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Abstract—The proliferation of the Internet of Things (IoT)
has significantly impacted the integration of digital and physical
realms, with Wireless Sensor Networks (WSNs) playing a crucial
role. However, these sensor nodes often face challenges related to
battery constraints and deployment in inaccessible terrains. The
advent of Unmanned Aerial Vehicles (UAVs) presents a transfor-
mative solution, particularly for data collection from remote IoT
devices. This work explores the application of UAVs to improve
data collection in dense IoT sensor networks. We propose a novel
approach called optimizing UAV-assisted data collection in IoT
sensor networks using Dual Cluster Head (UAVDCH) that utilizes
dual cluster heads within each cluster to optimize the UAV’s
energy consumption. The primary cluster head is responsible for
collecting data within the cluster, while the secondary cluster
head is tasked with transmitting the data to the UAV. Our
objective is to maximize the available data the UAV collects
with respect to its energy constraints. We develop a strategy
for selecting appropriate secondary cluster heads, determining
UAV’s hovering points, and designing flight trajectories that
maximize data collection. By adopting a multi-channel technique,
we facilitate simultaneous data collection from multiple clusters,
reducing hovering and transmission times. Experimental results
demonstrate that our algorithm outperforms existing methods,
offering a promising solution for energy-efficient data collection
in IoT sensor networks.

Index Terms—IoT, UAYV, Clustering, Dual-cluster heads, Flight
trajectory, Data collection

I. INTRODUCTION

The IoT represents a paradigm shift in integrating digital
and physical worlds, with WSNs playing a crucial role. These
networks consist of small sensor nodes that can sense, process,
and transmit data [1]. The sensed data from sensors needs to be
forwarded to the base station for further analysis. According
to the transmission range limitation and ground obstacles
like ponds, sensors cannot send their data directly or by
using multi-hop relays to the base station, necessitating the
implementation of intermediary devices or protocols for data
retrieval. This retrieval process becomes pivotal in ensuring
that valuable data from these remote sensors can be accessed
and utilized effectively for various applications and analyses.

Unmanned Aerial Vehicles (UAVs) have emerged as a
transformative solution due to their rapid deployment, high
flexibility, and adaptability in various scenarios [2]. Their line-
of-sight link establishment, reliable connectivity, and ability
to access remote regions have made them a focal point of
research and applications. Especially in scenarios where sensor
nodes are dispersed in inaccessible areas, UAVs serving as
mobile relay nodes offer a solution to the traditional bottleneck

problems faced by ground-based multi-hop communication
systems. However, the convergence of UAV and IoT systems
presents challenges, particularly the need for energy-efficient
and reliable routing protocols to ensure optimal data collection
and delivery from ground sensor nodes. This intersection
opens up a new approach to exploration and innovation,
promising to redefine the landscape of networks and appli-
cations.

This paper explores how to maximize data collection within
IoT sensor networks using an energy-constrained UAV. In
our proposed scenario, a UAV is used to collect data from
sensors while navigating predefined routes. However, due to
the limited battery capacity of the drone during flight and
hovering, it is essential to plan an efficient route to optimize
data collection efficiency while conserving energy resources.
Our approach begins by utilizing a clustering technique to
effectively organize IoT sensors into clusters, employing the
K-means clustering algorithm. Then, within each cluster, we
designate a Primary Cluster Head (PC'H) and a Border
Cluster Head (BC'H). Following this, we pinpoint hovering
points for the UAV to facilitate data collection. Hovering
points are then identified for the UAV from the BC'H points
set. Finally, we adopt a multi-channel approach that enables
the UAV to simultaneously collect data from multiple BC'Hs.
One possible scenario for deploying the proposed method
is agricultural monitoring. Consider a large agricultural field
equipped with numerous IoT sensors for monitoring soil
moisture, temperature, humidity, and crop health. By utilizing
the proposed method, UAVs can efficiently collect data from
the sensors even in expansive and difficult-to-access areas of
the field. This allows for timely and accurate data collection,
enabling better crop management and irrigation planning.

The novelty of this work lies in defining a new method
for selecting the hovering points for the UAV utilizing dual
clustering. To the best of our knowledge, this is the first
work that uses dual clustering in [oT sensor networks for data
collection by a UAV. This approach leads to a decrease in the
number of hovering points and the UAV’s travel trajectory. We
demonstrate the effectiveness of our algorithm experimentally,
showing significant improvements in data collection efficiency
compared to the existing methods.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work. Section III introduces the system
model, energy model, and problem definition. Section IV
discusses the proposed method in detail, including cluster
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formation, UAV trajectory design, and data collection. Exper-
imental results are given in Section V. Finally, Section VI
discusses the conclusion and future work.

II. RELATED WORK

Recently, the focus has shifted toward using UAVs in WSNs.
These UAVs can easily navigate over barriers, making them
effective for data collection [1], [3], [4]. The data collection
problem has been studied under different variants, such as
Age of Information (Aol) and delay-sensitive data. In [5],
a UAV-assisted IoT data collection mechanism based on an
aerial collaborative relay and Aol-sensitive data collection
(ADC) scheme is investigated. The authors in [6] studied the
deployment of UAVs to collect data from IoT devices by
finding a data collection tour for each UAV. To ensure the
freshness of the collected data, the total time spent on the
tour must not exceed a given delay.

Several studies have explored clustering IoT devices to
enhance data collection efficiency, with UAVs concentrating
on cluster centers for optimal data collection. The authors
in [1], [3], [4] proposed the clustered IoT (CloT) routing
protocol to enhance message propagation efficiency in IoT
networks and reduce control overhead messages. It is shown
in [7] that the construction tree in the WSN using a clustering
scheme substantially reduces the energy consumption of the
network. A layered multi-hop clustering method for structuring
large-scale networks is proposed in [8], which established a
multi-hop uplink communication based on layer clustering in
long-range communication (LoRa) networks for emerging IoT
applications. An adaptive opportunistic clustering approach
is proposed in [9] that uses computational intelligence for
industrial IoT networks to increase mobility support and net-
work lifetime. A multi-hop constant-time clustering algorithm
for IoT networks [10] used smart load balancing to reduce
computational complexity and enhance scalability. The authors
in [11] proposed an optimum rotation scheduling (ORS) that
utilizes Integer Linear Programming to find the optimum
rotation strategy for selecting the cluster head to prolong the
network lifetime.

While most studies on the use of UAVs for data collection
have focused on the one-to-one data collection scheme, the
authors in [12] proposed a data collection method in WSNs by
adopting a one-to-many data collection scheme to maximize
the volume of data collected, subject to the energy capacity
of the UAV. The authors in [13] studied a method that
considers a one-to-many data collection scheme by adopting
the orthogonal frequency division multiple access (OFDMA)
technique to maximize data collection in IoT sensor networks
through an energy-constrained UAV. In the field of UAV
path planning using the clustering method, many research
studies have been conducted. The authors in [3] proposed an
optimization strategy for UAV path planning, which searches
for the optimal solution of the information age by combining
a clustering algorithm and a genetic algorithm. A self-adaptive
algorithm is presented in [14] based on clustering and symbi-
otic organism search optimization strategy to reduce the search
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time of UAVs in performing target-searching missions. By
considering dual clustering, our proposed method reduces the
number of hovering points and the total hovering time, leading
to a decreased flight trajectory for the UAV and allowing it to
collect more data in the network.

Over the years, the selection of a cluster head per cluster has
been widely used in many studies. However, recent research
suggests employing two cluster heads within a cluster. The
work in [15] applied a fuzzy c-mean clustering approach
combined with multi-objective particle swarm optimization
to determine the roles of these cluster heads. In this model,
the primary cluster head collects and aggregates data, which
is then sent to the second cluster head. The second cluster
head then transmits data through a mobile sink to the base
station. Although the method presented in [15] decreases the
trajectory of the mobile sink, the number of visiting points
by the mobile sink to collect data remains the same. The
authors in [4] proposed an energy-efficient dual cluster head
algorithm, based on K-means and Canopy optimization. The
primary cluster head is responsible for communicating with
nodes in the same cluster. Since the vice cluster head is in
charge of sending data to the base station, it is located in the
nearest region in the cluster to the base station to consume
less energy. This algorithm is inefficient when the base station
is far from the sensor deployment area. Due to the limited
transmission range of sensors, they are unable to send data
directly to the base station. To address these problems, this
paper proposes a dual clustering technique and deploys a UAV
to collect data from the sensors. This limits UAV’s hovering
points for data collection from specific locations and leads to
shorter flight distances. Ultimately, using OFDMA, the UAV
can collect data from several cluster heads simultaneously.

III. PRELIMINARIES
A. System Model

This study considers an IoT sensor network consisting of
N sensors S = {s1,s2,...,sy} randomly distributed in a
monitoring area M. Let (z;,y;) denote the coordinates of an
IoT sensor s;, for 1 < ¢ < N. Sensors have to periodically
transfer the recorded data to external devices, e.g., a server.
Let 0 < p; < p be the size of the data that each s; wants
to transfer. The size of the data depends on the type of
sensor and the recorded data. For example, IoT sensors are
used to monitor the temperature and heat in forests to detect
bushfires [16].

We assume that all IoT sensors are homogeneous, with
initial energy, data processing, and communication capabili-
ties. A UAV is dispatched from the base station depot point
O = (0,0) to collect information from the IoT sensors S. The
flight mission of the UAV starts and finishes at O. The UAV
operates by either flying from one point to another or hovering
over a sensor to collect data. For simplicity in deployment, the
UAV maintains a constant flight velocity v and operates at an
optimal altitude h with a transmission range R. According to
the altitude h of the UAV, the data reception range Rr of the

UAV is Rr = vV R? — h2.
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Fig. 1. Simultaneous Data Collection by the UAV from Multiple BC Hs in
an IoT Clustered Sensor Network.

Throughout the paper, we use d , to compute the Euclidean
distance between any two points x and y. The UAV is able
to collect data from sensor s; if dyay,s, < Rr, ie., if the
Euclidean distance between UAV and s; is within the reception
range. Moreover, communication problems including multi-
path propagation, fading, and shadowing are not addressed in
this study. Given that the UAV is powered by a battery with
limited energy, it can only fly for a limited amount of time
within its energy constraint. Therefore, the maximum flight
time of the UAV does not exceed a specified constraint B.

B. Energy Model

In this paper, two energy models are described: the first is
for sending and receiving data among IoT sensors, and the
second is for a UAV to collect data from the IoT sensors in
the network. We apply the model proposed in [17] to calculate
the energy required to send and receive a packet of length
p among IoT sensors. Given the transmission range 1T'R of
IoT sensors, each sensor is capable of transmitting data to
adjacent sensors within the coverage area. In addition, energy
consumption varies based on the distance. The computation of
energy consumption for sending and receiving data, relative to
the distance between two adjacent IoT sensors, is as follows:

pec + pefsciziﬁj ds, s; < do
ETX (97 ds,i,sj) =

Pec + PEmpdi’SJ dsi,sj > dO

Erx(p) = pec

where Epx is the energy consumption for sending data
between two sensors s;, s; with data length p at distance d;, ;.
If ds, s; is less than the threshold (dp), the free space mode
is used. Otherwise, the multi-path fading channel model is
applied to calculate E7x. Parameters €5 and €,,, denote the
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exhausted energy by the amplifier for free space and multi-path
fading channel models, respectively. Moreover, e. denotes the
consumed energy by the electronic circuit and Erx the energy
consumed by the 10T sensor s; to receive p bits of data. Table I
shows the parameter values related to the energy model.

TABLE 1
THE VALUES OF THE PARAMETERS OF THE IOT SENSOR ENERGY MODEL

Parameters Value
ec 50 nJ/bit
€fs 10 pJ/bit/m?
€mp 0.0013 pJ/bit/m*
do fs

€mp

The energy consumption of a UAV is affected by the (i)
energy required for traveling between hover points; (ii) energy
expended while hovering at these points to gather data; and
(iii) energy consumption for data reception.

The UAV starts its mission from point O to collect data from
10T sensors, then returns to the departure zone to recharge and
deliver the collected data for further processing at the base
station.

Let’s denote the time taken by the UAV to complete its route
as T', with T}, representing the time spent hovering, 7} the time
spent traveling, and 7. the time spent collecting data. Hence,
we can express 1" as T' = T, + Ty + T.. Moreover, the total
energy utilized by the UAV during the mission must be less
than its energy budget B. Thus, T}, -np+T;-n:+Tc-Erx (p) <
B, where 1, and 7; denote the energy used per unit of time
while hovering and traveling, respectively [13].

C. Problem Definition

In this paper, we investigate the challenge of maximizing
data collection in an IoT sensor network using a UAV. Given
the set S of 10T sensor nodes dispersed across a geographical
area, a UAV flies to the location of each IoT device to collect
data, recall that the data size of sensor s; is represented by p;.

We aim to identify a set of optimal hovering points within
the network, % = {Ho, H1, ... Hq}, where the UAV can hover
to collect data from the sensor nodes, thereby maximizing the
overall data collection efficiency. The key challenge in this
problem lies in determining the optimal hovering points for
the UAV to effectively communicate with the sensor nodes
and collect their data. This task involves considering factors
such as the sensing range (SR) and transmission range (T'R)
of the sensor nodes, the data reception range (Rr) of the UAV,
and the UAV energy constraints (B3).

The UAV must follow an energy-efficient trajectory to visit
these optimal points and collect data from IoT sensor nodes
while ensuring that its total energy consumption does not
exceed its capacity. Formally, the problem can be defined as:

N
maxz p; subjectto 1 < B,
i=1
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where v is the total energy consumption of the UAV, for
completing a tour to collect data from IoT sensors within
the network. Thus, the solution to this problem involves
identifying the points for data collection, H, and designing
a flight path for the UAV that maximizes data collection
efficiency while adhering to the system constraints.

IV. PROPOSED METHOD

This section elaborates on the details of optimizing UAV-
assisted data collection in IoT sensor networks using the
Dual Cluster Head (UAVDCH) method, which consists of
methods for cluster formation, UAV trajectory design, and data
collection in the IoT sensor network. In the cluster formation
section, we devise clustering techniques to select two types
of cluster heads, namely Primary Cluster Heads (PCHs)
and Border Cluster Heads (BCHs). We select PCHs by
employing a K -means algorithm. After clustering the network
and defining PC H s, which are responsible for receiving the
data within the cluster, several IoT sensors are selected as
BCHs within the network. The PC'H transmits the data to
the BC H. Subsequently, a UAV collects data from the clusters
by hovering over the BC'H points.

Following the network clustering and designation of cluster
heads, the UAV leverages the Orthogonal Frequency Division
Multiple Access (OFDMA) technique [13] to concurrently
gather data from multiple clusters. When the UAV hovers over
a location with more than one BCH, it can simultaneously
collect data from each BC'H using distinct frequency channels
as shown in Figure 1. These strategies not only enhance the
UAV’s operational efficiency but also maximize data collection
in expansive and sparsely equipped monitoring environments.
Furthermore, to perform data collection efficiently, it is es-
sential to determine an optimal trajectory for the UAV that
maximizes data collection while adhering to its energy con-
straints. To address this issue, we propose an approach where
the UAV departs from the base station and selects the next
hovering point as the one with the best ratio between travel
distance and the number of nodes that could be covered. The
UAV continues this process to gather more data, considering
its energy reserves for the return trip to the base station. In
the following, we elaborate on the aforementioned steps.

A. Cluster Formation

The first phase of the proposed algorithm organizes the IoT
sensor nodes into clusters. IoT sensors generate data, and
if data is transmitted directly, it can overload the network
and energy consumption of the sensors. Clustering offers a
hierarchical structure that divides the network into manageable
groups, ensuring efficient data transmission and reduced en-
ergy consumption. Clustering involves partitioning the network
into smaller groups, called clusters. Within each cluster, a
node is selected as the Cluster Head (CH). The CH's role
is to collect data from member nodes and send it to the base
station or other higher-level nodes. The objectives of clustering
include energy efficiency, scalability, and latency reduction.
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For clustering, several criteria and metrics are considered
such as energy levels, proximity to neighbors, and other
metrics which depend on the problem state. For example,
IoT nodes with higher energy might be preferred as C'Hs.
On the other hand, proximity to neighbors may improve
communication efficiency. Although several algorithms like
LEACH [18] or HEED [19] exist for clustering in IoT sensor
networks, in our proposed method, we consider a K-means
algorithm where a new approach is devised for determining
K. In this regard, sensing range SR of IoT sensor is the
critical metric for obtaining K by having K = %, with
AC = 7 - (SR)?, where, M is the monitoring area. By
obtaining K through this method, all sensors within the cluster
can communicate with their cluster head with respect to the
transmission range T'R.

Therefore, after finding the proper K, the network is divided
into K clusters utilizing the K -means algorithm. Then, we first
define PC H, and later select BC' H in each cluster. In the end,
the data in the network will be collected by a UAV from the
BCH in each cluster. The PCH is chosen in each cluster
based on the distance to cluster members and the remaining
energy of the candidate IoT sensor. The criteria for selecting
a PCH in a cluster are computed by Eq. (1). The IoT sensor
with the highest Fitness F' is selected as PC'H for the cluster.
This process is repeated for each cluster to select the PCH.

FS«; = (1 - CZS?,) + R65i7

1<s;<N ey

Where, (isi represents the mean Euclidean distance from
candidate sensor s; to all members (m) of the candidate’s
cluster, and is defined as:

5 Ads, — minlgsjgm,(dsi,s]')
maXi<s;<m (dsiysj) - minlSSj Sm(dsiasj)

T day s .
where Ads, = Lizieis; for all pairs of sensors such that

1 < 55,55 <m and s; # s;. The remaining energy of s; is
defined and normalized as Re,, = Iee , where Ie is its initial
energy.

After selecting the PC'H for each cluster, our next step is
to select one IoT sensor as the BC'H in every cluster. We
aim to find the degree J of cluster members in each cluster,
defined as the number of other clusters that a node can cover
based on the UAV’s coverage range. Within each cluster, the
degree ¢ is computed for all cluster members Js;.

Then, the node with the highest degree ds and remaining
energy Re above the threshold is selected as the BC H for the
cluster. This process is repeated for each cluster in the network
until all clusters have a designated BC' H. The degree of each
node in the cluster is computed by:

5se ST |{¥sj € Citdy,, < RrY
1<i<k : iz

Si

Where C; represents cluster i, C, is the cluster that contains
the s., and Rr is the reception range of the UAV. Our
objective is to identify a BCH within each cluster that
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can cover the maximum number of available neighboring
BCHs concerning the UAV coverage range. Consequently,
the network structure will resemble a forest composed of
BCH trees. Each tree consists of direct edges (connections)
to neighboring BC'H's. Hence, each tree has a BC'H as its
root, which possesses the highest degree, and several BC'H s
as leaves 7 = {BCH,,BCH,,..., BCH}}, as depicted in
Figure 1. According to Figure 1, the roots of the trees are
labeled as UAV hovering points, and there is a BC H-to-BCH
connection between the root and the leaves of each tree.

Algorithm 1 Find degree § for each IoT sensor node within
each cluster in the network.

1: Input: IoT sensors S = {s1,...,Sn}, consist of PCH =
{PCH,,...,PCH} and cluster members, as well as
reception range of the UAV Rr.

2: Qutput: Degree ds of all IoT sensors

3: Create a Flag list for each sensor node with a length K,
containing default zero values except for sensor’s cluster.

4: for s;=1 to N do

5: Let Flaggi = {01,02,...,0[(}.

6: for s;=1 to N do

7: if ds, s, < Rr, cluster; # cluster;,i # j then

8: Turn the related Flag of Cluster; to 1,

Flags, [cluster;] =1

9: end if

10:  end for

11:  ds; = Count number of 1 in the Flags,

12: end for

13: Return ds

After obtaining the degree of each cluster member from
Algorithm 1, a node with the highest degree is selected as
BCH for each cluster, and the number of created trees in
the network is computed. The process of selecting BC'H and
computing the number of formed trees is explained in the
Algorithm 2. This procedure is repeated until the minimum
number of trees are found that cover all clusters. Since the
root of the tree is the hovering point for the UAV, our
ultimate goal is to minimize the number of hovering locations.
For instance, considering a network consisting of multiple
sensors, as depicted in Figure 1, the number of UAV hovering
points using conventional clustering algorithms like Primary
Cluster Head (PCH) is 7. However, by adopting the proposed
clustering method, the number of hovering points needed to
collect data from all clusters decreases from 7 to 3. In the
subsequent phase, we define the UAV’s flight path to travel
and collect data from the IoT sensors in the network.

B. UAV Trajectory Design

In this phase, a trajectory within the network is designed
to enable the UAV to optimally collect data from IoT sensor
nodes. The objective is to devise a strategy for the UAV to
gather the maximum amount of data by covering the maximum
number of sensors in the network, considering its energy
constraints. To this end, we determine an optimal path for
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the UAV to select specific hovering points that can cover the
maximum number of nodes in the network. In our proposed
method, the UAV does not visit each cluster head to collect
data; instead, it visits only the root of the trees in the network.

Algorithm 2 Determining BC'H points.

1: Input: Degree of IoT sensors ds.

2: Output: 7 containing BC'H point for each cluster.

3: Sort ds in descending order

4: Uncovered_Cls < all clusters

5: while Uncovered_Cls # empty do

6: BCH,; +- maxds , s € Uncovered_Cls

7. cluster; <+ Cluster which BC'H; is in it.

8:  create 7; and select BC' H; as the root, 1<i<K

9:  Uncovered_Cls < Uncovered_Cls\cluster;

10. forc=1 to (K — cluster;) do

11: for j=1 to N do

12: if ds, poy;, < Rr and s; ¢ cluster; and

cluster. ¢ Covered_Cls; then

13: Covered_Cls; < cluster,

14: end if

15: end for

16:  end for

17: for j=1to | Covered_Cls;| do

18: candidates; < 10T sensors in Covered_Cls; that
has connection with BC H;

19: BCHJ < argmaXs, ccandidates; (Re(sa))

20: Select BC'H; as the leaf of the 7;

21:  end for

22:  Uncovered_Cls < Uncovered_Cls\Covered_Cls;

23: end while
24: Return T

More precisely, with the network resembling a forest com-
prising ¢ trees T, the UAV visits only the root of these trees.
The set of hovering locations for the UAV is a set of root
BCH, represented as H = {Ho, H1,...Hq}. Consequently,
the number of visiting and hovering locations for the UAV
is significantly reduced. To pinpoint the precise hovering
locations for the UAV, the positions of the root BC'H in
each tree serve as ideal spots. For each hovering point #,
a ratio is calculated using Eq. (2) and Eq. (3), which define
the value of each hovering point. In other words, the UAV
chooses hovering points which have the minimum ratio when
considering the travel distance and the number of nodes that
could be covered at the hovering points, as described in
Eq. (4).

H o = dvaviu, 2)
Qas;
N
as; = Z Sj (3)
j=1
min(H_r;), VieH, €y
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where as; is the number of sensors that can be covered when
the UAV hovers at H;, and diyav,%, is the Euclidean distance
from the current location of the UAV to the hovering point H,;.
After computing the ratio for all designated hovering points,
the UAV selects the next hovering point with minimum ratio
using Eq. (4) while considering its energy constraint. More
precisely, the UAV can collect data from more IoT sensor
nodes while minimizing the travel distance. Each hovering
point is the root of a 7, whose vertices are within each other’s
transmission range. When the UAV hovers over the root of
a T, it can simultaneously collect data from all vertices of
the tree using the multi-channel method. This method enables
the UAV to gather data from multiple clusters simultaneously,
resulting in savings of both energy and time. After the UAV
collects data from 7, it proceeds to the next hovering point.
This process is repeated until the UAV has only enough battery
to return to the base station to offload the collected data.

Recall that every IoT sensor node has a label corresponding
to its coordinates (z;,y;). Let (2/,y’, h) represent the hovering
coordinates of the UAV, where h is the UAV’s flight altitude.
This altitude, h, shouldn’t exceed the transmission range, T'R,
of each IoT sensor node. Additionally, T'r represents the data
transmission rate of the IoT sensors. Each BC'H can forward
the accumulated data to the UAV at the data transmission
rate T'r when the drone is inside its communication range
TR. Therefore, the hovering altitude A for collecting data
is constrained by h < TR and it is also hypothesized
that this altitude, h, remains consistent [19]. Following the
data gathering paradigm, if all IoT devices are within the
UAV transmission range, their data is accessible to the UAV,
under the assumption that distinct communication channels
are utilized by each device. With the help of the OFDMA
technique [20], the UAV can collect the data of all BC'H's in
its coverage area simultaneously as shown in Figure 1.

Since the BC'Hs are tasked with sending the data from
each cluster, the UAV requires a certain amount of time to
collect the total data T'd from each cluster. Therefore, the
UAV hovers over the BC' H's location to collect the T'd. The
duration of the UAV’s hover to collect data from BCH; is
Ht;, = g‘f} As the UAV’s hovering location is the root of the
tree, and since a tree may have more than one BCH, the
UAV can collect data from several BC'Hs simultaneously.
Thus, the total hovering duration time at the root of a tree
T; is equal to HT;, = %Z;_", where AT, = Zle Td; and
te; = maxi<j<c (Td;/Tr). Where C' represents the number
of clusters that are vertices of the tree 7; and tc; denotes the
maximum amount of time required to collect data from the
BCHs of a 7). The total energy consumption for hovering at
the location 7; is computed as EHT; = HT; - n,.

The UAV saves a considerable amount of hovering time by
collecting data from several BC'Hs in 7, using the OFDMA
approach. Additionally, it eliminates the need to fly to each
cluster’s location to collect data from that specific cluster.
Consequently, travel time, the number of hovering points
visited, and overall travel distance are reduced. Furthermore,
the UAV consumes energy to receive data from the IoT sensors
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while hovering at each location. The amount of energy the
UAV consumes for collecting data A7; from each tree is
computed as {c; = AT -e., where e, indicates the consumed
energy by the electronic circuit of the UAV.

The flight path is predetermined before the UAV departs
from the base station. At each hovering zone, the UAV assesses
its remaining energy before proceeding to the next location. If
the UAV has enough remaining energy to collect data at the
next point and return to the base station, it continues; if not,
it returns to the base station for recharging.

The energy required for the UAV to travel between hovering
locations is determined by £7; = Ty, ;. where Ty, , =

dTLU’Tj, i»T; € T and v denotes the velocity of the UAV
and d represents the Euclidean distance between trees 7; and
T;, while 7, signifies the UAV’s energy consumption rate
during travel. The overall energy consumption of the UAV
consists of the energy expended for traveling, hovering, and
data collection. The total energy consumption of the UAV, for
completing a tour to collect data from IoT sensors within the
network, is given by ¢ = >°1 | (£7; + EHT; + &cr; ), where
1 < B, and B denotes the energy capacity of the UAV’s.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm in terms of collected data and sensor energy con-
sumption through experimental simulations.

A. Experimental Settings

This paper considers a sparse sensor network that consists of
N = {500,600, 700, 800, 900, 1000} sensor nodes randomly
deployed in a 1000 x 1000 meters square area. The data
volume of each sensor node is randomly drawn from two
ranges, the first range is 10 KB to 200 KB, and the second
range is 100 KB to 500 KB. We assume that the transmission
range T'R of each sensor node is 150 meters, the sensing range
SR of each sensor node is 25 meters, and the data transmission
rate T'r of the sensor is 150 Kb. The UAV is initially deployed
at a depot O = (0,0), and we consider three different energy
capacities for it, i.e., B = 1.5 x 10,3 x 10%, and 4.5 x 10°
joules at constant flying speed v 10m/s and the flying
altitude h = 100 meters. The energy capacity of the real drone
is B = 3 x 10° [13], and we examine the performance of the
UAV by decreasing and increasing this value by 50 percent.
The energy consumption rates of the UAV on traveling and
hovering are 1, = 100.J/s and n, = 150J/s, as used in [13],
respectively. The value in each figure is the mean of the results
from 20 network instances of the same size. For each instance,
sensor nodes are randomly deployed with random data sizes
within the defined ranges. Table II lists the default settings
of the parameters in this paper. All the simulated evaluation
experiments are conducted using Python and Jupyter Notebook
on a MacBook Pro equipped with an Apple M3 Pro chip,
featuring a 12-core CPU, and 18 GB of RAM.

To evaluate the performance of the proposed UAVDCH
algorithm, we compare it with PCH algorithm, MRE-s algo-
rithm [21], and its improved version called IMRE-s algorithm.
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Fig. 2. UAV Data collection: comparison of all the algorithms when varying the drone’s energy capacity and data size. In each plot, the y-axis represents the
percentage of data collected in the network, and the x-axis represents the number of sensors.

TABLE 1T
TABLE OF PARAMETER SETTINGS

hovers and collects data from sensors within its coverage
area. Although the UAV may cover more than one sensor
at a hovering point in MRE-s, it collects data from only
one sensor at a time.

Parameters Value

Sensing field 1000m x 1000m

Network size 500 - 1000 Sensor nodes

Sensor data volume p 10K B - 200K B, 100K B - 500K B

In the IMRE-s algorithm, we integrate the OFDMA
technique, enabling the UAV to simultaneously gather
data from multiple sensors at the hovering point. This

Transmission range TR 150m variant has been adopted to address a limitation of the
Sensor sensing range SR 25m original MRE-s algorithm, which could only collect data
Flying altitude h 100m from one sensor at a time.
Data transmission rate 7'r 150K bps
Energy capacity B 1.5 x 105, 3 x 10°, 4.5 x 10° joules TABLE III
Flying speed v 10m/s SENSOR ENERGY CONSUMPTII?Ig]i:;TIO BY NUMBER OF COVERED
Traveling consumption rate 7 100J/s
Hovering energy rate np, 150J/s # Sensors | PCH | UAVDCH | MRE-s | IMRE-s
500 0.177 0.240 0.070 0.053
600 0.175 0.241 0.077 0.053
o The Primary Cluster Head (PC H) algorithm is similar to 700 0.177 | 0.245 0.085 | 0.059
the proposed method, but it considers only one layer of 800 0.179 0.263 0.082 0.050
clustering. In the PCH algorithm, sensors in the network 900 0.180 0.259 0.087 | 0.058
are categorized into several clusters using the K-means 1000 0.185 0.273 0.089 | 0.056

algorithm, following the same method as our proposed
method. Each cluster has a PCH sensor node, which
serves as a hovering point for the UAV. Therefore, the
UAV collects data from the sensors by traveling and
hovering over the PCH locations until its battery has
limited energy for returning to the base station.

o« The Max Ratio Reward-Energy with a single drone
(MRE-s) algorithm is a heuristic approach designed to
address the Maximum Data Collection Problem using a
single UAV. It operates by iteratively selecting sensors
based on the highest ratio of data reward to additional
energy cost, ensuring efficient data collection while man-
aging energy constraints. In this algorithm, the UAV

B. Performance Evaluation of Different Algorithms for Data
Collection and Sensor Energy Consumption

We first evaluate the data collection performance of the
various algorithms. As depicted in Figure 2, our proposed
algorithm, UAVDCH, demonstrates enhanced performance
compared to other algorithms. With a network comprising
500 sensors, an energy capacity of B = 1.5 x 10° joules,
and data sizes ranging from 10K B to 200K B, our method
achieves a data collection rate of 80 percent, which is markedly
higher than the other three algorithms. Similarly, for the same

285

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:23:23 UTC from IEEE Xplore. Restrictions apply.



data size, the PCH algorithm ranks second in terms of data
collection, outperforming both MRE-s and IMRE-s owing to
its clustering-based model. Notably, both the proposed method
and the PCH algorithm utilize a clustering technique leading
to higher energy consumption for sensors in both algorithms
compared to other algorithms, as detailed in Table III. Table III
elaborates on the ratio of sensor energy consumption by the
number of covered nodes when B = 3 x 10° in a 1000m
x 1000m sensing field. It should be noted that nearly one-
third of the sensor energy consumption in the network is
related to transmitting data from PCH to BCH in the UAVDCH
algorithm, while the rest is used to transmit the data from
BCH points to the UAV. Moreover, by increasing the UAV’s
energy capacity to B = 3 x 10° joules or more, the proposed
method enables the UAV to completely collect data (exceeding
100 MB) from all sensors in the network, as demonstrated in
Figure 2.

TABLE IV
NUMBER OF SENSORS COVERED BY THE UAV IN A 1000m x 1000m
SENSING FIELD

# Sensors | PCH | UAVDCH | MRE-s | IMRE-s
500 102 318 37 65
600 104 323 44 80
700 100 346 48 90
800 101 355 50 100
900 102 360 59 113

1000 93 375 60 126

Furthermore, as the data size increases to the range of
100K B - 500K B, the UAVDCH algorithm consistently out-
performs the others, capturing the highest percentage of total
sensor data collection (more than 300 MB) in the network.
For instance, UAVDCH can collect data from 318 sensors
in 1000m x 1000m sensing field with an energy capacity
of B = 3 x 10° as shown in Table IV. In contrast, the
performance of the PCH algorithm substantially decreases,
while the IMRE-s algorithm exhibits better performance than
the PCH algorithm with larger data sizes, as presented in
Table IV. The decline in PCH algorithm performance when
handling large data sizes can be attributed to its operational
mechanism, where the UAV is required to travel and hover
solely over cluster heads. At each hovering point, the UAV
receives data from only one cluster head, leading to increased
time for hovering and data collection compared to the IMRE-
s algorithm. In the IMRE-s algorithm, multiple sensors can
communicate with the UAV at the hovering point, allowing
the UAV to simultaneously collect data from several sensors.
This approach consistently outperforms the MRE-s algorithm.
Moreover, as can be seen from Figure 2 and Table III, the
IMRE-s algorithm not only achieves higher data collection
than the PCH algorithm but also demonstrates significantly
lower energy consumption for sensors.

It can be observed that in both data ranges, the UAVDCH
algorithm outperforms the others, and when the data size
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TABLE V
NUMBER OF HOVERING POINTS IN THE SENSING FIELD

Sensing field PCH UAVDCH
500 x 500 11 4
1000 x 1000 23 8
1500 x 1500 34 13
2000 x 2000 45 17

is small, the UAVDCH method can collect 100 percent of
the data in most cases. The enhanced performance of the
UAVDCH algorithm compared to the MRE-s and IMRE-
s algorithms is attributed to the implementation of double
clustering, which identifies potential hovering points for the
UAV in advance and establishes the travel trajectory of the
UAV by computing the ratio of each point. In addition, the
number of hovering points and the travel distance are reduced
in comparison with other algorithms. In contrast, the MRE-s
and IMRE-s algorithms are greedy algorithms, and the UAV
needs to decide the points step by step. Since these algorithms
do not incorporate clustering, they consume more time for
traveling and hovering over more points while collecting less
data compared to our proposed method.

Although the PCH algorithm also employs clustering, it
results in a greater number of hovering points than UAVDCH,
leading to a longer UAV trajectory. Table V illustrates the
effectiveness of the proposed method in reducing the number
of hovering points for the UAV across sensing fields. For
instance, within a 1000m x 1000m sensing field, the number
of hovering points was remarkably reduced by the UAVDCH
algorithm compared to the PCH algorithm, from 23 to 8.
Therefore, by traveling to fewer hovering points, the UAV
can cover all sensors in the sensing field. As in the example
depicted in Figure 1, the UAV can collect the data of all
sensors in the network by just hovering over three points
(UAVDCH) instead of seven (PCH) points, which decreases
the total travel distance of the UAV. Consequently, our pro-
posed method substantially enhances the energy efficiency of
UAVs operating under energy constraints by decreasing and
defining appropriate hovering points.

VI. CONCLUSION

In this study, we have introduced a novel approach for op-
timizing UAV-assisted data collection in IoT sensor networks
using a dual cluster head strategy (UAVDCH). Our approach
utilizes a dual-cluster head strategy to decrease the number
of hovering points in the sensing field and to shorten the
flight trajectory, thereby significantly enhancing data collection
efficiency while optimizing the UAV’s energy consumption.
By employing a multi-channel technique, our method allows
simultaneous data collection from multiple clusters, reducing
hovering and transmission time.

Key Contributions:

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:23:23 UTC from IEEE Xplore. Restrictions apply.



« Dual Cluster Head Strategy: Implemented a dual cluster
head strategy to minimize the number of UAV hovering
points and shorten the flight trajectory.

« Effective Hovering Points: Utilized Border Cluster
Heads (BCHs) as UAV hovering points to minimize the
number of required hovering locations, thereby reducing
flight duration and distance.

o Multi-Channel Technique: Developed a multi-channel
approach for simultaneous data collection from multiple
clusters, reducing both hovering and transmission times.

« Efficiency Improvement: Demonstrated significant im-
provements in data collection efficiency and UAV energy
consumption.

Experimental results demonstrate that our proposed algo-
rithm UAVDCH outperforms existing methods in terms of data
collection efficiency, particularly in sparse sensor networks
with varying data sizes. The use of Border Cluster Heads
(BCH s) as UAV hovering points has proven to be effective in
minimizing the number of required hovering locations, thereby
reducing flight duration and distance.

Future work will focus on addressing the challenges of
non-line-of-sight conditions, and dynamic environments, and
exploring adaptive strategies to further optimize the UAV’s
flight path and energy consumption. Additionally, we aim
to investigate the integration of machine learning techniques
to enhance the decision-making process for UAV trajectory
design. In addition, we plan to utilize multiple UAVs for
collecting data in larger sensing fields.
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