
MOVE: Matching Game for Partial Offloading

in Vehicular Edge Computing

Mahmuda Akter§, Debjyoti Sengupta§, Anurag Satpathy, and Sajal Das

Department of Computer Science

Missouri University of Science and Technology, Rolla, USA

E-mail: {makter, dsengupta, anurag.satpathy, sdas}@mst.edu

Abstract—Autonomous Vehicles (AVs) require substantial com-
putational resources to perform operations that safely navigate
vehicles in urban road networks. Resource-intensive operations
are offloaded to roadside units (RSUs), acting as edge servers,
to improve the responsiveness and reduce the energy consumed
in execution. In this context, a cooperative execution involving
the vehicular on-board units (OBUs) and the RSUs can act as
a game changer. However, partial offloading is non-trivial and
demands addressing the following research challenges. Firstly,
the RSU’s resources are limited, necessitating regulated resource
assignments. Secondly, capturing distinctive vehicle parameters
using a unified ranking scheme is imperative. Thirdly, an
efficient partition strategy must consider the energy expended
and adhere to the real-time operations’ deadline needs. This
paper proposes a partial offloading scheme, MOVE, catering to
the abovementioned challenges. A deferred acceptance algorithm
(DAA) with preferences is proposed to address the first two
challenges, whereas a novel energy-aware partitioning strategy
resolves the final challenge. The performance of the proposed
scheme is evaluated against baseline algorithms, and we observed
a 54.04% and 52.17% reduction in offloading latency and energy.

Index Terms—Vehicular Edge, Road Side Units, Partial Of-
floading, Matching Theory, Deadline, Latency, Energy Awareness

I. INTRODUCTION

Imparting autonomy in vehicles implies equipping them

with higher cognitive and control functions, requiring higher

computational power. To achieve this, an option is to manufac-

ture vehicles with better hardware capability to handle increas-

ingly complex computations in real time. However, this results

in higher automobile costs and computing requirements to

meet ever-changing demands. Additionally, periodic upgrades

in the vehicle’s hardware may not be feasible, especially with

large-scale data-driven and intelligent models for autonomous

driving. To address this problem, and as part of an intelligent

transportation system (ITS), computing resources in the form

of roadside units (RSUs) are strategically installed [1], [2],

catering to vehicular computations during transit [3], [4] and

assisting in safe navigation in urban road networks.

Given the scale, offloading computations to the RSU is a

non-trivial problem with inherent research challenges. (a) The

RSU has limited computing resources, considering urban road

networks; (b) A vehicle trajectory and traversal patterns are

highly dynamic, comprising multiple attributes. (c) The re-

quirement of a real-time solution, adhering to stringent quality-

§Both authors contributed equally to this work.

VM Attributes

Processing
Speed
Availability
Power Rating

Vehicle Attributes

Position
Velocity
Deadline
Processing Speed
Power Rating

Registry Module

Preference Generator

Assignment Module

Vehicle Preference

VM Prefernce

Matcher

Partitioner

Wireless
Links

Road Side
Unit

RSU
Controller

Virtual
Machine Vehicles

RSU Controller

Fig. 1. Vehicular Edge Computing setup with vehicles, RSU, and controller.

of-service (QoS) regarding service deadlines is indispensable

[5], [6]. This paper proposes a systematic solution to the above

challenges. The novel contributions are as follows.

• We propose a framework called Matching Game for Par-

tial Offloading in Vehicular Edge Computing (MOVE)

to facilitate collaborative execution between vehicular

OBUs and RSU, ensuring deadline-compliant operations.

• To meet the stringent requirements on tolerable latency,

we propose a polynomial-time and scalable matching

solution that generates an effective offloading plan and

considers the distinctive preferences of competing agents.

• By considering their respective power ratings, we devise

a novel partition technique that effectively determines the

offloaded and local fraction.

• We evaluate the performance of MOVE; Compare it with

three baseline algorithms: Sequential Optimal Matching

(SOM), Matching Theory for Task Offloading [7] (MTO),

and Random Assignment (RA); and observe a 54.04%

and 52.17% reduction in offloading latency and energy.

The rest of the paper is organized as follows. Section II re-

views the related literature on offloading. Section III describes

the system design and problem formulation, while Section

IV presents the proposed solution. Section V discusses the

experimental results, and Section VI offers conclusions.

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 3670

IC
C

20
24

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ica
tio

ns
 |

 9
78

-1
-7

28
1-

90
54

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
C5

11
66

.2
02

4.
10

62
22

82

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

With the increasing computational demands of modern

vehicles, vehicular edge computing (VEC) has emerged as

a pivotal technology, extending cloud computing capabilities

closer to the edge of vehicular networks [8], [9]. Prior research

mostly focused on full offloading to RSUs to reduce the

processing burden of the vehicles. While these approaches

have effectively utilized the computational resources available

in the RSU, they have introduced latency issues for real-

time applications due to continuous data transmission with

RSU servers. Addressing the latency issues, Deng et al. [10]

proposed a novel resource allocation policy in multi-user

Mobile Edge Cloud (MEC) systems designed to optimize

communication and computing resources while maintaining

system constraints. Some user applications are highly latency-

sensitive, and Wang et al. [11] addressed this by using joint

task scheduling and resource allocation (JTSRA). Moreover,

due to the huge influx of data, full offloading often leads

to higher energy consumption on the RSU, and Hu et al.

[12] proposed an auction-bid scheme to mitigate the issues

of energy consumption effectively.

Full offloading incurred increased energy consumption and

higher latency, particularly concerning real-time applications

such as autonomous vehicles. Therefore, partial offloading

with cooperative execution was a viable execution option.

MEC has been investigated in works [13], [14], and a balanced

and efficient partial offloading scheme with optimal partitions

has been proposed. Alternatively, Fang et al. [15] discussed

offloading in non-orthogonal multiple access (NOMA)-MEC

network with multiple users sharing the frequency bands.

Based on the user’s delay and data transmitting power, a

bisection searching (BSS) algorithm is adopted to obtain an

optimal task partition ratio to minimize the system delay. Sim-

ilarly, the work in [16] presented a framework to determine the

optimal partition of data, balancing the energy consumed and

saved. The balance was established by considering different

interdependent applications and system-specific parameters.

On the other hand, the work in [17] determined the opti-

mal partition considering the vehicle’s CPU speed, available

channel bandwidth, and transmission power. Alternatively, Bi

et al. [17] investigated the offloading decision for moving

user equipment (UE) with the agenda of latency and energy

reduction. The gap in current literature lies in the predominant

focus of most studies on full/partial offloading, which is solely

centered on latency and energy reduction, neglecting non-

negotiable operational deadlines.

III. SYSTEM DESIGN AND FORMULATION

This section formally introduces the offloading problem,

subsequently followed by the overall objective of MOVE.

A. System Design

We consider a setup with autonomous vehicles A =
{a1, a2, a3, . . . am} traversing a two-lane network. An au-

tonomous vehicle ai performs compute-intensive operations

by utilizing the on-board units (OBUs) having ωi capacity (in

cycles/bit) and execution frequency fi (cycles/sec). For two

vehicles ai and ai′ , we assume that ωi ̸= ωi′ , ∀ i, i
′ ∈ [1,m] to

impart heterogeneity. The OBUs have integrated transceivers

and receivers that assist in communicating with other vehicles

and RSUs. The communication channel is assumed to be

noiseless with a transmission rate of r (bps). The OBUs are

resource-limited and may not have the requisite computing

resources to perform many real-time operations and may

depend on the nearby RSU, which is virtualized into ‘n’ VMs,

captured by M = {m1,m2, . . . ,mn}. A VM mj’s computing

resources are characterized by ωj (in cycles/bit) operating

at a frequency of fj (cycles/sec). This limited capacity of

the RSU and the real-time needs of the vehicles motivate

us to develop a cooperative offloading scheme, where the

vehicle and RSUs cooperate in executing the computations

strictly adhering to the deadline constraints. The fraction of the

computations executed locally and remotely are respectively

captured as βl
i,j and β0

i,j , such that βl
i,j+βo

i,j = 1. For instance,

vehicular operations such as map updates, path planning, and

fleet learning are arbitrarily splittable.

For a vehicle ai with coordinates (xi, yi) and the RSU

positioned at location (xrsu, yrsu), with a coverage radius R,

the coverage distance to be traversed (di) can be computed as:

di =
√

R2 − (yrsu − yi)2 ± (xrsu − xi) (1)

With the assumption of constant velocity, the time-window of

ai before exiting the coverage area, also termed as sojourn

time (T soj
i), is computed as follows [18]:

T soj
i =

di
vi

(2)

B. Modelling Communication and Processing Delays

The offloading request is expressed as a quadruple <
xi, yi, vi,∆i >, where ∆i captures the imposed deadline in

performing the requisite operation. We subsequently introduce

the communication and processing delays in MOVE.

1) Communication Delay: Equation (3) captures the delay

in communication (Tc
i (βi,j , η)), considering both transmission

and reception. Here, Di and D′

i denote the size of data pre

and post-processing, respectively.

T
c
i (βi,j , η) =

(

βo
i,j ×

Di

r

)

+
D′

i

r
(3)

2) Local Processing Delay: The local processing delay

(Tl
i(βi,j , η)) captures the time expended in processing βl

i,j

fraction of the data on the OBU of the vehicle.

T
l
i(βi,j , η) =

[

(βl
i,j ×Di)×

ωi

fi

]

(4)

3) Offloaded Processing Delay: The processing delay is

captured as T
p
i (βi,j , η) reflects the time expended by ai in

processing the offloaded computations at the VM mj of the

RSU and is derived as:

T
p
i (βi,j , η) =

[

(βo
i,j ×Di)×

ωj

fj

]

(5)

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3671
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

4) Total Offloading Delay: It indicates the time elapsed in

communication and processing and is captured as:

T
o
i (βi,j , η) = T

c
i (βi,j , η) + T

p
i (βi,j , η) (6)

C. Energy Consumption

1) Energy Consumption at the VMs: Given the power rating

of mj , denoted as pj , the energy consumption at mj denoted

by Ej for processing offloaded data is derived as:

Ej = pj × T
p
i (βi,j , η) (7)

2) Energy Consumption at the Vehicles: A vehicle ai
having a power rating of pi will have local energy consumption

equal to the value obtained as:

Ei = pi × T
l
i(βi,j , η) (8)

D. Problem Formulation

Let us introduce an indicator variable

X (ai,mj) =

{

1 If ai is assigned to mj

0 Otherwise
(9)

The overall objective of MOVE is portrayed in Equation (10a).

The delay in offloading must meet the deadline imposed by

the vehicle, which is captured as a Constraint (10b). On

the other hand, with Constraint (10c), a vehicle can offload

to at most one VM. The energy awareness in MOVE is

incorporated via Constraint (10d), which essentially states

that partial offloading saves the RSU from expending energy

completely. Constraints (10e) and (10f) capture the feasibility

of the partitioning logic. Finally, Constraint (10g) captures the

values for the decision variables.

minimize

(m
∑

i=1

T
o
i (βi,j , η)

)

(10a)

s.t. max(To
i (βi,j , η),T

l
i(βi,j , η)) f min(∆i, T

soj
i) (10b)

X (ai,mj) f 1 (10c)
n
∑

j=1

Ej f
m
∑

i=1

n
∑

j=1

I(ai,mj)
ωj

fj
(pj ×Di) (10d)

βi,j ∈ R
+ (10e)

1
Tβi,j f 1 (10f)

∀ i ∈ [1,m], ∀ j ∈ [1, n] (10g)

NP-Hardness: Indeed the problem expressed as per Equation

(10) is a combinatorial optimization problem proven be NP-

Hard [19]. This implies that for increasing problem size,

obtaining an optimal solution will become extremely com-

plex and challenging. Therefore, in this work, we discuss an

effective solution that not only generates a stable, scalable, ef-

ficient, polynomial-time assignment based on strategy but also

considers the individual preferences of stakeholders. The next

section elaborately discusses the solution strategy adopted.

IV. PROPOSED MODEL

The overall working and components of MOVE are captured

in the RSU controller as illustrated in Figure 1. It has a

registry, preference generator, and assignment modules. A

vehicle registers itself with the RSU when it enters the

coverage area, and the VMs are registered as soon as they are

instantiated. The registration involves logging the vehicle and

VM attributes with the controller. The preference generation

procedure follows the registration, wherein the vehicles and

VMs generate their respective preferences that are input to

the assignment module. The assignment module encompasses

the matcher and partitioner. The former assigns vehicles to

VMs, whereas the latter outputs an energy-balanced partition.

A. Offloading as a Matching Game

The resource competition game between the vehicles for

virtualized resources as VMs at the RSUs is modeled as

a matching game [20], [21]. Formally, the game is played

between two sets of agents A = {a1, a2, a3, . . . am} and

M = {m1,m2, . . . ,mn}. The matching game is defined as:

Definition 1: (Agent Preference): A matching is an asso-

ciation between two sets of agents A and M. Every agent

u ∈ A∪M defines a ranked ordering {u, capturing its priori-

ties over agents in the opposite set. For instance, mj {ai
mj′

implies that ai prefers machine mj over mj′ . On the other

hand, ai {mj
ai′ states that mj prefers vehicle ai over ai′ .

Definition 2: (Offloading Game): Matching between A and

M is a one-to-one association η : A → M ∪ {Φ} subject to

the following.

Condition 2.1: Each ai ∈ A, |η(ai)| = 1, and η(ai) ¢ M.

Condition 2.2: Each mj ∈ M, |η(mj)| = 1, and η(mj) ¢ A.

Condition 2.3: For a vehicle machine pair (ai,mj), ai ∈
η(mj) ⇐⇒ mj ∈ η(ai).

Conditions (2.1) and (2.2) enforce a one-to-one assignment

between the VMs and the vehicles. The property of symmetry

is implied by Condition (2.3), which implies that a VM is

assigned to a vehicle iff the converse is true.

Definition 3: (Pairwise Blocked): A vehicle-VM pair

(ai,mj) blocks the matching η iff the follwing are satisfied.

Condition 3.1: ai /∈ η(mj) and mj /∈ η(ai)

Condition 3.2: mj {ai
η(ai)

Condition 3.3: ai {vj η(mj)

A pair of agents (ai,mj) is said to block a matching if

they are incentivized to deviate from their currently assigned

partners in η and be matched to each other, which is enforced

by Conditions (3.1)-(3.3).

Definition 4: (Stability) The matching η is stable iff no pair

of agents block the matching.

B. Agent Preference

The preference of an entry a ∈ V∪M is captured as P(a).

1) Vehicle Preferences: For an AV ai, the preference over

any two VMs is expressed as follows.

mj {ai
mj′ ⇐⇒ T

o
i (βi,j , η) < T

o
i (βi,j′ , η); j ̸= j′ (11)

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3672
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

2) Machine Preferences: To capture the machine priorities,

we associate a prominence score ρj,i for each ai for offloading

it to mj derived as Eq. (12). A higher prominence prioritizes

vehicles with limited execution options and closer deadlines,

boosting MOVE in achieving its goal of reduced latency.

ρj,i =
1

|P(ai)|
+

T soj
i

∆i

(12)

Therefore, the preference of mj can be defined as

ai {mj
ai′ ⇐⇒ ρj,i > ρj,i′ ; i ̸= i′ (13)

C. Resource Matching Strategy

The resource competition is modeled as a one-to-one match-

ing game, and the formal procedure for the same is presented

as Algorithm 1. The inputs to the algorithm are the sets

A and M, preferences of agents, i.e., P(a), a ∈ A ∪ M,

power profiles of the respective agents. The output of the

algorithm is an energy-efficient partition post-assignment. The

algorithm proceeds as follows. The participating agents in

the matching are initialized to be free, which implies a null

assignment going into RMA. RMA identifies any AV ai, which

is yet to be assigned, i.e., free[ai], and has some options

left, i.e., P(ai) ̸= Φ. The procedure then extracts the most

preferred option mj from P(ai) using ExtractPreferred (.).

Once identified, the machine mj is approached for assignment

(Step 2-4 of Algorithm 1). The machine can respond to the

proposal in three ways (Steps 5-12 of Algorithm 1).

(1) The machine mj is free, i.e., free[mj] = True. The

machine mj and AV ai are matched in such a case.

(2) The machine mj is holding onto a proposal from ai′

from some previous iteration but ai {mj
ai′ . Here, ai′

is evicted as it is less preferred than ai, and ai and mj

were matched.

(3) On the other hand, ai′ {mj
ai, the request from ai is

rejected and the previous matching is retained.

Once the matching is obtained, RMA obtains an effective

partition for each offloaded computation. The fraction of the

computation to be performed locally is computed as the ratio

of their power ratings (Step 15 of Algorithm 1). Moreover,

full offloading is performed if the locally offloaded fraction

cannot meet the deadline constraint imposed by the vehicle

(Step 15-20 of Algorithm 1). This procedure is repeated for

every assigned vehicle.

D. Theoretical Analysis

Theorem 1: (Stability): RMA produces a stable matching

η wherein no matched agents are incentivized to deviate from

their current assignments.

Proof: By Definitions (3) and (4), a matching η is said

to be stable iff there is no vehicle-VM pair (ai,mj) that has

incentive to deviate from currently assigned partners.

We prove this by contradiction and assume the presence of

a blocking pair (ai,mj) in the matching η. This implies that

ai and mj are not currently matched to each other, i.e., ai /∈
η(mj) and mj /∈ η(ai). As (ai,mj) forms a blocking pair, we

Algorithm 1: Resource Matching Algorithm (RMA).

Input: A, M, P(ai), pi ∀ ai ∈ A; P(mj), pj ∀ mj ∈ M.
Result: β {Offloading Vector}

1 Initialize: η(ai) = Φ, free[ai] = True, ∀ai ∈ A;
η(mj) = Φ, free[mj] = True, ∀vj ∈ M,α = Φ

2 while ∃ ai | free[ai] = True ||P(ai) ̸= Φ do

3 mj = ExtractPreferred (P(ai))
4 Send proposal to mj

5 if free[mj] then

6 η(ai) = {mj}; η(mj) = {ai}
7 free[ai] = False; free[vj] = False

8 else if ai {mj
ai′ then

9 η(ai′) = Φ; free[ai′] = True
10 η(ai) = {mj}; η(mj) = {ai}
11 free[ai] = False;

12 else

13 Reject the proposal from ai

14 while ∃ ai | ! (free[ai]) do

15 βl
i,j =

1

1 + pi
pj

16 if Tl
i(βi,j , η) f ∆i then

17 βo
i,j := 1− βl

i,j

18 βi,j := {βl
i,j , β

o
i,j}

19 else

20 βi,j := {0, 1}

21 return β

can safely deduce that mj {ai
η(ai) and ai {mj

η(mj). It

can be noted that as mj {ai
η(ai), ai must have proposed

mj prior to proposing η(ai) and as η(ai) ̸= mj , implies

that it was previously rejected. This rejection must have been

performed to accommodate a more preferred option, i.e., VM

mj′ , which implies that η(ai) {ai
mj , i.e., mj′ {ai

mj ,

which contradicts our assumption. Therefore, we can safely

conclude that RMA produces a stable matching.

Theorem 2: (Time Complexity): RMA converges to a stable

solution in O(m× n) + O(m) time, which is polynomial.

Proof: Let the number of vehicles in the setup be ‘m’, i.e.,

|A| = m, and the number of VMs is ‘n,’ i.e., |M| = n. The

time complexity of RMA (Algorithm 1) is dependent on (i.)

resource assignment (Steps 2-13) and (ii.) partition logic (Steps

14-20). In its worst case, the former takes O(m×n), wherein

every vehicle ai having a complete preference P(ai) sends out

a proposal request to all the mj’s in its preference. However,

the latter executes in O(m). Therefore, the overall complexity

of RMA is O(m× n) + O(m), which is polynomial.

V. PERFORMANCE STUDY

This section describes the baseline algorithms, experimental

setup, and the comparative study of results obtained.

A. The Baseline Algorithm

To evaluate the performance of MOVE, we compare it with

the following approaches.

• Sequential Optimal Matching (SOM): The vehicles are

sequentially matched to the VMs sorted according to

their computing capabilities. This assignment should also

adhere to the Constraints expressed in Equation (10).

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3673
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

• A Matching Theory Framework for Task Offloading

in Fog Computing for IoT Systems [7] (MTO): This

protocol uses matching in IoT-Fog systems with the

objective of worst-case time reduction. A static model

variant with consistent preferences is considered for fair

and rational comparison.

• Random Assignment (RA): The vehicles are randomly

matched to VMs and checked for the satisfaction of all

the Constraints in Equation (10).

B. Experimental Setup

We consider a 2-lane road network with vehicles traversing

the area and a RSU with a coverage of 500m. The compute re-

sources at the RSU are logically partitioned into VMs (equal to

number of vehicles) with a processing frequency and execution

power ranging between [0.1−1.0] GHz and [150−500] MW ,

where vehicles are randomly distributed within a two-lane

road. Based on urban and semi-urban driving conditions, the

vehicles are assumed to be traversing the coverage area with

their average speed ranging from 40 to 70 Kmh−1. All the

vehicles have onboard units (OBUs) with wireless transceivers

and receivers that assist the vehicles in communicating with

the RSU, and the power consumed is randomly generated in

the range [250− 400] MW. We assume the communication is

carried over a noiseless wireless channel [22] having a fixed

bandwidth of 3 MHz. The computations on the vehicles have

varying data sizes ranging from [100-1000] KB, where lower

data size values represent relatively lightweight computational

tasks and the higher values represent more computationally

intensive tasks. To represent different levels of urgency, the

tasks’ deadline values are generated uniformly in the in

[0.5 − 25] sec. Additionally, we evaluate the performance

of MOVE against the benchmarks by performing 10 test

runs over 4 evaluation scenarios, i.e., S-1, S-2, S-3, S-4

corresponding to 100, 200, 300, and 400 vehicles respectively.

C. Results and Analysis

This subsection presents the comparative study of all the

schemes implemented across different evaluation metrics.

1) Offloading Delay: Figure 2 captures the comparative

behavior of aggregate latency for all the protocols. It can

be observed from the figure that the proposed algorithm,

i.e., MOVE, demonstrates superior performance by achieving

minimum latency compared to the benchmarking algorithms

across test cases. Note that the latency increases for increasing

vehicles, which is an expected behavior. The improved perfor-

mance of MOVE is attributed to the following two reasons.

Firstly, the vehicles rank VMs in the order of increasing

offloading delay. Secondly, vehicles are proposers, so they

approach the VMs in the designated order of P (vi). These

reasons boost the possibility of the vehicles being assigned

to more preferred choices. Moreover, unlike MOVE, SOM

and MTO perform full offloading in the order of compute

capabilities and transmission delays, resulting in higher of-

floading duration. We observe an interesting behavior for the

RANDOM assignment, wherein its offloading delay is lower

than that of SOM. However, this is only because of the non-

consideration of outage vehicles towards the offloading delays,

which can be easily inferred from Figure 3.

2) Outages: MOVE suffers from minimum outages than the

baselines. This can easily be established from Figure 3 and is

attributed to the ranking scheme adopted (refer to Equation

(13)). The VM ranking scheme prioritizes assigning vehicles

that have (i.) limited execution options, i.e., |P (vi))| and (ii.)

lower T soj
i /∆i ratio. Such a combined valuation boosts the

possibility of vehicles meeting their deadline and sojourn time

constraints, thereby exhibiting superior performance compared

to SOM and MTO, which consider neither. On the other hand,

the RANDOM algorithm exhibits the worst performance due

to the non-consideration of deadline and sojourn time while

making the assignments.

3) Offloading Energy: The energy expended in the offload-

ing is captured in Figure 4. The energy expended increases

with increasing vehicles, which is expected behavior. However,

we can infer from the figure that MOVE expends minimum

energy compared to the benchmarking algorithms. This is

because of the consideration of the energy during the parti-

tioning, resulting in reduced energy consumption. Though the

consideration of transmission delay in MTO results in slight

energy reduction compared to SOM and RA, much energy

is expended in execution, which is not considered, thereby

consuming more energy than MOVE However, SOM and RA

do not make offloading decisions based on the offloading

energy, resulting in much higher energy dissipation.

4) Agent Satisfaction: The agents’ satisfaction reflects their

happiness quotient in the matching given a list of prefer-

ences. Note that it can only be computed for matching-based

schemes, which require agents to have such a ranked ordered

list, which is not true with non-matching-based solutions. The

satisfaction S(a) of an agent a ∈ A ∪M can be computed as

per Equation (14), where, rank(a), captures the position of a
in P(a) such that rank(a) ∈ [0, |P(a)| − 1].

Sa(%) =
|P(a)| − rank(a)

|P(a)|
∗ 100 (14)

Figures 5 and 6 capture the average satisfaction of VMs and

vehicles for MOVE and MTO. The former outperforms the

latter, but we observe a slight dip with increasing vehicles

in both protocols, as the preferred VMs can be assigned to

a vehicle. On the other hand, the satisfaction of VMs also

shows similar behavior for both the protocols considered. The

improved satisfaction levels in MOVE imply that it can achieve

a relatively fair assignment compared to MTO.

VI. CONCLUSIONS & FUTURE DIRECTIONS

This paper introduces a cooperative offloading scheme using

matching-theory, enabling vehicles and RSUs to execute com-

putations with deadline constraints. Due to resource scarcity

at RSUs compared to the high number of vehicles, resource

competition is modeled as a matching game with preferences.

These preferences are tailored to enhance the scheme’s ob-

jectives. Cooperative execution is facilitated by a partition

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3674
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

S-1 S-2 S-3 S-4
Scenario

500

1000

1500

2000

2500

3000

3500

O
ffl
oa

di
ng

 L
at
en

cy
 (s

)

MOVE
MTO
SOM
RA

Fig. 2. Offloading Latency (s) vs. Scenario.

S-1 S-2 S-3 S-4
Scenario

25

50

75

100

125

150

175

200

225

O
ut
ag

es

MOVE
MTO
SOM
RA

Fig. 3. Outages vs. Scenario.

S-1 S-2 S-3 S-4
Scenario

0.2

0.4

0.6

0.8

1.0

O
ffl
oa

di
ng

 E
ne

rg
y
(J
)

1e6

MOVE
MTO
SOM
RA

Fig. 4. Offloading Energy (J) vs. Scenario.

S-1 S-2 S-3 S-4
Scenario

0

10

20

30

40

50

60

Ve
hi

cl
es

 S
at

is
fa

ct
io

n

MOVE
MTO

Fig. 5. Vehicles Satisfaction (%) vs. Scenario.

S-1 S-2 S-3 S-4
Scenario

0

10

20

30

40

50

V
M

s
S

at
is

fa
ct

io
n

MOVE
MTO

Fig. 6. VM Satisfaction (%) vs. Scenario.

logic considering VM and vehicle power ratings. Performance

evaluation against three baselines demonstrates a reduction

of 54.04% and 52.17% in offloading latency and energy

consumption, respectively, showcasing the effectiveness of

MOVE.

In future, we will plan to incorporate mobility by accounting

for variable speeds, which significantly influence decision-

making, particularly in terms of sojourn time. Furthermore, we

intend to investigate the potential queueing delays at RSUs.

Additionally, we intend to explore aspects such as channel

interference, hybrid communication, dynamic preferences, and

road layouts through real-world prototype implementations.

Acknowledgements: This work is supported by Kummer

Doctoral Fellowship at Missouri S&T and NSF grants EPCN-

2319995, OAC-2104078, SaTC-2030624, and CNS-1818942.

REFERENCES

[1] P. Chennakesavula, J.-M. Wu, and A. Ambikapathi, “Incentive-Driven
Fog-Edge Computation Offloading and Resource Allocation for 5G-NR
V2X-Based Vehicular Networks,” in IEEE 97th Vehicular Technology

Conference (VTC2023-Spring), 2023, pp. 1–5.

[2] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, and J. J.
P. C. Rodrigues, “A-DAFTO: Artificial Cap Deferred Acceptance-Based
Fair Task Offloading in Complex IoT-Fog Networks,” IEEE Transactions

on Consumer Electronics, vol. 69, no. 4, pp. 914–926, 2023.

[3] J. Wang, J. Steiber, and B. Surampudi, “Autonomous ground vehicle
control system for high-speed and safe operation,” in American Control

Conference, 2008, pp. 218–223.

[4] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
ACM/IEEE 9th International Conference on Cyber-Physical Systems

(ICCPS), 2018, pp. 287–296.

[5] H. Lu, Q. Liu, D. Tian, Y. Li, H. Kim, and S. Serikawa, “The Cognitive
Internet of Vehicles for Autonomous Driving,” IEEE Network, vol. 33,
no. 3, pp. 65–73, 2019.

[6] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
Vehicles: Solutions and Challenges,” IEEE Internet of Things Journal,
vol. 1, no. 4, pp. 289–299, 2014.

[7] F. Chiti, R. Fantacci, and B. Picano, “A matching theory framework for
tasks offloading in fog computing for IoT systems,” IEEE Internet of

Things Journal, vol. 5, no. 6, pp. 5089–5096, 2018.
[8] A. B. De Souza, P. A. L. Rego, T. Carneiro, J. D. C. Rodrigues,

P. P. R. Filho, J. N. De Souza, V. Chamola, V. H. C. De Albuquerque,
and B. Sikdar, “Computation Offloading for Vehicular Environments: A
Survey,” IEEE Access, vol. 8, pp. 198 214–198 243, 2020.

[9] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, and
Z. Han, “Architectural Design Alternatives Based on Cloud/Edge/Fog
Computing for Connected Vehicles,” IEEE Communications Surveys &

Tutorials, vol. 22, no. 4, pp. 2349–2377, 2020.
[10] Y. Deng, Z. Chen, X. Chen, and Y. Fang, “Throughput Maximization

for Multiedge Multiuser Edge Computing Systems,” IEEE Internet of

Things Journal, vol. 9, no. 1, pp. 68–79, 2022.
[11] G. Wang, F. Xu, and C. Zhao, “Multi-access edge computing based ve-

hicular network: Joint task scheduling and resource allocation strategy,”
in IEEE International Conference on Communications Workshops (ICC

Workshops), 2020, pp. 1–6.
[12] B. Hu, Y. Shi, and Z. Cao, “Adaptive energy-minimized scheduling of

real-time applications in vehicular edge computing,” IEEE Transactions

on Industrial Informatics, vol. 19, no. 5, pp. 6895–6906, 2023.
[13] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource

allocation in mobile-edge computation offloading,” IEEE Transactions

on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, 2018.
[14] J. Wang, T. Lv, P. Huang, and P. T. Mathiopoulos, “Mobility-aware

partial computation offloading in vehicular networks: A deep reinforce-
ment learning based scheme,” China Communications, vol. 17, no. 10,
pp. 31–49, 2020.

[15] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K. Karagiannidis,
“Optimal Resource Allocation for Delay Minimization in NOMA-MEC
Networks,” IEEE Transactions on Communications, vol. 68, no. 12, pp.
7867–7881, 2020.

[16] S. Chouhan, “Energy optimal partial computation offloading framework
for mobile devices in multi-access edge computing,” in International

Conference on Software, Telecommunications and Computer Networks

(SoftCOM), 2019, pp. 1–6.
[17] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-

optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE

Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785, 2021.
[18] S. S. Shinde, A. Bozorgchenani, D. Tarchi, and Q. Ni, “On the Design

of Federated Learning in Latency and Energy Constrained Computation
Offloading Operations in Vehicular Edge Computing Systems,” IEEE

Trans. on Vehicular Technology, vol. 71, no. 2, pp. 2041–2057, 2022.
[19] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive

stable task scheduling in heterogeneous fog networks,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 3423–3436, 2018.
[20] B. Gu and Z. Zhou, “Task Offloading in Vehicular Mobile Edge Com-

puting: A Matching-Theoretic Framework,” IEEE Vehicular Technology

Magazine, vol. 14, no. 3, pp. 100–106, 2019.
[21] C. Swain, M. N. Sahoo, and A. Satpathy, “SPATO: A student project

allocation based task offloading in IoT-Fog systems,” in IEEE Interna-

tional Conference on Communications, 2021, pp. 1–6.
[22] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International

Standard for Wireless Access in Vehicular Environments,” in IEEE

Vehicular Technology Conference, 2008, pp. 2036–2040.

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3675
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:14:42 UTC from IEEE Xplore. Restrictions apply.

