
MIME: Mobility-Induced Dynamic Matching for

Partial Offloading in Vehicular Edge Computing

Mahmuda Akter, Debjyoti Sengupta, Anurag Satpathy, and Sajal K. Das

Department of Computer Science

Missouri University of Science and Technology, Rolla, USA

E-mail: {makter, dsengupta, anurag.satpathy, sdas}@mst.edu

Abstract—Autonomous vehicles (AVs) execute compute-
intensive control operations like adjusting speed and steering,
causing significant energy dissipation and latency due to resource-
limited onboard units (OBUs). Offloading these tasks to Roadside
Units (RSUs) is a solution, but it faces challenges. First, the
stringent latency requirements are impacted by the vehicle’s
stochastic velocity. Second, allocating limited RSU resources to
numerous vehicles within its coverage area is difficult. This paper
proposes the MIME framework to address these issues. We use
Discrete Fourier transform (DFT) that computes the average
velocity over an aperiodic velocity signal extracted from a real-
world dataset. For resource allocation, we model it as matching
with externalities, using reactive preferences based on vehicle
speed and location. We present an efficient, scalable, stable
solution, showing a 24.61% and 11.2% reduction in offloading
latency and energy for the inD dataset, and a 5.6% and 5.52%
reduction for the SUMO dataset.

Index Terms—Vehicular Edge, Road Side Units, Partial Of-
floading, Matching Theory, Deadline, Latency, Energy Awareness

I. INTRODUCTION

Autonomous Vehicles (AVs) execute computation-intensive

control operations like adaptive cruise control and emergency

braking [1]. These critical operations rely heavily on the

vehicles’ real-time velocity and demand strict adherence to

quality-of-service (QoS) standards [2]. Failing to maintain

these standards severely threatens the safety of passengers

and the surrounding environment. AVs’ onboard units (OBUs)

often lack sufficient resources to execute critical operations in

real-time, which can be problematic [3] and, in some cases,

catastrophic. To address this issue, roadside units (RSUs) with

sufficient computing capabilities have been strategically posi-

tioned to aid AVs in conducting real-time computations [4],

[5]. Consequently, a viable solution to alleviate the resource

constraints of AVs is to collaboratively offload some or all

computations to the RSU for real-time processing [6].

At the outset, cooperative offloading appears trivial, yet

poses numerous research challenges. This study focuses on ad-

dressing three pivotal challenges in vehicular edge. Firstly, we

integrate a vehicle’s velocity variability to estimate its traversal

dynamics, such as sojourn time [7]. The dynamic nature of a

vehicle’s velocity is critical in determining the sojourn time,

which approximates the time window for executing compu-

tations. Secondly, RSUs possess finite compute resources [8],

making resource allocation particularly daunting in urban road

networks with dynamically arriving and departing vehicles,

Fig. 1: Vehicular Edge Computing setup with multiple vehicles
requiring computations served by the roadside unit (RSU).

proven to be NP-Hard [9]. Thirdly, the cooperation between

OBU and RSU necessitates an efficient partitioning scheme to

execute vehicular operations effectively. Therefore, developing

a polynomial-time, scalable, and efficient partial offloading

strategy that captures vehicle dynamics and is responsive to

the latency requirements of vehicular operations is extremely

challenging [8], [10].

This paper presents MIME, an RSU-assisted partial of-

floading framework with energy awareness to tackle these

challenges. The key contributions of this work include:

(1) Propose MIME framework to partially offload vehicular

computations with a partition logic that efficiently selects tasks

for execution at OBU while offloading the remainder to RSU;

and optimally utilize resources from OBU and RSU to manage

deadline-specific computations without overburdening RSUs.

(2) Validate MIME realistically by incorporating average vari-

ability in vehicular velocities using Discrete Fourier Transform

(DFT) analysis on real-world data. Resource assignment em-

ploys a matching game with dynamic preferences, ensuring a

stable two-sided exchange solution that captures vehicle dy-

namics, reducing offloading latency and energy consumption.

(3) Evaluate MIME with (i) synthetic traffic data generated

using SUMO (Simulation of Urban Mobility), and (ii) real-

world traffic data from the inD dataset; and compare its perfor-

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

mance with three distinct baselines to demonstrate noteworthy

reductions in offloading latency (24.61% for inD and 5.6% for

SUMO dataset) and energy consumption (11.2% for inD and

5.52% for SUMO dataset).

The remainder of this paper is organized as follows. Section

II reviews the literature concerning vehicular edge computing.

Section III presents the model and formulates the offloading

problem. The proposed MIME approach is detailed in Section

IV. Section V presents the experimental results. Lastly, Section

VI concludes the paper.

II. LITERATURE SURVEY

The significance of Vehicular Edge Computing (VEC) is

well-established, with many surveys highlighting its critical

role. Authors in [11], [12] identify significant challenges

within VEC, particularly emphasizing the difficulties associ-

ated with offloading for AVs performing real-time computa-

tions under time bounds. Given these challenges, we present

the literature reviewed from two perspectives: full and partial

offloading strategies.

A. Full Offloading Schemes

In this regard, works centered on full offloading are dis-

cussed in [13]–[16], focused on minimizing offloading delays,

considering both communication and computation overhead.

In [13], the authors explored a scenario rife with obstacles

where vehicles frequently switched networks due to high mo-

bility and network diversity. They emphasize minimizing com-

munication latency by proactively selecting the most suitable

interface. However, given vehicles’ dynamic communication

resource requirements, relying on a single communication

technology proved inadequate. To tackle this challenge, [14]

introduced fiber-wireless (FiWi) technology, capable of sup-

porting multiple communication techniques to cater to more

vehicles. Similarly, the variation in computational resources

among vehicles and RSUs necessitates decision-making to

mitigate computational overhead, as discussed in [15]. Here,

the authors approached offloading as a multi-user computation

offloading game, employing a distributed computation offload-

ing algorithm to determine the equilibrium. Furthermore, the

study in [16] aimed at proactively managing road traffic,

reshaping the distribution of resource demands to prevent

service delays with minimal migration overhead.

Taking into account both communication and computation

latencies, [17] proposed a Genetic Algorithm (GA)-driven

cooperative three-tier offloading framework involving vehicles,

the cloud, and Mobile Edge Cloud (MEC). Meanwhile, the

energy consumption of mobile applications during offloading

to the RSU remains a substantial concern. In this context, the

work in [18] employed evolutionary algorithms to formulate

solutions for a multi-objective optimization problem, identify-

ing optimal trade-offs.

B. Partial Offloading Schemes

While full offloading offers advantages, it can become

inefficient with high data volumes, resulting in increased

latency during data transfer and reduced effectiveness for

real-time computational tasks. In such scenarios, partial of-

floading emerges as a viable solution for minimizing latency.

For instance, to alleviate computational overhead, authors in

[19] proposed a Non-Orthogonal Multiple Access (NOMA)-

Assisted MEC system facilitating partial computation offload-

ing, considering the offloading policy and channel resources

of the wireless network. Partial computation offloading also

enables the utilization of idle resources in parked vehicles,

as suggested in [20]. The authors employed game theory to

devise the offloading strategy, while a sub-gradient method

was adopted to determine the optimal offloading and re-

source allocation ratio. Alternatively, the work in [21] utilized

computation resources from neighboring vehicles for partial

offloading to meet the stringent latency requirements in a

5G environment. The authors addressed interference manage-

ment using Orthogonal Frequency Division Multiple Access

(OFDMA), where data segmentation was iteratively adjusted,

and resource allocation was optimized for cellular and Device-

to-Device (D2D) links while considering QoS requirements.

The literature review highlights a gap in addressing the

impact of varying vehicle mobility on service quality, espe-

cially in partial offloading. Additionally, there is a scarcity

of research dedicated to simultaneously minimizing latency

and energy consumption within a partial offloading framework.

Thus, this study introduces a comprehensive technique aimed

at addressing these limitations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model and formalizes

the offloading problem, highlighting the overall system goal.

A. Overview of the System

As depicted in Fig. 1, we consider a set of AVs captured as

V = {v1, v2, v3, . . . vm} moving in a two-lane road network

of a city. These vehicles frequently perform compute-intensive

operations to provide a seamless experience to the users. A

vehicle vi ∈ V has an on-board unit (OBU) with computational

capacity ci (cycles/bit) to perform such operations. The OBU is

also characterized by a processing frequency fi (cycles/sec). In

MIME, we consider a RSU, which is virtualized and comprises

‘n’ VMs, captured as M = {vm1, vm2, . . . , vmn}. Each

vmj ∈ M has a computing capacity uniquely identified as cj
(cycles/bit). Similar to the vehicles, each vmj ∈ M operates

at a frequency of fj (cycles/sec). Considering heterogeneous

VMs is motivated by the operations’ diversity, requiring

disparate computing resources at the RSU. To leverage the

heterogeneous resources of vehicles and VMs, we consider

that the amount of data, denoted as di (for vehicle vi), needed

to compute a task is two-way splittable, allowing simultaneous

computations by the OBU and an assigned VM at the RSU.

Additionally, for a vehicle vi, the tolerable time to perform

an action based on local and/or offloaded computations is

bounded by si(t), which denotes the time a vehicle is expected

to remain in the RSU coverage. Therefore, vehicles cooper-

atively perform computations with the RSU (specifically a

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

VM). The allocation vector, in this partial offloading setup,

is represented by αi,j = {αl
i,j , α

o
i,j ∈ R

+}, where the

former depicts the fraction executed locally and the latter is

the offloaded fraction to RSU. Note that αl
i,j +αo

i,j = 1 (refer

to Section IV-B).

B. Capturing Vehicular Dynamics: Mobility Model

The vehicular motion in an urban two-lane, bidirectional

highway setup follows specific trajectories as depicted in

Fig. 2. The mobility model for the vehicles in MIME is

motivated by the work in [22]. Note that the RSU is assumed

to be stationary and located at coordinates (xr, yr) having a

coverage radius R. At a specific time instant ‘t,’ the position

of a vehicle vi in the coverage area is captured by a tuple in

the Cartesian coordinate system < xi(t), yi(t) >.

Fig. 2: Vehicle Mobility Model and Corresponding Distance Metrics.

Let E be the exit point of vi (see Fig. 2), and the vehicles

traverse in that direction at an angle θ. The distance of vi from

the RSU, denoted by ∆i(t) is computed as

∆i(t) =
√

(yr − yi(t))2 + (xr − xi(t))2. (1)

Let Ωi(t) be the distance between the vehicle’s current position

and E. The vehicles are assumed to be uniformly distributed

within the RSU coverage having a radius (R). For ease of

representation, the vehicle’s coordinates are converted to polar

(∆i(t), θi(t)), and its position is considered to be independent

of the traversal direction θi(t). For symmetry, we consider

θi(t) ∈ [0, π], and the joint PDF of a vehicle’s presence at a

specific distance ∆i(t) is obtained as

f(∆i(t), θi(t)) =
1

π
×

2∆i(t)

R2
(2)

Next, we compute the joint PDF of a vehicle vi’s presence at

a distance ∆i(t) from the RSU having a remaining distance

Ωi(t) to exit the coverage area. It can be derived as in

Eq. (3). Without loss of generality and for simplicity in the

representation, in the rest of the paper, we consider ∆i(t),
θi(t), Ωi(t) as ∆i, θi, and Ωi, respectively. Thus,

f(Ωi,∆i) =
R2 −∆2

i +Ω2
i

πR2Ω2
i

√

1−
(

R2−∆2

i
+Ω2

i

2∆iΩ2

i

)2
(3)

By integrating ∆i the marginal PDF of the remaining distance

Ωi ∈ [0, 2R] to be traversed by vi is given by

f(Ωi) =

∫ R

|R−Ωi|

f(Ωi,∆i) d∆i =
1

πR2

√

4R2 − Ω2
i (4)

The mobility model considers a vehicle traversing at an

instantaneous velocity ui having an average velocity ϑi. Thus,

the PDF of si(t) is derived as

f(si) =
ϑi

πR2

√

4R2 − (ϑit)2 (5)

Therefore, in MIME, an offloading failure occurs for vi if the

completion time To
i (αi,j ,Ψk) (see the details in Section III-C),

which encompasses communication and computation delays,

exceeds the sojourn time. This probability P
f
i is obtained as

P
f
i = P(si < T

o
i (³i,j ,Ψk)) =

∫

T
o
i (αi,j ,Ψk)

0
fsi (t) dt

=







1 T
o
i (³i,j ,Ψk) g 2R

ϑi
,

2arcsin(A)+T
o
i (αi,j ,Ψk)ui

√
1−(B)2

π
0 f T

o
i (³i,j ,Ψk) <

2R
ϑi

(6)

where A =
(

T
o
i (αi,j ,Ψk)ui

2R

)

and B =
(

T
o
i (αi,j ,Ψk)ϑi

2R

)

.

C. Communication and Computation Models

As the vehicle enters the coverage area of an RSU, it

registers with an information tuple < xi, yi, ui, ϑi, ci, fi, di >.

Next, we discuss the communication and computation models.

1) Communication Model: The vehicles are considered to

communicate with the RSU using Long Term Evolution (LTE)

[23]. Let b capture the channel bandwidth, pi,j and gi,j
denote the vehicle’s transmission power and channel gain,

respectively. The latter is the Rayleigh channel coefficient with

complex Gaussian distribution. We do not consider the co-

channel interference in this work but consider a free-space

propagation path loss model. The experienced data rate (ri,j)

for a vehicle vi transmitting to the vmj can be derived as

ri,j = b log2

[

1 +
pi,j∆

−α
i,j (t)|gi,j |

2

N0

]

(7)

Then, the communication delay is obtained as

T
c
i (αi,j ,Ψk) =

[

αo
i,j ×

di

ri,j

]

(8)

where Ψk refers to the obtained assignment at a particular

iteration ‘k.’ The procedure to obtain the assignment is detailed

in Section IV-B.

2) Local Processing Delay: The local processing delay

T
l
i(αi,j ,Ψk) is the time expended in processing αl

i fraction

of the data at the OBU and is computed as

T
l
i(αi,j ,Ψk) =

[

(αl
i,j × di)×

ci

fi

]

(9)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

3) Offloaded Processing Delay: The processing delay

T
p
i (αi,j ,Ψk) is the time required by vi to process the offloaded

computations at vmj of the RSU. It is derived as

T
p
i (αi,j ,Ψk) =

[

(αo
i,j × di)×

cj

fj

]

(10)

4) Queueing Delay: The vehicular computation may be

stalled at a VM due to the following two delays: (1) residual

execution of a previously assigned vehicle vi′ at the k′ itera-

tion, such that k′ < k, and is reflected as the first term of the

following equation; and (2) cumulative offloaded processing

delay of vehicles assigned to vmj from iterations k′ + 1
through k − 1 with pending execution.

T
q
i (αi,j ,Ψk) = max(Tp

i′(αi′,j ,Ψk′)− (k − k′)Ts, 0)

+

k−1
∑

x=k′+1

T
p
i′(αi′′,j ,Ψx)

(11)

where Ts refers to the sampling interval computed via the

Fourier Transform. Refer to Section IV-A for details.

5) Offloading Delay: It is the total time elapsed in com-

munication and computation, derived as

T
o
i (αi,j ,Ψk) = T

c
i (αi,j ,Ψk) + T

p
i (αi,j ,Ψk) + T

q
i (αi,j ,Ψk)

(12)

Decision Variable: Before delving into the detailed formula-

tion of the overall problem, we introduce an indicator variable

that captures the assignment as follows.

I(vi, vmj) =

{

1 If vi offloads (αo
i,j ∗ di) to vmj

0 Otherwise

D. Energy Model

1) Energy Model of the VMs: Given the power rating ζj of

vmj , the energy consumption Ej at vmj for processing the

offloaded data is obtained as

Ej =

m
∑

j=1

I(vi, vmj)× ζj × T
p
i (αi,j ,Ψk) (13)

2) Energy Model of the Vehicles: A vehicle vi with a power

rating of ζi will have the local energy consumption, also

obtained as

Ei = ζi × T
l
i(αi,j ,Ψk) (14)

E. Problem Formulation

The overall objective of MIME is represented as per Eq.

(15a). Constraint (15b) states that a vehicle can offload to

at most one VM. Constraints (15c), (15d), and (15e) capture

the feasibility of the partitioning logic and the probabilistic

expressions. Finally, Constraint (15e) captures the values for

the decision variables.
min max

∀ i∈ [1,m]
{To

i (αi,j ,Ψk)} (15a)

s.t. I(vi, vmj) f 1 (15b)

αi,j ∈ R
+ (15c)

1
T
αi,j f 1 (15d)

P
s
i = 1− P

f
i (15e)

∀ i ∈ [1,m], ∀ j ∈ [1, n] (15f)

NP-Hardness: The above optimization problem expressed is

proven to be NP-Hard [9], implying that obtaining an optimal

solution will be highly computationally intensive. In this paper,

we propose an efficient sub-optimal solution that not only

generates a stable and scalable assignment in polynomial-time

but also considers individual preferences of stakeholders.

IV. PROPOSED MIME FRAMEWORK

We elaborate on the components and roles of the RSU

Controller, illustrated in Fig. 3, which essentially serves as

the system’s central intelligence. It includes (1) Registry

Module comprising VM and Vehicle registries. The former

tracks the VMs, including configuration details and availability

status. The latter logs the vehicles in the RSU coverage. (2)

Preference Generator Module that computes the preferences

of vehicles and VMs and feeds them to the matcher. (3)

Assignment Module that matches VMs to vehicles. It consists

of three sub-components, dynamic virtual machine assignment

algorithm (DVMA), which invokes the matching algorithm

(MA) that assigns vehicles to VMs. Once matched, the par-

tition algorithm (PA) assigns the fraction of computations for

the OBU and VM.

Fig. 3: Workflow of the proposed MIME framework.

A. Mobility-Induced Determination of Sampling Period

Most models in vehicular edge focus on a static snapshot

of the vehicle with the assumption of a consistent velocity.

However, for a vehicle to maintain a consistent velocity while

traversing the coverage area is an unrealistic assumption and

depends on various factors. Moreover, the dynamic variation

of the velocity introduces many challenges that need to be

addressed accurately to predict the vehicle trajectory precisely.

(1) Effectively capture the variation in the velocity of the

vehicles and their position, which directly impacts the sojourn

time for the undertaken computations. (2.) The resources at

the RSU are limited; it is safe to assume that the number

of vehicles is much more than the available VMs, and their

waiting and sojourn time variation at different instants must

be captured in the preferences of vehicles. We use FT (defined

below) to extract the frequency distribution of the aperiodic

velocity v(t), facilitating the determination of an effective

sampling rate and precisely capturing the variable velocity.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

Definition 1. (Fourier Transform) [24]: The FT of the time-

varying velocity signal v(t) captured as V (ω) is computed as
∫ +∞

−∞
v(t)e−jωtdt, where V (ω) is the frequency counterpart.

Definition 2. (Dirichlet Conditions) [24]: For V (ω) to exist,

v(t) should have a finite number of finite discontinuities and

finite maxima and minima. It should also be integrable over

time, i.e.,
∫ +∞

−∞
|v(t)|dt < ∞.

For our implementation, we identify discrete data points on

the curve v(t) akin to real-world capturing of velocities at

specific time instants considering a finite number of samples

often termed as the data window. Therefore, we adopt the

Discrete Fourier Transform (DFT).

Definition 3. (Discrete Fourier Transform) [24]: The Dis-

crete Fourier Transform (DFT) of a time signal can be com-

puted as V (k) =
∑N−1

n=0 v(n)e
−j2πnk

N (k = 0, 1, 2, ..., N − 1)

To find the appropriate sampling rate of a vehicle’s velocity-

time curve, we (1) Apply the FT on velocity v(t) over a

certain interval; (2) Obtain the frequency spectrum V (ω) of

the velocity v(t) over that interval; (3) Select the highest

frequency component fm, where fm = ωm

2π ; and (4) Get the

optimum sampling rate as per the Nyquist Theorem, which

gives the ideal sampling rate (that preserves the fidelity of a

time-varying signal) as fs g 2fm.

The RSU controller module will receive the updated posi-

tion and velocity values from the vehicles after each sampling

interval of Ts =
1
fs

, and thus generate the updated preferences.

Thus, the dynamic nature of our model due to the mobility of

the vehicles is accounted for in this manner while getting an

accurate representation of the velocity variation with time.

B. Resource Assignment as a Matching with Externalities

Due to variability in the velocity and positioning of the

vehicle, its preferences are dynamic; modeling it as a game

with externalities is an apt choice [25]–[30]. Formally, we

define the matching game as follows.

Definition 4. (Preferences of Agents): A matching is an

association between two sets M and V . An agent a ∈ M∪V
has a preference relation {a that indicates its priorities over

any two agents in the opposite set [31].

Definition 5. (Offloading Game): Matching between sets M
and V can be inferred as a many-to-one association Ψ :
M∪V → 2M∪V adhering to the conditions (1) ∀ vmj ∈ M,

|Ψ(vmj)| f qj , Ψ(vmj) ¦ V , (2) ∀ vi ∈ V , |Ψ(vi)| = 1,

Ψ(vi) ¦ M, and (3) vi ∈ Ψ(vmj) ⇐⇒ vmj ∈ Ψ(vi) [32].

Definition 6. (Existence of Swap Matching): For an assign-

ment Ψ, and a pairs of assignments (vi, vmj), (vi′ , vmj′)

∈ Ψ, a swap matching can be defined as Ψj,j′

i,i′ , and Ψj,j′

i,i′ =
Ψ \ {(vi, vmj), (vi′ , vmj′)}∪ {(vi′ , vmj), (vi, vmj′)}, such

that the following conditions are satisfied: (1) To
i (αi,Ψ

j,j′

i,i′) f

T
o
i (αi,Ψ) and T

o
i′(αi,Ψ

j,j′

i,i′) f T
o
i′(αi,Ψ), and (2) uj,i f

uj,i′ and uj′,i′ f uj′,i.

Definition 7. (Exchange Stability) A matching Ψ is a two-

sided exchange stable (2ES) if there is no swap matching from

its current assignment.

Definitions (6) and (7) capture the notion of swap-stability.

It specifically states that a vehicle VM pair (vi, vmj) ∈ Ψ is

considered to exhibit exchange stability if there does not exist

another pair (vi′ , vmj′) ∈ Ψ such that vi prefers vmj′ over

its current assignment vi and vmj prefers vi′ over its current

allocation vi. Moreover, such a swapping must be beneficial

for all the competing agents, i.e., {vi, vi′ , vmj , vmj′}, with-

out compromising their benefits. The matching is considered

exchange stable if no such pairs are incentivized to swap.

1) Preferences of Agents: Let the preference of agents a ∈
M ∪ V be captured as P (a). Note that while computing the

preferences, we consider full offloading, wherein αl
i,j = 0, and

αo
i,j = 1. Once the assignment is made, the actual offloaded

fractions are computed as per Algorithm. 3.

a) Vehicle Preferences: Vehicle vi assigns preferences to

VMs to minimize communication and processing latency. The

preference of vi over VMs vmj and vmj′ is expressed as

vmj {vi vmj′ ⇐⇒
T
c
i (³i,j ,Ψk) + T

p
i (³i,j ,Ψk) < T

c
i (³i,j′ ,Ψk) + T

p
i (³i,j′ ,Ψk)

(16)

b) Urgency of Vehicles: We define urgency score uj,i

for each vehicle vi ∈ V to be offloaded to vmj in terms

of two metrics: (i) execution options, P (vi), and (ii) fail-

ure probability, P
f
i . Assigning a higher score to a vehicle

with fewer options increases its likelihood of assignment. In

addition, prioritizing a vehicle with a higher probability of

failure boosts its chances of being assigned. Consequently, a

combined valuation helps MIME achieve reduced latency.

uj,i =
P
f
i

|P (vi)|
(17)

c) Preferences of VMs: Based on the above definition of

urgency, the preference of vmj is defined as

vi {vmj
vi′ ⇐⇒ uj,i > uj,i′ (18)

2) Dynamic Vehicle to Machine Assignment Algorithm

(DVMA): The working of DVMA is depicted in Algorithm 1.

The assignment starts by computing the preferences P (.) for

all vi ∈ V . The status of all the agents in V ∪M is initialized

to True, indicating their willingness to participate in DVMA

(Steps 2-6 of Algorithm 1). At each sampling interval tk ∈ T ,

the preference of the VMs is recomputed. Note that ‘k’

captures the current iteration of DVMA and is initialized to

1. Once the preference is recomputed, the free VMs, i.e.,

free[vmj] is True, send proposals to their most preferred

vehicles. Depending on the status of vmj , the following

conditions are encountered, (1) if vmj has the capacity, i.e.,

qj g Ψk(vmj) then vi and vmj are matched (Steps 1 − 7
of Algorithm 2) or (2) if vmj is already holding proposals,

then appropriate action is taken based on the preference of

Pk(vmj). If vmj prefers the incoming proposal vi {vmj
vi′ ,

then vi replaces vi′ ; otherwise the proposal from vi is rejected

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

(Steps 9 − 19 of Algorithm 2). Note that the variable reject

retains the rejected proposal, set to Φ if no rejections implying

the matching of vi and vmj . If an assignment is made,

Algorithm 1: Dynamic Vehicle to Machine Assign-

ment Algorithm (DVMA)

Input: V , M, ·i, ∀ vi ∈ V ; ·j , ∀ vmj ∈ M.
Result: Ψk ▷ Final Matching

1 Initialize: Ψk(vi) = Φ, ∀vi ∈ V ;
Ψk(vmj) = Φ, ∀vmj ∈ M,α = Φ, k = 1

2 for each vi ∈ V do

3 Compute the preference P (vi) as per Eq. (16).
4 free[vi] = True
5 end

6 for each vmj ∈ M do

7 free[vmj] = True
8 end

9 for each sampling interval tk ∈ T do

10 for each vmj ∈ M do

11 Compute the preference Pk(vmj) as per Eq. (18).
12 end

13 while ∃ vmj | free[vmj] &&Pk(vmj)! = Φ do

14 vi = Highest currently ranked vehicle in Pk(vmj)
15 reject = Matching_Algorithm (vi, vmj)
16 if reject == Φ || reject == vi′ then

17 αi,j = Partition_Algorithm (vi, vmj , ·i, ·j)

18 α = [α|αT
i,j

]

19 end

20 end

21 end

22 return Ψk

Algorithm 2: Matching_Algorithm (MA).

Input: vi, vmj

Result: reject ▷ The rejected proposal
1 if qj > ||Ψk(vmj)| then
2 Ψk(vi) = {vmj}
3 Ψk(vmj) = Ψk(vmj) ∪ {vi} ▷ Match (vi, vmj)
4 free[vi] = False
5 if qj == |Ψk(vmj)| then
6 free[vmj] = False
7 end

8 reject = Φ
9 end

10 else

11 vi′ = The least preferred matched vehicle to VM vmj

12 if vi {vmj
vi′ then

13 Ψk(vi′) = Φ
14 free[vi′] = True
15 Ψk(vmj) = Ψk(vmj) \ {vi′} ▷ Un-Match (vi′ , vmj).
16 free[vi] = False
17 Ψk(vi) = {vmj}
18 Ψk(vmj) = Ψk(vmj) ∪ {vi} ▷ Match (vi, vmj).
19 reject = vi′
20 end

21 else

22 reject = vi
23 end

24 end

25 return reject

Algorithm 3 is triggered, which outputs the allocation vector

(Steps 13-15 of Algorithm 1). It captures the fraction of the

computation that is to be performed locally (αl
i,j) and at vmj

(αo
i,j). The fraction is computed as

αl
i,j =

1

1 + ζi
ζj

(19)

and the ratio of power ratings gives an energy-aware partition.

Algorithm 3: Partition_Algorithm (PA)

Input: vi,Ψk(vi), ·i, ·j
Result: αi,j ▷ Allocation Vector

1 Initialize: αi,j := Φ, ∀vi ∈ Ψk;

2 Compute ³l
i,j as per Eq. (19)

3 if Tl
i(³i,j ,Ψk) f si then

4 ³o
i,j := 1− ³l

i,j

5 αi,j := {³l
i,j , ³

o
i,j}

6 end

7 else

8 αi,j := {0, 1}
9 end

10 return αi,j

Once the partitions are identified, PA tests if the local delay

T
l
i(αi,j ,Ψk) overshoots the estimated sojourn time si, then

the entire computation is offloaded to the VM, otherwise the

obtained partition is retained (Steps 3-8 of Algorithm 3). An

unassigned vehicle reattempts allocation in the next interval

with an updated preference. Note that this procedure termi-

nates when all vehicles are assigned or run out of attempts,

upper bounded by the number of sampling intervals.

TABLE I: Simulation Parameters [33], [34].

Parameter Value

RSU Coverage 500 m

Computation Size of Vehicles [100− 1000] KB

Computational Requirement of
Vehicles

[500− 1500] cycles/bit

VM Processing Frequency [0.1− 1.0] GHz

OBUs Execution Power of
Vehicles

[250− 400] MW

VMs Execution power [150− 500] MW

Bandwidth of RSUs 20 MHz [23]

Channel Gain between RSU and
Vehicles

18

Noise Power −114 dBm

Path loss −3.4
Transmission Power of Vehicles 31 dBm [22]

V. PERFORMANCE EVALUATION

To demonstrate the efficacy of MIME, we perform val-

idations using synthetic and real-world transportation data

obtained from SUMO [35] and inD dataset [36]. We extract

the velocity and positioning of vehicles from the dataset to

emulate a realistic vehicular trajectory.

1) Environmental Setup: Our analysis considers a two-lane

road network with multiple vehicles traversing the area. The

distribution of the vehicles from the datasets is depicted in

Fig. 4. We consider a statically deployed RSU to have a

coverage area of 500 m. Note that the compute resources at

the RSU are logically partitioned into VMs with heterogeneous

processing frequencies and execution power. All the vehicles

have onboard units (OBUs) with wireless transceivers and

receivers that assist the vehicles in communicating with the

RSU over a noiseless wireless channel [37]. Table I captures

the values of different parameters used for experimentation

and are adopted from standard sources [33], [34].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

2) Benchmarking Algorithms: To evaluate the proficiency

of MIME, we compare its performance against the following.

• Random Assignment (RA): The vehicles are randomly

matched to VMs and checked for the satisfaction of all

the Constraints in Eq. (15).

• Sequential Optimal Matching (SOM): The vehicles are

sequentially matched to the VMs sorted according to

their computing capabilities. This assignment should also

adhere to the Constraints of Eq. (15).

• A Matching Theory Framework for Task Offloading in

Fog Computing for IoT Systems [38] (MTO): This work

proposes a one-to-many matching framework for full

offloading in densely connected IoT-Fog systems. The

overall objective of the proposal was to reduce the latency

incurred in offloading by targeting the reduction in the

worst-case completion time of tasks executed on the IoTs.

For our implementation, we consider the IoTs to be static

vehicles and the Fog Nodes (FNs) to be the VMs.

Fig. 4: Number of vehicles at different frames across datasets.

Additionally, we would like to state that we implement the

partial offloading versions of the baselines to make the com-

parison fair and impartial. Note that for all the baselines, the

offloading partition is obtained via Algorithm 3.

3) inD Dataset [36]: We have evaluated MIME using the

inD Dataset. The dataset comprises the trajectories of the

road users captured from the bird’s eye view of a drone,

providing the most naturalistic position. The drone hovered

over four German intersections with a speed restriction of

50 Kmh−1. Prepossessing the captured drone data, 13500
users were detected, comprising vehicles, pedestrians, and

bicyclists. From the data, we considered 400 vehicles that were

annotated. The dataset contains many parameters, but we focus

on the two-dimensional position, x, and y directional velocity,

where the latter was obtained using the Bayesian smoothing

and acceleration model.

4) SUMO Dataset: To generate the synthetic dataset using

SUMO, we considered the map of the Jurong area of Sin-

gapore, incorporating its road network and traffic regulations.

The simulation was run for 200 vehicles, where each vehicle

is distributed randomly and follows realistic traffic flow.

5) Implementation Details: Although the inD dataset pro-

vides the position and velocities of vehicles, it cannot be

directly used in MIME owing to the assumption of a two-

lane structure. Moreover, we extract the x-velocity component

from the dataset, approximating a realistic variation of vi with

time. We use the dataset’s x and y coordinates to determine

the vehicle’s precise location in a two-dimensional layout.

Additionally, the vehicles falling within the radial range of

the RSU (which is assumed to be statically positioned) are

considered for assignment, whereas those outside the range are

ignored. In every iteration of DVMA, we extract the x velocity

component and its corresponding position, taken as inputs that

realistically capture the dynamics of a vehicle trajectory in an

urban road network. Note that the same procedure is followed

for the SUMO dataset while extracting the x and y coordinates.

6) Results and Analysis: This section presents the compar-

ative study of different schemes across evaluation metrics.

Total Latency: Figs. 5a and 6a capture the variation

in the total latency of different protocols across inD and

SUMO datasets. It can be observed from the figure that MIME

achieves the least aggregate latency in most cases, which

is promising behavior. This condescending performance is

attributed to the vehicles ranking the VMs according to their

offloading delays (refer to Eq. (16)). However, the performance

across frames is directly impacted by the number of vehicles

in that frame (refer to Fig. 4). In contrast, MTO grapples

with higher latency compared to MIME, as it prioritizes the

assignment of vehicles with lesser offloaded data instead of

prioritizing the ones with more extensive data. This implies

that the vehicles with more significant data are either queued

at the computationally efficient VMs or are pushed to less

efficient ones. The former elevates the queueing delay, whereas

the latter increases the processing delay, which leads to an

overall increase in the offloading delay. SOM and RA expe-

rience higher delays than MIME and MTO owing to greedy

and randomized assignments leading to inferior assignments.

Outages: MIME suffers from minimum outages com-

pared to the benchmarking algorithms in most scenarios, as

can be inferred from Figs. 5b and 6b. The outages refer

to the vehicular operations that were not performed in the

RSU, considering their respective sojourn time. The ranking

scheme adopted (refer to Eq. (18)) reasons for the superior

performance of MIME. The VM ranking scheme prioritizes

assigning vehicles that have (1) lower execution options and

(2) higher failure probability. Such a combined valuation

boosts the possibility of vehicles with higher data meeting

sojourn time constraints, thereby exhibiting superior perfor-

mance compared to the baselines, which consider neither. On

the other hand, in MTO, the ability of the vehicles to re-

order their preferences boosts their possibility of meeting the

sojourn time. Finally, RA and SOM exhibit a higher number of

outages owing to the non-consideration of sojourn time during

the assignment decisions.

Energy Consumption: The energy expended in the of-

floading is captured in Figs. 5c and 6c. The energy expended

increases with increased vehicles in the considered frame,

which is expected behavior. However, we can infer from the

figure that MIME expends minimum energy across frames

compared to the benchmarking algorithm. This is because

energy is considered during partitioning, which reduces energy

consumption. However, none of the baselines take offloading

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

(a) Total Latency (s) vs. Frame Number. (b) Outages vs. Frame Number. (c) Energy (J) vs. Frame Number.

Fig. 5: Performance based on inD Dataset.

(a) Total Latency (s) vs. Frame Number. (b) Outages vs. Frame Number. (c) Energy (J) vs. Frame Number.

Fig. 6: Performance based on SUMO Dataset.

decisions based on the energy expended, resulting in higher

energy dissipation.

(a) Vehicles Satisfaction (%) vs. Frame Number. (b) VM Satisfaction (%) vs. Frame Number.

Fig. 7: Vehicular and VM Satisfaction using inD Dataset.

(a) Vehicles Satisfaction (%) vs. Frame Number. (b) VM Satisfaction (%) vs. Frame Number.

Fig. 8: Vehicular and VM Satisfaction using SUMO Dataset.

Agent Satisfaction: The agents’ satisfaction reflects their

happiness quotient in the matching given a list of prefer-

ences. Note that it can only be computed for matching-based

solutions requiring agents to have a ranked order list. Figs

7a-8b respectively capture the satisfaction of vehicles and

VMs for MIME and MTO. The satisfaction of a vehicle is

computed as (|P (vi)| − rank(vmj))/|P (vi)| ∗ 100, where,

rank(vmj), captures the position of vmj in P (vi) such that

rank(vmj) ∈ [0, |P (vi)| − 1]. The VMs can be matched to

multiple vehicles; the individual satisfaction is computed as

(|P (vmj)| − rank(vi))/(|P (vmj)| − count) ∗ 100, for each

matched vi, and the aggregate is averaged over |P (vi)|. Note

that count captures the assigned vehicles before computing the

preference of vi. As VMs are proposers, the VM satisfaction

is higher than the vehicles for both MIME and MTO.

VI. CONCLUSION

This paper proposed the MIME framework for partial of-

floading of real-time computations from vehicles. Specifically,

MIME addresses two fundamental challenges: (1) capturing

the realistic variation of the vehicular trajectories and (2)

designing an energy-aware, efficient, and scalable partial of-

floading scheme that meets the QoS demands. We proposed

a matching game powered by DFT with dynamic preferences

triggered at each sampling interval. Experimental validations

and comparisons with three distinct baselines establish the

efficacy of the proposed scheme with the reduction of 24.61%

and 11.2% offloading latency and energy for the inD dataset

and 5.6% and 5.52% reduction in offloading latency and

energy for SUMO dataset.

In future work, we plan to explore multiple RSU setups with

effective handover and migration capabilities to enhance inter-

RSU communication. Additionally, we aim to upgrade MIME

to account for co-channel interference, thereby increasing the

robustness of the implementation.

Acknowledgements: This work is partially supported by NSF

grants under award numbers CNS-2030624, OAC-2104078,

and ECCS-2319995; Daniel St. Clair Endowed Chair funds

and Kummer Doctoral Fellowship at Missouri S&T.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Wang, J. Steiber, and B. Surampudi, “Autonomous ground vehicle
control system for high-speed and safe operation,” in 2008 American

Control Conference, 2008, pp. 218–223.

[2] H. Lu, Q. Liu, D. Tian, Y. Li, H. Kim, and S. Serikawa, “The Cognitive
Internet of Vehicles for Autonomous Driving,” IEEE Network, vol. 33,
no. 3, pp. 65–73, 2019.

[3] J. Lee and W. Na, “A survey on vehicular edge computing architectures,”
in 2022 13th International Conference on Information and Communi-

cation Technology Convergence (ICTC), 2022, pp. 2198–2200.

[4] M. Chen and Y. Hao, “Task Offloading for Mobile Edge Computing
in Software Defined Ultra-Dense Network,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[5] P. Chennakesavula, J.-M. Wu, and A. Ambikapathi, “Incentive-Driven
Fog-Edge Computation Offloading and Resource Allocation for 5G-
NR V2X-Based Vehicular Networks,” in 2023 IEEE 97th Vehicular

Technology Conference (VTC2023-Spring), 2023, pp. 1–5.

[6] J. Zhang, Y. Wu, G. Min, and K. Li, “Neural Network-Based Game The-
ory for Scalable Offloading in Vehicular Edge Computing: A Transfer
Learning Approach,” IEEE Transactions on Intelligent Transportation

Systems, 2024.

[7] S. S. Shinde, A. Bozorgchenani, D. Tarchi, and Q. Ni, “On the Design
of Federated Learning in Latency and Energy Constrained Computation
Offloading Operations in Vehicular Edge Computing Systems,” IEEE

Transactions on Vehicular Technology, vol. 71, no. 2, pp. 2041–2057,
2022.

[8] H. Wang, Z. Lin, K. Guo, and T. Lv, “Computation offloading based on
game theory in mec-assisted v2x networks,” in 2021 IEEE International

Conference on Communications Workshops (ICC Workshops), 2021, pp.
1–6.

[9] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive
stable task scheduling in heterogeneous fog networks,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 3423–3436, 2018.

[10] C. Swain, M. N. Sahoo, and A. Satpathy, “SPATO: A student project
allocation based task offloading in IoT-fog systems,” in ICC 2021-IEEE

International Conference on Communications. IEEE, 2021, pp. 1–6.

[11] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, and
Z. Han, “Architectural Design Alternatives Based on Cloud/Edge/Fog
Computing for Connected Vehicles,” IEEE Communications Surveys &

Tutorials, vol. 22, no. 4, pp. 2349–2377, 2020.

[12] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular Edge
Computing and Networking: A Survey,” Mob. Netw. Appl., vol. 26, no. 3,
p. 1145–1168, jun 2021.

[13] L. Bréhon–Grataloup, R. Kacimi, and A.-L. Beylot, “Field trial for
enhanced v2x multi-rat handover in autonomous vehicle networks,” in
2023 IEEE 48th Conference on Local Computer Networks (LCN), 2023,
pp. 1–8.

[14] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular
Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans-

actions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2020.

[15] Y. Liu, S. Wang, J. Huang, and F. Yang, “A Computation
Offloading Algorithm Based on Game Theory for Vehicular
Edge Networks,” 2018 IEEE International Conference on

Communications (ICC), pp. 1–6, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:51870833

[16] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A Joint
Service Migration and Mobility Optimization Approach for Vehicular
Edge Computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 8, pp. 9041–9052, 2020.

[17] P. L. Nguyen, R.-H. Hwang, P. M. Khiem, K. Nguyen, and Y.-D. Lin,
“Modeling and Minimizing Latency in Three-tier V2X Networks,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[18] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. A. Salinas Monroy,
“Multi-Objective Computation Sharing in Energy and Delay Constrained
Mobile Edge Computing Environments,” IEEE Transactions on Mobile

Computing, vol. 20, no. 10, pp. 2992–3005, 2021.

[19] V. D. Tuong, T. P. Truong, T.-V. Nguyen, W. Noh, and S. Cho, “Partial
Computation Offloading in NOMA-Assisted Mobile-Edge Computing
Systems Using Deep Reinforcement Learning,” IEEE Internet of Things

Journal, vol. 8, no. 17, pp. 13 196–13 208, 2021.

[20] X.-Q. Pham, T. Huynh-The, E.-N. Huh, and D.-S. Kim, “Partial Compu-
tation Offloading in Parked Vehicle-Assisted Multi-Access Edge Com-
puting: A Game-Theoretic Approach,” IEEE Transactions on Vehicular

Technology, vol. 71, no. 9, pp. 10 220–10 225, 2022.
[21] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency Minimiza-

tion for D2D-Enabled Partial Computation Offloading in Mobile Edge
Computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4,
pp. 4472–4486, 2020.

[22] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 14 198–14 211, 2020.

[23] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “Lte
for vehicular networking: a survey,” IEEE Communications Magazine,
vol. 51, no. 5, pp. 148–157, 2013.

[24] J. G. Proakis, Digital signal processing: principles, algorithms, and

applications, 4/E. Pearson Education India, 2007.
[25] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan, “Many-to-many

matching with externalities for device-to-device communications,” IEEE

wireless communications letters, vol. 6, no. 1, pp. 138–141, 2016.
[26] A. Satpathy, M. N. Sahoo, L. Behera, and C. Swain, “ReMatch: An

Efficient Virtual Data Center Re-Matching Strategy Based on Matching
Theory,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp.
1373–1386, 2023.

[27] K. Bando, R. Kawasaki, and S. Muto, “Two-sided matching with
externalities: A survey,” Journal of the Operations Research Society of

Japan, vol. 59, no. 1, pp. 35–71, 2016.
[28] F. Pantisano, M. Bennis, W. Saad, S. Valentin, and M. Debbah,

“Matching with externalities for context-aware user-cell association in
small cell networks,” in 2013 IEEE Global Communications Conference

(GLOBECOM). IEEE, 2013, pp. 4483–4488.
[29] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, and J. J.

P. C. Rodrigues, “A-DAFTO: Artificial Cap Deferred Acceptance-Based
Fair Task Offloading in Complex IoT-Fog Networks,” IEEE Transactions

on Consumer Electronics, vol. 69, no. 4, pp. 914–926, 2023.
[30] C. Cheng, L. Zhai, X. Zhu, Y. Jia, and Y. Li, “Dynamic task offloading

and service caching based on game theory in vehicular edge computing
networks,” Computer Communications, 2024.

[31] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, J. J. P. C.
Rodrigues, and V. H. C. de Albuquerque, “METO: Matching-Theory-
Based Efficient Task Offloading in IoT-Fog Interconnection Networks,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 705–12 715, 2021.

[32] C. Swain, M. N. Sahoo, and A. Satpathy, “LETO: An efficient load
balanced strategy for task offloading in IoT-fog systems,” in 2021 IEEE

international conference on web services (ICWS). IEEE, 2021, pp.
459–464.

[33] C. Liu, K. Li, J. Liang, and K. Li, “COOPER-SCHED: A Cooperative
Scheduling Framework for Mobile Edge Computing with Expected
Deadline Guarantee,” IEEE Transactions on Parallel and Distributed

Systems, pp. 1–1, 2019.
[34] S. R. Sahoo, M. Patra, and A. Gupta, “MDLB: A Matching based

Dynamic Load Balancing Algorithm for Road Side Units,” in 2021 In-

ternational Wireless Communications and Mobile Computing (IWCMC),
2021, pp. 291–296.

[35] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wiessner, “Mi-
croscopic Traffic Simulation using SUMO,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), 2018, pp.
2575–2582.

[36] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The ind dataset: A drone dataset of naturalistic road user trajectories
at german intersections,” in 2020 IEEE Intelligent Vehicles Symposium

(IV). IEEE, 2020, pp. 1929–1934.
[37] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International

Standard for Wireless Access in Vehicular Environments,” in VTC Spring

2008 - IEEE Vehicular Technology Conference, 2008, pp. 2036–2040.
[38] F. Chiti, R. Fantacci, and B. Picano, “A matching theory framework for

tasks offloading in fog computing for IoT systems,” IEEE Internet of

Things Journal, vol. 5, no. 6, pp. 5089–5096, 2018.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:19:46 UTC from IEEE Xplore. Restrictions apply.

