ for HOOMD simula-
tions and 0.13σ2/τ, 0.33σ2/τ, 1.12σ2/τ, and 1.58σ2/τ for nn-assisted
simulations at temperatures of 0.3ε/kB, 0.5ε/kB, 0.7ε/kB, and 1.0ε/kB,
respectively. Even though there is a qualitative match, the diffusion
coefficient is smaller in nn-assisted simulations at every temperature
simulated. In addition to MSD, mean square rotation (MSR) is also
a fundamental measure of the kinetics for non-spherical particles.
MSR is the orientational-angular analog of the MSD, and its calcula-
tion is explained in detail in Sec. 5 of the supplementary material. In
Fig. 6, the MSRs of the cubes at different temperatures are plotted.
We observe a reasonable match, except at lower temperatures (0.5
and 0.3). Cubes in the nn-assisted simulations are rotating slightly
faster compared to traditional MD simulations. It is not clear why
we observe this behavior, and future investigations will be needed.

FIG. 6. Mean squared displacement (top) and mean squared rotation (bot-
tom) of cubes at different temperatures. The solid lines represent the traditional
simulations, whereas the dashed lines show the nn-assisted results.

Finally, the speed, or performance, of the neural-net assisted
simulations was compared with HOOMD-blue simulation perfor-
mance. Depending on the hardware used and on the number N of
cubes simulated, nn-assisted simulations can significantly increase
the performance of simulations, as shown in Table I. We performed
all simulations on a single RTX 2070 Super GPU with 8 GB mem-
ory and a single A100 GPU with 80 GB memory and report the time
steps per second. An acceleration factor between the two simulation
methods on each GPU was computed. Aside from the smallest sys-
tem (N = 500) on the A100, all nn-assisted simulations are faster
than their corresponding HOOMD-blue simulations. In addition,
on the RTX 2070, HOOMD rigid-body simulations run out of the
8 GB memory for systems larger than N ≈ 1300.

TABLE I. Time steps per second and acceleration factor of nn-assisted simulations
compared to HOOMD-blue for various system sizes N. The ellipses (⋅ ⋅ ⋅) indicate that
GPU memory was not sufficient to run the simulation. Bold lines indicate speedup.

N

GPU-method 500 1000 1500 2000 3000 4000

RTX-2070—HOOMD 9.5 4.6 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

RTX-2070—NN-assisted 143 109 90 75 64 45
RTX-2070—speedup x15 x23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A100—HOOMD 190 90 60 45 30 23
A100—NN-assisted 153 125 108 91 78 60
A100—speedup x0.8 x1.4 x1.8 x2.0 x2.6 x2.6

J. Chem. Phys. 160, 244901 (2024); doi: 10.1063/5.0206636 160, 244901-5
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IV. CONCLUSIONS
In this work, we present a flexible neural-net assisted method

to accelerate molecular dynamics simulations of non-spherical com-
posite rigid bodies of any irregular shape. Here, we have used cubes
and cylinders as examples; however, the method has no restrictions
on the shape of the particles as long as sufficient training data can
be obtained. Our method also allows any pair interactions, includ-
ing repulsive and attractive forces. We observed good agreement
in structural and dynamic properties between the nn-assisted and
traditional rigid-body composite simulations over a range of tem-
peratures. We tested the performance of the current method and
observed a speedup of x15 to x23 on a single RTX 2070 Super
NVIDIA GPU and a speedup of x0.8 to x2.6 on an A100 NVIDIA
GPU. Depending on the system of interest and available hardware,
this speedup can be significant.

Our method has several shortcomings that prevent further
speedup, which can be addressed in future work. Ideally, the descrip-
tors (for our model, these are the input parameters of the neural-net)
should be easy to calculate from the raw representation of the
system, i.e., positions and quaternions.37 However, the geometric
operations that we perform to consider the symmetries of a pair
of cubes or cylinders are computationally quite costly, reducing
the performance. A second disadvantage is the use of a neural-net,
where inference is associated with significant computational cost,
especially considering that inference is needed at every single time
step.

We note that cylinders have an advantage where any pair con-
figuration can be expressed with four numbers instead of six due to
the cylindrical symmetry. This symmetry greatly improved the per-
formance of the neural-nets or, equivalently, reduces the difficulty
of fitting. However, this symmetry assumption led to a slight loss
in accuracy, particularly of parallel cylinder configurations at short
distances. Depending on the desired density and level of surface
roughness (i.e., how coarse-grained the cylinder is), these inaccurate
interaction predictions might be significant.

Our method, as presented here, is completely flexible in the
input training data. Consequently, it can be easily extended to small
nanoparticle systems that include ligands, charges, atomistic inter-
actions, and other effects. Generally, as particle sizes get smaller,
the error in effective interactions between particles increases, due to
classical approximations and coarse-graining.45 We speculate that
our approach could potentially attain the level of accuracy com-
parable to atomistic simulations by training the neural nets using
nanoparticles made out of atoms. Similarly, for small nanoparti-
cles, surface ligands play a significant role in self-assembly, and
neural-nets can be trained with effective forces and torques between
nanoparticles with explicit ligands.37,46 Self-assembly pathways of
charged colloids are also highly dependent on morphology.47 It
would be possible to include Coulombic interactions by adding
charged beads to the rigid bodies, which would be learned by the
neural nets as a part of their effective interactions. Depletion inter-
actions of nanoparticles depend strongly on their shape, and this
method could provide an efficient way of developing effective deple-
tion pair interactions by using traditional simulations with explicit
depletants.

In this paper, the effective interaction we used was relatively
short-ranged. It decayed to zero around 1.4a, where a is the size

of the shape, which is shorter than a typical Lennard-Jones inter-
action that would decay to zero around 2.5 to 3a. Especially for
nanoparticles, relatively long-ranged interactions can be relevant
in self-assembly.27 Longer-range shape interactions would signif-
icantly increase the potential speedup of the nn-assisted method
over traditional simulations. Unfortunately, more data sampling
and possibly longer training times would be required. Similarly,
more irregular shapes may require more composite beads for an
accurate representation, which would lead to a larger potential
benefit for the nn-assisted method. However, the regression task
would be more complicated as well. Future research and methods
development will push the limits of the method shown here, and
we hope to include different physical interactions, longer-ranged
interactions, and more complicated geometries, including concave
shapes.

SUPPLEMENTARY MATERIAL

The supplementary material contains the details of the geomet-
ric operations performed to take the symmetries of pairs of cubes
and cylinders into account. A discussion of the cylindrical symme-
try assumption for cylinders is included. An example to demonstrate
why many beads can be necessary for a rigid body is also included.
We show how one can obtain torques and forces from the energy
neural net. The code for running the nn-assisted simulations is
available at https://github.com/stattlab/NNAssistedRigidBodyMD.
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