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Abstract—The proliferation of the Internet of Things (IoT)
has significantly impacted the integration of digital and physical
realms, with Wireless Sensor Networks (WSNs) playing a crucial
role. However, these sensor nodes often face challenges related to
battery constraints and deployment in inaccessible terrains. The
advent of Unmanned Aerial Vehicles (UAVs) presents a transfor-
mative solution, particularly for data collection from remote IoT
devices. This work explores the application of UAVs to improve
data collection in dense IoT sensor networks. We propose a novel
approach called optimizing UAV-assisted data collection in IoT
sensor networks using Dual Cluster Head (UAVDCH) that utilizes
dual cluster heads within each cluster to optimize the UAV’s
energy consumption. The primary cluster head is responsible for
collecting data within the cluster, while the secondary cluster
head is tasked with transmitting the data to the UAV. Our
objective is to maximize the available data the UAV collects
with respect to its energy constraints. We develop a strategy
for selecting appropriate secondary cluster heads, determining
UAV’s hovering points, and designing flight trajectories that
maximize data collection. By adopting a multi-channel technique,
we facilitate simultaneous data collection from multiple clusters,
reducing hovering and transmission times. Experimental results
demonstrate that our algorithm outperforms existing methods,
offering a promising solution for energy-efficient data collection
in IoT sensor networks.

Index Terms—IoT, UAV, Clustering, Dual-cluster heads, Flight
trajectory, Data collection

I. INTRODUCTION

The IoT represents a paradigm shift in integrating digital

and physical worlds, with WSNs playing a crucial role. These

networks consist of small sensor nodes that can sense, process,

and transmit data [1]. The sensed data from sensors needs to be

forwarded to the base station for further analysis. According

to the transmission range limitation and ground obstacles

like ponds, sensors cannot send their data directly or by

using multi-hop relays to the base station, necessitating the

implementation of intermediary devices or protocols for data

retrieval. This retrieval process becomes pivotal in ensuring

that valuable data from these remote sensors can be accessed

and utilized effectively for various applications and analyses.

Unmanned Aerial Vehicles (UAVs) have emerged as a

transformative solution due to their rapid deployment, high

flexibility, and adaptability in various scenarios [2]. Their line-

of-sight link establishment, reliable connectivity, and ability

to access remote regions have made them a focal point of

research and applications. Especially in scenarios where sensor

nodes are dispersed in inaccessible areas, UAVs serving as

mobile relay nodes offer a solution to the traditional bottleneck

problems faced by ground-based multi-hop communication

systems. However, the convergence of UAV and IoT systems

presents challenges, particularly the need for energy-efficient

and reliable routing protocols to ensure optimal data collection

and delivery from ground sensor nodes. This intersection

opens up a new approach to exploration and innovation,

promising to redefine the landscape of networks and appli-

cations.

This paper explores how to maximize data collection within

IoT sensor networks using an energy-constrained UAV. In

our proposed scenario, a UAV is used to collect data from

sensors while navigating predefined routes. However, due to

the limited battery capacity of the drone during flight and

hovering, it is essential to plan an efficient route to optimize

data collection efficiency while conserving energy resources.

Our approach begins by utilizing a clustering technique to

effectively organize IoT sensors into clusters, employing the

K-means clustering algorithm. Then, within each cluster, we

designate a Primary Cluster Head (PCH) and a Border

Cluster Head (BCH). Following this, we pinpoint hovering

points for the UAV to facilitate data collection. Hovering

points are then identified for the UAV from the BCH points

set. Finally, we adopt a multi-channel approach that enables

the UAV to simultaneously collect data from multiple BCHs.
One possible scenario for deploying the proposed method

is agricultural monitoring. Consider a large agricultural field

equipped with numerous IoT sensors for monitoring soil

moisture, temperature, humidity, and crop health. By utilizing

the proposed method, UAVs can efficiently collect data from

the sensors even in expansive and difficult-to-access areas of

the field. This allows for timely and accurate data collection,

enabling better crop management and irrigation planning.

The novelty of this work lies in defining a new method

for selecting the hovering points for the UAV utilizing dual

clustering. To the best of our knowledge, this is the first

work that uses dual clustering in IoT sensor networks for data

collection by a UAV. This approach leads to a decrease in the

number of hovering points and the UAV’s travel trajectory. We

demonstrate the effectiveness of our algorithm experimentally,

showing significant improvements in data collection efficiency

compared to the existing methods.

The remainder of this paper is organized as follows: Sec-

tion II reviews related work. Section III introduces the system

model, energy model, and problem definition. Section IV

discusses the proposed method in detail, including cluster
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formation, UAV trajectory design, and data collection. Exper-

imental results are given in Section V. Finally, Section VI

discusses the conclusion and future work.

II. RELATED WORK

Recently, the focus has shifted toward using UAVs in WSNs.

These UAVs can easily navigate over barriers, making them

effective for data collection [1], [3], [4]. The data collection

problem has been studied under different variants, such as

Age of Information (AoI) and delay-sensitive data. In [5],

a UAV-assisted IoT data collection mechanism based on an

aerial collaborative relay and AoI-sensitive data collection

(ADC) scheme is investigated. The authors in [6] studied the

deployment of UAVs to collect data from IoT devices by

finding a data collection tour for each UAV. To ensure the

freshness of the collected data, the total time spent on the

tour must not exceed a given delay.

Several studies have explored clustering IoT devices to

enhance data collection efficiency, with UAVs concentrating

on cluster centers for optimal data collection. The authors

in [1], [3], [4] proposed the clustered IoT (CIoT) routing

protocol to enhance message propagation efficiency in IoT

networks and reduce control overhead messages. It is shown

in [7] that the construction tree in the WSN using a clustering

scheme substantially reduces the energy consumption of the

network. A layered multi-hop clustering method for structuring

large-scale networks is proposed in [8], which established a

multi-hop uplink communication based on layer clustering in

long-range communication (LoRa) networks for emerging IoT

applications. An adaptive opportunistic clustering approach

is proposed in [9] that uses computational intelligence for

industrial IoT networks to increase mobility support and net-

work lifetime. A multi-hop constant-time clustering algorithm

for IoT networks [10] used smart load balancing to reduce

computational complexity and enhance scalability. The authors

in [11] proposed an optimum rotation scheduling (ORS) that

utilizes Integer Linear Programming to find the optimum

rotation strategy for selecting the cluster head to prolong the

network lifetime.

While most studies on the use of UAVs for data collection

have focused on the one-to-one data collection scheme, the

authors in [12] proposed a data collection method in WSNs by

adopting a one-to-many data collection scheme to maximize

the volume of data collected, subject to the energy capacity

of the UAV. The authors in [13] studied a method that

considers a one-to-many data collection scheme by adopting

the orthogonal frequency division multiple access (OFDMA)

technique to maximize data collection in IoT sensor networks

through an energy-constrained UAV. In the field of UAV

path planning using the clustering method, many research

studies have been conducted. The authors in [3] proposed an

optimization strategy for UAV path planning, which searches

for the optimal solution of the information age by combining

a clustering algorithm and a genetic algorithm. A self-adaptive

algorithm is presented in [14] based on clustering and symbi-

otic organism search optimization strategy to reduce the search

time of UAVs in performing target-searching missions. By

considering dual clustering, our proposed method reduces the

number of hovering points and the total hovering time, leading

to a decreased flight trajectory for the UAV and allowing it to

collect more data in the network.

Over the years, the selection of a cluster head per cluster has

been widely used in many studies. However, recent research

suggests employing two cluster heads within a cluster. The

work in [15] applied a fuzzy c-mean clustering approach

combined with multi-objective particle swarm optimization

to determine the roles of these cluster heads. In this model,

the primary cluster head collects and aggregates data, which

is then sent to the second cluster head. The second cluster

head then transmits data through a mobile sink to the base

station. Although the method presented in [15] decreases the

trajectory of the mobile sink, the number of visiting points

by the mobile sink to collect data remains the same. The

authors in [4] proposed an energy-efficient dual cluster head

algorithm, based on K-means and Canopy optimization. The

primary cluster head is responsible for communicating with

nodes in the same cluster. Since the vice cluster head is in

charge of sending data to the base station, it is located in the

nearest region in the cluster to the base station to consume

less energy. This algorithm is inefficient when the base station

is far from the sensor deployment area. Due to the limited

transmission range of sensors, they are unable to send data

directly to the base station. To address these problems, this

paper proposes a dual clustering technique and deploys a UAV

to collect data from the sensors. This limits UAV’s hovering

points for data collection from specific locations and leads to

shorter flight distances. Ultimately, using OFDMA, the UAV

can collect data from several cluster heads simultaneously.

III. PRELIMINARIES

A. System Model

This study considers an IoT sensor network consisting of

N sensors S = {s1, s2, . . . , sN} randomly distributed in a

monitoring area M . Let (xi, yi) denote the coordinates of an

IoT sensor si, for 1 f i f N . Sensors have to periodically

transfer the recorded data to external devices, e.g., a server.

Let 0 < Äi f Ä be the size of the data that each si wants

to transfer. The size of the data depends on the type of

sensor and the recorded data. For example, IoT sensors are

used to monitor the temperature and heat in forests to detect

bushfires [16].

We assume that all IoT sensors are homogeneous, with

initial energy, data processing, and communication capabili-

ties. A UAV is dispatched from the base station depot point

O = (0, 0) to collect information from the IoT sensors S. The

flight mission of the UAV starts and finishes at O. The UAV

operates by either flying from one point to another or hovering

over a sensor to collect data. For simplicity in deployment, the

UAV maintains a constant flight velocity v and operates at an

optimal altitude h with a transmission range R. According to

the altitude h of the UAV, the data reception range Rr of the

UAV is Rr =
√
R2 − h2.
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Fig. 1. Simultaneous Data Collection by the UAV from Multiple BCHs in
an IoT Clustered Sensor Network.

Throughout the paper, we use dx,y to compute the Euclidean

distance between any two points x and y. The UAV is able

to collect data from sensor si if dUAV,si f Rr, i.e., if the

Euclidean distance between UAV and si is within the reception

range. Moreover, communication problems including multi-

path propagation, fading, and shadowing are not addressed in

this study. Given that the UAV is powered by a battery with

limited energy, it can only fly for a limited amount of time

within its energy constraint. Therefore, the maximum flight

time of the UAV does not exceed a specified constraint B.

B. Energy Model

In this paper, two energy models are described: the first is

for sending and receiving data among IoT sensors, and the

second is for a UAV to collect data from the IoT sensors in

the network. We apply the model proposed in [17] to calculate

the energy required to send and receive a packet of length

Ä among IoT sensors. Given the transmission range TR of

IoT sensors, each sensor is capable of transmitting data to

adjacent sensors within the coverage area. In addition, energy

consumption varies based on the distance. The computation of

energy consumption for sending and receiving data, relative to

the distance between two adjacent IoT sensors, is as follows:

ETX(Ä, dsi,sj ) =











Äec + Äϵfsd
2

si,sj
dsi,sj < d0

Äec + Äϵmpd
4

si,sj
dsi,sj g d0

ERX(Ä) = Äec

where ETX is the energy consumption for sending data

between two sensors si, sj with data length Ä at distance dsi,sj .

If dsi,sj is less than the threshold (d0), the free space mode

is used. Otherwise, the multi-path fading channel model is

applied to calculate ETX . Parameters ϵfs and ϵmp denote the

exhausted energy by the amplifier for free space and multi-path

fading channel models, respectively. Moreover, ec denotes the

consumed energy by the electronic circuit and ERX the energy

consumed by the IoT sensor sj to receive Ä bits of data. Table I

shows the parameter values related to the energy model.

TABLE I
THE VALUES OF THE PARAMETERS OF THE IOT SENSOR ENERGY MODEL

Parameters Value

ec 50 nJ/bit

ϵfs 10 pJ/bit/m2

ϵmp 0.0013 pJ/bit/m4

d0
√

ϵfs

ϵmp

The energy consumption of a UAV is affected by the (i)

energy required for traveling between hover points; (ii) energy

expended while hovering at these points to gather data; and

(iii) energy consumption for data reception.

The UAV starts its mission from point O to collect data from

IoT sensors, then returns to the departure zone to recharge and

deliver the collected data for further processing at the base

station.

Let’s denote the time taken by the UAV to complete its route

as T , with Th representing the time spent hovering, Tt the time

spent traveling, and Tc the time spent collecting data. Hence,

we can express T as T = Th + Tt + Tc. Moreover, the total

energy utilized by the UAV during the mission must be less

than its energy budget B. Thus, Th ·¸h+Tt ·¸t+TC ·ERX(Ä) <
B, where ¸h and ¸t denote the energy used per unit of time

while hovering and traveling, respectively [13].

C. Problem Definition

In this paper, we investigate the challenge of maximizing

data collection in an IoT sensor network using a UAV. Given

the set S of IoT sensor nodes dispersed across a geographical

area, a UAV flies to the location of each IoT device to collect

data, recall that the data size of sensor si is represented by Äi.
We aim to identify a set of optimal hovering points within

the network,H = {H0,H1, . . .Hq}, where the UAV can hover

to collect data from the sensor nodes, thereby maximizing the

overall data collection efficiency. The key challenge in this

problem lies in determining the optimal hovering points for

the UAV to effectively communicate with the sensor nodes

and collect their data. This task involves considering factors

such as the sensing range (SR) and transmission range (TR)

of the sensor nodes, the data reception range (Rr) of the UAV,

and the UAV energy constraints (B).

The UAV must follow an energy-efficient trajectory to visit

these optimal points and collect data from IoT sensor nodes

while ensuring that its total energy consumption does not

exceed its capacity. Formally, the problem can be defined as:

max

N
∑

i=1

Äi subject to È f B,
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where È is the total energy consumption of the UAV, for

completing a tour to collect data from IoT sensors within

the network. Thus, the solution to this problem involves

identifying the points for data collection, H, and designing

a flight path for the UAV that maximizes data collection

efficiency while adhering to the system constraints.

IV. PROPOSED METHOD

This section elaborates on the details of optimizing UAV-

assisted data collection in IoT sensor networks using the

Dual Cluster Head (UAVDCH) method, which consists of

methods for cluster formation, UAV trajectory design, and data

collection in the IoT sensor network. In the cluster formation

section, we devise clustering techniques to select two types

of cluster heads, namely Primary Cluster Heads (PCHs)
and Border Cluster Heads (BCHs). We select PCHs by

employing a K-means algorithm. After clustering the network

and defining PCHs, which are responsible for receiving the

data within the cluster, several IoT sensors are selected as

BCHs within the network. The PCH transmits the data to

the BCH . Subsequently, a UAV collects data from the clusters

by hovering over the BCH points.

Following the network clustering and designation of cluster

heads, the UAV leverages the Orthogonal Frequency Division

Multiple Access (OFDMA) technique [13] to concurrently

gather data from multiple clusters. When the UAV hovers over

a location with more than one BCH , it can simultaneously

collect data from each BCH using distinct frequency channels

as shown in Figure 1. These strategies not only enhance the

UAV’s operational efficiency but also maximize data collection

in expansive and sparsely equipped monitoring environments.

Furthermore, to perform data collection efficiently, it is es-

sential to determine an optimal trajectory for the UAV that

maximizes data collection while adhering to its energy con-

straints. To address this issue, we propose an approach where

the UAV departs from the base station and selects the next

hovering point as the one with the best ratio between travel

distance and the number of nodes that could be covered. The

UAV continues this process to gather more data, considering

its energy reserves for the return trip to the base station. In

the following, we elaborate on the aforementioned steps.

A. Cluster Formation

The first phase of the proposed algorithm organizes the IoT

sensor nodes into clusters. IoT sensors generate data, and

if data is transmitted directly, it can overload the network

and energy consumption of the sensors. Clustering offers a

hierarchical structure that divides the network into manageable

groups, ensuring efficient data transmission and reduced en-

ergy consumption. Clustering involves partitioning the network

into smaller groups, called clusters. Within each cluster, a

node is selected as the Cluster Head (CH). The CH ′s role

is to collect data from member nodes and send it to the base

station or other higher-level nodes. The objectives of clustering

include energy efficiency, scalability, and latency reduction.

For clustering, several criteria and metrics are considered

such as energy levels, proximity to neighbors, and other

metrics which depend on the problem state. For example,

IoT nodes with higher energy might be preferred as CHs.
On the other hand, proximity to neighbors may improve

communication efficiency. Although several algorithms like

LEACH [18] or HEED [19] exist for clustering in IoT sensor

networks, in our proposed method, we consider a K-means

algorithm where a new approach is devised for determining

K. In this regard, sensing range SR of IoT sensor is the

critical metric for obtaining K by having K =
√

M
AC

, with

AC = Ã · (SR)2, where, M is the monitoring area. By

obtaining K through this method, all sensors within the cluster

can communicate with their cluster head with respect to the

transmission range TR.

Therefore, after finding the proper K, the network is divided

into K clusters utilizing the K-means algorithm. Then, we first

define PCH , and later select BCH in each cluster. In the end,

the data in the network will be collected by a UAV from the

BCH in each cluster. The PCH is chosen in each cluster

based on the distance to cluster members and the remaining

energy of the candidate IoT sensor. The criteria for selecting

a PCH in a cluster are computed by Eq. (1). The IoT sensor

with the highest Fitness F is selected as PCH for the cluster.

This process is repeated for each cluster to select the PCH .

Fsi = (1− d̂si) +Resi , 1 f si f N (1)

Where, d̂si represents the mean Euclidean distance from

candidate sensor si to all members (m) of the candidate’s

cluster, and is defined as:

d̂si =
△dsi −min1fsjfm(dsi,sj )

max1fsjfm(dsi,sj )−min1fsjfm(dsi,sj )

where △dsi =
∑m

j=1
dsi,sj

m
for all pairs of sensors such that

1 f si, sj f m and si ̸= sj . The remaining energy of si is

defined and normalized as Resi =
Resi
Ie

, where Ie is its initial

energy.

After selecting the PCH for each cluster, our next step is

to select one IoT sensor as the BCH in every cluster. We

aim to find the degree ¶ of cluster members in each cluster,

defined as the number of other clusters that a node can cover

based on the UAV’s coverage range. Within each cluster, the

degree ¶ is computed for all cluster members ¶si.
Then, the node with the highest degree ¶s and remaining

energy Re above the threshold is selected as the BCH for the

cluster. This process is repeated for each cluster in the network

until all clusters have a designated BCH . The degree of each

node in the cluster is computed by:

¶sc =
∑

1fifk : i ̸=z

|{∀sj ∈ Ci : dsj ,sc f Rr}|

Where Ci represents cluster i, Cz is the cluster that contains

the sc, and Rr is the reception range of the UAV. Our

objective is to identify a BCH within each cluster that
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can cover the maximum number of available neighboring

BCHs concerning the UAV coverage range. Consequently,

the network structure will resemble a forest composed of

BCH trees. Each tree consists of direct edges (connections)

to neighboring BCHs. Hence, each tree has a BCH as its

root, which possesses the highest degree, and several BCHs
as leaves T = {BCH1, BCH2, . . . , BCHk}, as depicted in

Figure 1. According to Figure 1, the roots of the trees are

labeled as UAV hovering points, and there is a BCH-to-BCH
connection between the root and the leaves of each tree.

Algorithm 1 Find degree ¶ for each IoT sensor node within

each cluster in the network.

1: Input: IoT sensors S = {s1, . . . , sN}, consist of PCH =
{PCH1, . . . , PCHK} and cluster members, as well as

reception range of the UAV Rr.

2: Output: Degree ¶s of all IoT sensors

3: Create a Flag list for each sensor node with a length K,

containing default zero values except for sensor’s cluster.

4: for si=1 to N do

5: Let FlagSi
= {01, 02, . . . , 0K}.

6: for sj=1 to N do

7: if dsi,sj f Rr, clusteri ̸= clusterj ,i ̸= j then

8: Turn the related Flag of Clusterj to 1,

Flagsi [clusterj ] = 1
9: end if

10: end for

11: ¶si = Count number of 1 in the Flagsi
12: end for

13: Return ¶s

After obtaining the degree of each cluster member from

Algorithm 1, a node with the highest degree is selected as

BCH for each cluster, and the number of created trees in

the network is computed. The process of selecting BCH and

computing the number of formed trees is explained in the

Algorithm 2. This procedure is repeated until the minimum

number of trees are found that cover all clusters. Since the

root of the tree is the hovering point for the UAV, our

ultimate goal is to minimize the number of hovering locations.

For instance, considering a network consisting of multiple

sensors, as depicted in Figure 1, the number of UAV hovering

points using conventional clustering algorithms like Primary

Cluster Head (PCH) is 7. However, by adopting the proposed

clustering method, the number of hovering points needed to

collect data from all clusters decreases from 7 to 3. In the

subsequent phase, we define the UAV’s flight path to travel

and collect data from the IoT sensors in the network.

B. UAV Trajectory Design

In this phase, a trajectory within the network is designed

to enable the UAV to optimally collect data from IoT sensor

nodes. The objective is to devise a strategy for the UAV to

gather the maximum amount of data by covering the maximum

number of sensors in the network, considering its energy

constraints. To this end, we determine an optimal path for

the UAV to select specific hovering points that can cover the

maximum number of nodes in the network. In our proposed

method, the UAV does not visit each cluster head to collect

data; instead, it visits only the root of the trees in the network.

Algorithm 2 Determining BCH points.

1: Input: Degree of IoT sensors ¶s.
2: Output: T containing BCH point for each cluster.

3: Sort ¶s in descending order

4: Uncovered Cls← all clusters

5: while Uncovered Cls ̸= empty do

6: BCHi ← max ¶s , s ∈ Uncovered Cls
7: clusteri ← Cluster which BCHi is in it.

8: create Ti and select BCHi as the root, 1 f i f K
9: Uncovered Cls← Uncovered Cls\clusteri

10: for c = 1 to (K − clusteri) do

11: for j=1 to N do

12: if dsj ,BCHi
f Rr and sj /∈ clusteri and

clusterc /∈ Covered Clsi then

13: Covered Clsi ← clusterc
14: end if

15: end for

16: end for

17: for j= 1 to | Covered Clsi | do

18: candidatesj ← IoT sensors in Covered Clsj that

has connection with BCHi

19: BCHj ← argmaxsa∈candidatesj (Re(sa))
20: Select BCHj as the leaf of the Ti
21: end for

22: Uncovered Cls← Uncovered Cls\Covered Clsi
23: end while

24: Return T

More precisely, with the network resembling a forest com-

prising q trees T , the UAV visits only the root of these trees.

The set of hovering locations for the UAV is a set of root

BCH , represented as H = {H0,H1, . . .Hq}. Consequently,

the number of visiting and hovering locations for the UAV

is significantly reduced. To pinpoint the precise hovering

locations for the UAV, the positions of the root BCH in

each tree serve as ideal spots. For each hovering point H,

a ratio is calculated using Eq. (2) and Eq. (3), which define

the value of each hovering point. In other words, the UAV

chooses hovering points which have the minimum ratio when

considering the travel distance and the number of nodes that

could be covered at the hovering points, as described in

Eq. (4).

H ri =
dUAV,Hi

³si
(2)

³si =
N
∑

j=1

sj (3)

min(H ri), ∀i ∈ Hq (4)
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where ³si is the number of sensors that can be covered when

the UAV hovers at Hi, and dUAV,Hi
is the Euclidean distance

from the current location of the UAV to the hovering point Hi.

After computing the ratio for all designated hovering points,

the UAV selects the next hovering point with minimum ratio

using Eq. (4) while considering its energy constraint. More

precisely, the UAV can collect data from more IoT sensor

nodes while minimizing the travel distance. Each hovering

point is the root of a T , whose vertices are within each other’s

transmission range. When the UAV hovers over the root of

a T , it can simultaneously collect data from all vertices of

the tree using the multi-channel method. This method enables

the UAV to gather data from multiple clusters simultaneously,

resulting in savings of both energy and time. After the UAV

collects data from T∞, it proceeds to the next hovering point.

This process is repeated until the UAV has only enough battery

to return to the base station to offload the collected data.

Recall that every IoT sensor node has a label corresponding

to its coordinates (xi, yi). Let (x′, y′, h) represent the hovering

coordinates of the UAV, where h is the UAV’s flight altitude.

This altitude, h, shouldn’t exceed the transmission range, TR,

of each IoT sensor node. Additionally, Tr represents the data

transmission rate of the IoT sensors. Each BCH can forward

the accumulated data to the UAV at the data transmission

rate Tr when the drone is inside its communication range

TR. Therefore, the hovering altitude h for collecting data

is constrained by h f TR and it is also hypothesized

that this altitude, h, remains consistent [19]. Following the

data gathering paradigm, if all IoT devices are within the

UAV transmission range, their data is accessible to the UAV,

under the assumption that distinct communication channels

are utilized by each device. With the help of the OFDMA

technique [20], the UAV can collect the data of all BCHs in

its coverage area simultaneously as shown in Figure 1.

Since the BCHs are tasked with sending the data from

each cluster, the UAV requires a certain amount of time to

collect the total data Td from each cluster. Therefore, the

UAV hovers over the BCH ′s location to collect the Td. The

duration of the UAV’s hover to collect data from BCHi is

Hti =
Tdi

Tr
. As the UAV’s hovering location is the root of the

tree, and since a tree may have more than one BCH , the

UAV can collect data from several BCHs simultaneously.

Thus, the total hovering duration time at the root of a tree

Ti is equal to HTi = △Ti

tci
, where △Ti =

∑C

j=1
Tdj and

tci = max1fjfC

(

Tdj/Tr). Where C represents the number

of clusters that are vertices of the tree Ti and tci denotes the

maximum amount of time required to collect data from the

BCHs of a Tð. The total energy consumption for hovering at

the location Ti is computed as ÀHTi = HTi · ¸h.

The UAV saves a considerable amount of hovering time by

collecting data from several BCHs in Tð using the OFDMA

approach. Additionally, it eliminates the need to fly to each

cluster’s location to collect data from that specific cluster.

Consequently, travel time, the number of hovering points

visited, and overall travel distance are reduced. Furthermore,

the UAV consumes energy to receive data from the IoT sensors

while hovering at each location. The amount of energy the

UAV consumes for collecting data △Ti from each tree is

computed as ÀcTi
= △Ti ·ec, where ec indicates the consumed

energy by the electronic circuit of the UAV.

The flight path is predetermined before the UAV departs

from the base station. At each hovering zone, the UAV assesses

its remaining energy before proceeding to the next location. If

the UAV has enough remaining energy to collect data at the

next point and return to the base station, it continues; if not,

it returns to the base station for recharging.

The energy required for the UAV to travel between hovering

locations is determined by ÀTi = Tti,j .¸t where Tti,j =
dTi,Tj

v
, Ti, Tj ∈ T and v denotes the velocity of the UAV

and d represents the Euclidean distance between trees Ti and

Tj , while ¸t signifies the UAV’s energy consumption rate

during travel. The overall energy consumption of the UAV

consists of the energy expended for traveling, hovering, and

data collection. The total energy consumption of the UAV, for

completing a tour to collect data from IoT sensors within the

network, is given by È =
∑q

i=1
(ÀTi + ÀHTi + ÀcTi

), where

È f B, and B denotes the energy capacity of the UAV’s.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithm in terms of collected data and sensor energy con-

sumption through experimental simulations.

A. Experimental Settings

This paper considers a sparse sensor network that consists of

N = {500, 600, 700, 800, 900, 1000} sensor nodes randomly

deployed in a 1000 × 1000 meters square area. The data

volume of each sensor node is randomly drawn from two

ranges, the first range is 10 KB to 200 KB, and the second

range is 100 KB to 500 KB. We assume that the transmission

range TR of each sensor node is 150 meters, the sensing range

SR of each sensor node is 25 meters, and the data transmission

rate Tr of the sensor is 150 Kb. The UAV is initially deployed

at a depot O = (0, 0), and we consider three different energy

capacities for it, i.e., B = 1.5 × 105, 3 × 105, and 4.5 × 105

joules at constant flying speed v = 10m/s and the flying

altitude h = 100 meters. The energy capacity of the real drone

is B = 3× 105 [13], and we examine the performance of the

UAV by decreasing and increasing this value by 50 percent.

The energy consumption rates of the UAV on traveling and

hovering are ¸t = 100J/s and ¸h = 150J/s, as used in [13],

respectively. The value in each figure is the mean of the results

from 20 network instances of the same size. For each instance,

sensor nodes are randomly deployed with random data sizes

within the defined ranges. Table II lists the default settings

of the parameters in this paper. All the simulated evaluation

experiments are conducted using Python and Jupyter Notebook

on a MacBook Pro equipped with an Apple M3 Pro chip,

featuring a 12-core CPU, and 18 GB of RAM.

To evaluate the performance of the proposed UAVDCH

algorithm, we compare it with PCH algorithm, MRE-s algo-

rithm [21], and its improved version called IMRE-s algorithm.
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Fig. 2. UAV Data collection: comparison of all the algorithms when varying the drone’s energy capacity and data size. In each plot, the y-axis represents the
percentage of data collected in the network, and the x-axis represents the number of sensors.

TABLE II
TABLE OF PARAMETER SETTINGS

Parameters Value

Sensing field 1000m× 1000m

Network size 500 - 1000 Sensor nodes

Sensor data volume Ä 10KB - 200KB, 100KB - 500KB

Transmission range TR 150m

Sensor sensing range SR 25m

Flying altitude h 100m

Data transmission rate Tr 150Kbps

Energy capacity B 1.5× 105, 3× 105, 4.5× 105 joules

Flying speed v 10m/s

Traveling consumption rate ¸t 100J/s

Hovering energy rate ¸h 150J/s

• The Primary Cluster Head (PCH) algorithm is similar to

the proposed method, but it considers only one layer of

clustering. In the PCH algorithm, sensors in the network

are categorized into several clusters using the K-means

algorithm, following the same method as our proposed

method. Each cluster has a PCH sensor node, which

serves as a hovering point for the UAV. Therefore, the

UAV collects data from the sensors by traveling and

hovering over the PCH locations until its battery has

limited energy for returning to the base station.

• The Max Ratio Reward-Energy with a single drone

(MRE-s) algorithm is a heuristic approach designed to

address the Maximum Data Collection Problem using a

single UAV. It operates by iteratively selecting sensors

based on the highest ratio of data reward to additional

energy cost, ensuring efficient data collection while man-

aging energy constraints. In this algorithm, the UAV

hovers and collects data from sensors within its coverage

area. Although the UAV may cover more than one sensor

at a hovering point in MRE-s, it collects data from only

one sensor at a time.

• In the IMRE-s algorithm, we integrate the OFDMA

technique, enabling the UAV to simultaneously gather

data from multiple sensors at the hovering point. This

variant has been adopted to address a limitation of the

original MRE-s algorithm, which could only collect data

from one sensor at a time.

TABLE III
SENSOR ENERGY CONSUMPTION RATIO BY NUMBER OF COVERED

NODES

# Sensors PCH UAVDCH MRE-s IMRE-s

500 0.177 0.240 0.070 0.053

600 0.175 0.241 0.077 0.053

700 0.177 0.245 0.085 0.059

800 0.179 0.263 0.082 0.050

900 0.180 0.259 0.087 0.058

1000 0.185 0.273 0.089 0.056

B. Performance Evaluation of Different Algorithms for Data

Collection and Sensor Energy Consumption

We first evaluate the data collection performance of the

various algorithms. As depicted in Figure 2, our proposed

algorithm, UAVDCH, demonstrates enhanced performance

compared to other algorithms. With a network comprising

500 sensors, an energy capacity of B = 1.5 × 105 joules,

and data sizes ranging from 10KB to 200KB, our method

achieves a data collection rate of 80 percent, which is markedly

higher than the other three algorithms. Similarly, for the same
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data size, the PCH algorithm ranks second in terms of data

collection, outperforming both MRE-s and IMRE-s owing to

its clustering-based model. Notably, both the proposed method

and the PCH algorithm utilize a clustering technique leading

to higher energy consumption for sensors in both algorithms

compared to other algorithms, as detailed in Table III. Table III

elaborates on the ratio of sensor energy consumption by the

number of covered nodes when B = 3 × 105 in a 1000m
× 1000m sensing field. It should be noted that nearly one-

third of the sensor energy consumption in the network is

related to transmitting data from PCH to BCH in the UAVDCH

algorithm, while the rest is used to transmit the data from

BCH points to the UAV. Moreover, by increasing the UAV’s

energy capacity to B = 3× 105 joules or more, the proposed

method enables the UAV to completely collect data (exceeding

100 MB) from all sensors in the network, as demonstrated in

Figure 2.

TABLE IV
NUMBER OF SENSORS COVERED BY THE UAV IN A 1000m × 1000m

SENSING FIELD

# Sensors PCH UAVDCH MRE-s IMRE-s

500 102 318 37 65

600 104 323 44 80

700 100 346 48 90

800 101 355 50 100

900 102 360 59 113

1000 93 375 60 126

Furthermore, as the data size increases to the range of

100KB - 500KB, the UAVDCH algorithm consistently out-

performs the others, capturing the highest percentage of total

sensor data collection (more than 300 MB) in the network.

For instance, UAVDCH can collect data from 318 sensors

in 1000m × 1000m sensing field with an energy capacity

of B = 3 × 105 as shown in Table IV. In contrast, the

performance of the PCH algorithm substantially decreases,

while the IMRE-s algorithm exhibits better performance than

the PCH algorithm with larger data sizes, as presented in

Table IV. The decline in PCH algorithm performance when

handling large data sizes can be attributed to its operational

mechanism, where the UAV is required to travel and hover

solely over cluster heads. At each hovering point, the UAV

receives data from only one cluster head, leading to increased

time for hovering and data collection compared to the IMRE-

s algorithm. In the IMRE-s algorithm, multiple sensors can

communicate with the UAV at the hovering point, allowing

the UAV to simultaneously collect data from several sensors.

This approach consistently outperforms the MRE-s algorithm.

Moreover, as can be seen from Figure 2 and Table III, the

IMRE-s algorithm not only achieves higher data collection

than the PCH algorithm but also demonstrates significantly

lower energy consumption for sensors.

It can be observed that in both data ranges, the UAVDCH

algorithm outperforms the others, and when the data size

TABLE V
NUMBER OF HOVERING POINTS IN THE SENSING FIELD

Sensing field PCH UAVDCH

500 × 500 11 4

1000 × 1000 23 8

1500 × 1500 34 13

2000 × 2000 45 17

is small, the UAVDCH method can collect 100 percent of

the data in most cases. The enhanced performance of the

UAVDCH algorithm compared to the MRE-s and IMRE-

s algorithms is attributed to the implementation of double

clustering, which identifies potential hovering points for the

UAV in advance and establishes the travel trajectory of the

UAV by computing the ratio of each point. In addition, the

number of hovering points and the travel distance are reduced

in comparison with other algorithms. In contrast, the MRE-s

and IMRE-s algorithms are greedy algorithms, and the UAV

needs to decide the points step by step. Since these algorithms

do not incorporate clustering, they consume more time for

traveling and hovering over more points while collecting less

data compared to our proposed method.

Although the PCH algorithm also employs clustering, it

results in a greater number of hovering points than UAVDCH,

leading to a longer UAV trajectory. Table V illustrates the

effectiveness of the proposed method in reducing the number

of hovering points for the UAV across sensing fields. For

instance, within a 1000m × 1000m sensing field, the number

of hovering points was remarkably reduced by the UAVDCH

algorithm compared to the PCH algorithm, from 23 to 8.

Therefore, by traveling to fewer hovering points, the UAV

can cover all sensors in the sensing field. As in the example

depicted in Figure 1, the UAV can collect the data of all

sensors in the network by just hovering over three points

(UAVDCH) instead of seven (PCH) points, which decreases

the total travel distance of the UAV. Consequently, our pro-

posed method substantially enhances the energy efficiency of

UAVs operating under energy constraints by decreasing and

defining appropriate hovering points.

VI. CONCLUSION

In this study, we have introduced a novel approach for op-

timizing UAV-assisted data collection in IoT sensor networks

using a dual cluster head strategy (UAVDCH). Our approach

utilizes a dual-cluster head strategy to decrease the number

of hovering points in the sensing field and to shorten the

flight trajectory, thereby significantly enhancing data collection

efficiency while optimizing the UAV’s energy consumption.

By employing a multi-channel technique, our method allows

simultaneous data collection from multiple clusters, reducing

hovering and transmission time.

Key Contributions:
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• Dual Cluster Head Strategy: Implemented a dual cluster

head strategy to minimize the number of UAV hovering

points and shorten the flight trajectory.

• Effective Hovering Points: Utilized Border Cluster

Heads (BCHs) as UAV hovering points to minimize the

number of required hovering locations, thereby reducing

flight duration and distance.

• Multi-Channel Technique: Developed a multi-channel

approach for simultaneous data collection from multiple

clusters, reducing both hovering and transmission times.

• Efficiency Improvement: Demonstrated significant im-

provements in data collection efficiency and UAV energy

consumption.

Experimental results demonstrate that our proposed algo-

rithm UAVDCH outperforms existing methods in terms of data

collection efficiency, particularly in sparse sensor networks

with varying data sizes. The use of Border Cluster Heads

(BCHs) as UAV hovering points has proven to be effective in

minimizing the number of required hovering locations, thereby

reducing flight duration and distance.

Future work will focus on addressing the challenges of

non-line-of-sight conditions, and dynamic environments, and

exploring adaptive strategies to further optimize the UAV’s

flight path and energy consumption. Additionally, we aim

to investigate the integration of machine learning techniques

to enhance the decision-making process for UAV trajectory

design. In addition, we plan to utilize multiple UAVs for

collecting data in larger sensing fields.
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