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Abstract

Machine learning (ML) is increasingly being used to guide biological discovery in biomedi-

cine such as prioritizing promising small molecules in drug discovery. In those applications,

ML models are used to predict the properties of biological systems, and researchers use

these predictions to prioritize candidates as new biological hypotheses for downstream

experimental validations. However, when applied to unseen situations, these models can be

overconfident and produce a large number of false positives. One solution to address this

issue is to quantify the model’s prediction uncertainty and provide a set of hypotheses with a

controlled false discovery rate (FDR) pre-specified by researchers. We propose CPEC, an

ML framework for FDR-controlled biological discovery. We demonstrate its effectiveness

using enzyme function annotation as a case study, simulating the discovery process of iden-

tifying the functions of less-characterized enzymes. CPEC integrates a deep learning model

with a statistical tool known as conformal prediction, providing accurate and FDR-controlled

function predictions for a given protein enzyme. Conformal prediction provides rigorous sta-

tistical guarantees to the predictive model and ensures that the expected FDR will not

exceed a user-specified level with high probability. Evaluation experiments show that CPEC

achieves reliable FDR control, better or comparable prediction performance at a lower FDR

than existing methods, and accurate predictions for enzymes under-represented in the train-

ing data. We expect CPEC to be a useful tool for biological discovery applications where a

high yield rate in validation experiments is desired but the experimental budget is limited.

Author summary

Machine learning (ML) models are increasingly being applied as predictors to generate

biological hypotheses and guide biological discovery. However, when applied to unseen

situations, ML models can be overconfident and make enormous false positive predic-

tions, resulting in the challenges for researchers to trade-off between high yield rates and

limited budgets. One solution is to quantify the model’s prediction uncertainty and gener-

ate predictions at a controlled false discovery rate (FDR) pre-specified by researchers.

Here, we introduce CPEC, an ML framework designed for FDR-controlled biological
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discovery. Using enzyme function prediction as a case study, we simulate the process of

function discovery for less-characterized enzymes. Leveraging a statistical framework,

conformal prediction, CPEC provides rigorous statistical guarantees that the FDR of the

model predictions will not surpass a user-specified level with high probability. Our results

suggested that CPEC achieved reliable FDR control for enzymes under-represented in the

training data. In the broader context of biological discovery applications, CPEC can be

applied to generate high-confidence hypotheses and guide researchers to allocate experi-

mental resources to the validation of hypotheses that are more likely to succeed.

Introduction

Machine learning (ML) algorithms have proven to be transformative tools for generating bio-

logical hypotheses and uncovering knowledge from large datasets [1, 2]. Applications include

designing function-enhanced proteins [3, 4], searching for novel drug molecules [5], and opti-

mizing human antibodies against new viral variants [6]. These discoveries often involve a com-

bination of computation and experimentation, where ML-based predictive models generate

biological hypotheses and wet-lab experiments are then used to validate them. This approach

is beneficial as it greatly reduces the search space and eliminates candidates that are unlikely to

be successful, thus saving time and resources in the discovery process. For example, in drug

discovery, ML has become a popular strategy for virtual screening of molecule libraries, where

researchers use ML models to predict the properties of molecules, such as binding affinity to a

target, and identify the most promising candidates for downstream experimental validation

and lead optimization [7].

To gain new insights into biological systems or make novel discoveries (e.g., designing new

drugs), ML algorithms are often used to make predictions for previously unseen data samples.

For example, to support the design of new vaccines or therapeutics for COVID-19, ML algo-

rithms need to predict the potential for immune escape of future variants that are composed of

mutations that have not yet been seen. Similarly, in drug screening, ML algorithms should be

able to predict molecules that are structurally different from those in the training data, which

helps scientists avoid re-discovering existing drugs. However, making predictions for samples

that are under-represented in the training data is a challenging task in ML. While human

experts can assess the success likelihood of generated hypotheses based on their domain

knowledge or intuition, this ability is not naturally developed by an ML model and, as a result,

the model could be susceptible to pathological failure and only provide overconfident or unre-

liable predictions. This can have critical implications in ML-assisted biological discovery, as

unreliable ML predictions can guide experimental efforts in the wrong direction, wasting

resources on validating false positives.

In this work, we aim to develop ML models that can generate hypotheses with limited false

positives, providing confident and accurate predictions that can potentially help improve the

yield rate in downstream validation experiments. Specifically, we use the function annotation

problem of protein enzymes as an example to demonstrate our method. The underlying

computational problem of function annotation is a multi-class, multi-label classification prob-

lem as a protein can have multiple functions. In computational protein function annotation, a

model typically predicts a set of functions that the query protein may potentially have. The set

of predicted functions, if validated by experiments, can be incorporated into existing databases

to augment our knowledge of the protein function space. There is often a trade-off regarding

the size of the prediction set: researchers prefer a set with a small size, containing a handful of
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very confident predictions, as it is not desirable to spend resources on too many hypotheses

that ultimately turn out to be false positives; on the other hand, researchers may be willing to

increase the budget to validate a larger set of predictions in order to improve the chance of dis-

covering novel functions for under-studied proteins.

The above tradeoff is often captured by different notions of prediction score cutoff, which

decides whether to assign a particular function label to a protein, in existing computational

methods for function annotation. For example, when annotating protein functions using

sequence-similarity-based tools such as BLAST [8], a cutoff of the BLAST E-value can be used

to determine the significance of sequence match. However, the choice of E-value cutoff is

often based on the user’s intuition and good cutoff values on a dataset may not generalize to

another dataset. Recent ML methods for enzyme function annotation typically first predict the

probability that the input protein has a particular function and annotate the protein with this

function if the predicted probability is greater than 0.5 [9–11]. However, using an arbitrary

cutoff such as 0.5 is problematic as the predicted probabilities do not always translate to the

confidence of the ML model, especially when the model is not well-calibrated (e.g., a predicted

function with probability 0.95 may still be an unreliable prediction if the model is overconfi-

dent and produces very high probability scores most of the time). Recently, Hie et al. [12]

developed a framework that used the Gaussian process to estimate the confidence or uncer-

tainty in the ML model’s predictions. While the framework was shown to be effective to guide

biological discovery, it is unclear how the estimated uncertainty is related to the final false dis-

covery rate (FDR) in experimental validation and how to set a cutoff on the uncertainty scores

to achieve a desired FDR. Consequently, it is challenging to provide FDR estimates before the

experimental validation, and FDR typically can only be assessed post-validation.

Here, we propose an ML method, called CPEC (Conformal Prediction of EC number), to

achieve FDR-controlled enzyme function prediction by leveraging a statistical framework

known as conformal prediction (CP) [13]. CPEC receives the sequence or structure of an

enzyme as input and predicts a set of functions (EC numbers) that the enzyme potentially

has. The unique strength of CPEC is that the averaged per-protein FDR (i.e., the number of

incorrect predictions divided by the prediction set size for a protein) can be controlled by a

user-specified hyper-parameter α. The CP framework theoretically guarantees that the FDR

of our per-protein predictions is no larger than α with a very high probability. This equips

researchers with foresight, offering success rate estimates even before experimental valida-

tion. In an ML-guided workflow of protein function discovery, researchers can specify the

desired FDR level α based on the experiment budget or expectations. For example, setting α
to a smaller value when only the most confident predictions are needed or the test budget is

limited, or setting to a larger value when the goal is to discover novel functions and a slightly

higher FDR and budget are acceptable. The base ML model of CPEC is PenLight2, an

improved version of the deep learning model PenLight [14] for the multi-class multi-label

protein function annotation problem, which uses a graph neural network to integrate 3D pro-

tein structure data and protein language model embeddings to learn structure-aware repre-

sentations for function prediction. Benchmarked on a carefully curated dataset, we first

found that CPEC outperformed existing deep learning methods for enzyme function predic-

tion. We also demonstrated that CPEC provides rigorous guarantees of FDR and allows users

to trade-off between precision and recall in the predictions by tuning the desired maximum

value α of FDR. Additionally, we showed that CPEC consistently provides FDR-controlled

predictions for proteins with different sequence identities to the training set, suggesting its

robustness even in regimes beyond its training data distribution. Moreover, based on CPEC,

we proposed a cascade model that can better balance the resolution and coverage for EC

number prediction.
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Materials and methods

Problem formulation

Protein function prediction, such as Gene Ontology (GO) term [15] prediction [16] and EC

number [17] prediction, can be formulated as a multi-class, multi-label classification problem,

where each protein can have multiple ground-truth labels. For the set of all possible proteins X
and the ground truth label set Y ¼ f1; . . . ;Kg, an ML model f : X 7! ½0; 1�

K
for protein func-

tion prediction predicts the probability of the input protein X 2 X having each function label

k 2 {1, . . ., K}. In application, a decision threshold parameter λ is often needed to generate the

final prediction set ClðXÞ ¼ fk 2 Y : fkðXÞ � lg. Instead of choosing an arbitrary constant

cutoff (e.g., λ = 0.5), conformal prediction (CP), also known as conformal risk control, uses a

small set of calibration data to select a valid parameter λ that would satisfy rigorous statistical

guarantees for model mistakes on test data, based on the user-defined risk tolerance. As false

discovery rate (FDR) reflects how much proportion of the experimental validation of ML pre-

diction results would be unsuccessful, it is directly related to the gains out of the wet lab experi-

ments as opposed to the experimental costs, which is a tradeoff researchers often need to

confront with. Therefore, in our work, we define FDR as the model mistakes and focus on con-

trolling the FDR of ML predictions. We propose an ML framework, CPEC, which leverages

the conformal prediction framework to achieve FDR-controlled enzyme functions prediction,

and we developed a deep learning model PenLight2 as the base ML model of the CPEC frame-

work (Fig 1).

Conformal risk control

Overview of conformal risk control. Conformal risk control, the generalization of con-

formal prediction [18–20], is a paradigm applicable to general ML models for prediction,

which generates prediction sets with rigorous statistical guarantees for a user-defined level of

model mistakes [21]. Conformal risk control algorithms begin with a trained ML model f̂ and

its decision threshold parameter λ, as previously defined. Note that conformal risk control

does not require additional training or fine-tuning of the existing trained model. Through the

calibration step on a small calibration set Dcal ¼ fðXc
i ;Y

c
i Þg

nc
i¼1

that the model f̂ has not encoun-

tered with during training, the algorithms could determine a suitable decision threshold λ,

which could control the risks on the test set Dtest ¼ fðXt
i ;Y

t
i Þg

nt
i¼1

as the user’s request. In terms

of the definition of the model mistakes, existing conformal risk control algorithms allow users

to select the mistake type that they would like to focus on from numerous options (e.g., mis-

coverage [19], false negative rate (FNR) [21], and FDR [22]).

Conformal risk control guarantee for FDR control. Regarding different model mistake

types, the conformal risk control guarantees also take distinct forms. For example, the confor-
mal coverage guarantee [23] and the conformal risk control guarantee [21] target risk functions

that are monotonically non-increasing with respect to the model parameter λ, which is

explained in details in S1 Text. As FDR does not strictly hold for this monotonic requirement,

we have to apply a more general definition of risk guarantee [18, 22] which enables the control

of general risks instead of certain monotonic risks. For any user-defined risk function l(�, �),
this generalized guarantee takes the below form:

PðRðlÞ � aÞ � 1� d; ð1Þ

where RðlÞ ¼ EDtest
½lðClðXÞ;YÞ� is the notion of the risk, α is the user-defined risk tolerance,

and failure rate δ refers to the upper bound of probability of R(λ) not falling below α. In

CPEC, if not otherwise specified, we always use δ = 0.1 following the convention of previous
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studies [13] and fixed δ throughout the experiments. The intuition of Eq 1 is that the risk of

the prediction sets on test samples will fall under the risk tolerance α with a probability of at

least 1 − δ. The risk function of FDR is defined as below [22]:

lFDRðClðXÞ;YÞ ¼ 1�
jClðXÞ \ Yj
jClðXÞj

; ð2Þ

where the output of lFDR is defined as 0 if Cλ(X) is an empty set. Consequently, the objective of

controlling the FDR of the predictions within the CPEC framework can be formulated as:

PðEDtest
½lFDRðClðXÞ;YÞ� � aÞ � 1� d: ð3Þ

Calibration algorithm for FDR control. Given the FDR control guarantee, the natural

follow-up question would be how to find a valid parameter λ that can control the risk through

the calibration step on calibration data. The Learn then Test (LTT) algorithm [22], which

Fig 1. Schematic overview of CPEC. (A) CPEC is a machine learning (ML) framework that leverages conformal prediction to control the false

discovery rate (FDR) while performing enzyme function predictions. Compared to conventional ML predictions, CPEC allows users to select the

desired FDR tolerance α and generates corresponding FDR-controlled prediction sets. Enabled by conformal prediction, CPEC provides a rigorous

statistical guarantee such that the FDR of its predictions will not exceed the FDR tolerance α set by the users. The FDR tolerance α offers flexibilities in

ML-guided biological discovery: when α is small, CPEC only produces hypotheses for which it has the most confidence; a larger α value would allow

CPEC to afford a higher FDR, and CPEC thus can predict a set with more function labels to improve the true positive rate. Abbreviation: Func:

function. Incorrect predictions in prediction sets are colored gray. (B) We developed a deep learning model, PenLight2, as the base model of the CPEC

framework. The model is a graph neural network that receives the three-dimensional structure and the sequence of a protein as input and generates a

function-aware representation for the protein. It employs a contrastive learning scheme to learn a vector representation for proteins, such that the

representations of functionally similar proteins in the latent space are pulled together while dissimilar proteins are pushed apart.

https://doi.org/10.1371/journal.pcbi.1012135.g001
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formulated the selection of λ as a multiple hypotheses testing problem, has been proposed to

solve this question. CPEC adopts the LTT algorithm established upon the data distribution

assumption that all feature-response pairs (X, Y) from the calibration set and the test set are

independent and identically distributed (i.i.d.).
For the candidate model parameter set Λ = {λ1, . . ., λN} where λ1 < λ2 < � � �< λN, the LTT

algorithm associate each λi with a null hypothesis Hi : RðliÞ > a. The rejection of the null

hypothesis Hj would mean that λi can control the user-specified risk at the defined level. As

FDR is nearly a monotonically decreasing function of λ, testing for larger λ is more likely to

reject the hypothesis than testing for smaller λ. Following Angelopoulos et al. [22], we adopted

the fixed sequence testing algorithm [24] for FDR control, which tests the multiple hypotheses

sequentially from λN to λ1, stops upon the first acceptance of the null hypothesis, and eventu-

ally returns a rejection set L̂. While any l 2 L̂ can control the risks, we select l ¼ minL̂ as

the ultimate threshold for making the predictions on test proteins because the smallest λ pro-

vides the largest number of successful discoveries and has the least FNR [22].

According to the data distribution assumption that the calibration and test feature-response

pairs (X, Y) are i.i.d., we are able to test the null hypothesis on the calibration set and then

apply the derived parameter to the test set. For each null hypothesis Hi, we calculate a corre-

sponding p-value pi: a pi no greater than δ would imply the disagreement with Hi and the suc-

cessful control of the risk as the user requests. The commonly used p-values include

Hoeffding’s inequality-based p-values [25] and Hoeffding-Bentkus inequality-based p-values

[26].

In CPEC, we tested a total of N = 100 evenly spaced candidate parameters between [0, 1],

with λ1 = 0 and λN = 1. The calibration algorithm of CPEC for FDR control described above is

given in Algorithm 1. We used Hoeffding’s inequality p-values for hypothesis testing, which is

defined below:

pHoeffding
l ¼ expð�2ncða� R̂ðlÞÞ2

þ
Þ; ð4Þ

where R̂ðlÞ ¼ 1

nc

Pnc
i¼1

lðClðXc
i Þ;Y

c
i Þ is the empirical risks on the calibration data, (�)+ is the

ReLU function, and nc is the size of the calibration set. The proofs of the validity of Hoeffding’s

inequality p-values are included in S1 Text.

Algorithm 1: CPEC for FDR control
Input: FDR tolerance α 2 (0, 1), failure rate δ, total number of candi-

date parameters N, candidate parameter set Λ = {λ1, . . ., λN},
calibration data Dcal ¼ fðXi;YiÞg

nc
i¼1

/* Calculation of Hoeffding’s inequality p-values {p1, . . ., pN} */
for i  1 to N do
R̂ðλiÞ  0;
for j  1 to nc do
if jCli

ðXjÞj > 0 then
R̂ðλiÞ  R̂ðλiÞ þ ð1� jCli

ðXjÞ \ Yjj=jCli
ðXjÞjÞ;

end
end
R̂ðλiÞ  R̂ðλiÞ=nc;
pi  expð�2ncða� R̂ðλiÞÞ

2
þ
Þ;

end
/* Fixed sequence testing for rejection set L̂ */
L̂  ⌀;
i  N;
while pi � δ and i � 1 do

L̂  L̂ [ fλig
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i  i − 1;
end

Return: valid parameter λ ¼ min L̂

Protein function prediction

EC number prediction dataset. We applied CPEC on the task of Enzyme Commission

(EC) numbers [17] prediction to demonstrate its effectiveness. EC number is a widely used

four-level classification scheme, which organizes the protein according to their functions of

catalyzing biochemical reactions. In specific, a protein would be labeled with an EC number if

it catalyzes the type of biochemical reactions represented by that EC number. For each four-

digit EC number a.b.c.d, the 1st-level a is the most general classification level while the 4th-

level d is the most specific one. We used the dataset that contains EC number-labeled protein

sequences and structures, provided by Gligorijević et al. [10]. The protein structures were

retrieved from Protein Data Bank (PDB) [27]. Protein chains were then clustered at 95%

sequence identity using the BLASTClust function in the BLAST tool [8] and then organized

into a non-redundant set which only included one labeled high-resolution protein chain from

each cluster. The EC number annotations were collected from SIFTS (structure integration

with function, taxonomy, and sequence) [28]. As the 4th-level EC number is the most informa-

tive functional label, we only kept proteins that have ground-truth level-4 EC numbers in our

experiments. Eventually, the dataset we used has 10, 245 proteins and a train/valid/test ratio of

roughly 7: 1: 2. The proteins in the test set have a maximum sequence identity of 95% to the

training set. Within the test set, test proteins were further divided into disjoint groups with [0,

30%), [30%, 40%), [40%, 50%), [50%, 70%), and [70%, 95%] sequence identity to the training

set. The lower the sequence identity to the training set, the more difficult the test protein

would be for ML models to predict its functions. In experiments, we have used the more chal-

lenging test data group ([0, 30%)) to evaluate the robustness of our framework.

Contrastive learning-based protein function prediction. For protein function predic-

tion tasks, supervised learning has long been a popular choice in the deep learning community.

Supervised learning-based methods take protein sequences or structures as input and directly

map them into class labels. While the idea is simple and efficient, supervised learning has been

suffering from a major drawback: its performance could be severely affected by the class imbal-

ances of the training data, an unfortunately common phenomenon in protein function predic-

tion tasks. For example, in the EC number database, some EC classes contain very few proteins

(less than ten), while some other EC classes contain more than a hundred proteins. Those clas-

ses with more proteins would dominate the training, thereby suppressing the minority classes

and degrading the performance of supervised learning. To overcome this challenge, a new par-

adigm called contrastive learning has become popular in recent years [29]. Instead of directly

outputting class labels, contrastive learning-based models map the training proteins into an

embedding space where functionally similar proteins are close to each other and functionally

dissimilar pairs are far away. Our previously developed ML methods PenLight and CLEAN

[14, 30] have demonstrated the effectiveness of contrastive learning in enzyme function pre-

dictions. In each iteration of the contrastive learning process, the PenLight or CLEAN model

samples a triplet including an anchor protein p0, a positive protein p+, and a negative protein

p−, such the positive protein pairs (p0, p+) have similar EC numbers (e.g., under the same sub-

tree in the EC number ontology) while the negative pairs (p0, p−) have dissimilar EC numbers.

The objective of contrastive learning is to learn low-dimensional embeddings x0, x+, x− for the

protein triplet such that the embedding distance d(x0, x+) is minimized while d(x0, x−) is maxi-

mized (Fig 1B and S1 Text). In the prediction time, the EC number of the training protein

PLOS COMPUTATIONAL BIOLOGY Conformal prediction for enzyme function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012135 May 29, 2024 7 / 21

https://doi.org/10.1371/journal.pcbi.1012135


with the closest embedding distance to the query protein will be used as the predicted function

labels for the query protein.

In this work, we developed PenLight2, an extension of our previous PenLight model [14]

for performing multi-label classification of EC numbers. Similar to PenLight, PenLight2 is a

structure-based contrastive learning framework that integrates protein sequence and structure

data for predicting protein function. It integrated protein 3D structures and protein language

model (ESM-1b [31]) embeddings into a graph attention network [32] and optimized the

model using the contrastive learning approach, which pulled the embeddings of the (anchor,

positive) pair together and the embeddings of the (anchor, negative) pair away. By naturally

representing the amino acids as nodes and spatial relations between residues as edges, the

graph neural network can extract structural features in addition to sequence features and gen-

erate function-aware representations of the protein. In this work, we shifted from the multi-

class single-label classification approach used in PenLight [14] to a multi-class multi-label clas-

sification framework, which better aligns with the function annotation data of enzymes in

which an enzyme can be labeled with multiple EC numbers. PenLight2 achieved two key

improvements compared to PenLight: model training (triplet sampling strategy) and model

inference (function transfer scheme and prediction cutoff selection):

1) Triplet sampling strategy. For training efficiency, PenLight takes a multi-class single-

label classification approach and randomly samples one EC number for promiscuous enzymes

when constructing the triplet in contrastive learning, considering that only less than 10%

enzymes in the database used are annotated with more than one EC number. To enhance the

effectiveness of contrastive learning for promiscuous enzymes, in this work, we adopt a multi-

class multi-label classification approach, in which retain the complete four-level EC number

annotations for an enzyme in the triplet sampling of PenLight2 (Fig 1B). Specifically, we thus

generalized PenLight’s hierarchical sampling scheme to accommodate proteins with multiple

functions in PenLight2: in each training epoch, for each anchor protein (every protein in the

training set), we randomly choose one of its ground truth EC numbers if it has more than one

and then follow original sampling scheme in PenLight for the sampling of the positive and the

negative proteins (S1 Text). A filter is applied to ensure that the anchor and the negative do

not share EC numbers.

2) Function transfer scheme. The original PenLight used the pairwise embedding distance

between the query protein and training proteins to identify the most similar protein (closest

embedding distance) for transferring function annotations. We generalized PenLight’s pro-

tein-protein distance to a protein-cluster distance to improve the robustness in distance com-

putation. Specifically, in PenLight2, we computed a cluster embedding zγ for an EC number γ
by averaging all proteins with this EC number:

zg ¼
1

jfp : ECðpÞ ¼ ggj

X

p:ECðpÞ¼g

xp; ð5Þ

where p refers to a protein. Then, we computed the pairwise embedding distance between the

query protein and all the EC clusters. We will transfer the EC numbers from annotated pro-

teins to the query protein based on the computed distances. The smaller the distance with an

EC cluster embedding is, the more likely that the query protein has this EC number. This

approach, tailored for multi-label classification, creates a distance matrix between query pro-

teins and EC numbers, which can be integrated seamlessly with our conformal prediction

framework.

3) Prediction cutoff selection. In contrast to the original PenLight model that only predicted

the top-1 EC number for a query protein, PenLight2 implemented an adaptive method to

PLOS COMPUTATIONAL BIOLOGY Conformal prediction for enzyme function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012135 May 29, 2024 8 / 21

https://doi.org/10.1371/journal.pcbi.1012135


achieve multi-label EC prediction. Following the max-separation method proposed in our pre-

vious study [30], we sorted the distances between the query protein and all EC clusters and

identified the max difference between adjacent distances. PenLight2 then uses the position

with the max separation as the cutoff point and outputs all EC numbers before this point as

final predictions. This cutoff selection method aligns with the multi-label nature of the task.

With these improvements, we extended the original PenLight from the single-label classifi-

cation to the multi-label setting. We denote this improved version as PenLight2.

Results

We performed multiple experiments to evaluate CPEC’s prediction accuracy and ability of

FDR control. We further evaluated CPEC using test data that have low sequence identities to

the training data to demonstrate its utility for generating hypotheses (function annotations)

for novel protein sequences.

CPEC achieves accurate enzyme function predictions

We first evaluated the prediction performance of PenLight2, the base ML model in CPEC, for

predicting function annotations (EC numbers) of protein enzymes. The purpose of this experi-

ment was to assess the baseline prediction accuracy of CPEC when the FDR control is not

applied. We compared CPEC with three state-of-the-art deep learning methods capable of reli-

ably predicting enzyme function on the fourth level of EC hierarchy, including two CNN-

based (convolutional neural networks) methods DeepEC [9] and ProteInfer [11] that take pro-

tein sequence data as input and one GNN-based (graph neural networks) method DeepFRI

[10] that takes both protein sequence and structure data as input. All these three methods

applied the multi-class classification paradigm for function prediction: first predicting a score

between 0 and 1 as the predicted probability that the input enzyme has a particular EC number

and then generating all EC numbers with predicted probability greater than 0.5 (except for

DeepFRI which used 0.1 as cutoff) as the final predicted function annotations for the input

enzyme. We evaluated all methods using metrics F1 score, which assesses prediction accuracy

considering both precision and recall, and the normalized discounted cumulative gain

(nDCG) [33], which rewards higher rankings of true positives over false negatives in the pre-

diction set (S1 Text). On a more challenging test set (test proteins with [0, 30%) sequence iden-

tity to training proteins), we further evaluated all methods by drawing the micro-averaged

precision-recall curves.

The evaluation results showed that our method outperformed all the three state-of-the-art

methods in terms of both F1 score and nDCG (Fig 2A). For example, PenLight2 achieved a sig-

nificant improvement of 34% and 26% for F1 and nDCG, respectively, over the second-best

baseline DeepFRI. The pronounced performance gaps between PenLight2 and other baselines

also suggested the effectiveness of the contrastive learning strategy used in PenLight2. The

major reason is that contrastive learning utilized the structure of the function space (the hier-

archical tree of the EC number classification system) to learn protein embeddings that reflect

function similarity, while the multi-class classification strategy used in the three baselines just

treated all EC numbers as a flat list of labels and may only capture sequence/structure similar-

ity but not function similarity. In addition, we observed that methods that incorporated pro-

tein structure data (PenLight2 and DeepFRI) achieved better than methods that only use

sequence data as input (DeepEC and ProteInfer), suggesting that protein structure may

describe features related to functions more explicitly and is useful for predicting protein func-

tion. Those results demonstrated that the design choices of PenLight2, including the contras-

tive learning strategy and representation learning of protein structure, greatly improve the
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accuracy of protein function prediction. To further analyze PenLight2’s prediction perfor-

mance, we delineated its F1 score into precision and recall and observed that PenLight2 has

slightly lower precision than other methods but substantially higher recall and F1 score (S1

Fig). We noted that other baseline methods such as ProteInfer achieved the high precision

score at a cost of low coverage (Fig 2A), meaning that they did not predict any functions for a

large number of query proteins due to their high uncertainties in those proteins. Additionally,

we evaluated PenLight despite that it only performs single-label prediction, and we found that

PenLight and PenLight2 had similar performances. As the fraction of promiscuous enzymes is

low in the test set, we expected PenLight2 to be a more accurate predictor than PenLight in

future enzyme function prediction tasks when promiscuous enzymes prevail.

On a more challenging test set which only includes test proteins with [0, 30%) sequence

identities to training proteins, we also observed that PenLight2 robustly predicted the EC

numbers of the test proteins and outperformed all baseline methods (Fig 2B and S3 Fig). The

improvement of the micro-averaged Fmax value from the best baseline method ProteInfer to

PenLight2 was 32%. In the high recall region, PenLight2 achieved a higher precision value

than any of the baseline methods. The results here were consistent with the results on the

entire test set, which further proved the effectiveness of PenLight2 for EC number prediction.

CPEC provides FDR control for EC number prediction

After validating its prediction performance, we integrated PenLight2 as the base model into

the conformal prediction framework. Conformal prediction provides a flexible, data-driven

way to find an optimal cutoff for PenLigth2 to decide whether to predict a function label for

the input protein, such that the FDR on the test data is lower than the user-specified FDR

upper bound α. Here, we performed experiments to investigate whether CPEC achieves the

desired FDRs and how its prediction performance would change when varying α. For compar-

ison, we compared CPEC to several other thresholding strategies for generating the prediction

set, including 1) max-separation (Methods); 2) top-1, where only the EC number with the clos-

est embedding distance to the input protein is predicted as output; and 3) σ-threshold, where

all EC numbers with an embedding distance smaller than μ + 2σ to the input protein are

Fig 2. PenLight2, the base ML model of CPEC, outperforms the state-of-the-art methods for EC number prediction. (A) We evaluated DeepEC [9], ProteInfer

[11], DeepFRI [10], and PenLight2 for predicting the 4th-level EC number, using F1 score, the normalized discounted cumulative gain (nDCG), and coverage as the

metrics. Specifically, coverage is defined as the proportion of test proteins for which a method has made at least one EC number prediction. (B) We further evaluated

all methods for predicting the 4th-level EC number on more challenging test proteins with [0, 30%) sequence identities to the training proteins and drew the micro-

averaged precision-recall curves. For each curve, we labeled the point with the maximum F1 score (Fmax).

https://doi.org/10.1371/journal.pcbi.1012135.g002
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predicted as output, where μ and σ are the mean and standard deviation of a positive control

set that contains the distances between all true protein-EC number pairs. Platt scaling [34], a

parametric calibration method, was further included as a thresholding strategy for compari-

son. We also included our baseline DeepFRI, which outputs EC numbers if it predicts that the

probability of the input having this EC number is greater than a cutoff of 0.1. The purpose of

the experiment here is not to show CPEC can outperform all other methods under all metrics

but to show that CPEC can achieve a desired tradeoff by tuning the interpretable parameter α
and simultaneously provide a rigorous statistical guarantee on its FDR. In an evaluation exper-

iment, we have further compared CPEC with two point-uncertainty prediction methods

(Monte Carlo dropout [35] and RED [36]), demonstrating that CPEC provides precise FDR

control prior to validation, whereas MC dropout and RED can only evaluate FDR post-valida-

tion (S1 Text).

Reliable FDR controls. In theory, the conformal prediction framework guarantees that

the actual FDR of the base ML model on the test data is smaller than the pre-specified FDR

level α with high probability. We first investigated how well this property holds on our func-

tion prediction task. We varied the value of α from 0 to 1, with increments of 0.1, and mea-

sured CPEC’s averaged per-protein FDR on the test data. As expected, we observed that the

actual FDR of CPEC (Fig 3A, blue line) was strictly below the specified FDR upper bound α
(Fig 3A, diagonal line) across different α values. This result suggested that CPEC successfully

achieved reliable FDRs as guaranteed by the conformal prediction. We have further performed

an evaluation experiment to investigate the impact of the calibration set sizes on CPEC’s FDR

control, and the results suggested that the FDR control performances of CPEC were robust to

various calibration set sizes (S1 Text).

Tradeoff between precision and recall with controlled FDR. Varying the FDR parame-

ter α allowed us to trade-off between the prediction precision and recall of CPEC (Fig 3B and

3C). When α was small, CPEC predicted function labels for which it has the most confidence,

in order to achieve a lower FDR, resulting in high precision scores (e.g., precision 0.9 when

α = 0.1). When CPEC was allowed to tolerate a relatively larger FDR α, it predicted more

potential function labels for the input protein at the FDR level it can afford, which resulted in

an increasing recall score as α was increasing. Similarly, the nDCG score of CPEC was also

increasing with α (Fig 3E), indicating that CPEC not only retrieved more true function labels

but also ranked the true labels at the top of its prediction list.

Fig 3. CPEC achieves FDR control for EC number prediction. For FDR tolerance α from 0.1 to 0.9 with increments 0.1, we evaluated how well CPEC controls the FDR

for EC number prediction. Observed FDR risks, precision averaged over samples, recall averaged over samples, F1 score averaged over samples, and nDCG were reported

for each FDR tolerance on test proteins in (A-E). The black dotted line in (A) represents the theoretical upper bound of FDR over test proteins. Three thresholding

strategies were assessed over PenLight2 as a comparison to CPEC, which includes 1) max-separation [30], 2) top-1, and 3) σ-threshold. The results of CPEC were

averaged over five different seeds. DeepFRI was also included for comparison.

https://doi.org/10.1371/journal.pcbi.1012135.g003

PLOS COMPUTATIONAL BIOLOGY Conformal prediction for enzyme function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012135 May 29, 2024 11 / 21

https://doi.org/10.1371/journal.pcbi.1012135.g003
https://doi.org/10.1371/journal.pcbi.1012135


Interpretable cutoff for guiding discovery. CPEC is able to compute an adaptive cutoff

internally based on the user-specified FDR parameter α for deciding whether or not to assign a

function label to the input protein. This allows researchers to prioritize or balance precision,

recall, and FDR, depending on test budget or experiment expectations, in an ML-guided bio-

logical discovery process. In contrast, many existing methods that use a constant cutoff often

have optimized performance in one metric but suffer in another. For example, in our experi-

ment, DeepFRI and Platt scaling threshold strategy had the highest precisions but their recalls

were the lowest among all methods; the σ-threshold strategy had a recall of 0.94 yet its FDR

(0.75) was substantially higher than others (Fig 3A–3C and S2 Fig). Although some methods

such as DeepFRI may achieve a better tradeoff between precision and recall by varying its

probability cutoff from 0.1 to other values, they lack a rigorous statistical guarantee on the

effect of varying the cutoff values. For example, if the cutoff of DeepFRI was raised from 0.1 to

0.9, one can expect that, qualitatively, it would lead to a higher precision but also a higher

FDR. However, it is hard to quantitatively interpret the consequence of raising the cutoff to 0.9

(e.g., how high would the FDR be) until the model is evaluated using ground-truth labels,

which are often unavailable before experimental validation in the process of biological discov-

ery. In contrast, with CPEC, researchers are also able to balance the interplay between the pre-

diction precision and recall by tuning the interpretable parameter α and assured that the

resulting FDR will not be greater than α.

Overall, through these experiments, we validated that CPEC can achieve the statistical guar-

antee of FDR. We further evaluated the effect of varying the FDR tolerance α on CPEC’s pre-

diction performances. Compared to conventional strategies for multi-label protein function

prediction, CPEC provides a flexible and statistically rigorous way to better tradeoff precision

and recall, which can be used to better guide exploration and exploitation in biological discov-

ery with a controlled FDR.

Adaptive prediction of EC numbers for proteins with different sequence

identities to the training set

The risk in our conformal prediction framework is defined as the global average of per-protein

FDRs, which may raise the concern that the overall FDR control achieved by CPEC on the test

set was mainly contributed by FDR controls on those proteins that are easy to characterize and

predict, and it is possible that the model suffered from pathological failures and did not give

accurate FDR controls on proteins that are hard to predict. To this point, we defined the pre-

diction difficulty based on the level of sequence identity between test proteins and training

proteins, following the intuition that it is more challenging for an ML model to predict the

functions of a protein if the protein does not have homologous sequences in the training data.

We first performed a stratified evaluation to analyze CPEC’s FDR-control performance at dif-

ferent levels of prediction difficulty. After examining the consistency of the FDR control across

different difficulties, we explored an adaptive strategy for predicting EC numbers, which

allows the ML model not to predict a too specific EC number than what the evidence sup-

ported and only predict at the most confident level of EC hierarchy.

Consistency of FDR control. We first confirmed CPEC’s FDR-control ability across dif-

ferent levels of prediction difficulty. Specifically, we partitioned the test set into disjoint groups

based on the following ranges of sequence identity to the training set: [0, 30%), [30%, 40%),

[40%, 50%), [50%, 70%) and [70%, 95%]. We varied the values of α from 0.05 to 0.5 with incre-

ments of 0.05. For each level of FDR tolerance α, we examined the FDR within each group of

test proteins. As shown in Fig 4A, CPEC achieved consistent FDR controls across different lev-

els of train-test sequence identity and different values of α, where the observed FDR were all
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below the pre-specified FDR tolerance α. Even for the most difficult group of test proteins that

only have [0, 30%) sequence identity to the training proteins, CPEC still achieved an FDR of

0.03 when tolerance α = 0.1. This is because a well-trained ML model would have low confi-

dence when encountering difficult inputs, and CPEC would abstain from making predictions

if the model’s confidence does not exceed the decision threshold. The results of this experi-

ment built upon the conclusion of the previous subsection and validated that CPEC can not

only control the FDR of the entire test set but also the FDR for each group of test proteins with

different levels of prediction difficulty. We have performed an evaluation experiment to fur-

ther assess CPEC’s FDR control on test proteins that do not belong to the same CATH super-

families [37] as any of the training proteins. We found that CPEC provided effective FDR

control for these test proteins from unseen superfamilies (S5–S7 Figs and S1 Text), suggesting

that CPEC can offer effective FDR-controlled EC number predictions even for test proteins

that are very dissimilar to its training proteins.

An adaptive strategy for EC number prediction. The EC number hierarchy assigns

four-digit numbers to enzymes, where the 4th-level label describes the most specific functions

of enzymes whereas the 1st-level label describes the most general functions. In EC number pre-

diction, ideally, a predictive model should not predict a too specific EC number than what the

evidence supported. In other words, if a model is only confident about its prediction up to the

3rd level of an EC number for a protein, it should not output an arbitrary prediction at the 4th

level. We first trained two CPEC models, where the first model, denoted as CPEC4, predicts

EC numbers at the 4th level as regular, and the other, denoted as CPEC3, predicts the 3rd-level

EC numbers. We then combine the two models as a cascade model: given an input protein and

a desired value of α, we first apply the CPEC4 to predict the 4th-level EC numbers for the

input protein with an FDR at most α. If CPEC4 outputs any 4th-level EC numbers, they will be

used as the fine-level annotations for the input; if CPEC4 predicts nothing due to the FDR tol-

erance α being too stringent, we apply CPEC3 on the same input to predict EC numbers at the

Fig 4. CPEC makes adaptive EC number predictions for proteins with different sequence identities to the training set. (A) We reported the observed FDR for test

proteins with different sequence identities to the training set (i.e. different difficulty levels) for FDR tolerance α from 0.05 to 0.5 with increments of 0.05. Test proteins

were divided into disjoint groups with [0, 30%), [30%, 40%), [40%, 50%), [50%, 70%), and [70%, 95%] sequence identity to the training set. The smaller the sequence

identity, the harder the protein would be for machine learning models to predict function labels. (B) We designed the procedure to first predict the EC number at the 4th

level. If the model was uncertain at this level and did not make any predictions, we would move to the 3rd level to make more confident conformal predictions instead of

continuing with the 4th level with high risks. We used the same FDR tolerance of α = 0.2 for both levels of CPEC prediction. For proteins with different sequence

identities to the training data, we reported the hit rate of our proposed procedure. The hit rate on the 4th level, the hit rate on the 3rd level, the percentage of proteins with

incorrect predictions on both levels, and the percentage of not called proteins for both levels were reported. The results were calculated as an average over 5 different

seeds of splitting the calibration set.

https://doi.org/10.1371/journal.pcbi.1012135.g004
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3rd-level. If CPEC3 outputs any 3rd-level EC numbers, they will be used as the coarse-level

annotations for the input; otherwise, the cascade model just predicts nothing for this input.

The motivation of this adaptive prediction strategy is that even though 3rd-level EC numbers

are less informative than 4th-level ones, it might be more useful for researchers in certain cir-

cumstances to acquire confident 3rd-level EC numbers than only obtaining a prediction set

with a large number of false positive EC numbers at the 4th level.

To validate the feasibility of the above adaptive model, we evaluated CPEC3 and CPEC4

using the same FDR tolerance α = 0.2 on our test set. We reported the hit rate, defined as the

fraction proteins for which our model predicted at least one correct EC number, for both the

4th-level and the 3rd-level EC numbers. We found that this adaptive prediction model, com-

pared to the model that only predicts at the 4th level, greatly reduced the number of proteins

for which the model made incorrect predictions or did not make predictions (Fig 4B). For

example, on the test group with sequence identity [0, 30%) to the training data, around 60%

proteins were correctly annotated with at least one EC number, while only 40% proteins were

correctly annotated if the adaptive strategy was not used. This experiment demonstrated the

applicability of CPEC for balancing the prediction resolution and coverage in protein function

annotation.

Application: EC number annotation for low-sequence-identity proteins

Conformal prediction quantifies the ML model’s uncertainty in its predictions, especially for

the predictions for previously unseen data. This is extremely useful in ML-guided biological

discovery as we often need to make predictions for unseen data to gain novel discoveries. For

example, in protein function annotation, the most challenging proteins to annotate are those

previously uncharacterized or do not have sequence homologous in current databases. Con-

ventional ML models that do not quantify prediction uncertainties are often overconfident

when making predictions for the aforementioned challenging samples, leading to a large num-

ber of false positives in their predictions, which can incur a high cost in experimental valida-

tion without yielding a high true positive rate. Considering the importance of predicting

previously uncharacterized data, here we designed an evaluation experiment to assess CPEC’s

prediction performance on these challenging proteins. We created a test set that contains only

proteins that have less than 30% sequence identity to any proteins in the training set, which

simulated a challenging application scenario.

We varied the FDR tolerance α from 0.05 to 0.5 and counted the number of correct predic-

tions, where assigning one EC number to a protein was counted as one prediction. We

observed that CPEC had an effective uncertainty quantification for its predictions on this low-

sequence-identity test set (Fig 5A). For example, when α = 0.05 which forced the model to

only output the most confident predictions, CPEC was highly accurate, with a precision of

nearly 0.97. At the FDR tolerance level of 0.1, CPEC was able to retrieve 25% (180/777) true

protein-EC number pairs at a precision higher than 0.9. Keeping increasing the value of α
allowed CPEC to make more correct predictions, without significantly sacrificing precision.

For instance, at the level α = 0.5, CPEC successfully predicted 70% true protein-EC number

pairs while maintaining a reasonable precision of 0.6 and an nDCG of 0.7. As a comparison,

the baseline method DeepFRI correctly predicted 309 protein-EC pairs, out of the total 777

true pairs, with a precision of 0.89 and an nDCG score of 0.50, which roughly corresponds to

CPEC’s performance at α = 0.2.

We again note that CPEC is more flexible than methods such as DeepFRI in that it provides

an interpretable and principled way to tradeoff between precision and recall, which allows

researchers to not only prioritize high-confidence predictions but also increase prediction
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coverage for improving the yield rate of true positives. To illustrate this, we visualized the pre-

diction results of CPEC and DeepFRI in Fig 5B. We selected a protein that has multiple EC

number annotations (UniProt ID: P04584). Using its default setting, DeepFRI predicted four

labels for this protein, among which three were correct. For CPEC, we gradually increased the

value of α and see how the prediction set was changing. Interestingly, we observed that CPEC

gradually predicted more true EC numbers as α was increasing while maintaining a low FDR.

In particular, when α = 0.25, CPEC outputted two EC numbers, both of which were correct

predictions; when α was relaxed to 0.3, CPEC predicted one more EC number, which turned

out to be also correct; when we further relaxed the FDR tolerance α to 0.35, CPEC predicted

six EC numbers for the protein, and four of them were correct. This example illustrated

CPEC’s utility in practice: researchers have the flexibility when using CPEC to guide experi-

ments, where a small value of α prioritizes accurate and confident hypotheses, and a large

value of α promotes a high yield of true positives while ensuring the number of false positives

to be limited.

Having observed that CPEC was able to recover more true function labels as we were relax-

ing the FDR tolerance α, we asked one important question—at which value of α can CPEC

output the first correct function label (“hit”) for the input protein. We referred to this α value

Fig 5. Application of FDR control for the EC number prediction of low-sequence-identity proteins. (A) CPEC was evaluated on difficult test proteins ([0, 30%)

sequence identity to the training data). For FDR tolerance from 0.05 to 0.5, the total number of correct predictions, precision averaged over samples, and the normalized

discounted cumulative gain was reported under five different seeds for splitting calibration data. Note that the upper bound of correct predictions, i.e. the ground truth

labels, is 777. As a comparison, DeepFRI successfully made 307 predictions, with a sample-averaged precision of 0.8911 and an nDCG score of 0.5023. (B) An example of

the prediction sets generated by CPEC for Gag-Pol polyprotein (UniProt ID: P04584; PDB ID: 3F9K), along with the prediction set from DeepFRI. CPEC used the chain

A of the PDB structure as input. The prediction sets were generated under FDR tolerance α = 0.25, 0.3, 0.35. The sequence of this protein has [0, 30%) sequence identity

to the training set and, therefore, can be viewed as a challenging sample. Incorrect EC number predictions are colored gray. (C) Boxplots showing the FDR@1st-hit

metric, defined as the smallest FDR tolerance α at which CPEC made the first correct prediction for each protein. The evaluation was performed on five groups of test

proteins, stratified based on their sequence identities to the training set.

https://doi.org/10.1371/journal.pcbi.1012135.g005
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as FDR@1st-hit. This metric can be viewed as a proxy of the experiment cost researchers need

to pay before they obtain the first validated hypothesis. We computed the FDR@1st-hit value

for all test proteins in each of the five disjoint groups partitioned by their sequence identity to

training sequences (Fig 5C). We found that for the majority of the test sequences (the four

groups out of five with sequence identity at least 30% to training sequences), CPEC was able to

reach the first hit at an FDR lower than 0.15. For the most difficult group where all proteins

share [0, 30%) sequence identity to training data, the median FDR@1st-hit was 0.3. This obser-

vation was consistent with our intuition and expectation, as low-sequence-identity proteins

are more difficult for the ML model to predict, thus requiring a larger hypotheses space to

include at least one true positive. Overall, CPEC achieved a reasonable FDR@1st-hit for func-

tion annotation, meaning that it produced a limited number of false positives before recover-

ing at least one true positive, which is a highly desired advantage in ML-guided biological

discovery.

Discussion

Machine learning models play a vital role in generating biological hypotheses for downstream

experimental analyses and facilitating biological discoveries in various applications. A signifi-

cant challenge in the process of ML-assisted biological discoveries is the development of ML

models with interpretable uncertainty quantification of predictions. When applied to unseen

situations, ML models without uncertainty quantification are susceptible to overconfident pre-

dictions, which misdirects experimental efforts and resources to the validation of false positive

hypotheses. Addressing this challenge becomes essential to ensure the efficiency and reliability

of ML-assisted biological discovery.

In this work, we have presented CPEC, an ML framework that enables FDR-controlled

ML-assisted biological discoveries. Leveraging the conformal prediction framework, CPEC

allows users to specify their desired FDR tolerance α, tailored to the experiment budget or

goals and makes corresponding predictions with a controlled FDR. We demonstrate CPEC’s

effectiveness using enzyme function annotation as a case study, simulating the discovery pro-

cess of identifying the functions of less-characterized enzymes. PenLight2, an improved ver-

sion of PenLight optimized for multi-label classification is utilized as CPEC’s base ML model.

Specifically, CPEC takes the sequence and structure of an enzyme as input and outputs a set of

functions (EC numbers) that the enzyme potentially has. The conformal prediction algorithm

in CPEC theoretically guarantees that the FDR of the predicted set of functions will not exceed

α with high probability. The evaluation of CPEC on the EC number prediction task showed

that CPEC provides reliable FDR control and has comparable or better prediction accuracy

than baseline methods at a much lower FDR. Interpretable cutoffs were provided by CPEC for

guiding the EC number annotations of proteins. Furthermore, CPEC demonstrated its robust-

ness in making FDR-controlled predictions even for proteins with low sequence identity to its

training set.

Quantifying uncertainties of ML model predictions is a key desideratum in ML-guided bio-

logical discovery. Although a few prior studies have investigated the uncertainty quantification

of ML models [12, 38], their uncertainty estimates are only indicative of prediction errors but

do not translate to error-controlled predictions. In contrast, CPEC enables researchers to spec-

ify a maximum level of error rate and produces a set of predictions whose error rate is guaran-

teed to be lower than the specified level. Additionally, CPEC stands out by providing risk

estimates, which delivers insights into the potential outcomes even before experimental valida-

tion and aids in the strategic allocation of experimental resources. One limitation of the CPEC

framework is that when under covariate shift (i.e., Pcalib(X) 6¼ Ptest(X)), the data assumption of
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CPEC that the data in the calibration and test sets are i.i.d. is violated, which might lead to sub-

optimal FDR control performances (S6 and S7 Figs). Although weighted conformal prediction

frameworks have been proposed to address this limitation [39], the quantification and control

of non-monotonic risk functions (e.g., FDR) under covariate shift remained a challenging

problem. In this work, we define the error rate as the false discovery rate (FDR) to reflect the

practical consideration in experiments where the goal is to maximize the success rate of

hypothesis validation given a limited test budget. Nevertheless, the CPEC framework can be

extended to support other forms of error rates, such as false negative rate [13]. In addition to

protein function annotation, we expect CPEC to be a valuable tool for researchers in other bio-

logical discovery applications particularly when a balance between the experimental budget

and the high yield rate is desired, such as drug target identification [40], material discovery

[41], and virtual molecule screening [38].

Supporting information

S1 Text. Supplementary information. Additional methodology, detailed experiment descrip-

tions, and further evaluation experiments are included in the file.
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S1 Fig. Performance evaluation of representative baseline methods for EC number predic-

tion. We evaluated DeepEC, ProteInfer, DeepFRI, and CPEC (PenLight2) for predicting the

4th level EC number, using sample-averaged precision and recall as the metrics. DeepEC and

DeepFRI were evaluated using the only trained model provided in their repositories, whereas

ProteInfer was assessed using 5 different trained models. DeepFRI was trained on the same

dataset as PenLight2 while DeepEC and ProteInfer were trained by their respective datasets.

PenLight2 was trained using 5 different seeds.

(PDF)

S2 Fig. CPEC achieves FDR control for EC number prediction. Platt scaling [34], RED [36],

and Monte Carlo dropout [35] were further evaluated as thresholding strategies, in compari-

son to CPEC. Due to the requirements of the methods, RED and MC dropout were applied on

top of an MLP model. The results of CPEC and all of the thresholding strategies were averaged

over five different seeds.

(PDF)

S3 Fig. Performance evaluation of representative baseline methods for EC number predic-

tion on test proteins with [0, 30%) sequence identities to training proteins. We evaluated

DeepEC, ProteInfer, DeepFRI, and CPEC (PenLight2) for predicting the 4th level EC number,

using sample-averaged precision, recall, F1 score, nDCG, and coverage as the metrics. DeepEC

and DeepFRI were evaluated using the only trained model provided in their repositories,

whereas ProteInfer was assessed using 5 different trained models. DeepFRI was trained on the

same dataset as PenLight2 while DeepEC and ProteInfer were trained by their respective data-

sets. PenLight2 was trained using 5 different seeds.

(PDF)

S4 Fig. The FDR control of CPEC with different calibration set sizes. The performances of

CPEC’s FDR control were evaluated using calibration sets with various sizes (abbrev: calib. set

size): 20%, 10%, 5%, and 1% of the total number of the training data. The same training data

was used across all calibration set sizes to ensure consistency in the comparison. The black dot-

ted line in the first panel represents the theoretical upper bound of FDR over test proteins. The
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results were averaged over five different seeds.

(PDF)

S5 Fig. Performance evaluation of representative baseline methods for EC number predic-

tion on test proteins that do not belong to the same CATH [37] superfamilies as the train-

ing proteins. CPEC and three baseline methods (DeepEC, ProteInfer, and DeepFRI) were

evaluated for predicting the 4th level EC number, using sample-averaged precision, recall, F1

score, nDCG, and coverage as the metrics. DeepEC and DeepFRI were evaluated using the

only trained model provided in their repositories, whereas ProteInfer was assessed using 5 dif-

ferent trained models. DeepFRI was trained on the same dataset as CPEC, while DeepEC and

ProteInfer were trained using their respective datasets. Training proteins not labeled in the

CATH database were only removed from the training dataset of CPEC but not from the base-

line methods’ training sets, which gave potential advantages to baseline methods. CPEC was

trained using 5 different seeds.

(PDF)

S6 Fig. Application of the FDR control for the EC number prediction of out-of-distribu-

tion (OOD) proteins. The FDR control of CPEC was evaluated on a more challenging data

split: no training and test proteins belong to the same CATH [37] superfamily. Training pro-

teins not labeled in the CATH database were only removed from the training dataset of CPEC

but not from the baseline methods’ training sets, which gave potential advantages to baseline

methods. The results were averaged over five different seeds.

(PDF)

S7 Fig. Application of the FDR control for the EC number prediction of out-of-distribu-

tion (OOD) proteins. The FDR control of CPEC was evaluated on a more challenging data

split: no training and test proteins belong to the same CATH [37] superfamily. A total number

of 200 test proteins were sampled from the test set, and proteins that belong to the same super-

families as the sampled test proteins were removed from the training set of CPEC. Training

proteins not labeled in the CATH database were only removed from the training dataset of

CPEC but not from the baseline methods’ training sets, which gave potential advantages to

baseline methods. The results were averaged over five different seeds.

(PDF)

S8 Fig. PenLight2, the base ML model of CPEC, outperforms the state-of-the-art methods

for EC number prediction. CPEC (PenLight2) and four baseline methods (including a base-

line MLP model that takes the ESM-1b protein embeddings as the input) were evaluated for

predicting the 4th-level EC number on more challenging test proteins with [0, 30%) sequence

identities to the training proteins and the micro-averaged precision-recall curves were drawn.

For each curve, the point with the maximum F1 score (Fmax) was labeled.

(PDF)

S9 Fig. Evaluation of two point-uncertainty prediction approaches. Two point-uncertainty

prediction methods (Monte Carlo dropout (MC dropout) [35] and RED [36]) were evaluated

in terms of uncertainty quantification. To make a fair comparison, a multi-layer perception

taking ESM-1b protein embedding as the input was selected as the base ML model. The per-

centiles of the prediction variance (10th, 20th, 30th,. . ., and 100th percentiles) on the test set

were used as the cutoffs. Predictions with variances larger than the cutoff were dropped.

Observed false discovery rate (FDR), precision, recall, and coverage were used as metrics. The

results were averaged over five different seeds.

(PDF)
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