PLOS

Check for
updates

G OPEN ACCESS

Citation: Ding K, Luo J, Luo Y (2024) Leveraging
conformal prediction to annotate enzyme function
space with limited false positives. PLoS Comput
Biol 20(5): €1012135. https://doi.org/10.1371/
journal.pchi.1012135

Editor: Cameron Mura, University of Virginia,
UNITED STATES

Received: September 2, 2023
Accepted: May 3, 2024
Published: May 29, 2024

Copyright: © 2024 Ding et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The dataset
underlying this article was derived from sources in
the public domain. We used the data downloaded
from https://github.com/flatironinstitute/DeepFRI.
Our code is publicly available at https://github.com/
luo-group/CPEC.

Funding: This work is supported in part by the
National Institute Of General Medical Sciences of
the National Institutes of Health (https://www.nih.
gov/) under the award R35GM150890, the 2022
Amazon Research Award (https://www.amazon.
science/research-awards), and the Seed Grant

RESEARCH ARTICLE

Leveraging conformal prediction to annotate
enzyme function space with limited false
positives

Kerr Ding(, Jiaqi Luo, Yunan Luo® *

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United
States of America

* yunan@gatech.edu

Abstract

Machine learning (ML) is increasingly being used to guide biological discovery in biomedi-
cine such as prioritizing promising small molecules in drug discovery. In those applications,
ML models are used to predict the properties of biological systems, and researchers use
these predictions to prioritize candidates as new biological hypotheses for downstream
experimental validations. However, when applied to unseen situations, these models can be
overconfident and produce a large number of false positives. One solution to address this
issue is to quantify the model’s prediction uncertainty and provide a set of hypotheses with a
controlled false discovery rate (FDR) pre-specified by researchers. We propose CPEC, an
ML framework for FDR-controlled biological discovery. We demonstrate its effectiveness
using enzyme function annotation as a case study, simulating the discovery process of iden-
tifying the functions of less-characterized enzymes. CPEC integrates a deep learning model
with a statistical tool known as conformal prediction, providing accurate and FDR-controlled
function predictions for a given protein enzyme. Conformal prediction provides rigorous sta-
tistical guarantees to the predictive model and ensures that the expected FDR will not
exceed a user-specified level with high probability. Evaluation experiments show that CPEC
achieves reliable FDR control, better or comparable prediction performance at a lower FDR
than existing methods, and accurate predictions for enzymes under-represented in the train-
ing data. We expect CPEC to be a useful tool for biological discovery applications where a
high yield rate in validation experiments is desired but the experimental budget is limited.

Author summary

Machine learning (ML) models are increasingly being applied as predictors to generate
biological hypotheses and guide biological discovery. However, when applied to unseen
situations, ML models can be overconfident and make enormous false positive predic-
tions, resulting in the challenges for researchers to trade-off between high yield rates and
limited budgets. One solution is to quantify the model’s prediction uncertainty and gener-
ate predictions at a controlled false discovery rate (FDR) pre-specified by researchers.
Here, we introduce CPEC, an ML framework designed for FDR-controlled biological
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discovery. Using enzyme function prediction as a case study, we simulate the process of
function discovery for less-characterized enzymes. Leveraging a statistical framework,
conformal prediction, CPEC provides rigorous statistical guarantees that the FDR of the
model predictions will not surpass a user-specified level with high probability. Our results
suggested that CPEC achieved reliable FDR control for enzymes under-represented in the
training data. In the broader context of biological discovery applications, CPEC can be
applied to generate high-confidence hypotheses and guide researchers to allocate experi-
mental resources to the validation of hypotheses that are more likely to succeed.

Introduction

Machine learning (ML) algorithms have proven to be transformative tools for generating bio-
logical hypotheses and uncovering knowledge from large datasets [1, 2]. Applications include
designing function-enhanced proteins [3, 4], searching for novel drug molecules [5], and opti-
mizing human antibodies against new viral variants [6]. These discoveries often involve a com-
bination of computation and experimentation, where ML-based predictive models generate
biological hypotheses and wet-lab experiments are then used to validate them. This approach
is beneficial as it greatly reduces the search space and eliminates candidates that are unlikely to
be successful, thus saving time and resources in the discovery process. For example, in drug
discovery, ML has become a popular strategy for virtual screening of molecule libraries, where
researchers use ML models to predict the properties of molecules, such as binding affinity to a
target, and identify the most promising candidates for downstream experimental validation
and lead optimization [7].

To gain new insights into biological systems or make novel discoveries (e.g., designing new
drugs), ML algorithms are often used to make predictions for previously unseen data samples.
For example, to support the design of new vaccines or therapeutics for COVID-19, ML algo-
rithms need to predict the potential for immune escape of future variants that are composed of
mutations that have not yet been seen. Similarly, in drug screening, ML algorithms should be
able to predict molecules that are structurally different from those in the training data, which
helps scientists avoid re-discovering existing drugs. However, making predictions for samples
that are under-represented in the training data is a challenging task in ML. While human
experts can assess the success likelihood of generated hypotheses based on their domain
knowledge or intuition, this ability is not naturally developed by an ML model and, as a result,
the model could be susceptible to pathological failure and only provide overconfident or unre-
liable predictions. This can have critical implications in ML-assisted biological discovery, as
unreliable ML predictions can guide experimental efforts in the wrong direction, wasting
resources on validating false positives.

In this work, we aim to develop ML models that can generate hypotheses with limited false
positives, providing confident and accurate predictions that can potentially help improve the
yield rate in downstream validation experiments. Specifically, we use the function annotation
problem of protein enzymes as an example to demonstrate our method. The underlying
computational problem of function annotation is a multi-class, multi-label classification prob-
lem as a protein can have multiple functions. In computational protein function annotation, a
model typically predicts a set of functions that the query protein may potentially have. The set
of predicted functions, if validated by experiments, can be incorporated into existing databases
to augment our knowledge of the protein function space. There is often a trade-off regarding
the size of the prediction set: researchers prefer a set with a small size, containing a handful of
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very confident predictions, as it is not desirable to spend resources on too many hypotheses
that ultimately turn out to be false positives; on the other hand, researchers may be willing to
increase the budget to validate a larger set of predictions in order to improve the chance of dis-
covering novel functions for under-studied proteins.

The above tradeoff is often captured by different notions of prediction score cutoff, which
decides whether to assign a particular function label to a protein, in existing computational
methods for function annotation. For example, when annotating protein functions using
sequence-similarity-based tools such as BLAST [8], a cutoff of the BLAST E-value can be used
to determine the significance of sequence match. However, the choice of E-value cutoff is
often based on the user’s intuition and good cutoff values on a dataset may not generalize to
another dataset. Recent ML methods for enzyme function annotation typically first predict the
probability that the input protein has a particular function and annotate the protein with this
function if the predicted probability is greater than 0.5 [9-11]. However, using an arbitrary
cutoff such as 0.5 is problematic as the predicted probabilities do not always translate to the
confidence of the ML model, especially when the model is not well-calibrated (e.g., a predicted
function with probability 0.95 may still be an unreliable prediction if the model is overconfi-
dent and produces very high probability scores most of the time). Recently, Hie et al. [12]
developed a framework that used the Gaussian process to estimate the confidence or uncer-
tainty in the ML model’s predictions. While the framework was shown to be effective to guide
biological discovery, it is unclear how the estimated uncertainty is related to the final false dis-
covery rate (FDR) in experimental validation and how to set a cutoff on the uncertainty scores
to achieve a desired FDR. Consequently, it is challenging to provide FDR estimates before the
experimental validation, and FDR typically can only be assessed post-validation.

Here, we propose an ML method, called CPEC (Conformal Prediction of EC number), to
achieve FDR-controlled enzyme function prediction by leveraging a statistical framework
known as conformal prediction (CP) [13]. CPEC receives the sequence or structure of an
enzyme as input and predicts a set of functions (EC numbers) that the enzyme potentially
has. The unique strength of CPEC is that the averaged per-protein FDR (i.e., the number of
incorrect predictions divided by the prediction set size for a protein) can be controlled by a
user-specified hyper-parameter a. The CP framework theoretically guarantees that the FDR
of our per-protein predictions is no larger than o with a very high probability. This equips
researchers with foresight, offering success rate estimates even before experimental valida-
tion. In an ML-guided workflow of protein function discovery, researchers can specify the
desired FDR level o based on the experiment budget or expectations. For example, setting o
to a smaller value when only the most confident predictions are needed or the test budget is
limited, or setting to a larger value when the goal is to discover novel functions and a slightly
higher FDR and budget are acceptable. The base ML model of CPEC is PenLight2, an
improved version of the deep learning model PenLight [14] for the multi-class multi-label
protein function annotation problem, which uses a graph neural network to integrate 3D pro-
tein structure data and protein language model embeddings to learn structure-aware repre-
sentations for function prediction. Benchmarked on a carefully curated dataset, we first
found that CPEC outperformed existing deep learning methods for enzyme function predic-
tion. We also demonstrated that CPEC provides rigorous guarantees of FDR and allows users
to trade-off between precision and recall in the predictions by tuning the desired maximum
value o of FDR. Additionally, we showed that CPEC consistently provides FDR-controlled
predictions for proteins with different sequence identities to the training set, suggesting its
robustness even in regimes beyond its training data distribution. Moreover, based on CPEC,
we proposed a cascade model that can better balance the resolution and coverage for EC
number prediction.
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Materials and methods
Problem formulation

Protein function prediction, such as Gene Ontology (GO) term [15] prediction [16] and EC
number [17] prediction, can be formulated as a multi-class, multi-label classification problem,
where each protein can have multiple ground-truth labels. For the set of all possible proteins X
and the ground truth label set ) = {1,..., K}, an ML model f : X — [0, 1] for protein func-
tion prediction predicts the probability of the input protein X € & having each function label
ke {l1,..., K}. In application, a decision threshold parameter A is often needed to generate the
final prediction set C, (X) = {k € Y : f,(X) > A}. Instead of choosing an arbitrary constant
cutoff (e.g., A = 0.5), conformal prediction (CP), also known as conformal risk control, uses a
small set of calibration data to select a valid parameter A that would satisfy rigorous statistical
guarantees for model mistakes on test data, based on the user-defined risk tolerance. As false
discovery rate (FDR) reflects how much proportion of the experimental validation of ML pre-
diction results would be unsuccessful, it is directly related to the gains out of the wet lab experi-
ments as opposed to the experimental costs, which is a tradeoff researchers often need to
confront with. Therefore, in our work, we define FDR as the model mistakes and focus on con-
trolling the FDR of ML predictions. We propose an ML framework, CPEC, which leverages
the conformal prediction framework to achieve FDR-controlled enzyme functions prediction,
and we developed a deep learning model PenLight2 as the base ML model of the CPEC frame-
work (Fig 1).

Conformal risk control

Overview of conformal risk control. Conformal risk control, the generalization of con-
formal prediction [18-20], is a paradigm applicable to general ML models for prediction,
which generates prediction sets with rigorous statistical guarantees for a user-defined level of

model mistakes [21]. Conformal risk control algorithms begin with a trained ML model f and
its decision threshold parameter 2, as previously defined. Note that conformal risk control
does not require additional training or fine-tuning of the existing trained model. Through the

calibration step on a small calibration set D, = {(X¢, Y*)}", that the model f has not encoun-
tered with during training, the algorithms could determine a suitable decision threshold A,
which could control the risks on the test set D,,, = {(X!, Y!)}"", as the user’s request. In terms
of the definition of the model mistakes, existing conformal risk control algorithms allow users
to select the mistake type that they would like to focus on from numerous options (e.g., mis-
coverage [19], false negative rate (FNR) [21], and FDR [22]).

Conformal risk control guarantee for FDR control. Regarding different model mistake
types, the conformal risk control guarantees also take distinct forms. For example, the confor-
mal coverage guarantee [23] and the conformal risk control guarantee [21] target risk functions
that are monotonically non-increasing with respect to the model parameter A, which is
explained in details in S1 Text. As FDR does not strictly hold for this monotonic requirement,
we have to apply a more general definition of risk guarantee [18, 22] which enables the control
of general risks instead of certain monotonic risks. For any user-defined risk function I(-, -),
this generalized guarantee takes the below form:

P(R(L) <2) > 10, 1)

where R(A) = E;, [I(C,(X), Y)] is the notion of the risk, o is the user-defined risk tolerance,

and failure rate & refers to the upper bound of probability of R(A) not falling below a. In
CPEG, if not otherwise specified, we always use 6 = 0.1 following the convention of previous
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Fig 1. Schematic overview of CPEC. (A) CPEC is a machine learning (ML) framework that leverages conformal prediction to control the false
discovery rate (FDR) while performing enzyme function predictions. Compared to conventional ML predictions, CPEC allows users to select the
desired FDR tolerance o and generates corresponding FDR-controlled prediction sets. Enabled by conformal prediction, CPEC provides a rigorous
statistical guarantee such that the FDR of its predictions will not exceed the FDR tolerance a set by the users. The FDR tolerance « offers flexibilities in
ML-guided biological discovery: when « is small, CPEC only produces hypotheses for which it has the most confidence; a larger « value would allow
CPEC to afford a higher FDR, and CPEC thus can predict a set with more function labels to improve the true positive rate. Abbreviation: Func:
function. Incorrect predictions in prediction sets are colored gray. (B) We developed a deep learning model, PenLight2, as the base model of the CPEC
framework. The model is a graph neural network that receives the three-dimensional structure and the sequence of a protein as input and generates a
function-aware representation for the protein. It employs a contrastive learning scheme to learn a vector representation for proteins, such that the
representations of functionally similar proteins in the latent space are pulled together while dissimilar proteins are pushed apart.

https://doi.org/10.1371/journal.pcbi.1012135.9001

studies [13] and fixed 6 throughout the experiments. The intuition of Eq 1 is that the risk of
the prediction sets on test samples will fall under the risk tolerance o with a probability of at
least 1 — 4. The risk function of FDR is defined as below [22]:

_lex)ny]

X @

lFDR(Cx(X)a Y) =1

where the output of lgpy is defined as 0 if C,(X) is an empty set. Consequently, the objective of
controlling the FDR of the predictions within the CPEC framework can be formulated as:

P(EDW [IFDR<CK(X)7 Y)] < a) >1-0. (3)

Calibration algorithm for FDR control. Given the FDR control guarantee, the natural
follow-up question would be how to find a valid parameter A that can control the risk through
the calibration step on calibration data. The Learn then Test (LTT) algorithm [22], which
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formulated the selection of A as a multiple hypotheses testing problem, has been proposed to
solve this question. CPEC adopts the LTT algorithm established upon the data distribution
assumption that all feature-response pairs (X, Y) from the calibration set and the test set are
independent and identically distributed (i.i.d.).

For the candidate model parameter set A = {A,, ..., Ax} where A; < A, < -+ < Ay, the LTT
algorithm associate each A; with a null hypothesis H, : R(A;) > a. The rejection of the null
hypothesis H; would mean that ; can control the user-specified risk at the defined level. As
FDR is nearly a monotonically decreasing function of A, testing for larger A is more likely to
reject the hypothesis than testing for smaller A. Following Angelopoulos et al. [22], we adopted
the fixed sequence testing algorithm [24] for FDR control, which tests the multiple hypotheses
sequentially from Ay to A, stops upon the first acceptance of the null hypothesis, and eventu-

ally returns a rejection set A. While any A € A can control the risks, we select A = minA as
the ultimate threshold for making the predictions on test proteins because the smallest A pro-
vides the largest number of successful discoveries and has the least FNR [22].

According to the data distribution assumption that the calibration and test feature-response
pairs (X, Y) are i.i.d., we are able to test the null hypothesis on the calibration set and then
apply the derived parameter to the test set. For each null hypothesis H,, we calculate a corre-
sponding p-value p;: a p; no greater than 6 would imply the disagreement with 7, and the suc-
cessful control of the risk as the user requests. The commonly used p-values include
Hoeftding’s inequality-based p-values [25] and Hoeftding-Bentkus inequality-based p-values
[26].

In CPEC, we tested a total of N = 100 evenly spaced candidate parameters between [0, 1],
with A; = 0 and Ay = 1. The calibration algorithm of CPEC for FDR control described above is
given in Algorithm 1. We used Hoeftding’s inequality p-values for hypothesis testing, which is
defined below:

P = exp(=2n (o — R(V)), (4)

N
where f?(?») = S I(C(XY), Yr) is the empirical risks on the calibration data, (-), is the
ReLU function, and #, is the size of the calibration set. The proofs of the validity of Hoeffding’s
inequality p-values are included in S1 Text.

Algorithm 1: CPEC for FDR control
Input: FDR tolerance o € (0, 1), failure rate &, total number of candi-

date parameters N, candidate parameter set N = {Ay, ..., An},
calibration data D_, ={(X,,¥,)}:,
/* Calculation of Hoeffding’s inequality p-values {pi, ..., Pw} */
for i «— 1 to N do
R()\i) —0;

for j «— 1 to n. do
if |G (X;)| > 0 then
R(A) < R+ (1 =g, (x) nyl/IC, (X)):
end
end
R(Ai) — é()\i)/nc;
p, — exp(=2n.(x — R(2,))});
end
/* Fixed sequence testing for rejection set A */
A — J;
i «— N;
while p; < d and 1 > 1 do
A—=Au{r}
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1« 1-1;
end

Return: valid parameter A =min /A\

Protein function prediction

EC number prediction dataset. We applied CPEC on the task of Enzyme Commission
(EC) numbers [17] prediction to demonstrate its effectiveness. EC number is a widely used
four-level classification scheme, which organizes the protein according to their functions of
catalyzing biochemical reactions. In specific, a protein would be labeled with an EC number if
it catalyzes the type of biochemical reactions represented by that EC number. For each four-
digit EC number a.b.c.d, the 1st-level a is the most general classification level while the 4th-
level d is the most specific one. We used the dataset that contains EC number-labeled protein
sequences and structures, provided by Gligorijevi¢ et al. [10]. The protein structures were
retrieved from Protein Data Bank (PDB) [27]. Protein chains were then clustered at 95%
sequence identity using the BLASTClust function in the BLAST tool [8] and then organized
into a non-redundant set which only included one labeled high-resolution protein chain from
each cluster. The EC number annotations were collected from SIFTS (structure integration
with function, taxonomy, and sequence) [28]. As the 4th-level EC number is the most informa-
tive functional label, we only kept proteins that have ground-truth level-4 EC numbers in our
experiments. Eventually, the dataset we used has 10, 245 proteins and a train/valid/test ratio of
roughly 7: 1: 2. The proteins in the test set have a maximum sequence identity of 95% to the
training set. Within the test set, test proteins were further divided into disjoint groups with [0,
30%), [30%, 40%), [40%, 50%), [50%, 70%), and [70%, 95%] sequence identity to the training
set. The lower the sequence identity to the training set, the more difficult the test protein
would be for ML models to predict its functions. In experiments, we have used the more chal-
lenging test data group ([0, 30%)) to evaluate the robustness of our framework.

Contrastive learning-based protein function prediction. For protein function predic-
tion tasks, supervised learning has long been a popular choice in the deep learning community.
Supervised learning-based methods take protein sequences or structures as input and directly
map them into class labels. While the idea is simple and efficient, supervised learning has been
suffering from a major drawback: its performance could be severely affected by the class imbal-
ances of the training data, an unfortunately common phenomenon in protein function predic-
tion tasks. For example, in the EC number database, some EC classes contain very few proteins
(less than ten), while some other EC classes contain more than a hundred proteins. Those clas-
ses with more proteins would dominate the training, thereby suppressing the minority classes
and degrading the performance of supervised learning. To overcome this challenge, a new par-
adigm called contrastive learning has become popular in recent years [29]. Instead of directly
outputting class labels, contrastive learning-based models map the training proteins into an
embedding space where functionally similar proteins are close to each other and functionally
dissimilar pairs are far away. Our previously developed ML methods PenLight and CLEAN
[14, 30] have demonstrated the effectiveness of contrastive learning in enzyme function pre-
dictions. In each iteration of the contrastive learning process, the PenLight or CLEAN model
samples a triplet including an anchor protein py, a positive protein p,, and a negative protein
p-» such the positive protein pairs (po, p,) have similar EC numbers (e.g., under the same sub-
tree in the EC number ontology) while the negative pairs (po, p_) have dissimilar EC numbers.
The objective of contrastive learning is to learn low-dimensional embeddings x, x,, x_ for the
protein triplet such that the embedding distance d(xo, x,) is minimized while d(x,, x_) is maxi-
mized (Fig 1B and S1 Text). In the prediction time, the EC number of the training protein
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with the closest embedding distance to the query protein will be used as the predicted function
labels for the query protein.

In this work, we developed PenLight2, an extension of our previous PenLight model [14]
for performing multi-label classification of EC numbers. Similar to PenLight, PenLight2 is a
structure-based contrastive learning framework that integrates protein sequence and structure
data for predicting protein function. It integrated protein 3D structures and protein language
model (ESM-1b [31]) embeddings into a graph attention network [32] and optimized the
model using the contrastive learning approach, which pulled the embeddings of the (anchor,
positive) pair together and the embeddings of the (anchor, negative) pair away. By naturally
representing the amino acids as nodes and spatial relations between residues as edges, the
graph neural network can extract structural features in addition to sequence features and gen-
erate function-aware representations of the protein. In this work, we shifted from the multi-
class single-label classification approach used in PenLight [14] to a multi-class multi-label clas-
sification framework, which better aligns with the function annotation data of enzymes in
which an enzyme can be labeled with multiple EC numbers. PenLight2 achieved two key
improvements compared to PenLight: model training (triplet sampling strategy) and model
inference (function transfer scheme and prediction cutoft selection):

1) Triplet sampling strategy. For training efficiency, PenLight takes a multi-class single-
label classification approach and randomly samples one EC number for promiscuous enzymes
when constructing the triplet in contrastive learning, considering that only less than 10%
enzymes in the database used are annotated with more than one EC number. To enhance the
effectiveness of contrastive learning for promiscuous enzymes, in this work, we adopt a multi-
class multi-label classification approach, in which retain the complete four-level EC number
annotations for an enzyme in the triplet sampling of PenLight2 (Fig 1B). Specifically, we thus
generalized PenLight’s hierarchical sampling scheme to accommodate proteins with multiple
functions in PenLight2: in each training epoch, for each anchor protein (every protein in the
training set), we randomly choose one of its ground truth EC numbers if it has more than one
and then follow original sampling scheme in PenLight for the sampling of the positive and the
negative proteins (S1 Text). A filter is applied to ensure that the anchor and the negative do
not share EC numbers.

2) Function transfer scheme. The original PenLight used the pairwise embedding distance
between the query protein and training proteins to identify the most similar protein (closest
embedding distance) for transferring function annotations. We generalized PenLight’s pro-
tein-protein distance to a protein-cluster distance to improve the robustness in distance com-
putation. Specifically, in PenLight2, we computed a cluster embedding z, for an EC number y
by averaging all proteins with this EC number:

1
%~ 1{p - EC(p) =y}|pZ "P’ ©)

EC(p)=y

where p refers to a protein. Then, we computed the pairwise embedding distance between the
query protein and all the EC clusters. We will transfer the EC numbers from annotated pro-
teins to the query protein based on the computed distances. The smaller the distance with an
EC cluster embedding is, the more likely that the query protein has this EC number. This
approach, tailored for multi-label classification, creates a distance matrix between query pro-
teins and EC numbers, which can be integrated seamlessly with our conformal prediction
framework.

3) Prediction cutoff selection. In contrast to the original PenLight model that only predicted
the top-1 EC number for a query protein, PenLight2 implemented an adaptive method to
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achieve multi-label EC prediction. Following the max-separation method proposed in our pre-
vious study [30], we sorted the distances between the query protein and all EC clusters and
identified the max difference between adjacent distances. PenLight2 then uses the position
with the max separation as the cutoff point and outputs all EC numbers before this point as
final predictions. This cutoff selection method aligns with the multi-label nature of the task.

With these improvements, we extended the original PenLight from the single-label classifi-
cation to the multi-label setting. We denote this improved version as PenLight2.

Results

We performed multiple experiments to evaluate CPEC’s prediction accuracy and ability of
FDR control. We further evaluated CPEC using test data that have low sequence identities to
the training data to demonstrate its utility for generating hypotheses (function annotations)
for novel protein sequences.

CPEC achieves accurate enzyme function predictions

We first evaluated the prediction performance of PenLight2, the base ML model in CPEC, for
predicting function annotations (EC numbers) of protein enzymes. The purpose of this experi-
ment was to assess the baseline prediction accuracy of CPEC when the FDR control is not
applied. We compared CPEC with three state-of-the-art deep learning methods capable of reli-
ably predicting enzyme function on the fourth level of EC hierarchy, including two CNN-
based (convolutional neural networks) methods DeepEC [9] and Protelnfer [11] that take pro-
tein sequence data as input and one GNN-based (graph neural networks) method DeepFRI
[10] that takes both protein sequence and structure data as input. All these three methods
applied the multi-class classification paradigm for function prediction: first predicting a score
between 0 and 1 as the predicted probability that the input enzyme has a particular EC number
and then generating all EC numbers with predicted probability greater than 0.5 (except for
DeepFRI which used 0.1 as cutoff) as the final predicted function annotations for the input
enzyme. We evaluated all methods using metrics F1 score, which assesses prediction accuracy
considering both precision and recall, and the normalized discounted cumulative gain
(nDCQG) [33], which rewards higher rankings of true positives over false negatives in the pre-
diction set (S1 Text). On a more challenging test set (test proteins with [0, 30%) sequence iden-
tity to training proteins), we further evaluated all methods by drawing the micro-averaged
precision-recall curves.

The evaluation results showed that our method outperformed all the three state-of-the-art
methods in terms of both F1 score and nDCG (Fig 2A). For example, PenLight2 achieved a sig-
nificant improvement of 34% and 26% for F1 and nDCG, respectively, over the second-best
baseline DeepFRI. The pronounced performance gaps between PenLight2 and other baselines
also suggested the effectiveness of the contrastive learning strategy used in PenLight2. The
major reason is that contrastive learning utilized the structure of the function space (the hier-
archical tree of the EC number classification system) to learn protein embeddings that reflect
function similarity, while the multi-class classification strategy used in the three baselines just
treated all EC numbers as a flat list of labels and may only capture sequence/structure similar-
ity but not function similarity. In addition, we observed that methods that incorporated pro-
tein structure data (PenLight2 and DeepFRI) achieved better than methods that only use
sequence data as input (DeepEC and Protelnfer), suggesting that protein structure may
describe features related to functions more explicitly and is useful for predicting protein func-
tion. Those results demonstrated that the design choices of PenLight2, including the contras-
tive learning strategy and representation learning of protein structure, greatly improve the
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Fig 2. PenLight2, the base ML model of CPEC, outperforms the state-of-the-art methods for EC number prediction. (A) We evaluated DeepEC [9], ProteInfer
[11], DeepFRI [10], and PenLight2 for predicting the 4th-level EC number, using F1 score, the normalized discounted cumulative gain (nDCG), and coverage as the
metrics. Specifically, coverage is defined as the proportion of test proteins for which a method has made at least one EC number prediction. (B) We further evaluated
all methods for predicting the 4th-level EC number on more challenging test proteins with [0, 30%) sequence identities to the training proteins and drew the micro-
averaged precision-recall curves. For each curve, we labeled the point with the maximum F1 score (Fmax).

https://doi.org/10.1371/journal.pchi.1012135.g002

accuracy of protein function prediction. To further analyze PenLight2’s prediction perfor-
mance, we delineated its F1 score into precision and recall and observed that PenLight2 has
slightly lower precision than other methods but substantially higher recall and F1 score (S1
Fig). We noted that other baseline methods such as ProteInfer achieved the high precision
score at a cost of low coverage (Fig 2A), meaning that they did not predict any functions for a
large number of query proteins due to their high uncertainties in those proteins. Additionally,
we evaluated PenLight despite that it only performs single-label prediction, and we found that
PenLight and PenLight2 had similar performances. As the fraction of promiscuous enzymes is
low in the test set, we expected PenLight2 to be a more accurate predictor than PenLight in
future enzyme function prediction tasks when promiscuous enzymes prevail.

On a more challenging test set which only includes test proteins with [0, 30%) sequence
identities to training proteins, we also observed that PenLight2 robustly predicted the EC
numbers of the test proteins and outperformed all baseline methods (Fig 2B and S3 Fig). The
improvement of the micro-averaged Fmax value from the best baseline method Protelnfer to
PenLight2 was 32%. In the high recall region, PenLight2 achieved a higher precision value
than any of the baseline methods. The results here were consistent with the results on the
entire test set, which further proved the effectiveness of PenLight2 for EC number prediction.

CPEC provides FDR control for EC number prediction

After validating its prediction performance, we integrated PenLight2 as the base model into
the conformal prediction framework. Conformal prediction provides a flexible, data-driven
way to find an optimal cutoff for PenLigth2 to decide whether to predict a function label for
the input protein, such that the FDR on the test data is lower than the user-specified FDR
upper bound a. Here, we performed experiments to investigate whether CPEC achieves the
desired FDRs and how its prediction performance would change when varying a. For compar-
ison, we compared CPEC to several other thresholding strategies for generating the prediction
set, including 1) max-separation (Methods); 2) top-1, where only the EC number with the clos-
est embedding distance to the input protein is predicted as output; and 3) o-threshold, where
all EC numbers with an embedding distance smaller than y + 20 to the input protein are
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predicted as output, where y and o are the mean and standard deviation of a positive control
set that contains the distances between all true protein-EC number pairs. Platt scaling [34], a
parametric calibration method, was further included as a thresholding strategy for compari-
son. We also included our baseline DeepFRI, which outputs EC numbers if it predicts that the
probability of the input having this EC number is greater than a cutoff of 0.1. The purpose of
the experiment here is not to show CPEC can outperform all other methods under all metrics
but to show that CPEC can achieve a desired tradeoff by tuning the interpretable parameter o
and simultaneously provide a rigorous statistical guarantee on its FDR. In an evaluation exper-
iment, we have further compared CPEC with two point-uncertainty prediction methods
(Monte Carlo dropout [35] and RED [36]), demonstrating that CPEC provides precise FDR
control prior to validation, whereas MC dropout and RED can only evaluate FDR post-valida-
tion (S1 Text).

Reliable FDR controls. In theory, the conformal prediction framework guarantees that
the actual FDR of the base ML model on the test data is smaller than the pre-specified FDR
level & with high probability. We first investigated how well this property holds on our func-
tion prediction task. We varied the value of & from 0 to 1, with increments of 0.1, and mea-
sured CPEC’s averaged per-protein FDR on the test data. As expected, we observed that the
actual FDR of CPEC (Fig 3A, blue line) was strictly below the specified FDR upper bound o
(Fig 3A, diagonal line) across different « values. This result suggested that CPEC successfully
achieved reliable FDRs as guaranteed by the conformal prediction. We have further performed
an evaluation experiment to investigate the impact of the calibration set sizes on CPEC’s FDR
control, and the results suggested that the FDR control performances of CPEC were robust to
various calibration set sizes (S1 Text).

Tradeoff between precision and recall with controlled FDR. Varying the FDR parame-
ter a allowed us to trade-off between the prediction precision and recall of CPEC (Fig 3B and
3C). When a was small, CPEC predicted function labels for which it has the most confidence,
in order to achieve a lower FDR, resulting in high precision scores (e.g., precision 0.9 when
o =0.1). When CPEC was allowed to tolerate a relatively larger FDR ¢, it predicted more
potential function labels for the input protein at the FDR level it can afford, which resulted in
an increasing recall score as o was increasing. Similarly, the nDCG score of CPEC was also
increasing with « (Fig 3E), indicating that CPEC not only retrieved more true function labels
but also ranked the true labels at the top of its prediction list.
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Fig 3. CPEC achieves FDR control for EC number prediction. For FDR tolerance a from 0.1 to 0.9 with increments 0.1, we evaluated how well CPEC controls the FDR
for EC number prediction. Observed FDR risks, precision averaged over samples, recall averaged over samples, F1 score averaged over samples, and nDCG were reported
for each FDR tolerance on test proteins in (A-E). The black dotted line in (A) represents the theoretical upper bound of FDR over test proteins. Three thresholding
strategies were assessed over PenLight2 as a comparison to CPEC, which includes 1) max-separation [30], 2) top-1, and 3) o-threshold. The results of CPEC were
averaged over five different seeds. DeepFRI was also included for comparison.

https://doi.org/10.1371/journal.pchi.1012135.9003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012135 May 29, 2024 11/21


https://doi.org/10.1371/journal.pcbi.1012135.g003
https://doi.org/10.1371/journal.pcbi.1012135

PLOS COMPUTATIONAL BIOLOGY Conformal prediction for enzyme function

Interpretable cutoff for guiding discovery. CPEC is able to compute an adaptive cutoff
internally based on the user-specified FDR parameter ¢ for deciding whether or not to assign a
function label to the input protein. This allows researchers to prioritize or balance precision,
recall, and FDR, depending on test budget or experiment expectations, in an ML-guided bio-
logical discovery process. In contrast, many existing methods that use a constant cutoff often
have optimized performance in one metric but suffer in another. For example, in our experi-
ment, DeepFRI and Platt scaling threshold strategy had the highest precisions but their recalls
were the lowest among all methods; the o-threshold strategy had a recall of 0.94 yet its FDR
(0.75) was substantially higher than others (Fig 3A-3C and S2 Fig). Although some methods
such as DeepFRI may achieve a better tradeoff between precision and recall by varying its
probability cutoff from 0.1 to other values, they lack a rigorous statistical guarantee on the
effect of varying the cutoff values. For example, if the cutoff of DeepFRI was raised from 0.1 to
0.9, one can expect that, qualitatively, it would lead to a higher precision but also a higher
FDR. However, it is hard to quantitatively interpret the consequence of raising the cutoff to 0.9
(e.g., how high would the FDR be) until the model is evaluated using ground-truth labels,
which are often unavailable before experimental validation in the process of biological discov-
ery. In contrast, with CPEC, researchers are also able to balance the interplay between the pre-
diction precision and recall by tuning the interpretable parameter o and assured that the
resulting FDR will not be greater than a.

Opverall, through these experiments, we validated that CPEC can achieve the statistical guar-
antee of FDR. We further evaluated the effect of varying the FDR tolerance o on CPEC’s pre-
diction performances. Compared to conventional strategies for multi-label protein function
prediction, CPEC provides a flexible and statistically rigorous way to better tradeoff precision
and recall, which can be used to better guide exploration and exploitation in biological discov-
ery with a controlled FDR.

Adaptive prediction of EC numbers for proteins with different sequence
identities to the training set

The risk in our conformal prediction framework is defined as the global average of per-protein
FDRs, which may raise the concern that the overall FDR control achieved by CPEC on the test
set was mainly contributed by FDR controls on those proteins that are easy to characterize and
predict, and it is possible that the model suffered from pathological failures and did not give
accurate FDR controls on proteins that are hard to predict. To this point, we defined the pre-
diction difficulty based on the level of sequence identity between test proteins and training
proteins, following the intuition that it is more challenging for an ML model to predict the
functions of a protein if the protein does not have homologous sequences in the training data.
We first performed a stratified evaluation to analyze CPEC’s FDR-control performance at dif-
ferent levels of prediction difficulty. After examining the consistency of the FDR control across
different difficulties, we explored an adaptive strategy for predicting EC numbers, which
allows the ML model not to predict a too specific EC number than what the evidence sup-
ported and only predict at the most confident level of EC hierarchy.

Consistency of FDR control. We first confirmed CPEC’s FDR-control ability across dif-
ferent levels of prediction difficulty. Specifically, we partitioned the test set into disjoint groups
based on the following ranges of sequence identity to the training set: [0, 30%), [30%, 40%),
[40%, 50%), [50%, 70%) and [70%, 95%]. We varied the values of & from 0.05 to 0.5 with incre-
ments of 0.05. For each level of FDR tolerance ¢, we examined the FDR within each group of
test proteins. As shown in Fig 4A, CPEC achieved consistent FDR controls across different lev-
els of train-test sequence identity and different values of o, where the observed FDR were all
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Fig 4. CPEC makes adaptive EC number predictions for proteins with different sequence identities to the training set. (A) We reported the observed FDR for test
proteins with different sequence identities to the training set (i.e. different difficulty levels) for FDR tolerance & from 0.05 to 0.5 with increments of 0.05. Test proteins
were divided into disjoint groups with [0, 30%), [30%, 40%), [40%, 50%), [50%, 70%), and [70%, 95%] sequence identity to the training set. The smaller the sequence
identity, the harder the protein would be for machine learning models to predict function labels. (B) We designed the procedure to first predict the EC number at the 4th
level. If the model was uncertain at this level and did not make any predictions, we would move to the 3rd level to make more confident conformal predictions instead of
continuing with the 4th level with high risks. We used the same FDR tolerance of & = 0.2 for both levels of CPEC prediction. For proteins with different sequence
identities to the training data, we reported the hit rate of our proposed procedure. The hit rate on the 4th level, the hit rate on the 3rd level, the percentage of proteins with
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https://doi.org/10.1371/journal.pchi.1012135.9004

below the pre-specified FDR tolerance a. Even for the most difficult group of test proteins that
only have [0, 30%) sequence identity to the training proteins, CPEC still achieved an FDR of
0.03 when tolerance o = 0.1. This is because a well-trained ML model would have low confi-
dence when encountering difficult inputs, and CPEC would abstain from making predictions
if the model’s confidence does not exceed the decision threshold. The results of this experi-
ment built upon the conclusion of the previous subsection and validated that CPEC can not
only control the FDR of the entire test set but also the FDR for each group of test proteins with
different levels of prediction difficulty. We have performed an evaluation experiment to fur-
ther assess CPEC’s FDR control on test proteins that do not belong to the same CATH super-
families [37] as any of the training proteins. We found that CPEC provided effective FDR
control for these test proteins from unseen superfamilies (S5-S7 Figs and S1 Text), suggesting
that CPEC can offer effective FDR-controlled EC number predictions even for test proteins
that are very dissimilar to its training proteins.

An adaptive strategy for EC number prediction. The EC number hierarchy assigns
four-digit numbers to enzymes, where the 4th-level label describes the most specific functions
of enzymes whereas the 1st-level label describes the most general functions. In EC number pre-
diction, ideally, a predictive model should not predict a too specific EC number than what the
evidence supported. In other words, if a model is only confident about its prediction up to the
3rd level of an EC number for a protein, it should not output an arbitrary prediction at the 4th
level. We first trained two CPEC models, where the first model, denoted as CPEC4, predicts
EC numbers at the 4th level as regular, and the other, denoted as CPEC3, predicts the 3rd-level
EC numbers. We then combine the two models as a cascade model: given an input protein and
a desired value of a, we first apply the CPEC4 to predict the 4th-level EC numbers for the
input protein with an FDR at most . If CPEC4 outputs any 4th-level EC numbers, they will be
used as the fine-level annotations for the input; if CPEC4 predicts nothing due to the FDR tol-
erance o being too stringent, we apply CPEC3 on the same input to predict EC numbers at the
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3rd-level. If CPEC3 outputs any 3rd-level EC numbers, they will be used as the coarse-level
annotations for the input; otherwise, the cascade model just predicts nothing for this input.
The motivation of this adaptive prediction strategy is that even though 3rd-level EC numbers
are less informative than 4th-level ones, it might be more useful for researchers in certain cir-
cumstances to acquire confident 3rd-level EC numbers than only obtaining a prediction set
with a large number of false positive EC numbers at the 4th level.

To validate the feasibility of the above adaptive model, we evaluated CPEC3 and CPEC4
using the same FDR tolerance o = 0.2 on our test set. We reported the hit rate, defined as the
fraction proteins for which our model predicted at least one correct EC number, for both the
4th-level and the 3rd-level EC numbers. We found that this adaptive prediction model, com-
pared to the model that only predicts at the 4th level, greatly reduced the number of proteins
for which the model made incorrect predictions or did not make predictions (Fig 4B). For
example, on the test group with sequence identity [0, 30%) to the training data, around 60%
proteins were correctly annotated with at least one EC number, while only 40% proteins were
correctly annotated if the adaptive strategy was not used. This experiment demonstrated the
applicability of CPEC for balancing the prediction resolution and coverage in protein function
annotation.

Application: EC number annotation for low-sequence-identity proteins

Conformal prediction quantifies the ML model’s uncertainty in its predictions, especially for
the predictions for previously unseen data. This is extremely useful in ML-guided biological
discovery as we often need to make predictions for unseen data to gain novel discoveries. For
example, in protein function annotation, the most challenging proteins to annotate are those
previously uncharacterized or do not have sequence homologous in current databases. Con-
ventional ML models that do not quantify prediction uncertainties are often overconfident
when making predictions for the aforementioned challenging samples, leading to a large num-
ber of false positives in their predictions, which can incur a high cost in experimental valida-
tion without yielding a high true positive rate. Considering the importance of predicting
previously uncharacterized data, here we designed an evaluation experiment to assess CPEC’s
prediction performance on these challenging proteins. We created a test set that contains only
proteins that have less than 30% sequence identity to any proteins in the training set, which
simulated a challenging application scenario.

We varied the FDR tolerance & from 0.05 to 0.5 and counted the number of correct predic-
tions, where assigning one EC number to a protein was counted as one prediction. We
observed that CPEC had an effective uncertainty quantification for its predictions on this low-
sequence-identity test set (Fig 5A). For example, when a = 0.05 which forced the model to
only output the most confident predictions, CPEC was highly accurate, with a precision of
nearly 0.97. At the FDR tolerance level of 0.1, CPEC was able to retrieve 25% (180/777) true
protein-EC number pairs at a precision higher than 0.9. Keeping increasing the value of o
allowed CPEC to make more correct predictions, without significantly sacrificing precision.
For instance, at the level a = 0.5, CPEC successfully predicted 70% true protein-EC number
pairs while maintaining a reasonable precision of 0.6 and an nDCG of 0.7. As a comparison,
the baseline method DeepFRI correctly predicted 309 protein-EC pairs, out of the total 777
true pairs, with a precision of 0.89 and an nDCG score of 0.50, which roughly corresponds to
CPEC’s performance at a = 0.2.

We again note that CPEC is more flexible than methods such as DeepFRI in that it provides
an interpretable and principled way to tradeoff between precision and recall, which allows
researchers to not only prioritize high-confidence predictions but also increase prediction
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Fig 5. Application of FDR control for the EC number prediction of low-sequence-identity proteins. (A) CPEC was evaluated on difficult test proteins ([0, 30%)
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the prediction sets generated by CPEC for Gag-Pol polyprotein (UniProt ID: P04584; PDB ID: 3F9K), along with the prediction set from DeepFRI. CPEC used the chain
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https://doi.org/10.1371/journal.pchi.1012135.9005

coverage for improving the yield rate of true positives. To illustrate this, we visualized the pre-
diction results of CPEC and DeepFRI in Fig 5B. We selected a protein that has multiple EC
number annotations (UniProt ID: P04584). Using its default setting, DeepFRI predicted four
labels for this protein, among which three were correct. For CPEC, we gradually increased the
value of o and see how the prediction set was changing. Interestingly, we observed that CPEC
gradually predicted more true EC numbers as o was increasing while maintaining a low FDR.
In particular, when a = 0.25, CPEC outputted two EC numbers, both of which were correct
predictions; when a was relaxed to 0.3, CPEC predicted one more EC number, which turned
out to be also correct; when we further relaxed the FDR tolerance a to 0.35, CPEC predicted
six EC numbers for the protein, and four of them were correct. This example illustrated
CPEC:s utility in practice: researchers have the flexibility when using CPEC to guide experi-
ments, where a small value of ¢ prioritizes accurate and confident hypotheses, and a large
value of & promotes a high yield of true positives while ensuring the number of false positives
to be limited.
Having observed that CPEC was able to recover more true function labels as we were relax-
ing the FDR tolerance ¢, we asked one important question—at which value of & can CPEC
output the first correct function label (“hit”) for the input protein. We referred to this ¢ value
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as FDR@1st-hit. This metric can be viewed as a proxy of the experiment cost researchers need
to pay before they obtain the first validated hypothesis. We computed the FDR@1st-hit value
for all test proteins in each of the five disjoint groups partitioned by their sequence identity to
training sequences (Fig 5C). We found that for the majority of the test sequences (the four
groups out of five with sequence identity at least 30% to training sequences), CPEC was able to
reach the first hit at an FDR lower than 0.15. For the most difficult group where all proteins
share [0, 30%) sequence identity to training data, the median FDR@1st-hit was 0.3. This obser-
vation was consistent with our intuition and expectation, as low-sequence-identity proteins
are more difficult for the ML model to predict, thus requiring a larger hypotheses space to
include at least one true positive. Overall, CPEC achieved a reasonable FDR@1st-hit for func-
tion annotation, meaning that it produced a limited number of false positives before recover-
ing at least one true positive, which is a highly desired advantage in ML-guided biological
discovery.

Discussion

Machine learning models play a vital role in generating biological hypotheses for downstream
experimental analyses and facilitating biological discoveries in various applications. A signifi-
cant challenge in the process of ML-assisted biological discoveries is the development of ML
models with interpretable uncertainty quantification of predictions. When applied to unseen
situations, ML models without uncertainty quantification are susceptible to overconfident pre-
dictions, which misdirects experimental efforts and resources to the validation of false positive
hypotheses. Addressing this challenge becomes essential to ensure the efficiency and reliability
of ML-assisted biological discovery.

In this work, we have presented CPEC, an ML framework that enables FDR-controlled
ML-assisted biological discoveries. Leveraging the conformal prediction framework, CPEC
allows users to specify their desired FDR tolerance o, tailored to the experiment budget or
goals and makes corresponding predictions with a controlled FDR. We demonstrate CPEC’s
effectiveness using enzyme function annotation as a case study, simulating the discovery pro-
cess of identifying the functions of less-characterized enzymes. PenLight2, an improved ver-
sion of PenLight optimized for multi-label classification is utilized as CPEC’s base ML model.
Specifically, CPEC takes the sequence and structure of an enzyme as input and outputs a set of
functions (EC numbers) that the enzyme potentially has. The conformal prediction algorithm
in CPEC theoretically guarantees that the FDR of the predicted set of functions will not exceed
o with high probability. The evaluation of CPEC on the EC number prediction task showed
that CPEC provides reliable FDR control and has comparable or better prediction accuracy
than baseline methods at a much lower FDR. Interpretable cutoffs were provided by CPEC for
guiding the EC number annotations of proteins. Furthermore, CPEC demonstrated its robust-
ness in making FDR-controlled predictions even for proteins with low sequence identity to its
training set.

Quantifying uncertainties of ML model predictions is a key desideratum in ML-guided bio-
logical discovery. Although a few prior studies have investigated the uncertainty quantification
of ML models [12, 38], their uncertainty estimates are only indicative of prediction errors but
do not translate to error-controlled predictions. In contrast, CPEC enables researchers to spec-
ify a maximum level of error rate and produces a set of predictions whose error rate is guaran-
teed to be lower than the specified level. Additionally, CPEC stands out by providing risk
estimates, which delivers insights into the potential outcomes even before experimental valida-
tion and aids in the strategic allocation of experimental resources. One limitation of the CPEC
framework is that when under covariate shift (i.e., Pogjip(X) 7 Prest(X)), the data assumption of
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CPEC that the data in the calibration and test sets are i.i.d. is violated, which might lead to sub-
optimal FDR control performances (S6 and S7 Figs). Although weighted conformal prediction
frameworks have been proposed to address this limitation [39], the quantification and control
of non-monotonic risk functions (e.g., FDR) under covariate shift remained a challenging
problem. In this work, we define the error rate as the false discovery rate (FDR) to reflect the
practical consideration in experiments where the goal is to maximize the success rate of
hypothesis validation given a limited test budget. Nevertheless, the CPEC framework can be
extended to support other forms of error rates, such as false negative rate [13]. In addition to
protein function annotation, we expect CPEC to be a valuable tool for researchers in other bio-
logical discovery applications particularly when a balance between the experimental budget
and the high yield rate is desired, such as drug target identification [40], material discovery
[41], and virtual molecule screening [38].

Supporting information

S1 Text. Supplementary information. Additional methodology, detailed experiment descrip-
tions, and further evaluation experiments are included in the file.
(PDF)

S1 Fig. Performance evaluation of representative baseline methods for EC number predic-
tion. We evaluated DeepEC, Protelnfer, DeepFRI, and CPEC (PenLight2) for predicting the
4th level EC number, using sample-averaged precision and recall as the metrics. DeepEC and
DeepFRI were evaluated using the only trained model provided in their repositories, whereas
Protelnfer was assessed using 5 different trained models. DeepFRI was trained on the same
dataset as PenLight2 while DeepEC and Protelnfer were trained by their respective datasets.
PenLight2 was trained using 5 different seeds.

(PDF)

$2 Fig. CPEC achieves FDR control for EC number prediction. Platt scaling [34], RED [36],
and Monte Carlo dropout [35] were further evaluated as thresholding strategies, in compari-
son to CPEC. Due to the requirements of the methods, RED and MC dropout were applied on
top of an MLP model. The results of CPEC and all of the thresholding strategies were averaged
over five different seeds.

(PDF)

S3 Fig. Performance evaluation of representative baseline methods for EC number predic-
tion on test proteins with [0, 30%) sequence identities to training proteins. We evaluated
DeepEC, Protelnfer, DeepFRI, and CPEC (PenLight2) for predicting the 4th level EC number,
using sample-averaged precision, recall, F1 score, nDCG, and coverage as the metrics. DeepEC
and DeepFRI were evaluated using the only trained model provided in their repositories,
whereas ProteInfer was assessed using 5 different trained models. DeepFRI was trained on the
same dataset as PenLight2 while DeepEC and ProteInfer were trained by their respective data-
sets. PenLight2 was trained using 5 different seeds.

(PDF)

$4 Fig. The FDR control of CPEC with different calibration set sizes. The performances of
CPEC’s FDR control were evaluated using calibration sets with various sizes (abbrev: calib. set
size): 20%, 10%, 5%, and 1% of the total number of the training data. The same training data
was used across all calibration set sizes to ensure consistency in the comparison. The black dot-
ted line in the first panel represents the theoretical upper bound of FDR over test proteins. The
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results were averaged over five different seeds.
(PDF)

S5 Fig. Performance evaluation of representative baseline methods for EC number predic-
tion on test proteins that do not belong to the same CATH [37] superfamilies as the train-
ing proteins. CPEC and three baseline methods (DeepEC, Protelnfer, and DeepFRI) were
evaluated for predicting the 4th level EC number, using sample-averaged precision, recall, F1
score, nDCG, and coverage as the metrics. DeepEC and DeepFRI were evaluated using the
only trained model provided in their repositories, whereas Protelnfer was assessed using 5 dif-
ferent trained models. DeepFRI was trained on the same dataset as CPEC, while DeepEC and
Protelnfer were trained using their respective datasets. Training proteins not labeled in the
CATH database were only removed from the training dataset of CPEC but not from the base-
line methods’ training sets, which gave potential advantages to baseline methods. CPEC was
trained using 5 different seeds.

(PDF)

S6 Fig. Application of the FDR control for the EC number prediction of out-of-distribu-
tion (OOD) proteins. The FDR control of CPEC was evaluated on a more challenging data
split: no training and test proteins belong to the same CATH [37] superfamily. Training pro-
teins not labeled in the CATH database were only removed from the training dataset of CPEC
but not from the baseline methods’ training sets, which gave potential advantages to baseline
methods. The results were averaged over five different seeds.

(PDF)

S7 Fig. Application of the FDR control for the EC number prediction of out-of-distribu-
tion (OOD) proteins. The FDR control of CPEC was evaluated on a more challenging data
split: no training and test proteins belong to the same CATH [37] superfamily. A total number
of 200 test proteins were sampled from the test set, and proteins that belong to the same super-
families as the sampled test proteins were removed from the training set of CPEC. Training
proteins not labeled in the CATH database were only removed from the training dataset of
CPEC but not from the baseline methods’ training sets, which gave potential advantages to
baseline methods. The results were averaged over five different seeds.

(PDF)

S8 Fig. PenLight2, the base ML model of CPEC, outperforms the state-of-the-art methods
for EC number prediction. CPEC (PenLight2) and four baseline methods (including a base-
line MLP model that takes the ESM-1b protein embeddings as the input) were evaluated for
predicting the 4th-level EC number on more challenging test proteins with [0, 30%) sequence
identities to the training proteins and the micro-averaged precision-recall curves were drawn.
For each curve, the point with the maximum F1 score (Fmax) was labeled.

(PDF)

S9 Fig. Evaluation of two point-uncertainty prediction approaches. Two point-uncertainty
prediction methods (Monte Carlo dropout (MC dropout) [35] and RED [36]) were evaluated
in terms of uncertainty quantification. To make a fair comparison, a multi-layer perception
taking ESM-1b protein embedding as the input was selected as the base ML model. The per-
centiles of the prediction variance (10th, 20th, 30th,. . ., and 100th percentiles) on the test set
were used as the cutoffs. Predictions with variances larger than the cutoff were dropped.
Observed false discovery rate (FDR), precision, recall, and coverage were used as metrics. The
results were averaged over five different seeds.

(PDF)
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