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Abstract—Autonomous Vehicles (AVs) require substantial com-
putational resources to perform operations that safely navigate
vehicles in urban road networks. Resource-intensive operations
are offloaded to roadside units (RSUs), acting as edge servers,
to improve the responsiveness and reduce the energy consumed
in execution. In this context, a cooperative execution involving
the vehicular on-board units (OBUs) and the RSUs can act as
a game changer. However, partial offloading is non-trivial and
demands addressing the following research challenges. Firstly,
the RSU’s resources are limited, necessitating regulated resource
assignments. Secondly, capturing distinctive vehicle parameters
using a unified ranking scheme is imperative. Thirdly, an
efficient partition strategy must consider the energy expended
and adhere to the real-time operations’ deadline needs. This
paper proposes a partial offloading scheme, MOVE, catering to
the abovementioned challenges. A deferred acceptance algorithm
(DAA) with preferences is proposed to address the first two
challenges, whereas a novel energy-aware partitioning strategy
resolves the final challenge. The performance of the proposed
scheme is evaluated against baseline algorithms, and we observed
a 54.04% and 52.17 % reduction in offloading latency and energy.

Index Terms—Vehicular Edge, Road Side Units, Partial Of-
floading, Matching Theory, Deadline, Latency, Energy Awareness

I. INTRODUCTION

Imparting autonomy in vehicles implies equipping them
with higher cognitive and control functions, requiring higher
computational power. To achieve this, an option is to manufac-
ture vehicles with better hardware capability to handle increas-
ingly complex computations in real time. However, this results
in higher automobile costs and computing requirements to
meet ever-changing demands. Additionally, periodic upgrades
in the vehicle’s hardware may not be feasible, especially with
large-scale data-driven and intelligent models for autonomous
driving. To address this problem, and as part of an intelligent
transportation system (ITS), computing resources in the form
of roadside units (RSUs) are strategically installed [1], [2],
catering to vehicular computations during transit [3], [4] and
assisting in safe navigation in urban road networks.

Given the scale, offloading computations to the RSU is a
non-trivial problem with inherent research challenges. (a) The
RSU has limited computing resources, considering urban road
networks; (b) A vehicle trajectory and traversal patterns are
highly dynamic, comprising multiple attributes. (c) The re-
quirement of a real-time solution, adhering to stringent quality-
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Fig. 1. Vehicular Edge Computing setup with vehicles, RSU, and controller.

of-service (QoS) regarding service deadlines is indispensable
[5], [6]. This paper proposes a systematic solution to the above
challenges. The novel contributions are as follows.

o We propose a framework called Matching Game for Par-
tial Offloading in Vehicular Edge Computing (MOVE)
to facilitate collaborative execution between vehicular
OBUs and RSU, ensuring deadline-compliant operations.

« To meet the stringent requirements on tolerable latency,
we propose a polynomial-time and scalable matching
solution that generates an effective offloading plan and
considers the distinctive preferences of competing agents.

« By considering their respective power ratings, we devise
a novel partition technique that effectively determines the
offloaded and local fraction.

o We evaluate the performance of MOVE; Compare it with
three baseline algorithms: Sequential Optimal Matching
(SOM), Matching Theory for Task Offloading [7] (MTO),
and Random Assignment (RA); and observe a 54.04%
and 52.17% reduction in offloading latency and energy.

The rest of the paper is organized as follows. Section II re-
views the related literature on offloading. Section III describes
the system design and problem formulation, while Section
IV presents the proposed solution. Section V discusses the
experimental results, and Section VI offers conclusions.
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II. RELATED WORK

With the increasing computational demands of modern
vehicles, vehicular edge computing (VEC) has emerged as
a pivotal technology, extending cloud computing capabilities
closer to the edge of vehicular networks [8], [9]. Prior research
mostly focused on full offloading to RSUs to reduce the
processing burden of the vehicles. While these approaches
have effectively utilized the computational resources available
in the RSU, they have introduced latency issues for real-
time applications due to continuous data transmission with
RSU servers. Addressing the latency issues, Deng et al. [10]
proposed a novel resource allocation policy in multi-user
Mobile Edge Cloud (MEC) systems designed to optimize
communication and computing resources while maintaining
system constraints. Some user applications are highly latency-
sensitive, and Wang et al. [11] addressed this by using joint
task scheduling and resource allocation (JTSRA). Moreover,
due to the huge influx of data, full offloading often leads
to higher energy consumption on the RSU, and Hu et al.
[12] proposed an auction-bid scheme to mitigate the issues
of energy consumption effectively.

Full offloading incurred increased energy consumption and
higher latency, particularly concerning real-time applications
such as autonomous vehicles. Therefore, partial offloading
with cooperative execution was a viable execution option.
MEC has been investigated in works [13], [14], and a balanced
and efficient partial offloading scheme with optimal partitions
has been proposed. Alternatively, Fang et al. [15] discussed
offloading in non-orthogonal multiple access (NOMA)-MEC
network with multiple users sharing the frequency bands.
Based on the user’s delay and data transmitting power, a
bisection searching (BSS) algorithm is adopted to obtain an
optimal task partition ratio to minimize the system delay. Sim-
ilarly, the work in [16] presented a framework to determine the
optimal partition of data, balancing the energy consumed and
saved. The balance was established by considering different
interdependent applications and system-specific parameters.
On the other hand, the work in [17] determined the opti-
mal partition considering the vehicle’s CPU speed, available
channel bandwidth, and transmission power. Alternatively, Bi
et al. [17] investigated the offloading decision for moving
user equipment (UE) with the agenda of latency and energy
reduction. The gap in current literature lies in the predominant
focus of most studies on full/partial offloading, which is solely
centered on latency and energy reduction, neglecting non-
negotiable operational deadlines.

III. SYSTEM DESIGN AND FORMULATION

This section formally introduces the offloading problem,
subsequently followed by the overall objective of MOVE.

A. System Design

We consider a setup with autonomous vehicles A =
{a1,as,as,...a,} traversing a two-lane network. An au-
tonomous vehicle a; performs compute-intensive operations
by utilizing the on-board units (OBUs) having w; capacity (in

cycles/bit) and execution frequency f; (cycles/sec). For two
vehicles a; and a;/, we assume that w; # w;, V4,7’ € [1,m] to
impart heterogeneity. The OBUs have integrated transceivers
and receivers that assist in communicating with other vehicles
and RSUs. The communication channel is assumed to be
noiseless with a transmission rate of r (bps). The OBUs are
resource-limited and may not have the requisite computing
resources to perform many real-time operations and may
depend on the nearby RSU, which is virtualized into ‘n’ VMs,
captured by M = {mq,ma, ..., my}. A VM m;’s computing
resources are characterized by w; (in cycles/bit) operating
at a frequency of f; (cycles/sec). This limited capacity of
the RSU and the real-time needs of the vehicles motivate
us to develop a cooperative offloading scheme, where the
vehicle and RSUs cooperate in executing the computations
strictly adhering to the deadline constraints. The fraction of the
computations executed locally and remotely are respectively
captured as 3 ; and 3 ;, such that 3} ;+37; = 1. For instance,
vehicular operations such as map updates, path planning, and
fleet learning are arbitrarily splittable.

For a vehicle a; with coordinates (x;,y;) and the RSU
positioned at location (s, Yrsy), With a coverage radius R,
the coverage distance to be traversed (d;) can be computed as:

di - \/R2 - (yrsu - yz)z + (xrsu - xz) (l)

With the assumption of constant velocity, the time-window of
a; before exiting the coverage area, also termed as sojourn
time (T;%), is computed as follows [18]:

d;

Y= @)

B. Modelling Communication and Processing Delays

The offloading request is expressed as a quadruple <
i, Yi, Ui, Ay >, where A; captures the imposed deadline in
performing the requisite operation. We subsequently introduce
the communication and processing delays in MOVE.

1) Communication Delay: Equation (3) captures the delay
in communication (T(5; ;j,7)), considering both transmission
and reception. Here, D; and D} denote the size of data pre
and post-processing, respectively.

D; y
(i) = (92 % 2 ) + 2 ®

r

2) Local Processing Delay: The local processing delay
(TL(Bi,;,m)) captures the time expended in processing BZZ-J
fraction of the data on the OBU of the vehicle.

Wi
Ti(3ssm) = [ (81, % D) x % @
3) Offloaded Processing Delay: The processing delay is
captured as T?(3; j,n) reflects the time expended by a; in
processing the offloaded computations at the VM m,; of the
RSU and is derived as:

T (6en) = (52, < D) x 22 ®
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4) Total Offloading Delay: It indicates the time elapsed in
communication and processing and is captured as:

T9(Bij,n) = T5(Bij,n) + T (Bij,m) (6)

C. Energy Consumption

1) Energy Consumption at the VMs: Given the power rating
of m;, denoted as p;, the energy consumption at m; denoted
by &; for processing offloaded data is derived as:

& =p; x T} (Bi ) (7)

2) Energy Consumption at the Vehicles: A vehicle a;
having a power rating of p; will have local energy consumption
equal to the value obtained as:

& =pi x TL(Bijum) (8)

D. Problem Formulation
Let us introduce an indicator variable

1 If a; is assigned to m;

0 Otherwise ®)

X (ai, mj) = {
The overall objective of MOVE is portrayed in Equation (10a).
The delay in offloading must meet the deadline imposed by
the vehicle, which is captured as a Constraint (10b). On
the other hand, with Constraint (10c), a vehicle can offload
to at most one VM. The energy awareness in MOVE is
incorporated via Constraint (10d), which essentially states
that partial offloading saves the RSU from expending energy
completely. Constraints (10e) and (10f) capture the feasibility
of the partitioning logic. Finally, Constraint (10g) captures the
values for the decision variables.

minimize (Z Tf(ﬂi,j,n)) (10a)
=1

st max(T¢(B.,m), TL(Bij,m)) < min(A;, ) (10b)
X(a;,m;) <1 (10c)
D& <) > Tlaimi) (i x D) (10d)
j=1 i=1 j=1 J
Bij € RT (10e)
178;,; <1 (101)
Vie[l,m], Vj€1,n] (10g)

N'P-Hardness: Indeed the problem expressed as per Equation
(10) is a combinatorial optimization problem proven be A/P-
Hard [19]. This implies that for increasing problem size,
obtaining an optimal solution will become extremely com-
plex and challenging. Therefore, in this work, we discuss an
effective solution that not only generates a stable, scalable, ef-
ficient, polynomial-time assignment based on strategy but also
considers the individual preferences of stakeholders. The next
section elaborately discusses the solution strategy adopted.

IV. PROPOSED MODEL

The overall working and components of MOVE are captured
in the RSU controller as illustrated in Figure 1. It has a
registry, preference generator, and assignment modules. A
vehicle registers itself with the RSU when it enters the
coverage area, and the VMs are registered as soon as they are
instantiated. The registration involves logging the vehicle and
VM attributes with the controller. The preference generation
procedure follows the registration, wherein the vehicles and
VMs generate their respective preferences that are input to
the assignment module. The assignment module encompasses
the matcher and partitioner. The former assigns vehicles to
VMs, whereas the latter outputs an energy-balanced partition.

A. Offloading as a Matching Game

The resource competition game between the vehicles for
virtualized resources as VMs at the RSUs is modeled as
a matching game [20], [21]. Formally, the game is played
between two sets of agents A = {aj,as,as,...a,} and
M = {m4,ma, ..., my,}. The matching game is defined as:

Definition 1: (Agent Preference): A matching is an asso-
ciation between two sets of agents A and M. Every agent
u € AUM defines a ranked ordering >, capturing its priori-
ties over agents in the opposite set. For instance, m; >,, m;
implies that a; prefers machine m; over m;,. On the other
hand, a; >,; ay states that m; prefers vehicle a; over a; .

Definition 2: (Offloading Game): Matching between A and
M is a one-to-one association 7 : A — MU {®} subject to
the following.

Condition 2.1: Each a; € A, |n(a;)| = 1, and n(a;) C M.

Condition 2.2: Each m; € M, [n(m;)| =1, and n(m;) C A.

Condition 2.3: For a vehicle machine pair (a;,m;), a; €

n(m;) <= m; € n(a;).
Conditions (2.1) and (2.2) enforce a one-to-one assignment
between the VMs and the vehicles. The property of symmetry
is implied by Condition (2.3), which implies that a VM is
assigned to a vehicle iff the converse is true.

Definition 3: (Pairwise Blocked): A vehicle-VM pair
(a;, m;) blocks the matching 7 iff the follwing are satisfied.

Condition 3.1: a; ¢ n(m;) and m; ¢ n(a;)

Condition 3.2: mj >4, 1n(a;)

Condition 3.3: a; =, n(m;)

A pair of agents (a;,m;) is said to block a matching if
they are incentivized to deviate from their currently assigned
partners in 7 and be matched to each other, which is enforced
by Conditions (3.1)-(3.3).

Definition 4: (Stability) The matching 7 is stable iff no pair
of agents block the matching.

B. Agent Preference

The preference of an entry a € VUM is captured as P(a).
1) Vehicle Preferences: For an AV a;, the preference over
any two VMs is expressed as follows.

mj >=a, myr <= T{(Bij,m) < TP (Bijm): j#75 (A1
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2) Machine Preferences: To capture the machine priorities,
we associate a prominence score p; ; for each a; for offloading
it to m; derived as Eq. (12). A higher prominence prioritizes
vehicles with limited execution options and closer deadlines,
boosting MOVE in achieving its goal of reduced latency.

S N (12)
P Rl A
Therefore, the preference of m; can be defined as
Qi =y Qi S P > piis 0 FE T (13)

C. Resource Matching Strategy

The resource competition is modeled as a one-to-one match-
ing game, and the formal procedure for the same is presented
as Algorithm 1. The inputs to the algorithm are the sets
A and M, preferences of agents, i.e., P(a),a € A UM,
power profiles of the respective agents. The output of the
algorithm is an energy-efficient partition post-assignment. The
algorithm proceeds as follows. The participating agents in
the matching are initialized to be free, which implies a null
assignment going into RMA. RMA identifies any AV a;, which
is yet to be assigned, i.e., free[a;], and has some options
left, i.e., P(a;) # ®. The procedure then extracts the most
preferred option m; from P(a;) using ExtractPreferred (.).
Once identified, the machine m; is approached for assignment
(Step 2-4 of Algorithm 1). The machine can respond to the
proposal in three ways (Steps 5-12 of Algorithm 1).

(1) The machine m; is free, i.e., freelm;] = True. The

machine m; and AV a; are matched in such a case.

(2) The machine m; is holding onto a proposal from a;

from some previous iteration but a; >, a;. Here, a;
is evicted as it is less preferred than a;, and a; and m;
were matched.

(3) On the other hand, a;s >, a;, the request from a; is

rejected and the previous matching is retained.

Once the matching is obtained, RMA obtains an effective
partition for each offloaded computation. The fraction of the
computation to be performed locally is computed as the ratio
of their power ratings (Step 15 of Algorithm 1). Moreover,
full offloading is performed if the locally offloaded fraction
cannot meet the deadline constraint imposed by the vehicle
(Step 15-20 of Algorithm 1). This procedure is repeated for
every assigned vehicle.

D. Theoretical Analysis

Theorem 1: (Stability): RMA produces a stable matching
1 wherein no matched agents are incentivized to deviate from
their current assignments.

Proof: By Definitions (3) and (4), a matching 7 is said
to be stable iff there is no vehicle-VM pair (a;, m;) that has
incentive to deviate from currently assigned partners.

We prove this by contradiction and assume the presence of
a blocking pair (a;,m;) in the matching 7. This implies that
a; and m; are not currently matched to each other, i.e., a; ¢
n(m;) and m; ¢ n(a;). As (a;, m;) forms a blocking pair, we

Algorithm 1: Resource Matching Algorithm (RMA).

Input: A, M, P(a;),p;V a; € A; P(m;),p; ¥V mj € M.
Result: 3 {Offloading Vector}
1 Initialize: n(a;) = D, freefa;] = True, Va; € A;
n(m;) = @, free[m;] = True, Yv; € M, = ®
2 while Ja; | free[a;] = Truel||P(a;) # ® do

3 m; = ExtractPreferred (P(a;))

4 Send proposal to m;

5 if free[m;] then

6 n(ai) = {m;}; n(m;) = {a:}

7 freela;] = False; free[vj] = False
8 else if a; =m Gyl then

9 n(a; ) = ®; freela; ] = True
10 na:) = {m;}: n(m;) = {a:}
11 freela;] = False;

12 else

13 L Reject the proposal from a;

14 while Ja; |! (freela;]) do

15 Bij =

1+ B
Pj

16 if TL(B,5,m) < A; then
17 By =1~ 554_
18 Bi,j = {B .52}
19 else
20 L Bi,j = {0,1}
21 return 8

can safely deduce that m; =,, n(a;) and a; >, n(m;). It
can be noted that as m; >,, n(a;), a; must have proposed
m; prior to proposing 7(a;) and as n(a;) # m;, implies
that it was previously rejected. This rejection must have been
performed to accommodate a more preferred option, i.e., VM
mjs, which implies that n(a;) >q, m;, ie., mjy =4, m;,
which contradicts our assumption. Therefore, we can safely
conclude that RMA produces a stable matching. [ ]
Theorem 2: (Time Complexity): RMA converges to a stable
solution in O(m x n) + O(m) time, which is polynomial.
Proof: Let the number of vehicles in the setup be ‘m’, i.e.,
|A| = m, and the number of VMs is ‘n,’ i.e., [M| = n. The
time complexity of RMA (Algorithm 1) is dependent on (i.)
resource assignment (Steps 2-13) and (ii.) partition logic (Steps
14-20). In its worst case, the former takes O(m x n), wherein
every vehicle a; having a complete preference P(a;) sends out
a proposal request to all the m;’s in its preference. However,
the latter executes in O(m). Therefore, the overall complexity
of RMA is O(m x n) + O(m), which is polynomial. [ |

V. PERFORMANCE STUDY

This section describes the baseline algorithms, experimental
setup, and the comparative study of results obtained.

A. The Baseline Algorithm

To evaluate the performance of MOVE, we compare it with

the following approaches.

o Sequential Optimal Matching (SOM): The vehicles are
sequentially matched to the VMs sorted according to
their computing capabilities. This assignment should also
adhere to the Constraints expressed in Equation (10).
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+ A Matching Theory Framework for Task Offloading
in Fog Computing for IoT Systems [7] (MTO): This
protocol uses matching in IoT-Fog systems with the
objective of worst-case time reduction. A static model
variant with consistent preferences is considered for fair
and rational comparison.

« Random Assignment (RA): The vehicles are randomly
matched to VMs and checked for the satisfaction of all
the Constraints in Equation (10).

B. Experimental Setup

We consider a 2-lane road network with vehicles traversing
the area and a RSU with a coverage of 500 m. The compute re-
sources at the RSU are logically partitioned into VMs (equal to
number of vehicles) with a processing frequency and execution
power ranging between [0.1—1.0] GH z and [150—500] MW,
where vehicles are randomly distributed within a two-lane
road. Based on urban and semi-urban driving conditions, the
vehicles are assumed to be traversing the coverage area with
their average speed ranging from 40 to 70 Kmh~1. All the
vehicles have onboard units (OBUs) with wireless transceivers
and receivers that assist the vehicles in communicating with
the RSU, and the power consumed is randomly generated in
the range [250 — 400] MW. We assume the communication is
carried over a noiseless wireless channel [22] having a fixed
bandwidth of 3 M H z. The computations on the vehicles have
varying data sizes ranging from [100-1000] K B, where lower
data size values represent relatively lightweight computational
tasks and the higher values represent more computationally
intensive tasks. To represent different levels of urgency, the
tasks’ deadline values are generated uniformly in the in
[0.5 — 25] sec. Additionally, we evaluate the performance
of MOVE against the benchmarks by performing 10 test
runs over 4 evaluation scenarios, i.e., S-1, S-2, S-3, S-4
corresponding to 100, 200, 300, and 400 vehicles respectively.

C. Results and Analysis

This subsection presents the comparative study of all the
schemes implemented across different evaluation metrics.

1) Offloading Delay: Figure 2 captures the comparative
behavior of aggregate latency for all the protocols. It can
be observed from the figure that the proposed algorithm,
i.e., MOVE, demonstrates superior performance by achieving
minimum latency compared to the benchmarking algorithms
across test cases. Note that the latency increases for increasing
vehicles, which is an expected behavior. The improved perfor-
mance of MOVE is attributed to the following two reasons.
Firstly, the vehicles rank VMs in the order of increasing
offloading delay. Secondly, vehicles are proposers, so they
approach the VMs in the designated order of P(v;). These
reasons boost the possibility of the vehicles being assigned
to more preferred choices. Moreover, unlike MOVE, SOM
and MTO perform full offloading in the order of compute
capabilities and transmission delays, resulting in higher of-
floading duration. We observe an interesting behavior for the
RANDOM assignment, wherein its offloading delay is lower

than that of SOM. However, this is only because of the non-
consideration of outage vehicles towards the offloading delays,
which can be easily inferred from Figure 3.

2) Outages: MOVE suffers from minimum outages than the
baselines. This can easily be established from Figure 3 and is
attributed to the ranking scheme adopted (refer to Equation
(13)). The VM ranking scheme prioritizes assigning vehicles
that have (i.) limited execution options, i.e., |P(v;))| and (ii.)
lower T,/ /A; ratio. Such a combined valuation boosts the
possibility of vehicles meeting their deadline and sojourn time
constraints, thereby exhibiting superior performance compared
to SOM and MTO, which consider neither. On the other hand,
the RANDOM algorithm exhibits the worst performance due
to the non-consideration of deadline and sojourn time while
making the assignments.

3) Offloading Energy: The energy expended in the offload-
ing is captured in Figure 4. The energy expended increases
with increasing vehicles, which is expected behavior. However,
we can infer from the figure that MOVE expends minimum
energy compared to the benchmarking algorithms. This is
because of the consideration of the energy during the parti-
tioning, resulting in reduced energy consumption. Though the
consideration of transmission delay in MTO results in slight
energy reduction compared to SOM and RA, much energy
is expended in execution, which is not considered, thereby
consuming more energy than MOVE However, SOM and RA
do not make offloading decisions based on the offloading
energy, resulting in much higher energy dissipation.

4) Agent Satisfaction: The agents’ satisfaction reflects their
happiness quotient in the matching given a list of prefer-
ences. Note that it can only be computed for matching-based
schemes, which require agents to have such a ranked ordered
list, which is not true with non-matching-based solutions. The
satisfaction S(a) of an agent a € A UM can be computed as
per Equation (14), where, rank(a), captures the position of a
in P(a) such that rank(a) € [0, |P(a)| — 1].

[P(a)| — rank(a)
P(a)]

Figures 5 and 6 capture the average satisfaction of VMs and
vehicles for MOVE and MTO. The former outperforms the
latter, but we observe a slight dip with increasing vehicles
in both protocols, as the preferred VMs can be assigned to
a vehicle. On the other hand, the satisfaction of VMs also
shows similar behavior for both the protocols considered. The
improved satisfaction levels in MOVE imply that it can achieve
a relatively fair assignment compared to MTO.

Sa(%) = 100 (14)

VI. CONCLUSIONS & FUTURE DIRECTIONS

This paper introduces a cooperative offloading scheme using
matching-theory, enabling vehicles and RSUs to execute com-
putations with deadline constraints. Due to resource scarcity
at RSUs compared to the high number of vehicles, resource
competition is modeled as a matching game with preferences.
These preferences are tailored to enhance the scheme’s ob-
jectives. Cooperative execution is facilitated by a partition
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logic considering VM and vehicle power ratings. Performance
evaluation against three baselines demonstrates a reduction
of 54.04% and 52.17% in offloading latency and energy
consumption, respectively, showcasing the effectiveness of
MOVE.

In future, we will plan to incorporate mobility by accounting
for variable speeds, which significantly influence decision-
making, particularly in terms of sojourn time. Furthermore, we
intend to investigate the potential queueing delays at RSUs.
Additionally, we intend to explore aspects such as channel
interference, hybrid communication, dynamic preferences, and
road layouts through real-world prototype implementations.
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