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Abstract—Autonomous vehicles (AVs) execute compute-
intensive control operations like adjusting speed and steering,
causing significant energy dissipation and latency due to resource-
limited onboard units (OBUs). Offloading these tasks to Roadside
Units (RSUs) is a solution, but it faces challenges. First, the
stringent latency requirements are impacted by the vehicle’s
stochastic velocity. Second, allocating limited RSU resources to
numerous vehicles within its coverage area is difficult. This paper
proposes the MIME framework to address these issues. We use
Discrete Fourier transform (DFT) that computes the average
velocity over an aperiodic velocity signal extracted from a real-
world dataset. For resource allocation, we model it as matching
with externalities, using reactive preferences based on vehicle
speed and location. We present an efficient, scalable, stable
solution, showing a 24.61% and 11.2% reduction in offloading
latency and energy for the inD dataset, and a 5.6% and 5.52%
reduction for the SUMO dataset.

Index Terms—Vehicular Edge, Road Side Units, Partial Of-
floading, Matching Theory, Deadline, Latency, Energy Awareness

I. INTRODUCTION

Autonomous Vehicles (AVs) execute computation-intensive
control operations like adaptive cruise control and emergency
braking [1]. These critical operations rely heavily on the
vehicles’ real-time velocity and demand strict adherence to
quality-of-service (QoS) standards [2]. Failing to maintain
these standards severely threatens the safety of passengers
and the surrounding environment. AVs’ onboard units (OBUs)
often lack sufficient resources to execute critical operations in
real-time, which can be problematic [3] and, in some cases,
catastrophic. To address this issue, roadside units (RSUs) with
sufficient computing capabilities have been strategically posi-
tioned to aid AVs in conducting real-time computations [4],
[5]. Consequently, a viable solution to alleviate the resource
constraints of AVs is to collaboratively offload some or all
computations to the RSU for real-time processing [6].

At the outset, cooperative offloading appears trivial, yet
poses numerous research challenges. This study focuses on ad-
dressing three pivotal challenges in vehicular edge. Firstly, we
integrate a vehicle’s velocity variability to estimate its traversal
dynamics, such as sojourn time [7]. The dynamic nature of a
vehicle’s velocity is critical in determining the sojourn time,
which approximates the time window for executing compu-
tations. Secondly, RSUs possess finite compute resources [8],
making resource allocation particularly daunting in urban road
networks with dynamically arriving and departing vehicles,
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Fig. 1: Vehicular Edge Computing setup with multiple vehicles
requiring computations served by the roadside unit (RSU).

proven to be N'P-Hard [9]. Thirdly, the cooperation between
OBU and RSU necessitates an efficient partitioning scheme to
execute vehicular operations effectively. Therefore, developing
a polynomial-time, scalable, and efficient partial offloading
strategy that captures vehicle dynamics and is responsive to
the latency requirements of vehicular operations is extremely
challenging [8], [10].

This paper presents MIME, an RSU-assisted partial of-
floading framework with energy awareness to tackle these
challenges. The key contributions of this work include:

(1) Propose MIME framework to partially offload vehicular
computations with a partition logic that efficiently selects tasks
for execution at OBU while offloading the remainder to RSU;
and optimally utilize resources from OBU and RSU to manage
deadline-specific computations without overburdening RSUs.
(2) Validate MIME realistically by incorporating average vari-
ability in vehicular velocities using Discrete Fourier Transform
(DFT) analysis on real-world data. Resource assignment em-
ploys a matching game with dynamic preferences, ensuring a
stable two-sided exchange solution that captures vehicle dy-
namics, reducing offloading latency and energy consumption.
(3) Evaluate MIME with (i) synthetic traffic data generated
using SUMO (Simulation of Urban Mobility), and (ii) real-
world traffic data from the inD dataset; and compare its perfor-
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mance with three distinct baselines to demonstrate noteworthy
reductions in offloading latency (24.61% for inD and 5.6% for
SUMO dataset) and energy consumption (11.2% for inD and
5.52% for SUMO dataset).

The remainder of this paper is organized as follows. Section
II reviews the literature concerning vehicular edge computing.
Section III presents the model and formulates the offloading
problem. The proposed MIME approach is detailed in Section
IV. Section V presents the experimental results. Lastly, Section
VI concludes the paper.

II. LITERATURE SURVEY

The significance of Vehicular Edge Computing (VEC) is
well-established, with many surveys highlighting its critical
role. Authors in [11], [12] identify significant challenges
within VEC, particularly emphasizing the difficulties associ-
ated with offloading for AVs performing real-time computa-
tions under time bounds. Given these challenges, we present
the literature reviewed from two perspectives: full and partial
offloading strategies.

A. Full Offloading Schemes

In this regard, works centered on full offloading are dis-
cussed in [13]-[16], focused on minimizing offloading delays,
considering both communication and computation overhead.
In [13], the authors explored a scenario rife with obstacles
where vehicles frequently switched networks due to high mo-
bility and network diversity. They emphasize minimizing com-
munication latency by proactively selecting the most suitable
interface. However, given vehicles’ dynamic communication
resource requirements, relying on a single communication
technology proved inadequate. To tackle this challenge, [14]
introduced fiber-wireless (FiWi) technology, capable of sup-
porting multiple communication techniques to cater to more
vehicles. Similarly, the variation in computational resources
among vehicles and RSUs necessitates decision-making to
mitigate computational overhead, as discussed in [15]. Here,
the authors approached offloading as a multi-user computation
offloading game, employing a distributed computation offload-
ing algorithm to determine the equilibrium. Furthermore, the
study in [16] aimed at proactively managing road traffic,
reshaping the distribution of resource demands to prevent
service delays with minimal migration overhead.

Taking into account both communication and computation
latencies, [17] proposed a Genetic Algorithm (GA)-driven
cooperative three-tier offloading framework involving vehicles,
the cloud, and Mobile Edge Cloud (MEC). Meanwhile, the
energy consumption of mobile applications during offloading
to the RSU remains a substantial concern. In this context, the
work in [18] employed evolutionary algorithms to formulate
solutions for a multi-objective optimization problem, identify-
ing optimal trade-offs.

B. Partial Offloading Schemes

While full offloading offers advantages, it can become
inefficient with high data volumes, resulting in increased

latency during data transfer and reduced effectiveness for
real-time computational tasks. In such scenarios, partial of-
floading emerges as a viable solution for minimizing latency.
For instance, to alleviate computational overhead, authors in
[19] proposed a Non-Orthogonal Multiple Access (NOMA)-
Assisted MEC system facilitating partial computation offload-
ing, considering the offloading policy and channel resources
of the wireless network. Partial computation offloading also
enables the utilization of idle resources in parked vehicles,
as suggested in [20]. The authors employed game theory to
devise the offloading strategy, while a sub-gradient method
was adopted to determine the optimal offloading and re-
source allocation ratio. Alternatively, the work in [21] utilized
computation resources from neighboring vehicles for partial
offloading to meet the stringent latency requirements in a
5G environment. The authors addressed interference manage-
ment using Orthogonal Frequency Division Multiple Access
(OFDMA), where data segmentation was iteratively adjusted,
and resource allocation was optimized for cellular and Device-
to-Device (D2D) links while considering QoS requirements.

The literature review highlights a gap in addressing the
impact of varying vehicle mobility on service quality, espe-
cially in partial offloading. Additionally, there is a scarcity
of research dedicated to simultaneously minimizing latency
and energy consumption within a partial offloading framework.
Thus, this study introduces a comprehensive technique aimed
at addressing these limitations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model and formalizes
the offloading problem, highlighting the overall system goal.

A. Overview of the System

As depicted in Fig. 1, we consider a set of AVs captured as
V = {v1,v2,v3,...0,} moving in a two-lane road network
of a city. These vehicles frequently perform compute-intensive
operations to provide a seamless experience to the users. A
vehicle v; € V has an on-board unit (OBU) with computational
capacity c¢; (cycles/bit) to perform such operations. The OBU is
also characterized by a processing frequency f; (cycles/sec). In
MIME, we consider a RSU, which is virtualized and comprises
‘n’ VMs, captured as M = {vmj,vmas,...,vm,}. Each
vm; € M has a computing capacity uniquely identified as c;
(cycles/bit). Similar to the vehicles, each vm,; € M operates
at a frequency of f; (cycles/sec). Considering heterogeneous
VMs is motivated by the operations’ diversity, requiring
disparate computing resources at the RSU. To leverage the
heterogeneous resources of vehicles and VMs, we consider
that the amount of data, denoted as d; (for vehicle v;), needed
to compute a task is two-way splittable, allowing simultaneous
computations by the OBU and an assigned VM at the RSU.
Additionally, for a vehicle v;, the tolerable time to perform
an action based on local and/or offloaded computations is
bounded by s;(t), which denotes the time a vehicle is expected
to remain in the RSU coverage. Therefore, vehicles cooper-
atively perform computations with the RSU (specifically a
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VM). The allocation vector, in this partial offloading setup,
is represented by oy ; = {aﬁvj, aj; € R*}, where the
former depicts the fraction executed locally and the latter is
the offloaded fraction to RSU. Note that aé’ jtaf; =1 (refer

to Section IV-B).

B. Capturing Vehicular Dynamics: Mobility Model

The vehicular motion in an urban two-lane, bidirectional
highway setup follows specific trajectories as depicted in
Fig. 2. The mobility model for the vehicles in MIME is
motivated by the work in [22]. Note that the RSU is assumed
to be stationary and located at coordinates (x,,¥,) having a
coverage radius R. At a specific time instant ‘¢,” the position
of a vehicle v; in the coverage area is captured by a tuple in
the Cartesian coordinate system < z;(t), y;(¢) >.
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Coverage Area

Distance between
Vehicles and RSU »

Moving
Ly Direction of
the Vehicles
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Position « Exit Point of
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Remaining
Distance of the
Vehicles

Fig. 2: Vehicle Mobility Model and Corresponding Distance Metrics.

Let E be the exit point of v; (see Fig. 2), and the vehicles
traverse in that direction at an angle 6. The distance of v; from
the RSU, denoted by A,(t) is computed as

Ai(t) =V (e — yi()2 + (zr — 4(1))2 (1)

Let Q;(¢) be the distance between the vehicle’s current position
and E. The vehicles are assumed to be uniformly distributed
within the RSU coverage having a radius (R). For ease of
representation, the vehicle’s coordinates are converted to polar
(A;(t), 6:(t)), and its position is considered to be independent
of the traversal direction 6;(¢). For symmetry, we consider
0;(t) € [0, 7], and the joint PDF of a vehicle’s presence at a
specific distance A;(t) is obtained as

P, 000 =+ < 2200 @

Next, we compute the joint PDF of a vehicle v;’s presence at
a distance A;(t) from the RSU having a remaining distance
Q;(t) to exit the coverage area. It can be derived as in
Eq. (3). Without loss of generality and for simplicity in the
representation, in the rest of the paper, we consider A;(t),
0:(t), Q,;(t) as A;, 6;, and ;, respectively. Thus,

R? — A% +Q?

2
2002, /1 _ (RP=AI+2
TR2Q: \/1 ( 34,07

F(Q,A0) = 3)

By integrating A; the marginal PDF of the remaining distance
Q; € ]0,2R] to be traversed by v; is given by

R
- AN A, = 2
po0= [ e aan = im0t @

R*Qil

The mobility model considers a vehicle traversing at an
instantaneous velocity u; having an average velocity 1J;. Thus,
the PDF of s;(t) is derived as

U
TR2

Therefore, in MIME, an offloading failure occurs for v; if the
completion time T¢(cv; j, Uy,) (see the details in Section III-C),
which encompasses communication and computation delays,
exceeds the sojourn time. This probability IP’{ is obtained as

flsi) = AR? — (95t)? ®)
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C. Communication and Computation Models

As the vehicle enters the coverage area of an RSU, it
registers with an information tuple < x;, y;, u;, ¥;, ¢;, fi, di >.
Next, we discuss the communication and computation models.

1) Communication Model: The vehicles are considered to
communicate with the RSU using Long Term Evolution (LTE)
[23]. Let b capture the channel bandwidth, p;; and g; ;
denote the vehicle’s transmission power and channel gain,
respectively. The latter is the Rayleigh channel coefficient with
complex Gaussian distribution. We do not consider the co-
channel interference in this work but consider a free-space
propagation path loss model. The experienced data rate (r; ;)
for a vehicle v; transmitting to the vm; can be derived as

i g AT ()] gi 42
rij = b10g2 1+ Pij ,] ( )|g ,J| ] (7)
No
Then, the communication delay is obtained as
c o o i
Ti (ai,j, \I/k) = az’,j X (8)
Tij

where W refers to the obtained assignment at a particular
iteration ‘k.” The procedure to obtain the assignment is detailed
in Section IV-B.

2) Local Processing Delay: The local processing delay
Ti(c,j, Ug) is the time expended in processing ! fraction
of the data at the OBU and is computed as

T (0, Tp,) = {(a;j x d;) ci] 9)

"
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3) Offloaded Processing Delay: The processing delay
T? (v j, ¥)) is the time required by v; to process the offloaded
computations at vm; of the RSU. It is derived as

T} (v, Vi) = l:(ag)j x di) % Cj]
P fj

4) Queueing Delay: The vehicular computation may be
stalled at a VM due to the following two delays: (1) residual
execution of a previously assigned vehicle v;: at the k' itera-
tion, such that &’ < k, and is reflected as the first term of the
following equation; and (2) cumulative offloaded processing
delay of vehicles assigned to vm; from iterations k' + 1

through k& — 1 with pending execution.

Tg(am, \I/k) = rnax('JTf, (Oti/J‘, \I/k-/) — (k’ — k/)TS,O)

(10)

k-1
EY et .
x=k’'+1
where T refers to the sampling interval computed via the
Fourier Transform. Refer to Section IV-A for details.
5) Offloading Delay: 1t is the total time elapsed in com-
munication and computation, derived as

T (aig, Ur) = Ti (0 g, O) + TF (i, Ur) + T (v 5, )
12)
Decision Variable: Before delving into the detailed formula-
tion of the overall problem, we introduce an indicator variable
that captures the assignment as follows.

Z(vi, vmy) = {
D. Energy Model

1) Energy Model of the VMs: Given the power rating ¢; of
vm;, the energy consumption E; at vm; for processing the

offloaded data is obtained as

E; = ZI(vi,vmj) x Gj % T (aij, W)

J=1

1 If v; offloads (a7 ; * d;) to vm;
0 Otherwise

13)

2) Energy Model of the Vehicles: A vehicle v; with a power
rating of (; will have the local energy consumption, also
obtained as

Ei = G x Th(as;, ) (14)

E. Problem Formulation

The overall objective of MIME is represented as per Eq.
(15a). Constraint (15b) states that a vehicle can offload to
at most one VM. Constraints (15c), (15d), and (15e) capture
the feasibility of the partitioning logic and the probabilistic
expressions. Finally, Constraint (15e) captures the values for
the decision variables.

min Wrgé[%fm]{’ﬂ"f(ai,jﬂlfk)} (15a)
s.t. Z(vi,vmy) <1 (15b)
o5 € RT (15c¢)
1T, ; <1 (15d)
Ps=1-P/ (15¢)
Vie[l,m], Vj€[l,n] (15f)

N'P-Hardness: The above optimization problem expressed is
proven to be N"P-Hard [9], implying that obtaining an optimal
solution will be highly computationally intensive. In this paper,
we propose an efficient sub-optimal solution that not only
generates a stable and scalable assignment in polynomial-time
but also considers individual preferences of stakeholders.

IV. PROPOSED MIME FRAMEWORK

We elaborate on the components and roles of the RSU
Controller, illustrated in Fig. 3, which essentially serves as
the system’s central intelligence. It includes (1) Registry
Module comprising VM and Vehicle registries. The former
tracks the VMs, including configuration details and availability
status. The latter logs the vehicles in the RSU coverage. (2)
Preference Generator Module that computes the preferences
of vehicles and VMs and feeds them to the matcher. (3)
Assignment Module that matches VMs to vehicles. It consists
of three sub-components, dynamic virtual machine assignment
algorithm (DVMA), which invokes the matching algorithm
(MA) that assigns vehicles to VMs. Once matched, the par-
tition algorithm (PA) assigns the fraction of computations for
the OBU and VM.
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Fig. 3: Workflow of the proposed MIME framework.

A. Mobility-Induced Determination of Sampling Period

Most models in vehicular edge focus on a static snapshot
of the vehicle with the assumption of a consistent velocity.
However, for a vehicle to maintain a consistent velocity while
traversing the coverage area is an unrealistic assumption and
depends on various factors. Moreover, the dynamic variation
of the velocity introduces many challenges that need to be
addressed accurately to predict the vehicle trajectory precisely.
(1) Effectively capture the variation in the velocity of the
vehicles and their position, which directly impacts the sojourn
time for the undertaken computations. (2.) The resources at
the RSU are limited; it is safe to assume that the number
of vehicles is much more than the available VMs, and their
waiting and sojourn time variation at different instants must
be captured in the preferences of vehicles. We use FT (defined
below) to extract the frequency distribution of the aperiodic
velocity v(t), facilitating the determination of an effective
sampling rate and precisely capturing the variable velocity.
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Definition 1. (Fourier Transform) [24]: The FT of the time-
varying velocity signal v(t) captured as V(w) is computed as
fj;o v(t)e Iwtdt, where V (w) is the frequency counterpart.

Definition 2. (Dirichlet Conditions) [24]: For V (w) to exist,
v(t) should have a finite number of finite discontinuities and

finite maxima and minima. It should also be integrable over
. . +oo

time, ie., [" 7~ |v(t)|dt < co.

For our implementation, we identify discrete data points on
the curve v(t) akin to real-world capturing of velocities at
specific time instants considering a finite number of samples
often termed as the data window. Therefore, we adopt the
Discrete Fourier Transform (DFT).

Definition 3. (Discrete Fourier Transform) [24]: The Dis-
crete Fourier Transform (DFT) 0]2” aktime signal can be com-
puted as V (k) = Zg;ol v(n)e=~  (k=0,1,2,..,N — 1)

To find the appropriate sampling rate of a vehicle’s velocity-
time curve, we (1) Apply the FT on velocity v(t) over a
certain interval; (2) Obtain the frequency spectrum V(w) of
the velocity v(¢t) over that interval; (3) Select the highest
frequency component f,,,, where f;,, = %=; and (4) Get the
optimum sampling rate as per the Nyquist Theorem, which
gives the ideal sampling rate (that preserves the fidelity of a
time-varying signal) as fs > 2f,,.

The RSU controller module will receive the updated posi-
tion and velocity values from the vehicles after each sampling
interval of Ty = i, and thus generate the updated preferences.
Thus, the dynamic nature of our model due to the mobility of
the vehicles is accounted for in this manner while getting an
accurate representation of the velocity variation with time.

B. Resource Assignment as a Matching with Externalities

Due to variability in the velocity and positioning of the
vehicle, its preferences are dynamic; modeling it as a game
with externalities is an apt choice [25]-[30]. Formally, we
define the matching game as follows.

Definition 4. (Preferences of Agents): A matching is an
association between two sets M and V. An agent a € MUYV
has a preference relation -, that indicates its priorities over
any two agents in the opposite set [31].

Definition 5. (Offloading Game): Matching between sets M
and V can be inferred as a many-to-one association U :
MUV = 2MYY adhering to the conditions (1) Yom; € M,
|\I/(vmj)\ S qj, \I/(vmj) Q V, (2) V’Ui € V, \I/(UZ)| = 1,
U(v;) CM, and (3) v; € ¥(vm;) <= vm; € V(v;) [32].

Definition 6. (Existence of Swap Matching): For an assign-
ment V, and a pairs of assignments (vz,vmr]) (vyr ,vm]/)
€ U, a swap matching can be defined as V), and \I/Z ZJ, =
U\ {(v5,omy), (v, vmy)} U{ (vir, omy), (65, om0}, such
that the following conditions are satisfied: (1) T¢ (o, \I/{f, )
T¢(c;, ¥) and TS (i, WD) < T (i, ), and (2) uj;
Uyj 3/ and Uj7 3 S Uj7 g

<
<

Definition 7. (Exchange Stability) A matching V¥ is a two-
sided exchange stable (2ES) if there is no swap matching from
its current assignment.

Definitions (6) and (7) capture the notion of swap-stability.
It specifically states that a vehicle VM pair (v;,vm;) € ¥ is
considered to exhibit exchange stability if there does not exist
another pair (vy,vm;) € ¥ such that v; prefers vm; over
its current assignment v; and vm; prefers v;; over its current
allocation v;. Moreover, such a swapping must be beneficial
for all the competing agents, i.e., {v;, vy, vm;,vm; }, with-
out compromising their benefits. The matching is considered
exchange stable if no such pairs are incentivized to swap.

1) Preferences of Agents: Let the preference of agents a €
MUYV be captured as P(a). Note that while computing the
preferences, we consider full offloading, wherein o} i.; = 0,and
af ; = 1. Once the assignment is made, the actual offloaded
fractions are computed as per Algorithm. 3.

a) Vehicle Preferences: Vehicle v; assigns preferences to
VMs to minimize communication and processing latency. The
preference of v; over VMs vm; and vm,: is expressed as

vm; v vm <

T (i g, Ui) + TF (i 5, Ur) < T§(ey jr, Ur) + T2 (o jr, %’]1%))

b) Urgency of Vehicles: We define urgency score uj;

for each vehicle v; € V to be offloaded to vm; in terms

of two metrics: (i) execution options, P(v;), and (ii) fail-

ure probability, IE"ic . Assigning a higher score to a vehicle

with fewer options increases its likelihood of assignment. In

addition, prioritizing a vehicle with a higher probability of

failure boosts its chances of being assigned. Consequently, a
combined valuation helps MIME achieve reduced latency.

P/
Ui = —t
” | P(vs)]

c) Preferences of VMs: Based on the above definition of
urgency, the preference of vm; is defined as

a7

Vi =oym; Vit = Uj; > Ujq (18)

2) Dynamic Vehicle to Machine Assignment Algorithm
(DVMA): The working of DVMA is depicted in Algorithm 1.
The assignment starts by computing the preferences P(.) for
all v; € V. The status of all the agents in VUM is initialized
to True, indicating their willingness to participate in DVMA
(Steps 2-6 of Algorithm 1). At each sampling interval ty, € T,
the preference of the VMs is recomputed. Note that ‘%’
captures the current iteration of DVMA and is initialized to
1. Once the preference is recomputed, the free VMs, i.e.,
free[vm;| is True, send proposals to their most preferred
vehicles. Depending on the status of vm;, the following
conditions are encountered, (1) if vm; has the capacity, i.e.,
¢; > Ui(vm;) then v; and vm,; are matched (Steps 1 — 7
of Algorithm 2) or (2) if vm; is already holding proposals,
then appropriate action is taken based on the preference of
Py (vmy). If vmy prefers the incoming proposal v; >=ym; vir,
then v; replaces v;s; otherwise the proposal from v; is rejected
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(Steps 9 — 19 of Algorithm 2). Note that the variable reject
retains the rejected proposal, set to ® if no rejections implying
the matching of v; and vm;. If an assignment is made,

Algorithm 1: Dynamic Vehicle to Machine Assign-
ment Algorithm (DVMA)

Input: V, M, ;, Vv; € V; ¢, Vom,; € M.

Result: U,
1 Initialize: Uy (v;) = ®,Vv; € V;

Vi (vmj) = ®,Vom; e M,a=®,k=1
for each v; € V do

Compute the preference P(v;) as per Eq. (16).
free[v;] = True

end
for each vm; € M do

| free[vm;] = True
end
for each sampling interval t,, € T do
for each vm; € M do
1 | Compute the preference Py (vmy) as per Eq. (18).
12 end
13 while 3vm; | free[vm;] && P(vm;)! = @ do
14 v; = Highest currently ranked vehicle in Py (vm;)
15 reject = Matching_Algorithm (v;, vm;)
16 if reject == ® || reject == v;/ then
17 a,; = Partition_Algorithm (v;,vm;, ;, ¢;)
18 a= [a|a£j}
19 end
20 end
21 end
22 return Wy,

> Final Matching

DT T 7 ORI

—
e

Algorithm 2: Matching_Algorithm (MA).

Input: v;, vm;
Result: reject
1 if g; > ||¥k(vm;)| then

> The rejected proposal

2 U (vs) = {vm;}

3 Uy (vmy) = Ui (vmy) U {v; } > Match (v;, vmy)
4 free[v;] = Flalse

5 if ¢; == |V} (vm;)| then

6 | free[vm;] = False

7 end

8 reject = @

9 end

10 else

11 v;s = The least preferred matched vehicle to VM vm;

12 if v; >vmy Vg then

13 \I/k(vi/) =

14 free[v,; ] = True

15 Uy (vmj) = U (vm;) \ {vi} > Un-Match (vyr, vmy).
16 free[v;] = False

p Wi (v;) = {om; }

18 Wy (vmy) = Ui (vmy) U {v; } > Match (v;, vm;).
19 reject = vy

20 end

21 else

2 | reject=v;

23 end

24 end

25 return reject

Algorithm 3 is triggered, which outputs the allocation vector

(Steps 13-15 of Algorithm 1). It captures the fraction of the

computation that is to be performed locally (a,ﬁ-’ ;) and at vm;
(aji j). The fraction is computed as
1

= (19)

s .
2,] 1 + %
J

and the ratio of power ratings gives an energy-aware partition.

Algorithm 3: Partition_Algorithm (PA)

Input: v;, U (v;), G, ¢
Result: o;,;

> Allocation Vector

1 Initialize: a; ; := @,Vv; € Wi
2 Compute ozi.,]. as per Eq. (19)

3 if Th(ay,j, ¥) < s; then

4 oz;?’j ::l—aaj

5 o= {aé,j,af’j}

6 end

7 else

8 ‘ [T RES {0,1}

9 end

10 return o

Once the partitions are identified, PA tests if the local delay
T (e ;, Vi) overshoots the estimated sojourn time s;, then
the entire computation is offloaded to the VM, otherwise the
obtained partition is retained (Steps 3-8 of Algorithm 3). An
unassigned vehicle reattempts allocation in the next interval
with an updated preference. Note that this procedure termi-
nates when all vehicles are assigned or run out of attempts,
upper bounded by the number of sampling intervals.

TABLE I: Simulation Parameters [33], [34].

Value
500 m
[100 — 1000] KB

[500 — 1500] cycles/bit
[0.1-1.0] GHz
[250 — 400] MW
[150 — 500] MW

Parameter

RSU Coverage

Computation Size of Vehicles
Computational Requirement of
Vehicles

VM Processing Frequency
OBUs Execution Power of
Vehicles

VMs Execution power

Bandwidth of RSUs 20 M Hz [23]
Channel Gain between RSU and

. 18
Vehicles
Noise Power —114 dBm
Path loss —3.4
Transmission Power of Vehicles 31 dBm [22]

V. PERFORMANCE EVALUATION

To demonstrate the efficacy of MIME, we perform val-
idations using synthetic and real-world transportation data
obtained from SUMO [35] and inD dataset [36]. We extract
the velocity and positioning of vehicles from the dataset to
emulate a realistic vehicular trajectory.

1) Environmental Setup: Our analysis considers a two-lane
road network with multiple vehicles traversing the area. The
distribution of the vehicles from the datasets is depicted in
Fig. 4. We consider a statically deployed RSU to have a
coverage area of 500 m. Note that the compute resources at
the RSU are logically partitioned into VMs with heterogeneous
processing frequencies and execution power. All the vehicles
have onboard units (OBUs) with wireless transceivers and
receivers that assist the vehicles in communicating with the
RSU over a noiseless wireless channel [37]. Table I captures
the values of different parameters used for experimentation
and are adopted from standard sources [33], [34].
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2) Benchmarking Algorithms: To evaluate the proficiency
of MIME, we compare its performance against the following.

o Random Assignment (RA): The vehicles are randomly
matched to VMs and checked for the satisfaction of all
the Constraints in Eq. (15).

o Sequential Optimal Matching (SOM): The vehicles are
sequentially matched to the VMs sorted according to
their computing capabilities. This assignment should also
adhere to the Constraints of Eq. (15).

o A Matching Theory Framework for Task Offloading in
Fog Computing for IoT Systems [38] (MTO): This work
proposes a one-to-many matching framework for full
offloading in densely connected IoT-Fog systems. The
overall objective of the proposal was to reduce the latency
incurred in offloading by targeting the reduction in the
worst-case completion time of tasks executed on the IoTs.
For our implementation, we consider the IoTs to be static
vehicles and the Fog Nodes (FNs) to be the VMs.

200 === inD

175 sumo

150

Number of Vehicles
o N 2 N
o (& o [

N
a

0
1 f2 f3 4 5 6

Frame Number

Fig. 4: Number of vehicles at different frames across datasets.

Additionally, we would like to state that we implement the
partial offloading versions of the baselines to make the com-
parison fair and impartial. Note that for all the baselines, the
offloading partition is obtained via Algorithm 3.

3) inD Dataset [36]: We have evaluated MIME using the
inD Dataset. The dataset comprises the trajectories of the
road users captured from the bird’s eye view of a drone,
providing the most naturalistic position. The drone hovered
over four German intersections with a speed restriction of
50 Kmh~!. Prepossessing the captured drone data, 13500
users were detected, comprising vehicles, pedestrians, and
bicyclists. From the data, we considered 400 vehicles that were
annotated. The dataset contains many parameters, but we focus
on the two-dimensional position, x, and y directional velocity,
where the latter was obtained using the Bayesian smoothing
and acceleration model.

4) SUMO Dataset: To generate the synthetic dataset using
SUMO, we considered the map of the Jurong area of Sin-
gapore, incorporating its road network and traffic regulations.
The simulation was run for 200 vehicles, where each vehicle
is distributed randomly and follows realistic traffic flow.

5) Implementation Details: Although the inD dataset pro-
vides the position and velocities of vehicles, it cannot be
directly used in MIME owing to the assumption of a two-
lane structure. Moreover, we extract the z-velocity component
from the dataset, approximating a realistic variation of v; with

time. We use the dataset’s  and y coordinates to determine
the vehicle’s precise location in a two-dimensional layout.
Additionally, the vehicles falling within the radial range of
the RSU (which is assumed to be statically positioned) are
considered for assignment, whereas those outside the range are
ignored. In every iteration of DVMA, we extract the = velocity
component and its corresponding position, taken as inputs that
realistically capture the dynamics of a vehicle trajectory in an
urban road network. Note that the same procedure is followed
for the SUMO dataset while extracting the x and y coordinates.
6) Results and Analysis: This section presents the compar-
ative study of different schemes across evaluation metrics.

Total Latency: Figs. 5a and 6a capture the variation
in the total latency of different protocols across inD and
SUMO datasets. It can be observed from the figure that MIME
achieves the least aggregate latency in most cases, which
is promising behavior. This condescending performance is
attributed to the vehicles ranking the VMs according to their
offloading delays (refer to Eq. (16)). However, the performance
across frames is directly impacted by the number of vehicles
in that frame (refer to Fig. 4). In contrast, MTO grapples
with higher latency compared to MIME, as it prioritizes the
assignment of vehicles with lesser offloaded data instead of
prioritizing the ones with more extensive data. This implies
that the vehicles with more significant data are either queued
at the computationally efficient VMs or are pushed to less
efficient ones. The former elevates the queueing delay, whereas
the latter increases the processing delay, which leads to an
overall increase in the offloading delay. SOM and RA expe-
rience higher delays than MIME and MTO owing to greedy
and randomized assignments leading to inferior assignments.

Outages: MIME suffers from minimum outages com-
pared to the benchmarking algorithms in most scenarios, as
can be inferred from Figs. 5b and 6b. The outages refer
to the vehicular operations that were not performed in the
RSU, considering their respective sojourn time. The ranking
scheme adopted (refer to Eq. (18)) reasons for the superior
performance of MIME. The VM ranking scheme prioritizes
assigning vehicles that have (1) lower execution options and
(2) higher failure probability. Such a combined valuation
boosts the possibility of vehicles with higher data meeting
sojourn time constraints, thereby exhibiting superior perfor-
mance compared to the baselines, which consider neither. On
the other hand, in MTO, the ability of the vehicles to re-
order their preferences boosts their possibility of meeting the
sojourn time. Finally, RA and SOM exhibit a higher number of
outages owing to the non-consideration of sojourn time during
the assignment decisions.

Energy Consumption: The energy expended in the of-
floading is captured in Figs. 5c and 6¢. The energy expended
increases with increased vehicles in the considered frame,
which is expected behavior. However, we can infer from the
figure that MIME expends minimum energy across frames
compared to the benchmarking algorithm. This is because
energy is considered during partitioning, which reduces energy
consumption. However, none of the baselines take offloading
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Fig. 5: Performance based on inD Dataset.
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Fig. 6: Performance based on SUMO Dataset.

decisions based on the energy expended, resulting in higher
energy dissipation.
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Fig. 7: Vehicular and VM Satisfaction using inD Dataset.
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Fig. 8: Vehicular and VM Satisfaction using SUMO Dataset.

Agent Satisfaction: The agents’ satisfaction reflects their
happiness quotient in the matching given a list of prefer-
ences. Note that it can only be computed for matching-based
solutions requiring agents to have a ranked order list. Figs
7a-8b respectively capture the satisfaction of vehicles and
VMs for MIME and MTO. The satisfaction of a vehicle is
computed as (|P(v;)| — rank(vm;))/|P(v;)| * 100, where,
rank(vm;), captures the position of vm; in P(v;) such that
rank(vm;) € [0,|P(v;)| — 1]. The VMs can be matched to
multiple vehicles; the individual satisfaction is computed as

(IP(vm;)| — rank(v;))/(|P(vm;)| — count) % 100, for each
matched v;, and the aggregate is averaged over | P(v;)|. Note
that count captures the assigned vehicles before computing the
preference of v;. As VMs are proposers, the VM satisfaction
is higher than the vehicles for both MIME and MTO.

VI. CONCLUSION

This paper proposed the MIME framework for partial of-
floading of real-time computations from vehicles. Specifically,
MIME addresses two fundamental challenges: (1) capturing
the realistic variation of the vehicular trajectories and (2)
designing an energy-aware, efficient, and scalable partial of-
floading scheme that meets the QoS demands. We proposed
a matching game powered by DFT with dynamic preferences
triggered at each sampling interval. Experimental validations
and comparisons with three distinct baselines establish the
efficacy of the proposed scheme with the reduction of 24.61%
and 11.2% offloading latency and energy for the inD dataset
and 5.6% and 5.52% reduction in offloading latency and
energy for SUMO dataset.

In future work, we plan to explore multiple RSU setups with
effective handover and migration capabilities to enhance inter-
RSU communication. Additionally, we aim to upgrade MIME
to account for co-channel interference, thereby increasing the
robustness of the implementation.
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