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Abstract—Reverse skyline query (RSQ) has been widely used
in practice since it can pick out the data of interest to the query
vector. To save storage resources and facilitate service provision,
data owners usually outsource data to the cloud for RSQ services,
which poses huge challenges to data security and privacy protec-
tion. Existing privacy-preserving RSQ schemes are either based
on a two-cloud model or cannot fully protect privacy. To this end,
we propose an efficient privacy-preserving reverse skyline query
scheme over a single cloud (ePRSQ). Specifically, we first design
a privacy-preserving inner product’s sign determination scheme
(PIPSD), which can determine whether the inner product of two
vectors satisfies a specific relation with 0 without leaking the vec-
tors’ information. Next, we propose a privacy-preserving reverse
dominance checking scheme (PRDC) based on symmetric homo-
morphic encryption. Finally, we achieve ePRSQ based on PIPSD
and PRDC. Security analysis shows that PIPSD and PRDC are
both secure in the real/ideal world model, and ePRSQ can protect
the security of the dataset, the privacy of query requests and query
results. Extensive experiments show that ePRSQ is efficient. Specif-
ically, for a 3-dimensional dataset of size 1000, the computational
and communication overheads of ePRSQ for a query are 79.47 s
and 0.0021 MB, respectively. The efficiency is improved by 3.78×

(300.58 s) and 928.57× (1.95 MB) respectively compared with
PPARS, and by 61.31× (4872.55 s) and 407309× (855.35 MB)
respectively compared with OPPRS.

Index Terms—Privacy-preserving, reverse dominance, reverse
skyline, single cloud, symmetric homomorphic encryption.
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I. INTRODUCTION

S
KYLINE query is a data filtering technique that helps users

pick out points of interest from a multi-dimensional dataset.

Therefore, it is widely used in data mining [1], multidimensional

decision-making [2], and other related fields [3], [4], [5], [6]. As

a typical skyline query, the reverse skyline query (RSQ) can

pick out the data vectors interested in the query request from the

dataset. So, it has been applied to real-world applications such as

environmental monitoring [7] and advertising push services [8].

For example, when a company is preparing to launch a new

product, it can request an RSQ service from the server that stores

historical user consumption data, and select user groups that

are likely to purchase the new product for advertising. In this

scenario, the reverse skyline query only needs to obtain the user

IDs without other additional information.

To provide skyline query services, the data owner generally

needs to maintain the dataset and stay online, which leads to high

costs for building and maintaining the corresponding facilities.

Since cloud computing can provide users with powerful com-

puting and storage services, more and more data owners prefer

to outsource their dataset and corresponding services (e.g., RSQ

service) to the cloud to reduce costs. However, data outsourcing

inevitably raises security and privacy concerns. When data is

outsourced to the cloud server, the data owner loses physical

control of the data, and the data is exposed to threats such as

malicious tampering, deletion, and privacy leakage. At the same

time, the user’s query request and the query results returned by

the server may reveal the user’s behavior patterns and personal

information, thereby exposing sensitive information. Therefore,

the security of outsourced data and the privacy protection of

query requests and query results are crucial. Although tech-

niques such as fully homomorphic encryption show the potential

for security and privacy protection, the increased computational

and communication overheads make them unsuitable for practi-

cal applications. Balancing privacy protection and efficiency in

skyline queries is also a core challenge.

A. Related Work

To address the above issues, the research community has

introduced several privacy-preserving skyline query schemes.

We review the related work from static skyline query, dynamic

skyline query, and reverse skyline query, respectively. Besides,

Table I lists the comparisons of security and privacy issues

among some mainstream solutions.
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TABLE I
COMPARISONS OF SOME MAINSTREAM SOLUTIONS FOR SKYLINE QUERY

Privacy-preserving Static Skyline Query: This is a basic type

of skyline query that finds the data vectors of interest to the

origin. In 2016, Chen et al. [14] proposed three secure skyline

query schemes for the location databases. However, their main

purpose is verification rather than privacy protection, and the

schemes are suitable only for 1- or 2-dimensional data. In

2019, Zheng et al. [15] proposed a skyline computation protocol

based on determining the dominance relationship of public key

encrypted data, but it will leak single-dimensional privacy. Liu

et al. [16] proposed a secure user-defined skyline computation

scheme. Due to the high cost of encryption, this scheme incurs

significant overhead when applied to high-dimensional data.

Zhang et al. [13] designed a secure user-defined skyline query

scheme based on matrix encryption. It uses a bitmap-like way to

represent a number, making it difficult to support queries of data

with large values. In [17], a privacy-preserving basic skyline

query scheme was proposed using symmetric homomorphic

encryption (SHE) to protect data security over the two-cloud

model. Compared to the previous static skyline query scheme

over the two-cloud model, this scheme reduces communication

overhead. Since static skyline queries can only statically pick

out points of interest to the origin from the dataset, their ap-

plications are limited. Dynamic skyline query, with adjustable

query vectors, can pick out data according to user requirements

to better meet application needs.

Privacy-preserving Dynamic Skyline Query: In 2017, Liu et

al. [18] proposed a fully secure dynamic skyline query scheme,

which guarantees data security, and query and result privacy.

However, its performance is poor due to the inefficiency of its

basic protocol. Soon after, this scheme was improved in [19]

based on parallelization technology. In 2020, based on order-

revealing encryption (ORE), a secure dynamic skyline query

scheme was proposed [20]. Even though the adversary may not

know the plaintext of the data, the result of ORE can reveal the

one-dimensional privacy of the data. In the same year, Wang et

al. [21] proposed a privacy-preserving dynamic skyline query

scheme based on Intel Software Guard Extensions (SGX). This

scheme has excellent query efficiency but requires additional

hardware support and leaks the access pattern of a query. In

2021, Zeighami et al. [12] proposed a secure dynamic skyline

query by using result materialization and ORE. This approach

takes less time but will cause huge storage overhead when the

data has more than two dimensions. Zhang et al. [11] designed

a privacy-preserving dynamic skyline query scheme using SHE

over a two-cloud model. In [22], a secure skyline query protocol

was constructed over a two-cloud model by combining three

privacy protection technologies.

Privacy-preserving Reverse Skyline Query: Both static and

dynamic skyline queries are designed from the users’ perspective

so that users can find products that match their interests. To help

the producers find out which users are interested in a particular

product, the reverse skyline query is proposed. The definition

and query methods of the reverse skyline are similar to those of

the dynamic skyline query, although their purposes are different.

In recent years, two privacy-preserving reverse skyline query

schemes have been proposed. Zhang et al. [10] designed two

privacy-preserving reverse skyline search algorithms over the

two-cloud model based on the Paillier cryptosystem. To weaken

the demand for the two-cloud model, they further proposed an

aggregate reverse skyline query over a single-cloud model by

using a bloom filter and fully homomorphic encryption [9]. It

can protect the private information of query requests and results.

However, it not only needs to store plaintexts on the server but

also brings heavy overheads.

B. Motivation

Although existing schemes provide various solutions, they

suffer from the following limitations:

1) Reliance on an impractical two-cloud model: Most

schemes [10], [17], [18] utilize homomorphic encryption

to achieve secure skyline queries. Since it is difficult to

directly compare ciphertexts and other operations in a sin-

gle cloud, they usually rely on a non-colluding two-cloud

model. However, the requirement of non-colluding two

cloud servers is difficult to achieve in reality.

2) Incomplete data security and privacy protection: Some

schemes directly store the plaintext data on the cloud

server, which cannot guarantee data security [9], while

some other schemes cannot protect privacy, e.g., the

ORE-based schemes may leak the single-dimensional pri-

vacy [20].

3) Inefficiency: How to efficiently realize privacy-preserving

skyline queries is a challenging problem. Some schemes

require more communication overhead [12], and others

have high computational costs [13].

C. Main Idea and Contributions

The above limitations motivated us to explore privacy-

preserving reverse skyline query (PRSQ) on a single cloud

server. Generally, compute-then-compare is essential in PRSQ,

and it involves two steps: (1) Compute. Based on the encrypted

data and the received token, the cloud server computes two

ciphertexts used to determine the skyline dominance relation;
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(2) Compare. The cloud server outputs the reverse skyline query

result by comparing the relationship of the plaintexts corre-

sponding to the two ciphertexts through a secure comparison

protocol. However, if both of the above steps are performed

by a single server, the specific value of the ciphertext used to

determine the skyline dominance relationship can be inferred

by running the secure comparison protocol multiple times.

Therefore, most solutions achieve privacy protection by using

an impractical two-cloud model to separate computation and

comparison. To address this challenge, our idea is that the data

owner and query user locally obfuscate their data separately.

Next, the cloud server calculates an intermediate result using the

obfuscated data of the two parties without leaking the privacy

information of the two parties. After that, the cloud server

obtains the encrypted final result based on the intermediate result

and the homomorphic ciphertext generated by the query user.

Finally, we realize an efficient PRSQ on a single cloud server.

Based on the above ideas, we make the following contributions:

1) We propose a privacy-preserving inner product sign deter-

mination scheme (PIPSD) to efficiently and confidentially

determine if the inner product of two vectors satisfies a

specific relationship with 0.

2) Based on PIPSD, we design a privacy-preserving reverse

dominance check scheme (PRDC) to determine the domi-

nance relationship without revealing the data plaintext and

query vector.

3) Based on PIPSD and PRDC, we realize an efficient PRSQ

scheme on the single-cloud model, named ePRSQ. It is

proven to protect the dataset security, the privacy of query

requests and corresponding query results.

4) Detailed experimental evaluations and comparisons show

that ePRSQ is efficient in computation and communi-

cation. Taking a 3-dimensional dataset with size 1000

as an example, the query efficiency of ePRSQ outper-

forms related schemes [9], [10] by 3.78× and 61.31×
in computational cost, and by 928.57× and 407309× in

communication overhead, respectively.

The rest of this paper is organized as follows. Section II

introduces some preliminaries used in our scheme. Section III

describes the system model, security model, and design goals.

Two basic protocols PIPSD, PRDC, and our ePRSQ are pre-

sented in Section IV. Security analysis and performance evalu-

ation of ePRSQ are provided in Sections V and VI, respectively.

Conclusions are offered in Section VII.

II. PRELIMINARIES

In the following, we introduce the formal definition of RSQ

and the tool of SHE that is used in our work.

A. Reverse Skyline Query

The reverse skyline query (RSQ) [10], [23], [24], [25] is used

to pick out those vectors whose dynamic skylines contain a given

query vector. Its core operation is to check whether there is a

reverse dominance relationship between two data points.

Definition 1 (Reverse Dominance): Given two d-dimensional

data vectors xu, xv and a d-dimensional query vector q, we

Fig. 1. An example of RSQ.

say xu dominates q with regard to xv in reverse skyline query,

denoted as xu ≺xv
q, if:

∀i ∈ [1, d] : |xui − xvi| ≤ |qi − xvi|, (1)

and

∃i ∈ [1, d] : |xui − xvi| < |qi − xvi|, (2)

where xui, xvi and qi denote the i-th element in data vectors xu,

xv and q, respectively.

Definition 2 (Reverse Skyline Query (RSQ)): Given a dataset

χ, which contains multiple d-dimensional vectors, and a query

vector q, a vector xu ∈ χ is a reverse skyline vector of q iff there

is noxv ∈ χ such thatxv ≺xu
q. RSQ returns a setSq containing

all reverse skyline vectors regarding q in χ, i.e., Sq = {xi ∈ χ |
�xj ∈ χ, xj ≺xi

q}.

Example 1: Fig. 1 illustrates an example of an RSQ process,

where all the data in the dataset χ = {xi | 1 ≤ i ≤ 5} and the

query vector q are two-dimensional. Therefore, we can represent

them as points on a plane. Fig. 1(a) and (b) depict the reverse

dominance regarding x1 and x5, respectively. According to the

above definition, x1 is not a reverse skyline vector of the query

vector q while x5 is. To visually compare absolute values, all

points in χ are mapped to a region with xi as the origin, and a

rectangular area constructed by xi and q is marked in Fig. 1. If

there exists a mapped point xj that falls in the rectangle, it means

xj dominates q, i.e., xj ≺xi
q. Otherwise, xi is a reverse skyline

point. As shown in Fig. 1(a), x5 and x′
3 fall in the rectangle,

implying x5 and x′
3 dominate q, and x1 is not a reverse skyline

point. Since no point falls in the rectangle in Fig. 1(b), x5 is a

reverse skyline point. By checking all points in χ, we obtain the

set of reverse skyline points as Sq = {x2, x3, x4, x5}.

B. Symmetric Homomorphic Encryption (SHE)

SHE [26] is a symmetric fully homomorphic encryption

scheme and is proved to be semantically secure under Chosen

Plaintext Attack (IND-CPA) [27]. The SHE scheme mainly

consists of the following three algorithms:
� KeyGeneration(k0, k1, k2): Given three security parame-

ters k0, k1, k2 satisfying k1 � k2 < (k0/2), the algorithm

selects two large random prime numbers p, p̂ and a ran-

dom number L satisfying ‖p‖ = ‖p̂‖ = k0 and ‖L‖ = k2,

respectively. Here, k1 denotes the space of messagem, that

is ‖m‖ = k1. Finally, the secret key sk is (p,L) and the

public parameter pk is N = pp̂.
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Fig. 2. System Model.

� Encryption(sk,m): The encryption algorithm takes the se-

cret key sk and a messagem as input, outputs the ciphertext

E(m) = (rL+m)(1 + r′p) mod N , where r and r′ are

two random numbers satisfying ‖r‖ = k2 and ‖r′‖ = k0.
� Decryption(sk,E(m)): Given a SHE ciphertext E(m),

this algorithm first generates a message m′ = (E(m) mod

p) mod L according to the secret key sk. Then, the al-

gorithm recovers the message m as follows. If m′ < L
2 ,

m = m′. Otherwise, m = m′ − L.

The following homomorphic properties hold for SHE:
� Ciphertext-Ciphertext Homomorphic Addition:

E(m1) + E(m2) mod N ⇔ E(m1 +m2);
� Ciphertext-Plaintext Homomorphic Addition: E(m1) +
m2 mod N ⇔ E(m1 +m2);

� Ciphertext-Ciphertext Homomorphic Multiplication:

E(m1) · E(m2) mod N ⇔ E(m1m2);
� Ciphertext-Plaintext Homomorphic Multiplication:

E(m1) ·m2 mod N ⇔ E(m1m2) when m2 > 0.

III. MODELS AND DESIGN GOALS

In this section, we describe the system model, the security

model, and the design goals of ePRSQ.

A. System Model

Fig. 2 depicts the system model of reverse skyline query over

a single cloud for multi-dimensional data, which contains three

entities: a data owner (DO), a cloud server (CS), and multiple

query users (QU).
� DO: It holds a d-dimensional dataset of n data vec-

tors, D = {xi = (xi1, xi2, . . . , xid)}
n
i=1. All values in the

dataset are assumed to be integers, which is easily satisfied.

DO aims to provide a reverse skyline query service to take

full advantage of the dataset. To save costs,DO outsources

the dataset D and corresponding RSQ service to a CS. To

protect the security of dataset D, DO encrypts the dataset

before outsourcing it to CS .
� CS: The cloud server, which has powerful computing

capability and sufficient storage resources, is responsible

for storing DO’s encrypted dataset and providing reverse

skyline query service to QU . When receiving a query

request Req from a QU , CS searches the corresponding

reverse skyline regarding Req in the dataset D and replies

the query result ciphertext Ssky to QU .

� QU : The model includes a set of query users. To enjoy the

RSQ service,QU needs to register withDO first. Then,QU
gets an authorized key and can access the reverse skyline

query service with it.

B. Security Model

In the security model, we assume that DO is trustworthy,

which means that he/she will honestly outsource an encrypted

dataset and provide a valid private key to an authorized QU .

Meanwhile, we assume that CS is honest-but-curious [28], [29],

i.e., it executes the protocol honestly but is curious about certain

private information such as the plaintext of the dataset, query

requests, and query results. We also assume that QU is honest-

but-curious, since QU wants to get the correct query results

so that he will not disobey the protocol. However, QU may

eavesdrop on other users’ query requests and results. We assume

that CS and QU do not collude. First, it is reasonable for CS
not to collude with QU to maintain its reputation as a cloud

service provider. In addition, the cost for the query user to corrupt

the cloud server is high, as the legal risk and huge economic

cost. Furthermore, such a non-collusion model is widely used in

various schemes [30], [31], [32].

Besides the above security assumption, we review the

real/ideal world model [33], [34] with a static semi-honest

adversary [29] used for security proof.

Real world model: In this model, the scheme Π will be

executed between CS and an adversary A. Assume that x is an

input ofΠ and y is an auxiliary input. The definition of execution

of Π with inputs x and y under A in this model is denoted as

follows:

REALΠ,A,y(x)
def
= {OutputΠ(x),ViewΠ(x), y},

where OutputΠ(x) is the output of Π executed on input x, and

ViewΠ(x) is the view of CS during the execution ofΠwith input

x.

Ideal world model: In this model, CS only interacts with F ,

which is defined as an ideal functionality for a leakage function

L. The definition of an execution F with inputs x and y under a

simulator Sim is as follows:

IDEALF,A,y(x)
def
= {F(x),Sim(x,L(x)), y}.

Definition 3 (Security against Semi-honest Adversary): As-

sume thatF is a deterministic functionality andΠ is a scheme of

CS, Π securely achieves F if there exists a Sim(A) that satisfies

probabilistic polynomial time (PPT) transformations such that:

REALΠ,A,y(x)
c
≡ IDEALF,A,y(x),

where A is a semi-honest PPT adversary and
c
≡ represents the

computational indistinguishability.

C. Design Goals

In this work, we present an efficient PRSQ scheme over a

single cloud. Specifically, our work is dedicated to the following

goals.
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TABLE II
NOTATIONS

� Data security: The security of the data can be guaranteed,

i.e., any adversary cannot reveal the plaintext of the data.
� Privacy preservation: The privacy of query requests and

query results can be protected, and any adversary cannot

infer QUs’ private information.
� Efficiency: Generally, PRSQ schemes are inefficient due

to high computational costs and communication overhead.

Therefore, our work aims to improve efficiency while

ensuring security and privacy.

IV. THE PROPOSED SCHEMES

In the following, we first design a privacy-preserving inner-

product sign determination scheme (PIPSD). Then, we pro-

pose a privacy-preserving reverse dominance checking scheme

(PRDC) based on PIPSD. Finally, we develop our efficient PRSQ

scheme (ePRSQ). The notations used throughout this paper are

listed in Table II.

A. The PIPSD Scheme

This scheme is designed to securely determine whether the

inner product of two vectors satisfies a specific relationship

with 0. In particular, given two d-dimensional vectors x =
(x1, x2, . . . , xd), y = (y1, y2, . . . , yd), and a condition ∇ (e.g.,

≤), where xi and yi are integers for 1 ≤ i ≤ d, PIPSD can

determine whether 〈x, y〉∇0 holds without revealing x, y, and

〈x, y〉. It contains four algorithms as described below.

1) Setup(d, T ): Given the dimension of the vector d and

the upper limit T of the absolute value of the vector’s

elements, this algorithm outputs public parameters PP =

Algorithm 1: Obfuscation Algorithm 1.

Input:PP , x and M .

Output:A (d+ 1)-dimensional obfuscated vector [[x]]1.

1: α = RandomOfBitLength(K1);
2: β = RandomOfBitLength(K2);
3: for i ∈ [1, d] do

4: ri = RandomOfBitLength(K0);
5: end for

6: [[x]]1 = (αx1 + r1, αx2 + r2, . . . , αxd + rd, β) ·M
7: return [[x]]1;

Algorithm 2: Obfuscation Algorithm 2.

Input:PP , ∇, y and M−1.

Output:A (d+ 1)-dimensional obfuscated vector [[y]]2.

1: s =

{
1, ∇ is > or ≥;
−1, ∇ is < or ≤ .

2: s′ =

{
1, ∇ is ≤ or ≥;
−1, ∇ is < or > .

3: α′ = RandomOfBitLength(K1)
4: β′ = RandomOfBitLength(K2);
5: for i in [1, d] do

6: r′i = RandomOfBitLength(K0);
7: end for

8: [[y]]2 =
M−1 · (sα′y1 + r′1, sα

′y2 + r′2, . . . , sα
′yd + r′d, s

′β′)T

9: return [[y]]2;

{K0,K1,K2}, whereK0 is the bit length of T andK1 > K2 �
K1+‖d‖+1

2 +K0. Besides, a secret random invertible matrix

M ∈ R
(d+1)×(d+1) is generated.

2) Obf1(PP, x,M): Given the public parameter PP , a secret

matrixM and a d-dimensional vector x = (x1, x2, . . . , xd), this

algorithm obfuscates x to [[x]]1 as described in Algorithm 1,

where RandomOfBitLength(·) is to generate a random num-

ber of a specified bit length.

3) Obf2(PP,∇, y,M−1): Given the public parameter PP , a

condition∇, the inverse matrix ofM and a d-dimensional vector

y = (y1, y2, . . . , yd), this algorithm generates an obfuscated

query vector [[y]]2 as described in Algorithm 2.

4) Check(PP, [[x]]1, [[y]]2): Given an obfuscated vector [[x]]1
and an obfuscated query vector [[y]]2, the checking algorithm

determines whether 〈x, y〉∇0. The algorithm calculates δ =
〈[[x]]1, [[y]]2〉. δ > 0 represents 〈x, y〉∇0 holds, while δ < 0
means 〈x, y〉∇0 does not hold.

Theorem 1 (Correctness of PIPSD): On inputs [[x]]1 and [[y]]2,

the PIPSD can correctly determine whether 〈x, y〉∇0.

Proof: According to the definition of δ, we have

δ = 〈[[x]]1, [[y]]2〉

= sαα′
d∑

i=1

xiyi + s′ββ′ + α
d∑

i=1

r′ixi + sα′
d∑

i=1

riyi
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TABLE III
RELATIONSHIP BETWEEN ∇, 〈X, y〉 AND δ

+

d∑

i=1

rir
′
i

= sαα′〈x, y〉+ s′ββ′ + λ, (3)

where λ = sα
∑d

i=1 r
′
ixi + sα′

∑d
i=1 riyi +

∑d
i=1 rir

′
i.

Because the range of all numbers in the expansion of

δ is known, we can infer that ‖λ‖ ≤ 2K0 +K1 + ‖d‖.

Since ‖ββ′‖ ≥ 2K2 − 1 > 2K0 +K1 + ‖d‖, we can infer that

|ββ′| > |λ|. Thus, the sign ofββ′ determines the sign ofββ′ + λ.

Specifically, if ββ′ < 0 (> 0), ββ′ + λ is always less than

(more than) 0, regardless of the sign of λ. Similarly, since

K1 > K2, i.e., |α| = |α′| = K1 > |β| = |β′| = K2, we have

|sαα′〈x, y〉| > |sαα′| > |s′ββ′| > |λ|, where s and s′ have the

same bit length. Therefore, δ’s sign is identical to sαα′〈x, y〉
when 〈x, y〉 �= 0, and is same to s′ββ′ when 〈x, y〉 = 0.

According to these inferences, the relationship among ∇,

〈x, y〉 and δ can be listed in Table III. For instance, when ∇ is

≤, we know that s = −1 and s′ = 1 as defined in Algorithm 2.

If 〈x, y〉 = 0, we know that δ > 0 since δ has the same sign as

s′ββ′. If 〈x, y〉 < 0, we have δ > 0 since δ has the same sign

as sαα′〈x, y〉. Similarly, if 〈x, y〉 > 0, δ < 0. Thus, whether

〈x, y〉∇0 can be determined by the sign of δ. Consequently,

PIPSD’s check result is correct. �

B. The PRDC Scheme

Based on PIPSD, we design a privacy-preserving reverse

dominance checking scheme, denoted as PRDC. It can check

whether there is a reverse dominance relationship between two

data in a privacy-preserving manner. Specifically, given two

d-dimensional data vectors xu, xv and a query vector q, PRDC

can determine whether xu ≺xv
q holds without revealing the

original vector information. If so, it outputs a SHE ciphertext

E(τ) = E(1). Otherwise, it outputs E(τ) = E(0). Next, we

describe the transformation of the reverse dominance problem

and then introduce the PRDC.

1) Transformation of the Reverse Dominance Problem:

To guarantee privacy during the determination of reverse

dominance, we transform the formulas for judging the reverse

dominance ( (1) and (2)) into the inner product of two vectors,

which can be independently constructed by DO and QU .

For (1), we have

|xui − xvi| ≤ |qi − xvi|

⇔ (xui − xvi)
2 ≤ (qi − xvi)

2

⇔ x2
ui − 2xuixvi + 2qixvi − q2i ≤ 0

⇔ (x2
ui − 2xuixvi, xvi, 1) · (1, 2qi,−q2i )

T ≤ 0 (4)

Therefore, (1) is equivalent to (4). The transformed (4) can be

expressed as the product of two vectors (x2
ui − 2xuixvi, xvi, 1)

and (1, 2qi,−q2i )
T , which can be constructed by DO’s data (xu

and xv) and QU’s query vector q, respectively. Besides, we use

E(δi) to indicate whether (4) holds. If (4) holds, E(δi) = E(1),
otherwise, E(δi) = E(0).

If both (1) and (2) hold, according to (4), we have

d∑

i=1

|xui − xvi| <

d∑

i=1

|qi − xvi|

⇔

d∑

i=1

(xui − xvi)
2 <

d∑

i=1

(qi − xvi)
2

⇔

d∑

i=1

(x2
ui − 2xuixvi) +

d∑

i=1

2qixvi −

d∑

i=1

q2i < 0

⇔
(
x2
u1 − 2xu1xv1, . . . , x

2
ud − 2xudx2d, xv1, . . . , xvd, 1

)

×

⎛
¿1, . . . , 1, 2q1, . . . , 2qd,−

d∑

j=1

q2j

À
⎠

T

< 0 (5)

Therefore,
∑d

i=1 (xui − xvi)
2 <

∑d
i=1 (qi − xvi)

2 can

be expressed as the inner product of two (2d+ 1)-
dimensional vectors, i.e., (x2

u1 − 2xu1xv1, . . . , x
2
ud − 2xudx2d,

xv1, . . . , xvd, 1) and (1, . . . , 1, 2q1, . . . , 2qd,−
∑d

j=1 q
2
j )

T , and

they can also be constructed by DO’s data (xu and xv) and

QU’s query vector q, respectively. Besides, we use E(δi)
to indicate whether (5) holds. If (5) holds, E(δi) = E(1),
otherwise, E(δi) = E(0).

Lemma 1: (1) ∧ (2) ⇔ (4) ∧ (5)

Proof: We can deduce easily that (1) ∧ (2) ⇒ (4) ∧ (5) since

(1) ⇔ (4) and (1) ∧ (2) ⇒ (5). On the contrary, when (4) and (5)

hold simultaneously, we can infer that (2) must hold. Besides,

since (4) is equivalent to (1), we have (4) ∧ (5) ⇒ (1) ∧ (2). In

summary, (4) ∧ (5) ⇔ (1) ∧ (2). �

Let E(τ) =
∏d+1

i=1 E(δi). According to the above analysis,

xu ≺xv
q holds is equivalent to (4) ∧ (5) hold. (4) holds means

that E(δi) = E(1) for all 1 ≤ i ≤ d, while (5) holds mean that

E(δd+1) = E(1). Therefore, when E(τ) = E(1), xu ≺xv
q

holds. Otherwise, if E(τ) = E(0), xu ≺xv
q does not hold.

2) Description of PRDC Scheme: The PRDC scheme con-

tains four algorithms, and we describe them as follows.

1) Setup(d, T ): Given the dimension d of the vector in

D and the upper limit T of the absolute value of the vec-

tor’s elements, the algorithm outputs the public parameters
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Algorithm 3: PRDC Encryption Algorithm.

Input:PP , M1, M2, xu and xv.

Output:[[χ(u, v)]]∗.

1: χ(u, v) =
(x2

u1 − 2xu1xv1, . . . , x
2
ud − 2xudxvd, xv1, . . . , xvd, 1)

2: [[χ(u, v)]]1 = PIPSD.Obf1(PP, χ(u, v),M1)
3: [[χ(u, v)]]∗ = [[χ(u, v)]]1 ·M2

4: return [[χ(u, v)]]∗;

Algorithm 4: PRDC Query Generation.

Input:PP , M−1
1 , M−1

2 , q and pk.

Output:A query token qt.
1: for i ∈ [1, d] do

2: η(i)j∈[1,2d+1] =

⎧
⎪⎪«
⎪⎪¬

1, j = i;
2qi, j = d+ i;
−q2i , j = 2d+ 1;
0, Otherwise.

3: [[η(i)]]2 = PIPSD.Obf2(PP,≤, η(i),M−1
1 );

4: Select random number si ∈ {−1, 1};

5: E(µi) =

{
E(0), si = 1;
E(1), si = −1.

6: end for

7: γ = (1, . . . , 1, 2q1, . . . , 2qd,−
∑d

i=1 q
2
i );

8: [[γ]]2 = PIPSD.Obf2(PP,<, γ,M−1
1 );

9: ψ = M−1
2 · (s1[[η(1)]]

T
2 , . . . , sd[[η(d)]]

T
2 , sd+1[[γ]]

T
2 );

10: qt = {ψ, {E(µi)}
d+1
i=1 }

11: return qt;

PP = PIPSD.Setup(2d+ 1, T 2) by calling the Setup algo-

rithm of PIPSD. Besides, two secret random invertible matrices

M1,M2 ∈ R
(2d+2)×(2d+2) are generated.

2) Enc(xu, xv, PP,M1,M2): Given any two d-dimensional

data vectors xu and xv , the public parameter PP and two secret

matrixes M1, M2, the encryption algorithm outputs a (2d+ 2)-
dimensional obfuscated vector [[χ(u, v)]]∗ for xu and xv. The

encryption algorithm is shown in Algorithm 3.

3) QueryGen(q, PP,M−1
1 ,M−1

2 , pk): Given ad-dimensional

query vector q, the public parameter PP , two secret matrices

M−1
1 ,M−1

2 and SHE’s public parameterpk, the query generation

algorithm, which is shown in Algorithm 4, outputs a query token

qt.
4) Check([[χ(u, v)]]∗, qt, pk): Given the public parameter pk

of SHE, an obfuscated vector [[χ(u, v)]]∗ and a query token

qt, the checking algorithm outputs an encrypted check re-

sult E(τ), where E(τ) = E(1) if xu ≺xv
q holds, otherwise,

E(τ) = E(0). The algorithm is shown in Algorithm 5.

Theorem 2 (Correctness of PRDC): On inputs [[χ(u, v)]]∗ and

qt, the PRDC can correctly determine whether xu ≺xj
q.

Proof: To prove the correctness of PRDC, it is essential

to demonstrate that E(δi) accurately reflects the relationship

among xui, xvi and qi as specified by (4) for each i from 1 to d.

Similarly, the correctness of E(δd+1) must be verified to ensure

it accurately determines whether xu, xv, and q conform to (5).

Algorithm 5: PRDC Checking Algorithm.

Input:[[χ(u, v)]]∗, qt and pk.

Output:An encrypted check result E(τ).
1: ∆ = [[χ(u, v)]]∗ · ψ
2: for i ∈ [1, d] do

3: E(δi) =

{
E(1)− E(µi), ∆i > 0;
E(µi), ∆i < 0.

4: end for

5: E(τ) =
∏d+1

i=1 E(δi);
6: return E(τ);

Given the data ciphertext [[χ(u, v)]]∗ and a query token qt =
{ψ, {E(µi)}

d+1
i=1 }, ∆ can be expanded as

∆ = [[χ(u, v)]]∗ · ψ

= [[χ(u, v)]]1M2M
−1
2 (s1[[η(1)]]

T
2 , . . . , sd[[η(d)]]

T
2 ,

sd+1[[γ]]
T
2 )

= (s1〈[[χ(u, v)]]1, [[η(1)]]2〉, . . . , sd〈[[χ(u, v)]]1, [[η(d)]]2〉,

sd+1〈[[χ(u, v)]]1, [[γ]]2〉) . (6)

For ∆i = si〈[[χ(u, v)]]1, [[η(i)]]2〉, 1 ≤ i ≤ d, since [[η(i)]]2 =
PIPSD.Obf2(PP,≤, η(i),M−1

1 ), we know that ∆i is

actually si multiplied by a PIPSD’s checking result which

indicates whether 〈χ(u, v), η(i)〉 = (x2
ui − 2xuixvi) · 1 +

xvi · (2qi) + 1 · (−q2i ) = (xui − xvi)
2 − (qi − xvi)

2 ≤ 0
holds. Assuming (xui − xvi)

2 − (qi − xvi)
2 ≤ 0 holds,

we have 〈[[χ(u, v)]]1, [[η(i)]]2〉 > 0. If si = 1, we have

E(µi) = E(0) and ∆i > 0. According to line 3 in Algorithm 5,

we can deduce that E(δi) = E(1). If si = −1, we have

E(µi) = E(1) and ∆i < 0, so E(δi) = E(1). In contrast,

when (xui − xvi)
2 − (qi − xvi)

2 ≤ 0 does not hold, we have

〈[[χ(u, v)]]1, [[η(i)]]2〉 < 0. If si = 1, we haveE(µi) = E(0) and

∆i < 0. Then, we can deduce that E(δi) = E(0). If si = −1,

we have E(µi) = E(1) and ∆i > 0, so E(δi) = E(0). From

the above analysis, we have proved that E(δi)(1 ≤ i ≤ d)
correctly indicates whether xui, xvi and qi satisfy (4).

For ∆d+1 = sd+1〈[[χ(u, v)]]1, [[γ]]2〉, since [[γ]]2 =
PIPSD.Obf2(PP,<, γ,M−1

1 ), we know that ∆d+1 is

actually sd+1 multiplied by a PIPSD’s checking result which

indicates whether 〈χ(u, v), γ〉 =
∑d

i=1 (x
2
ui − 2xuixvi) · 1 +∑d

i=1 xvi · (2qi) +
∑d

i=1 1 · (−q2i ) =
∑d

i=1 (xui − xvi)
2 −∑d

i=1 (qi − xvi)
2 < 0 holds. Assuming

∑d
i=1 (xui − xvi)

2 −∑d
i=1 (qi − xvi)

2 < 0 holds, we have 〈[[χ(u, v)]]1, [[γ]]2〉 > 0.

If sd+1 = 1, we have E(µd+1) = E(0) and ∆d+1 > 0.

According to line 3 in Algorithm 5, we can deduce that

E(δd+1) = E(1). If sd+1 = −1, we have E(µd+1) = E(1)
and ∆d+1 < 0 so that E(δd+1) = E(1). In contrast, when∑d

i=1 (xui − xvi)
2 −

∑d
i=1 (qi − xvi)

2 < 0 does not hold,

we have 〈[[χ(u, v)]]1, [[γ]]2〉 < 0. If sd+1 = 1, we have

E(µd+1) = E(0) and ∆d+1 < 0. Similarly, we can deduce that

E(δd+1) = E(0). If sd+1 = −1, we haveE(µd+1) = E(1) and

∆d+1 > 0 so that E(δd+1) = E(0). Now, we have proved that

E(δd+1) correctly indicates whether xu, xv and q satisfy (5).
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Algorithm 6: ePRSQ Dataset Encryption.

Input:A dataset D, public parameters PP and two matrix

M1, M2.

Output:An encrypted dataset

[[D]] = {[[χ(i, j)]]∗ | i, j ∈ [1, n] ∧ i �= j}.

1: [[D]] = ∅;

2: for xi in D do

3: for xj in D do

4: if i �= j then

5: [[χ(i, j)]]∗ =
PRDC.Enc(xi, xj , PP,M1,M2);

6: [[D]] ← [[χ(i, j)]]∗;

7: end if

8: end for

9: end for

10: return [[D]];

So far, we have proved that E(δi)(1 ≤ i ≤ d) correctly indi-

cates whether xui, xvi and qi satisfy (4), and E(δd+1) correctly

indicates whether xu, xv and q satisfy (5). According to the

definition of dominance relation, we have E(τ) =
∏d+1

i=1 E(δi).
So, the correctness of PRDC is proved. �

C. The ePRSQ Scheme

Our ePRSQ scheme includes five phases described below.

1) System initialization: Assuming DO has a d-dimensional

dataset D, in which the upper bound on the absolute value of the

data isT . To initialize the system,DO first selects an asymmetric

encryption algorithm AE(·), e.g., ElGamal, and generates a key

pair {skAE , pkAE} randomly. Then, DO generates parameters

of PRDC, i.e., {PP,M1,M2} = PRDC.Setup(d, T ). Finally,

DO publishes the public parameters {PP, pkAE} and sends

skAE to CS via a secure channel. Meanwhile, if a QU wants to

utilize the RSQ service, he or she must first register with DO.

Upon approval from DO, M−1
1 and M−1

2 are transmitted to QU
via a secure communication channel.

2) Data Outsourcing: In this phase, DO first converts the

dataset D into an encrypted dataset [[D]] using Algorithm 6

to guarantee the security of the dataset D. After that, DO
outsources [[D]] to CS .

3) Query Generation: First, for a query

vector q, QU generates a query token qt =
PRDC.QueryGen(q, PP,M−1

1 ,M−1
2 , pk) according to

PRDC query generation algorithm. Second, QU encrypts the

query token qt withCS’s public keypkAE , that isAE(pkAE , qt),
and chooses SHE parameters {pk, sk}. Finally, QU sends the

query request Req = {AE(pkAE , qt), pk} to CS and keeps sk
secretly.

4) Reverse Skyline Search: Once CS receives a query request

Req from QU , it extracts pk and decrypts AE(pkAE , qt) with

skAE to recover the query token qt. Then, CS executes the

Algorithm 7 to perform the reverse skyline query with privacy-

preserving. Finally, CS sends the encrypted query result Ssky to

QU .

Algorithm 7: ePRSQ Reverse Skyline Search Algorithm.

Input:An encrypted dataset

{[[χ(i, j)]]∗ | i, j ∈ [1, n] ∧ i �= j}, a query token qt, and a

SHE public parameter pk.

Output:A set containing n data indexes and SHE

ciphertexts, Ssky = {i ‖ E(θi) | 1 ≤ i ≤ n}.

1: Ssky = ∅;

2: i = 1;

3: while i ≤ n do

4: j = 1;

5: E(θi) = E(0);
6: while j ≤ n do

7: E(τ) = PRDC.Check([[χ(j, i)]]∗, qt, pk);
8: E(θi) = E(θi) + E(τ);
9: j = j + 1;

10: end while

11: Ssky ← (i ‖ E(θi));
12: i = i+ 1;

13: end while

14: return Ssky;

Algorithm 8: ePRSQ Query Result Recover.

Input:An encrypted query result

Ssky = {i ‖ E(θi) | 1 ≤ i ≤ n}, and a SHE private

parameter sk.

Output:A set SID that contains reverse skylines’ IDs.

1: SID = ∅;

2: for i ‖ E(θi) in Ssky do

3: θi = SHE.Dec(sk,E(θi));
4: if θi = 0 then

5: SID ← i;
6: end if

7: end for

8: return SID;

5) Result Recovery: Upon receiving the encrypted query result

from CS , QU performs the Algorithm 8 to recover the reverse

skylines’ IDs regarding q.

Note: Our ePRSQ returns the number and IDs that meet

the query condition, which is reasonable in some applications

where the query user only needs to know the basic information

of the query results, such as in advertising push mentioned

in the introduction and commercial site selection. In addition,

we can extend our ePRSQ to support returning specific query

data using proxy re-encryption (PRE) technology [35]. During

system initialization, DO generates a PRE key based on each

QU’s public key and sends it to CS . In the query phase, CS
returns the IDs with the PRE of the corresponding ciphertext

data. Finally, QU can recover the plaintext data by decrypting

the PRE ciphertexts using the private key.

Theorem 3 (Correctness of ePRSQ): According to QU ’s

query request, ePRSQ can return the correct reverse skyline

query result by searching in the encrypted dataset [[D]].
Proof: From the correctness of PRDC, E(τ) in line 7 of

Algorithm 7 determines whether xj ≺xi
q holds or not, so it
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is easy to know that E(θi) represents how many data vectors

reverse dominate xi in the dataset. According to the definition

of RSQ (Definition 2), the data vector xi satisfies the condition

of reverse skyline query iff E(θi) = E(0). Therefore, QU can

correctly filter out reverse skylines according to Algorithm 8.�

V. SECURITY ANALYSIS

In this section, we first prove the security of PIPSD and PRDC,

followed by the security analysis of ePRSQ.

A. Security of the PIPSD Scheme

In this section, we demonstrate that PIPSD is selective security

within the framework of the real/ideal world model, as delineated

in Section III-B. Let [[x]]1 and [[y]]2 be the outputs of x and

y after obfuscated by PIPSD.Obf1(·) and PIPSD.Obf2(·),
respectively, the leakage information of PIPSD is the inner

product of [[x]]1 and [[y]]2, i.e., L = 〈[[x]]1, [[y]]2〉.
Ideal world: There is a PPT adversary A and a simulator in

the ideal world interacting as follows.
� Setup phase: A selects w1 random d-dimensional vectors

{xi}
w1

i=1, where w1 is a polynomial number. Next, it sends

{xi}
w1

i=1 and the upper limit T of the absolute value of the

vector’s elements to the simulator. After receiving {xi}
w1

i=1

and T , the simulator selects w1 random d+ 1-dimensional

vectors [[xi]]
′
1 as the obfuscated vectors of {xi}

w1

i=1.
� Query phase I: A sends w2 random d-dimensional query

vectors {yi}
w2

i=1 to the simulator, where w2 is a polynomial

number. After receiving {yi}
w2

i=1, the simulator constructs

obfuscated query vectors {[[yi]]
′
2}

w2

i=1 according to the leak-

age functionL and {[[xi]]
′
2}

w1

i=1. The simulator performs the

following steps to construct each [[yi]]
′
2.

∗ It generates w1 random real numbers {vi}
w1

i=1 satisfying

the following equation:
{
vi > 0, 〈[[xi]]1, [[yi]]2〉 > 0
vi < 0, 〈[[xi]]1, [[yi]]2〉 < 0

(7)

∗ It randomly selects a vector [[yi]]
′
2 satisfying

〈[[xj ]]
′
1, [[yi]]

′
2〉 = vi for j ∈ [1, w1].

Finally, the simulator returns {[[yi]]
′
2}

w2

i=1 to A.
� Challenge phase: The simulator sends {[[xi]]

′
1}

w1

i=1 to A.
� Query phase II: Adversary A randomly selects a set

of (w′
2 − w2) d-dimensional query vectors {yi}

w′
2

i=w2+1,

where w′
2 is a polynomial number. Subsequently, A for-

wards these vectors {yi}
w′

2

i=w2+1 to the simulator. Upon

receipt of the query vectors, the simulator responds by

returning the obfuscated query vectors {[[yi]]
′
2}

w′
2

i=w2+1 to

A, which is similar to the Query Phase I.

Since the experiment in the real world is to execute our

PIPSD normally, the real world’s view of A is ViewA,Real =

{{[[xi]]1}
w1

i=1, {[[qi]]2}
w′

2

i=1}. Meanwhile, the view of A in the

ideal world is ViewA,Ideal = {{[[xi]]
′
1}

w1

i=1, {[[qi]]
′
2}

w′
2

i=1} as shown

above.

Definition 4 (Security of the PIPSD): The PIPSD scheme

achieves selective security on the leakage function L iff for any

A that initiates a polynomial number of data vector obfuscations

and query vector obfuscations, there exists a Sim(A) that A has

a negligible advantage in distinguishing the views of real or ideal

worlds, i.e., ViewA,Real

c
≡ ViewA,Ideal.

We prove that the PIPSD scheme achieves selective security

on the leakage function L in the following.

Theorem 4: PIPSD achieves selective security on L.

Proof: Recalling the Definition 4, we prove that it is hard for

A to distinguish ViewA,Real from ViewA,Ideal. We must consider

two cases:

1) The real-world obfuscated vectors {[[xi]]1}
w1

i=1 are indis-

tinguishable from {[[xi]]
′
1}

w1

i=1.

2) The real-world obfuscated query vectors {[[yi]]2}
w′

2

i=1 are

indistinguishable from {[[yi]]
′
2}

w′
2

i=1.

We discuss these two cases respectively below.
� In the real world, [[xi]]1 = (αxi1 + r1, αxi2 + r2, . . . ,
αxid + rd, β)M . Since each [[xi]]1 includes more than two

random numbers {α, β, r1, . . . , rd}, and A does not know

the random matrix M , {[[xi]]1}
w1

i=1 are indistinguishable

from random vectors. Because {[[xi]]
′
1}

w1

i=1 are randomly

generated in the ideal world, {[[xi]]1}
w1

i=1 are indistinguish-

able from {[[xi]]
′
1}

w1

i=1.
� In the real world, [[yi]]2 = M−1(α′yi1 + r′1, α

′yi2 + r′2,
. . . , α′yid + r′d, β

′). Since each [[yi]]2 includes more than

two random numbers {α′, β′, r′1, . . . , r
′
d}, and A does not

know the random matrix M−1, it is hard to distinguish

{[[yi]]2}
w′

2

i=1 from random vectors. Each [[yi]]
′
2 is limited by

the leakage function L in the ideal world. According to (3),

we can know that the result of 〈[[xi]]1, [[yi]]2〉 is random,

and vi in (7) is also random. Therefore, {[[yi]]
′
2}

w′
2

i=1 are

indistinguishable from random vectors under the random

generated ciphertexts {[[xi]]
′
1}

w1

i=1. Therefore, {[[yi]]2}
w′

2

i=1

are indistinguishable from {[[yi]]
′
2}

w′
2

i=1.

In summary, we can deduce that A cannot distinguish

ViewA,Real or ViewA,Ideal of our PIPSD. Therefore, PIPSD

achieves selective security on the leakage function L. �

B. Security of the PRDC Scheme

In this section, we show that PRDC achieves selective security

in the real/ideal world model. Let [[χ(u, v)]]∗ be the cipher-

text of xu and xv generated by PRDC.Enc(·). Additionally,

let ψ and E(µi) be the obfuscated query vector and SHE

ciphertexts generated by PRDC.QueryGen(·), respectively.

The definition of the leakage function of the PRDC scheme is

L̂ = 〈[[χ(u, v)]]∗, ψ〉.
Ideal world: There is a PPT adversary A and a simulator in

the ideal world interacting as follows.
� Setup phase: A sends w1 random d-dimensional vector

pairs {xui
, xvi

}w1

i=1 to the simulator, where w1 is a poly-

nomial number. After receiving {xui
, xvi

}w1

i=1, the simula-

tor randomly generates w1 (2d+ 2)-dimensional vectors

{[[χ(ui, vi)]]
∗′}w1

i=1, where [[χ(ui, vi)]]
∗′ is the ciphertext of

xui
and xvi

.
� Query phase I: A sends w2 random query vectors {qi}

w2

i=1

to the simulator, where w2 is a polynomial number. After
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receiving {qi}
w2

i=1, the simulator constructs the cipher-

texts {ψ′
i}

w2

i=1 and {E(µk)
′
i | 1 ≤ k ≤ d+ 1}w2

i=1 using the

leakage function L̂ and {[[χ(ui, vi)]]
∗′}w1

i=1. The simulator

performs the following steps to construct each ψ′
i and

{E(µk)
′
i | 1 ≤ k ≤ d+ 1}.

∗ It generates w1 × (d+ 1) random real numbers

{vm∈w1,n∈(d+1)} and each vm,n satisfies the leakage

function L̂:

{
vm,n < 0, ([[χ(um, vm)]]∗ · ψi)n < 0
vm,n > 0, ([[χ(um, vm)]]∗ · ψi)n > 0

(8)

∗ It randomly selects a (2d+ 2)-dimensional vector ψ′
i

satisfying ([[χ(um, vm)]]∗ · ψ′
i)n = vm,n.

∗ It selects d+ 1 random integers {µk ∈ {0, 1}}d+1
k=1 and

then generates the ciphertexts {E(µk)
′
i | 1 ≤ k ≤ d+

1} of them using SHE encryption.

Finally, the simulator returns{ψ′
i}

w2

i=1 and{E(µk)
′
i | 1 ≤ k ≤

d+ 1}w2

i=1 to A.
� Challenge phase: The simulator sends {[[χ(ui, vi)]]

∗′}w1

i=1

to A.
� Query phase II: A sends w′

2 − w2 random query vectors

{qi}
w′

2

i=w2+1 to the simulator, where w′
2 is a polynomial

number. After receiving them, the simulator returns the

ciphertexts {ψ′
i}

w2

i=1 and {E(µk)
′
i | 1 ≤ k ≤ d+ 1}w2

i=1 to

A, which is the same as query phase I.

Since the experiment in the real world is to execute our

PRDC normally, the real world’s view of A is ViewA,Real =

{{[[χ(ui, vi)]]
∗}w1

i=1, {ψi}
w′

2

i=1, {E(µk)i | 1 ≤ k ≤ d+ 1}
w′

2

i=1}.

Meanwhile, the ideal world’s view of A is ViewA,Real =

{{[[χ(ui, vi)]]
∗′}w1

i=1, {ψ
′
i}

w′
2

i=1, {E(µk)
′
i | 1 ≤ k ≤ d+ 1}

w′
2

i=1}
as shown above.

Definition 5 (Security of the PRDC): The PRDC scheme

achieves selective security on the leakage function L̂ iff for any

A that initiates a polynomial number of data vectors encryptions

and query token generations, there exists a Sim(A) such that A
has a negligible advantage in distinguishing the views of real or

ideal worlds, i.e., ViewA,Real

c
≡ ViewA,Ideal.

We prove that the PRDC scheme achieves selective security

on the leakage function L̂ in the following.

Theorem 5: PRDC achieves selective security on leakage

function L̂.

Proof: Recalling the Definition 5, we should prove that it is

hard for A to distinguish between ViewA,Real and ViewA,Ideal. To

prove the indistinguishability, we must consider three cases:

1) The real-world SHE ciphertexts {E(µk)i | 1 ≤ k ≤ d+

1}
w′

2

i=1 cannot be distinguished from {E(µk)
′
i | 1 ≤ k ≤

d+ 1}
w′

2

i=1.

2) The real-world data ciphertexts {[[χ(ui, vi)]]
∗}w1

i=1 are in-

distinguishable from {[[χ(ui, vi)]]
∗′}w1

i=1.

3) The real-world query ciphertexts {ψi}
w′

2

i=1 are indistin-

guishable from {ψ′
i}

w′
2

i=1.

We discuss these three cases respectively below.

� Since SHE has been proved to be IND-CPA secure [27],

{E(µk)i | 1 ≤ k ≤ d+ 1}
w′

2

i=1 are indistinguishable from

{E(µk)
′
i | 1 ≤ k ≤ d+ 1}

w′
2

i=1.
� In the real world, [[χ(ui, vi)]]

∗ = [[χ(ui, vi)]]1 ·M2. Since

PIPSD is selectively secure with L, and A does not know

random matrix M2, {[[χ(ui, vi)]]
∗}w1

i=1 are indistinguish-

able from random vectors. Because {[[χ(ui, vi)]]
∗′}w1

i=1 are

randomly generated in the ideal world, {[[χ(ui, vi)]]
∗}w1

i=1

are indistinguishable from {[[χ(ui, vi)]]
∗′}w1

i=1.
� In the real world, {ψi}

w′
2

i=1 = M−1
2 ·

(s1[[η(1)]]
T
2 , . . . , sd[[η(d)]]

T
2 , sd+1[[γ]]

T
2 ). Since PIPSD

is selectively secure with L, and A does not know random

matrix M−1
2 , it is hard to distinguish {ψi}

w′
2

i=1 from

random vectors. Each ψ′
i is limited by the leakage function

L̂ in the ideal world. According to (6), we know that

the result of 〈[[χ(ui, vi)]]
∗, ψi〉 is random, so vm,n in (8)

is random. Therefore, {ψ′
i}

w′
2

i=1 cannot be distinguished

from random vectors under the randomly generated

ciphertexts {[[χ(u, v)]]∗′}w1

i=1. As a result, {ψi}
w′

2

i=1 are

indistinguishable from {ψ′
i}

w′
2

i=1.

In summary, we conclude that A cannot distinguish

ViewA,Real or ViewA,Ideal. Therefore, PRDC achieves selective

security on the leakage function L̂. �

C. Security of the ePRSQ Scheme

In our security model, CS is honest-but-curious, which means

it is curious about the plaintext of the dataset, query requests,

and query results. Meanwhile, QU may eavesdrop on the query

requests and query results of other QUs, but cannot collude

with CS . Next, we show our ePRSQ is security and privacy-

preserving.

Theorem 6: Our ePRSQ is security and privacy-preserving

under the proposed security model.

Proof: The security and privacy protection of the ePRSQ is

mainly reflected in the security of the dataset, and the privacy

protection of query requests and query results. We prove that

ePRSQ meets the requirements from these two aspects respec-

tively.

The dataset is secure: In ePRSQ, DO obfuscates the dataset

D using the PRDC encryption algorithm and then outsources

the obfuscated dataset [[D]] to CS . As shown in Section V-B,

PRDC guarantees that the plaintext data cannot be recovered

from the ciphertext if M1 and M2 are kept secret. Since these

two matrices are only known by DO and QUs, and QUs do not

collude with CS, CS cannot recover plaintexts of D from [[D]].
Besides, CS may infer the private information of D during the

reverse skyline search phase, such as single-dimensional privacy.

Recalling Section IV-C, CS needs to compute ∆ = [[χ(u, v)]]∗ ·
ψ. According to (6), ∆i is PIPSD’s check result multiplied by a

random number. So, it is impossible for CS to recover χ(u, v),
η(i) or γ from ∆. Moreover, since the check result is multiplied

by a random number, which is 1 or −1, CS needs to combine the

SHE ciphertexts sent by QU and use homomorphic operations

to get the encrypted real check result. As the SHE is IND-CPA,
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CS cannot infer any private information about D. Therefore, the

dataset is secure in ePRSQ.

The query requests and query results are privacy-preserving:

In ePRSQ, the query token qt consists of ψ and {E(µi)}
d+1
i=1 ,

where ψ is generated by the PRDC query generation algorithm.

As shown in Section V-B, the security of PRDC can guarantee

that q cannot be recovered from ψ and intermediate result ∆
if M−1

1 and M−1
2 are kept secret. Since these two matrices are

only known by DO and QUs, and QUs do not collude with CS ,

CS cannot recover q from ψ. After finishing the reverse skyline

search, CS gets the results of SHE ciphertext. Since it does

not know the sk corresponding to SHE, CS cannot retrieve any

private information from the encrypted query results. Therefore,

the query requests and query results are privacy-preserving from

CS .

In addition, although each QU has the same secret keys

M−1
1 and M−1

2 , QU encrypts his/her query request using AE(·)
and CS’s public key pkAE . So, other QUs cannot retrieve

the plaintext of q from the query request. Meanwhile, since

each QU holds different SHE parameters pk and sk when

performing PRDC.QueryGen(·), other QU cannot decrypt

QU ’s query result. Therefore, the query requests and query

results are privacy-preserving from other QUs.

In conclusion, ePRSQ is secure and privacy-preserving.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ePRSQ and

compare it with related work, i.e., PPARS [9] and OPPRS [10],

from computational costs and communication overhead aspects.

ePRSQ contains five phases. Since there is no calculation in the

system initialization phase and only data decryption operation

is required in the result recovery phase, we mainly evaluate

the performance of the data outsourcing, query generation, and

reverse skyline search phases.

A. Experimental Setting

Three datasets from different fields, i.e., the Eye state

dataset [36], the India house prices dataset [37], and the US

census dataset [38], are adopted in our experiments to evaluate

the performance of the schemes and their stability in diverse

datasets. Both our ePRSQ and PPARS [9] adopt SHE as the

cryptography primitive. Since SHE is a leveled homomorphic

encryption, the maximum depth of its homomorphic multipli-

cation depends on k0. Generally, there are two ways to support

more homomorphic multiplication operations. One is to utilize

the bootstrapping protocol [27], and the other is to enlarge

k0. As ePRSQ is designed under a single cloud model, the

bootstrapping protocol cannot be used in ePRSQ, andk0 = 4096
meets the requirement of ePRSQ. Therefore, we set the security

parameters of SHE as k0 = 4096, k1 = 80, and k2 = 160 .

OPPRS [10] uses Paillier homomorphic encryption as its cryp-

tography primitive and its security parameter is set to 512.

We implemented the three schemes using C++ programming

language on a computer with 192GB of memory, Intel (R) Xeon

(R) Gold 5218R CPU @ 2.10GHz and Ubuntu 20.04 OS, and

the source codes of the experiments are available on Github1.

Besides, to facilitate the implementation of the schemes, we

scale the decimals in the dataset to integers by the same multiple.

Furthermore, all computational cost results in the experiments

are taken from the average of 10 experimental runs.

B. Computational Costs

1) Performance of Data Outsourcing Phase: As PPARS [9]

stores the dataset in plaintext on the cloud, there is no computa-

tional consumption in the data outsourcing. Therefore, we only

compare the computational costs of ePRSQ and OPPRS [10] in

this phase. As shown in Section IV-C, in our ePRSQ, DO sends

the obfuscated dataset [[D]] = {[[χ(i, j)]]∗ | i, j ∈ [1, n] ∧ i �= j}
to CS . Consequently, the computational costs in the data out-

sourcing phase are associated with the size n of the dataset and

the dimension d of the data.

Figs. 3 and 4 show the computational costs of ePRSQ and OP-

PRS [10] in the data outsourcing phase. Specifically, Fig. 3(a),

(b) and (c) depict the computational costs of encrypting a dataset

that varies with n and d = 3 on three different datasets. The

dataset encryption time of both ePRSQ and OPPRS [10] in-

creases with the dataset size. Specifically, for a 3-dimensional

dataset with size 2000, in ePRSQ, DO needs 11.65s to generate

the obfuscated dataset while OPPRS [10] needs 1.20s to gen-

erate the encrypted dataset. Besides, when n is fixed, the time

costs of the data outsourcing in ePRSQ and OPPRS [10] both

linearly increase with the number of dimensions d. Fig. 4(a),

(b) and (c) depict the computational costs of encrypting three

datasets that vary with d and n = 1000, from which we note

that for a 10-dimensional dataset with 1000 vectors, ePRSQ and

OPPRS [10] need 4.12 s and 1.53 s to generate the encrypted

dataset, respectively.

In summary, PPARS [9] directly outsources plaintext datasets

without computational overhead, but it cannot guarantee data se-

curity fromCS. The computational efficiency of ePRSQ is some-

what inferior to that of OPPRS [10] in the outsourcing phase.

However, it didn’t have much impact. First, data outsourcing

only needs to be performed once and can be done offline. At the

same time, the computational cost of ePRSQ in the experimental

dataset is at second level. Therefore, the computational cost of

ePRSQ in the outsourcing phase is acceptable.

2) Performance of Query Generation Phase: According to

Section IV-C, QU generates and sends the query request Req =
{AE(pkAE , qt), pk} to the cloud, where qt = {ψ,E(µi), i ∈
[1, d+ 1]}. Consequently, the computational costs of the query

generation phase are related to the number of dimensions d.

Fig. 5 illustrates the computational costs comparison among

three schemes on three different datasets to generate a query

request, where d changes from 2 to 8. As can be seen from the

figure, the computational costs of ePRSQ and OPPRS [10] are

relatively low and their growth rates are significantly slower. In

contrast, the computational cost of generating query vectors in

PPARS [9] is relatively large, and its growth trend is significantly

higher than that of ePRSQ and OPPRS [10]. Specifically, when

1https://github.com/NigulasiLiu/SkylineExperiment
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Fig. 3. Computational costs for offline data encryption on different datasets that varies with n and d = 3.

Fig. 4. Computational costs for offline data encryption on different datasets that varies with d and n = 1000.

Fig. 5. Computational costs of query generation on different datasets that varies with d and n = 1000.

n = 1000 and d = 8, the computational cost of ePRSQ is only

0.076ms, while OPPRS [10] and PPARS [9] consume 1.57ms

and 42.94ms, respectively. In other words, the efficiency of

ePRSQ in query generation is 20.65× and 565× of that of

OPPRS [10] and PPARS [9], respectively. The reason is that

the main calculation of ePRSQ in this phase is the product

of a (2d+ 2)× (2d+ 2) matrix and a (2d+ 2)× (d+ 1) ma-

trix, which can be performed quickly. In contrast, PPARS [9]

needs to generate multiple encrypted bloom filters, which is

more time-consuming than matrix multiplication. OPPRS [10]

needs to perform d times Paillier encryption, which is more

time-consuming than SHE encryption. So, the computational

costs of PPARS [9] and OPPRS [10] to generate a query request

are much larger than that of ePRSQ.

3) Performance of Reverse Skyline Search Phase: The re-

verse skyline search needs to be executed multiple times online

and consumes the most computational cost to protect security

and privacy. Therefore, the computational cost evaluation of this

phase is the most important because it best reflects the compu-

tational efficiency of the protocol. Obviously, its computational

cost is related to both n and d.

Figs. 6 and 7 show the computational cost of the reverse

skyline search phase of ePRSQ, PPARS [9] and OPPRS [10] on

three different datasets. Specifically, Fig. 6(a), (b) and (c) depict

the computational costs of reverse skyline query of different

schemes on different datasets varying with the size of dataset

n. Each scheme needs to perform n2 operations to ascertain

the reverse skyline results. However, the figures reveal that

ePRSQ is significantly more computationally efficient than that

of PPARS [9] and OPPRS [10]. When d is fixed to 3 and n
varies from 200 to 2000, the computational cost of ePRSQ is

only 30% of that of PPARS [9] and nearly equivalent to 1.4% to

3.6% of that of OPPRS [10]. For example, for a 3-dimensional

dataset of size 2000, i.e., n = 2000 and d = 3, our ePRSQ

takes 352.38s, 358.31s and 356.58s to complete the reverse sky-

line search procedure on the three datasets, respectively, while
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Fig. 6. Computational costs of searching on different datasets that varies with n and d = 3.

Fig. 7. Computational costs of searching on different datasets that varies with d and n = 1000.

PPARS [9] needs 1245.43s, 1245.42s, and 1185.41s and OP-

PRS [10] needs 19316.7s, 19792.76s, and 19568.40s to achieve

the same objective. This is because ePRSQ requires only one

matrix multiplication and 2d+ 1 SHE homomorphic operations

to get the dominance relationship. In contrast, PPARS [9] needs

to check multiple encrypted bloom filters, followed by SHE op-

erations. OPPRS [10] requires executing multiple homomorphic

comparison protocols, which involve a lot of time-consuming

homomorphic operations.

Similarly, Fig. 7 depicts the computational costs of reverse

skyline search of different schemes on three datasets varying

with d and n = 1000. In ePRSQ, the size of the matrix deter-

mining the dominance relationship increases with the growth

of d, thus the computational cost increases accordingly. For

every increase of 1in the data dimension d, the PPARS [9]

requires 2 additional Bloom filters to determine the dominance

relationship. Similarly, OPPRS [10] requires the execution of 13

additional homomorphic operations coupled with 2 decryption

processes to achieve the same goal. In addition, as the number

of dimensions d increases, OPPRS [10] needs to execute a more

secure window query protocol containing several homomorphic

operations.

Although all three schemes show a linear growth trend, the

computational costs of ePRSQ and PPARS [9] are significantly

more efficient than OPPRS [10] when n is fixed. Specifically,

whenn = 1000 and d varies from 2 to 8, the computational costs

of ePRSQ are about 30% of that of PPARS and 1.18% to 4.19%

of that of OPPRS. Take n = 1000 and d = 8 as an example,

ePRSQ’s computational costs on three datasets in this phase are

196.9 s, 196.4 s and 210.6 s, respectively. But PPARS [9] con-

sumes 609.3 s, 676.0 s and 609.5 s, respectively, and OPPRS [10]

consumes 5830.2 s, 5911.8 s and 5795.6 s, respectively.

Fig. 8. Communication overhead of data outsourcing.

Based on the above analysis, it is obvious that ePRSQ signifi-

cantly improves the computational efficiency of reverse skyline

search compared to PPARS [9] and OPPRS [10].

C. Communication Overhead

We analyze the communication overhead of ePRSQ and com-

pare it with PPARS [9] and OPPRS [10]. We use TotalSize =
Ncipher ∗ Scipher to represent the communication overhead be-

tween different participants, where Ncipher and Scipher are

the number of ciphertexts and the ciphertext size, respectively.

Since we set SHE’s parameter k0 = 4096, the size of a SHE

ciphertext is 2 · k0bits = 1024B. The security parameter of Pail-

lier homomorphic encryption is 512, so the size of a Paillier

ciphertext is 512 ∗ 2bits = 128B. In addition, ePRSQ needs to

transmit matrices between different participants, and the size of

an element in matrices is set as 8B.

1) Communication Overhead of Data Outsourcing Phase:

Fig. 8 shows the communication overhead of data outsourc-

ing of three schemes. From Section IV-C, we know that DO
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Fig. 9. Communication overhead of querying reverse skyline.

needs to send an encrypted dataset that contains n2−n
2 (2d+ 2)-

dimensional vectors to CS for data outsourcing. Therefore, for a

d-dimensional dataset of size n, the communication overhead of

ePRSQ is 4(2d+ 2)(n2 − n)B. In OPPRS [10], the encrypted

dataset contains nd Paillier ciphertexts, so its communication

overhead is 128ndB. Fig. 8(a) and (b) depict the communication

overhead of the data outsourcing phase that varies with n and d,

respectively. We can observe from them that the communication

overhead of ePRSQ increases quadratically withn and increases

linearly with d in the data outsourcing phase. This is because

ePRSQ needs to encrypt every two different data vectors once

during the data outsourcing. Since PPARS [9] stores the data

in plaintext on the cloud, its communication overhead is equiv-

alent to its dataset size. However, PPARS [9] cannot protect

the security of users’ data from CS , while ePRSQ solves the

security problem of users’ data. The communication overhead

of OPPRS [10] in this phase is small because it only needs to

perform one Paillier encryption on each record in the dataset.

2) Communication Overhead of Query Generation and

Search Phase: From Section IV-C, we know that QU needs

to send a query request with a (2d+ 2)× (d+ 1)-dimensional

matrix and d+ 1 SHE ciphertexts to CS. Therefore, the com-

munication overhead of ePRSQ in this phase is 8(2d+ 2)(d+
1) + 1024(d+ 1) = 16d2 + 1056d+ 1040B. According to the

experimental setting of [9], [10], we know that the communica-

tion overhead of PPARS [9] and OPPRS [10] at this phase are

1024 ∗ 2 ∗ � 10∗46
ln 2 � · d = 165888 · d B and 128 ∗ d B, respec-

tively. We can see from these formulas that the coefficients of d
in the communication overhead of ePRSQ and PPARS [9] are

16d+ 1056 and 165888 respectively. Only when d is greater

than 10301, the communication overhead of ePRSQ is greater

than that of PPARS [9]. But in reality, the dimension of data is

often small, so the communication overhead of ePRSQ is much

smaller than that of PPARS [9]. Besides, OPPRS [10] requires

two clouds to cooperate during the search phase, thus incurring

a communication overhead of 128
(
7
2n

2 + nd+ 2kn− 3
2n−

k
)
B, where k is a variable related to the query vector and the

dataset. For convenience, we let k = 1.

Fig. 9 shows the communication overhead of all three schemes

during the reverse query. Fig. 9(a) depicts the communication

overhead of the query phase varies with n and set d = 3. We can

intuitively see that OPPRS’s communication overhead is very

huge and far greater than that of ePRSQ and PPARS [9]. For

example, when n = 1000, OPPRS’s communication overhead

has reached 3419.84 MB, PPARS’s is 1.95 MB, and ePRSQ’s is

just 0.002 MB. Similarly, Fig. 9(b) depicts the communication

overhead of the query phase varies with d and set n = 1000.

It demonstrates the results of the theoretical analysis, i.e., the

communication overhead of OPPRS [10] is huge and that of

ePRSQ is much less than PPARS [9]. For example, when d =
10, the communication overhead of OPPRS [10] is 857.06 MB,

PPARS [9] is 6.48 MB, and ePRSQ is just 0.007 MB.

To sum up, ePRSQ has a relatively large communication

overhead in the data outsourcing phase, but this communication

overhead is one-time, and ePRSQ protects privacy against CS . In

addition, the ePRSQ shows a notably high communication effi-

ciency during the reverse skyline query process. Ford ≤ 100, the

communication cost of ePRSQ is less than 0.3% of PPARS [9],

and even more significantly, it is less than 0.03% of OPPRS [10].

D. Summary of Performance Evaluation

Based on the above extensive experimental evaluations and

analysis, we summarize the performance analysis and draw the

following conclusions: (1) The experimental performance trends

of ePRSQ on diverse datasets in different scenarios are relatively

consistent, so the performance of ePRSQ on diverse datasets is

stable; (2) The computational cost and communication overhead

of ePRSQ in outsourcing phase are higher than PPARS [9] and

OPPRS [10]. However, PPARS [9] directly outsources plaintext

and cannot guarantee data security. Furthermore, data outsourc-

ing can be done offline and only needs to be performed once, so

the computational and communication overhead of the ePRSQ in

the outsourcing phase is acceptable; (3) The computational and

communication efficiency of ePRSQ in reverse skyline query

is far superior to PPARS [9] and OPPRS [10]. ePRSQ has

improved the computational efficiency by at least 3× compared

with PPARS [9] that stores plaintext, and by more than 60×
compared with OPPRS [10] that ensures data security, while the

communication overhead of ePRSQ is negligible. In summary,

ePRSQ is secure and efficient.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first design PIPSD to determine whether the

inner product of two vectors satisfies a specific relation with

0 without revealing the information of the vectors. Then, we

design PRDC based on PIPSD and SHE to check the reverse

dominance relationship in a privacy-preserving manner. Finally,

we realize a privacy-preserving reverse skyline query scheme

(ePRSQ) on the single-cloud model based on PIPSD and PRDC.

Security analysis shows that all these three schemes achieve

selective security in the real/ideal world model, and our ePRSQ

guarantees the security of dataset plaintext, and the privacy of

query request and query result. Moreover, ePRSQ is validated

to be efficient by extensive experiments on diverse datasets. In

the future, we will extend the technologies in ePRSQ to build

privacy-preserving static and dynamic skyline queries. Taking

the dynamic skyline query as an example, we can express the

dynamic dominance relationship as two equations similar to (1)

and (2) in Section II-A. Based on this, like (4) and (5) in Section

IV-B1, we can transform the determination of the dynamic

dominance relationship between vectors into the relationship

between the inner product of the vectors and 0. Finally, similar to
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ePRSQ, after receiving the encrypted query token from QU , CS
calculates the inner products of the query token and the vectors in

the DO’s outsourced dataset, and outputs the encrypted dynamic

skyline query results by determining the relationship between

the inner products and E(0).
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