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Achieving Efficient and Privacy-Preserving Reverse
Skyline Query Over Single Cloud

Yubo Peng, Xiong Li
Sajal K. Das

Abstract—Reverse skyline query (RSQ) has been widely used
in practice since it can pick out the data of interest to the query
vector. To save storage resources and facilitate service provision,
data owners usually outsource data to the cloud for RSQ services,
which poses huge challenges to data security and privacy protec-
tion. Existing privacy-preserving RSQ schemes are either based
on a two-cloud model or cannot fully protect privacy. To this end,
we propose an efficient privacy-preserving reverse skyline query
scheme over a single cloud (ePRSQ). Specifically, we first design
a privacy-preserving inner product’s sign determination scheme
(PIPSD), which can determine whether the inner product of two
vectors satisfies a specific relation with (0 without leaking the vec-
tors’ information. Next, we propose a privacy-preserving reverse
dominance checking scheme (PRDC) based on symmetric homo-
morphic encryption. Finally, we achieve ePRSQ based on PIPSD
and PRDC. Security analysis shows that PIPSD and PRDC are
both secure in the real/ideal world model, and ePRSQ can protect
the security of the dataset, the privacy of query requests and query
results. Extensive experiments show that ePRSQ is efficient. Specif-
ically, for a 3-dimensional dataset of size 1000, the computational
and communication overheads of ePRSQ for a query are 79.47 s
and 0.0021 MB, respectively. The efficiency is improved by 3.78 X
(300.58 s) and 928.57x (1.95 MB) respectively compared with
PPARS, and by 61.31x (4872.55 s) and 407309 x (855.35 MB)
respectively compared with OPPRS.

Index Terms—Privacy-preserving, reverse dominance, reverse
skyline, single cloud, symmetric homomorphic encryption.
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1. INTRODUCTION

KYLINE query is a data filtering technique that helps users
S pick out points of interest from a multi-dimensional dataset.
Therefore, it is widely used in data mining [1], multidimensional
decision-making [2], and other related fields [3], [4], [5], [6]. As
a typical skyline query, the reverse skyline query (RSQ) can
pick out the data vectors interested in the query request from the
dataset. So, it has been applied to real-world applications such as
environmental monitoring [7] and advertising push services [8].
For example, when a company is preparing to launch a new
product, it can request an RSQ service from the server that stores
historical user consumption data, and select user groups that
are likely to purchase the new product for advertising. In this
scenario, the reverse skyline query only needs to obtain the user
IDs without other additional information.

To provide skyline query services, the data owner generally
needs to maintain the dataset and stay online, which leads to high
costs for building and maintaining the corresponding facilities.
Since cloud computing can provide users with powerful com-
puting and storage services, more and more data owners prefer
to outsource their dataset and corresponding services (e.g., RSQ
service) to the cloud to reduce costs. However, data outsourcing
inevitably raises security and privacy concerns. When data is
outsourced to the cloud server, the data owner loses physical
control of the data, and the data is exposed to threats such as
malicious tampering, deletion, and privacy leakage. At the same
time, the user’s query request and the query results returned by
the server may reveal the user’s behavior patterns and personal
information, thereby exposing sensitive information. Therefore,
the security of outsourced data and the privacy protection of
query requests and query results are crucial. Although tech-
niques such as fully homomorphic encryption show the potential
for security and privacy protection, the increased computational
and communication overheads make them unsuitable for practi-
cal applications. Balancing privacy protection and efficiency in
skyline queries is also a core challenge.

A. Related Work

To address the above issues, the research community has
introduced several privacy-preserving skyline query schemes.
We review the related work from static skyline query, dynamic
skyline query, and reverse skyline query, respectively. Besides,
Table I lists the comparisons of security and privacy issues
among some mainstream solutions.

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:25:19 UTC from IEEE Xplore. Restrictions apply.



30 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

TABLE I
COMPARISONS OF SOME MAINSTREAM SOLUTIONS FOR SKYLINE QUERY

Properties Ours Scheme [9] Scheme [10] Scheme [11] Scheme [12] Scheme [13]
Type of skyline query Reverse Reverse Reverse Dynamic Dynamic Static
Security of data vV X v vV vV vV
Privacy of query requests v vV vV vV vV v
Privacy of query results v vV vV X v v
Number of server 1 1 2 2 1 1
Query efficiency High Middle Low Low Low Low

Privacy-preserving Static Skyline Query: This is a basic type
of skyline query that finds the data vectors of interest to the
origin. In 2016, Chen et al. [14] proposed three secure skyline
query schemes for the location databases. However, their main
purpose is verification rather than privacy protection, and the
schemes are suitable only for 1- or 2-dimensional data. In
2019, Zheng et al. [15] proposed a skyline computation protocol
based on determining the dominance relationship of public key
encrypted data, but it will leak single-dimensional privacy. Liu
et al. [16] proposed a secure user-defined skyline computation
scheme. Due to the high cost of encryption, this scheme incurs
significant overhead when applied to high-dimensional data.
Zhang et al. [13] designed a secure user-defined skyline query
scheme based on matrix encryption. It uses a bitmap-like way to
represent a number, making it difficult to support queries of data
with large values. In [17], a privacy-preserving basic skyline
query scheme was proposed using symmetric homomorphic
encryption (SHE) to protect data security over the two-cloud
model. Compared to the previous static skyline query scheme
over the two-cloud model, this scheme reduces communication
overhead. Since static skyline queries can only statically pick
out points of interest to the origin from the dataset, their ap-
plications are limited. Dynamic skyline query, with adjustable
query vectors, can pick out data according to user requirements
to better meet application needs.

Privacy-preserving Dynamic Skyline Query: In 2017, Liu et
al. [18] proposed a fully secure dynamic skyline query scheme,
which guarantees data security, and query and result privacy.
However, its performance is poor due to the inefficiency of its
basic protocol. Soon after, this scheme was improved in [19]
based on parallelization technology. In 2020, based on order-
revealing encryption (ORE), a secure dynamic skyline query
scheme was proposed [20]. Even though the adversary may not
know the plaintext of the data, the result of ORE can reveal the
one-dimensional privacy of the data. In the same year, Wang et
al. [21] proposed a privacy-preserving dynamic skyline query
scheme based on Intel Software Guard Extensions (SGX). This
scheme has excellent query efficiency but requires additional
hardware support and leaks the access pattern of a query. In
2021, Zeighami et al. [12] proposed a secure dynamic skyline
query by using result materialization and ORE. This approach
takes less time but will cause huge storage overhead when the
data has more than two dimensions. Zhang et al. [11] designed
a privacy-preserving dynamic skyline query scheme using SHE
over a two-cloud model. In [22], a secure skyline query protocol
was constructed over a two-cloud model by combining three
privacy protection technologies.

Privacy-preserving Reverse Skyline Query: Both static and
dynamic skyline queries are designed from the users’ perspective
so that users can find products that match their interests. To help
the producers find out which users are interested in a particular
product, the reverse skyline query is proposed. The definition
and query methods of the reverse skyline are similar to those of
the dynamic skyline query, although their purposes are different.
In recent years, two privacy-preserving reverse skyline query
schemes have been proposed. Zhang et al. [10] designed two
privacy-preserving reverse skyline search algorithms over the
two-cloud model based on the Paillier cryptosystem. To weaken
the demand for the two-cloud model, they further proposed an
aggregate reverse skyline query over a single-cloud model by
using a bloom filter and fully homomorphic encryption [9]. It
can protect the private information of query requests and results.
However, it not only needs to store plaintexts on the server but
also brings heavy overheads.

B. Motivation

Although existing schemes provide various solutions, they

suffer from the following limitations:

1) Reliance on an impractical two-cloud model: Most
schemes [10], [17], [18] utilize homomorphic encryption
to achieve secure skyline queries. Since it is difficult to
directly compare ciphertexts and other operations in a sin-
gle cloud, they usually rely on a non-colluding two-cloud
model. However, the requirement of non-colluding two
cloud servers is difficult to achieve in reality.

2) Incomplete data security and privacy protection: Some
schemes directly store the plaintext data on the cloud
server, which cannot guarantee data security [9], while
some other schemes cannot protect privacy, e.g., the
ORE-based schemes may leak the single-dimensional pri-
vacy [20].

3) Inefficiency: How to efficiently realize privacy-preserving
skyline queries is a challenging problem. Some schemes
require more communication overhead [12], and others
have high computational costs [13].

C. Main Idea and Contributions

The above limitations motivated us to explore privacy-
preserving reverse skyline query (PRSQ) on a single cloud
server. Generally, compute-then-compare is essential in PRSQ,
and it involves two steps: (1) Compute. Based on the encrypted
data and the received token, the cloud server computes two
ciphertexts used to determine the skyline dominance relation;
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(2) Compare. The cloud server outputs the reverse skyline query
result by comparing the relationship of the plaintexts corre-
sponding to the two ciphertexts through a secure comparison
protocol. However, if both of the above steps are performed
by a single server, the specific value of the ciphertext used to
determine the skyline dominance relationship can be inferred
by running the secure comparison protocol multiple times.
Therefore, most solutions achieve privacy protection by using
an impractical two-cloud model to separate computation and
comparison. To address this challenge, our idea is that the data
owner and query user locally obfuscate their data separately.
Next, the cloud server calculates an intermediate result using the
obfuscated data of the two parties without leaking the privacy
information of the two parties. After that, the cloud server
obtains the encrypted final result based on the intermediate result
and the homomorphic ciphertext generated by the query user.
Finally, we realize an efficient PRSQ on a single cloud server.
Based on the above ideas, we make the following contributions:

1) We propose a privacy-preserving inner product sign deter-
mination scheme (PIPSD) to efficiently and confidentially
determine if the inner product of two vectors satisfies a
specific relationship with 0.

2) Based on PIPSD, we design a privacy-preserving reverse
dominance check scheme (PRDC) to determine the domi-
nance relationship without revealing the data plaintext and
query vector.

3) Based on PIPSD and PRDC, we realize an efficient PRSQ
scheme on the single-cloud model, named ePRSQ. It is
proven to protect the dataset security, the privacy of query
requests and corresponding query results.

4) Detailed experimental evaluations and comparisons show
that ePRSQ is efficient in computation and communi-
cation. Taking a 3-dimensional dataset with size 1000
as an example, the query efficiency of ePRSQ outper-
forms related schemes [9], [10] by 3.78x and 61.31x
in computational cost, and by 928.57x and 407309 % in
communication overhead, respectively.

The rest of this paper is organized as follows. Section II
introduces some preliminaries used in our scheme. Section III
describes the system model, security model, and design goals.
Two basic protocols PIPSD, PRDC, and our ePRSQ are pre-
sented in Section IV. Security analysis and performance evalu-
ation of ePRSQ are provided in Sections V and VI, respectively.
Conclusions are offered in Section VII.

II. PRELIMINARIES

In the following, we introduce the formal definition of RSQ
and the tool of SHE that is used in our work.

A. Reverse Skyline Query

The reverse skyline query (RSQ) [10], [23], [24], [25] is used
to pick out those vectors whose dynamic skylines contain a given
query vector. Its core operation is to check whether there is a
reverse dominance relationship between two data points.

Definition 1 (Reverse Dominance): Given two d-dimensional
data vectors z,,x, and a d-dimensional query vector ¢, we
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(a) x1 is not a reverse skyline
point regarding g

(b) x5 is a reverse skyline point
regarding ¢

Fig. 1. An example of RSQ.
say x,, dominates ¢ with regard to x, in reverse skyline query,
denoted as x,, <, ¢, if:

Vi € [Ld] : |:Eu7, - mvi| S |qz - xvi|7 (1)
and
di e []-ad} : |xuz - xvi' < |Qi - xvi|a (2)

where ., €,; and ¢; denote the i-th element in data vectors z,,,
x, and q, respectively.

Definition 2 (Reverse Skyline Query (RSQ)): Given a dataset
X, Which contains multiple d-dimensional vectors, and a query
vector g, a vector x,, € Y is a reverse skyline vector of g iff there
isnox, € xsuchthatz, <, ¢.RSQreturnsaset S, containing
all reverse skyline vectors regarding ¢ in x, i.e., S; = {x; € x|
Bz € x5 <4, 4}

Example 1: Fig. 1 illustrates an example of an RSQ process,
where all the data in the dataset x = {x; | 1 <4 <5} and the
query vector q are two-dimensional. Therefore, we can represent
them as points on a plane. Fig. 1(a) and (b) depict the reverse
dominance regarding x; and x5, respectively. According to the
above definition, z; is not a reverse skyline vector of the query
vector ¢ while x5 is. To visually compare absolute values, all
points in y are mapped to a region with x; as the origin, and a
rectangular area constructed by z; and ¢ is marked in Fig. 1. If
there exists a mapped point x; that falls in the rectangle, it means
x; dominates g, i.e., x; <, q. Otherwise, x; is a reverse skyline
point. As shown in Fig. 1(a), x5 and % fall in the rectangle,
implying x5 and x% dominate ¢, and z; is not a reverse skyline
point. Since no point falls in the rectangle in Fig. 1(b), x5 is a
reverse skyline point. By checking all points in x, we obtain the
set of reverse skyline points as S, = {2, 3, T4, T5 }.

B. Symmetric Homomorphic Encryption (SHE)

SHE [26] is a symmetric fully homomorphic encryption
scheme and is proved to be semantically secure under Chosen
Plaintext Attack (IND-CPA) [27]. The SHE scheme mainly
consists of the following three algorithms:

e KeyGeneration(ko, k1, k2): Given three security parame-
ters ko, k1, ko satisfying k1 < k2 < (ko /2), the algorithm
selects two large random prime numbers p, p and a ran-
dom number £ satisfying ||p|| = ||p|| = ko and ||£|| = k2,
respectively. Here, k1 denotes the space of message m, that
is ||m|| = ky. Finally, the secret key sk is (p, £) and the
public parameter pk is N = pp.
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Fig. 2.  System Model.

e Encryption(sk, m): The encryption algorithm takes the se-
cret key sk and a message m as input, outputs the ciphertext
E(m) = (rL+ m)(1+r'p) mod N, where r and " are
two random numbers satisfying ||r|| = ko and ||r'|| = ko.

e Decryption(sk, E(m)): Given a SHE ciphertext E(m),
this algorithm first generates a message m’ = (E(m) mod
p) mod L according to the secret key sk. Then, the al-
gorithm recovers the message m as follows. If m’ < %,
m = m/. Otherwise, m = m’ — L.

The following homomorphic properties hold for SHE:

® (Ciphertext-Ciphertext Homomorphic Addition:

E(ml) + E(mg) mod N < E(m1 + mg);

e Ciphertext-Plaintext Homomorphic Addition: E(my) +

mo mod N < E(my +ms);

e Ciphertext-Ciphertext ~Homomorphic — Multiplication:
E(mq) - E(ma) mod N < E(mims);
® (iphertext-Plaintext =~ Homomorphic ~ Multiplication:

E(m1) -mo mod N & E(mlmg) when mq > 0.

III. MODELS AND DESIGN GOALS

In this section, we describe the system model, the security
model, and the design goals of ePRSQ.

A. System Model

Fig. 2 depicts the system model of reverse skyline query over
a single cloud for multi-dimensional data, which contains three
entities: a data owner (DQ), a cloud server (CS), and multiple
query users (QU).

e DQO: It holds a d-dimensional dataset of n data vec-
tors, D = {x; = (1, Tia, . .., ®iq) }7_,. All values in the
dataset are assumed to be integers, which is easily satisfied.
DO aims to provide a reverse skyline query service to take
full advantage of the dataset. To save costs, DO outsources
the dataset D and corresponding RSQ service to a CS. To
protect the security of dataset D, DO encrypts the dataset
before outsourcing it to CS.

e CS: The cloud server, which has powerful computing
capability and sufficient storage resources, is responsible
for storing DO’s encrypted dataset and providing reverse
skyline query service to QU. When receiving a query
request Req from a QU, CS searches the corresponding
reverse skyline regarding Req in the dataset D and replies
the query result ciphertext Sy, to QU.

e QU The model includes a set of query users. To enjoy the
RSQservice, QU needs to register with DO first. Then, QU
gets an authorized key and can access the reverse skyline
query service with it.

B. Security Model

In the security model, we assume that DO is trustworthy,
which means that he/she will honestly outsource an encrypted
dataset and provide a valid private key to an authorized QU.
Meanwhile, we assume that CS is honest-but-curious [28], [29],
i.e., it executes the protocol honestly but is curious about certain
private information such as the plaintext of the dataset, query
requests, and query results. We also assume that QU is honest-
but-curious, since QU wants to get the correct query results
so that he will not disobey the protocol. However, QU may
eavesdrop on other users’ query requests and results. We assume
that CS and QU do not collude. First, it is reasonable for CS
not to collude with QU to maintain its reputation as a cloud
service provider. In addition, the cost for the query user to corrupt
the cloud server is high, as the legal risk and huge economic
cost. Furthermore, such a non-collusion model is widely used in
various schemes [30], [31], [32].

Besides the above security assumption, we review the
real/ideal world model [33], [34] with a static semi-honest
adversary [29] used for security proof.

Real world model: In this model, the scheme II will be
executed between CS and an adversary .A. Assume that x is an
input of IT and y is an auxiliary input. The definition of execution
of II with inputs x and y under A in this model is denoted as
follows:

REALy 4, () = {Output™(z), View" (), y},

where Output!! () is the output of IT executed on input z, and
View!!(z) is the view of CS during the execution of IT with input
x.

Ideal world model: In this model, CS only interacts with F,
which is defined as an ideal functionality for a leakage function
L. The definition of an execution F with inputs = and y under a
simulator Sim is as follows:

IDEALy 4, (z) 2 {F(z),Sim(z, £(z)), y}.

Definition 3 (Security against Semi-honest Adversary): As-
sume that F is a deterministic functionality and I is a scheme of
CS, I securely achieves F if there exists a Sim(.A) that satisfies
probabilistic polynomial time (PPT) transformations such that:

REAL 4, (z) = IDEALF 4, (2),

where A is a semi-honest PPT adversary and = represents the
computational indistinguishability.

C. Design Goals

In this work, we present an efficient PRSQ scheme over a
single cloud. Specifically, our work is dedicated to the following
goals.
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TABLE II

NOTATIONS
Notation Description
D,n,d The dataset, its size and dimensions
Tui The i-th dimensional data in u-th data z,,
Qi The ¢-th dimensional data in query ¢
Q The query token
A=<pq A dominates ¢ with regard to B
T Upper bound of the absolute value
(,),0 The inner product of two vectors
[-1: Obfuscated vector generated by Obf;
\Y% Condition (e.g., <)
Il Length of data
K; Specific length of data
A Intermediate result of inner product
L,p Big prime numbers
E() SHE ciphertext
pk, sk Public key and secret key of SHE
E(7) Sum of E(4;)
v, y,m Intermediate query vector
AE(") A secure asymmetric encryption algorithm

pkag, skap Public key and secret key of AE(+)

PP Public parameters generated by PIPSD
Skey An encrypted query result
Sip A set that contains reverse skyline’s IDs

® Data security: The security of the data can be guaranteed,
i.e., any adversary cannot reveal the plaintext of the data.

® Privacy preservation: The privacy of query requests and
query results can be protected, and any adversary cannot
infer QUs’ private information.

e FEfficiency: Generally, PRSQ schemes are inefficient due
to high computational costs and communication overhead.
Therefore, our work aims to improve efficiency while
ensuring security and privacy.

IV. THE PROPOSED SCHEMES

In the following, we first design a privacy-preserving inner-
product sign determination scheme (PIPSD). Then, we pro-
pose a privacy-preserving reverse dominance checking scheme
(PRDC) based on PIPSD. Finally, we develop our efficient PRSQ
scheme (ePRSQ). The notations used throughout this paper are
listed in Table II.

A. The PIPSD Scheme

This scheme is designed to securely determine whether the
inner product of two vectors satisfies a specific relationship
with 0. In particular, given two d-dimensional vectors = =
(x1,22,...,24),y = (Y1,Y2, - .,Ya), and a condition V (e.g.,
<), where z; and y; are integers for 1 < i < d, PIPSD can
determine whether (z, y) V0 holds without revealing z, y, and
(x,y). It contains four algorithms as described below.

1) Setup(d,T): Given the dimension of the vector d and
the upper limit 7" of the absolute value of the vector’s
elements, this algorithm outputs public parameters PP =

Algorithm 1: Obfuscation Algorithm 1.
Input: PP, x and M.
Output:A (d 4 1)-dimensional obfuscated vector [z];.
1: « = RandomO f BitLength(K);
2: 8 = RandomO f BitLength(Ks);
3:fori € [1,d] do
4:  r; = RandomO f BitLength(Ky);
5
6
7

: end for
[z = (e + 711, g + 19, .
: return [z];;

Laxg+re )M

Algorithm 2: Obfuscation Algorithm 2.

Input: PP, V, y and M.
Output:A (d + 1)-dimensional obfuscated vector [y]s.

1'52{1, Vis > or >;
’ —1, Vis < or <.
2 o — 1, Vis < or >;
’ -1, Vis < or >.
3: o/ = RandomO f BitLength(Ky)
4: " = RandomO f Bit Length(K>);
5:foriin [1,d] do
6: ri = RandomO f BitLength(Ky);
7: end for
8: [y]2 =

T

M=t (salyy + 7,50/ ys + 15, ..., sa'yq + rh, '8

9: return [y]o;

{Ky, K1, K2}, where Ky is the bit length of T and K1 > Ko >
% + K. Besides, a secret random invertible matrix
M e REHDx(d+1) j5 generated.

2) Obf1 (PP, x, M): Given the public parameter PP, a secret
matrix M and a d-dimensional vector z = (z1, z2, ..., x4), this
algorithm obfuscates = to [x]; as described in Algorithm 1,
where RandomO f BitLength(-) is to generate a random num-
ber of a specified bit length.

3) Obfo(PP,V,y, M~1): Given the public parameter PP, a
condition V, the inverse matrix of M and a d-dimensional vector
y = (y1,Y2,...,Yya), this algorithm generates an obfuscated
query vector [y]- as described in Algorithm 2.

4) Check(PP, [x]1, [y]2): Given an obfuscated vector [z];
and an obfuscated query vector [y]2, the checking algorithm
determines whether (x,y)VO0. The algorithm calculates § =
([=]1, [yl2). 6 > 0O represents {(x,y)VO0 holds, while § <0
means (z,y) V0 does not hold.

Theorem I (Correctness of PIPSD): Oninputs [z]; and [y]2,
the PIPSD can correctly determine whether (z, ) V0.

Proof: According to the definition of §, we have

6 = ([=]1, [y]2)

d d d
/ / / ! !
= sao g iy + s B8 + « E T + So g riVi
i=1 i=1 i=1
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TABLE III
RELATIONSHIP BETWEEN V, (X, y) AND §

\Y 5 s’ (z,y) )
>0 >0
> 1 —1 =0 <0
<0 <0
>0 >0
> 1 1 =0 >0
<0 <0
>0 <0
< -1 -1 =0 <0
<0 >0
>0 <0
< -1 1 =0 >0
<0 >0
d
+Zri7“;
i=1
= sad (z,y) + BB + A, 3)

where A = s« Zz LT+ sal ZZ 1T+ ZZ LTTs

Because the range of all numbers in the expansion of
0 is known, we can infer that ||| < 2K, + K; + ||d]|.
Since ||B5|| > 2K2 — 1 > 2Ky + K; + ||d||, we can infer that
|85’ > |A|. Thus, the sign of 33’ determines the sign of 53" + A.
Specifically, if 85" <0 (>0), 88" + A is always less than
(more than) 0, regardless of the sign of A. Similarly, since
Ky > Ko, ie., |a| = |O/| =K; > ‘/BI = ‘B/l = K5, we have
[sad!(z,y)| > |sac’| > |§'B5'| > |A|, where s and s’ have the
same bit length. Therefore, 0’s sign is identical to saa/(x, y)
when (z,y) # 0, and is same to s'33" when (z,y) = 0.

According to these inferences, the relationship among V,
(x,y) and ¢ can be listed in Table III. For instance, when V is
<, we know that s = —1 and s’ = 1 as defined in Algorithm 2.
If (z,y) = 0, we know that § > 0 since J has the same sign as
§'BA.If (x,y) < 0, we have 6 > 0 since 0 has the same sign
as saa/(z,y). Similarly, if (z,y) > 0, § < 0. Thus, whether
(x,y)V0 can be determined by the sign of §. Consequently,
PIPSD’s check result is correct. 0

B. The PRDC Scheme

Based on PIPSD, we design a privacy-preserving reverse
dominance checking scheme, denoted as PRDC. It can check
whether there is a reverse dominance relationship between two
data in a privacy-preserving manner. Specifically, given two
d-dimensional data vectors x,, x, and a query vector g, PRDC
can determine whether x, <, ¢ holds without revealing the
original vector information. If so, it outputs a SHE ciphertext
E(7) = E(1). Otherwise, it outputs E(7) = F(0). Next, we
describe the transformation of the reverse dominance problem
and then introduce the PRDC.

1) Transformation of the Reverse Dominance Problem:
To guarantee privacy during the determination of reverse
dominance, we transform the formulas for judging the reverse

dominance ( (1) and (2)) into the inner product of two vectors,
which can be independently constructed by DO and QU.
For (1), we have

|Twi — Toi] <@ — Toil
= (xuz - xvi)Q S (qi - Z’Ui)2
& 22— 20Ty + 2qiT0i — ¢ <0

2

& (22, = 2TyiToi, Toiy 1) - (1,2, —q7)T <0 (@)

Therefore, (1) is equivalent to (4). The transformed (4) can be
expressed as the product of two vectors (xf“ — 2L Ty Tayiy 1)
and (1,2¢;, —g?)T, which can be constructed by DO’s data (x,,

and z,,) and QU’s query vector ¢, respectively. Besides, we use

E(0;) to indicate whether (4) holds. If (4) holds, E(d;) = E(1),
otherwise, F(d;) = E(0).
If both (1) and (2) hold, according to (4), we have
d
Z |Tui — il < Z lgi — i
=1
d d
= Z xui xvz 2 < Z(ql - xvi)Q
i=1 i=1
d
< Z Thyi — 2TwiToi) + Z 2¢;wy; — Z q; <0
g (33 1 2xu1xvla s axid - 2xudx2da Tyly - Lods 1)
T
d
< (L. 12q0,. 0,200, Y qf | <0 (5)
j=1
Therefore, Z?Zl (Twi — T0i)? < Z?Zl (i — wpi)?  can
be expressed as the inner product of two (2d+ 1)-
dimensional vectors, i.e., (22, — 22,1 @01, . . ., T35 — 2TydT24,
Toly---Tod, 1) and (1,...,1,2q1, ..., 2q4, — Z?:l ¢;)",and

they can also be constructed by DO’s data (z, and z,) and
QU’s query vector g, respectively. Besides, we use F(J;)
to indicate whether (5) holds. If (5) holds, E(d;) = E(1),
otherwise, E(6;) = E(0).

Lemma 1: (1) AN (2) < (4) A (5)

Proof: We can deduce easily that (1) A (2) = (4) A (5) since
(1) & (4)and (1) A (2) = (5). On the contrary, when (4) and (5)
hold simultaneously, we can infer that (2) must hold. Besides,
since (4) is equivalent to (1), we have (4) A (5) = (1) A (2). In
summary, (4) A (5) < (1) A (). O

Let E(1) =[[;2 dtl 1 E(0;). According to the above analysis,
Ty =g, qholdsis equ1valent to (4) A (5) hold. (4) holds means
that £(0;) = E(1) forall 1 < ¢ < d, while (5) holds mean that
E(d441) = E(1). Therefore, when E(7) = E(1), x, <4, ¢
holds. Otherwise, if E(7) = E(0), 2, <., g does not hold.

2) Description of PRDC Scheme: The PRDC scheme con-
tains four algorithms, and we describe them as follows.

1) Setup(d,T): Given the dimension d of the vector in
D and the upper limit 7' of the absolute value of the vec-
tor’s elements, the algorithm outputs the public parameters
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Algorithm 3: PRDC Encryption Algorithm.

Algorithm 5: PRDC Checking Algorithm.

Input: PP, M,, Ms, x,, and x,,.
Output:[x(u, v)]*.
1: x(u,v) =

(22 — 2201 %01, - - -  Tyd, 1)
2: [x(u,v)]1 = PIPSD.Obf, (PP, x(u,v), M)
3: HX(U,U)]]* = HX(va)ﬂl - My
4: return [x(u, v)]*;

2
sy Loyd — 2-rudl‘vda LTyl - -

Algorithm 4: PRDC Query Generation.

Input: PP, M; ', My, q and pk.
Output: A query token ¢;.
1:fori € [1,d] do

1, J=1
2 njepeary =\ 2 G Zog4,
0, Otherwise.

: [Y]2 = PIPSD.Obfy(PP, <,~, M; );

D) = M2*1 . (31 [['(](dl)]]g, RN Sd[[n(d)]]g7 Sd+1[h/]]%ﬂ);
10: ¢ = {, {E(pi) } 1Y

11: return ¢,;

30 [n(i)]a = PIPSD.Obfy(PP, <, n(i), M™):;
4:  Select random number s; € {—1,1};

5: E(u;) = {E(1)7 s = —1.

6: end for .
Toy=(1,...,1,2q1,...,2q4, — > iy G2 )3

8

9

PP = PIPSD.Setup(2d + 1,T?) by calling the Setup algo-
rithm of PIPSD. Besides, two secret random invertible matrices
My, My € R(2d+2)x(2d+2) are generated.

2) Enc(xy, x,, PP, My, M>): Given any two d-dimensional
data vectors x,, and x,,, the public parameter P P and two secret
matrixes M;, Mo, the encryption algorithm outputs a (2d + 2)-
dimensional obfuscated vector [x(u,v)]* for x, and x,. The
encryption algorithm is shown in Algorithm 3.

3) QueryGen(q, PP, M;*, My *, pk): Given a d-dimensional
query vector ¢, the public parameter PP, two secret matrices
M ', M, " and SHE’s public parameter pk, the query generation
algorithm, which is shown in Algorithm 4, outputs a query token
q-
4) Check([x(u,v)]*, q¢, pk): Given the public parameter pk
of SHE, an obfuscated vector [x(u,v)]* and a query token
g+, the checking algorithm outputs an encrypted check re-
sult E(7), where E(7) = E(1) if 2, <., g holds, otherwise,
E(7) = E(0). The algorithm is shown in Algorithm 5.

Theorem 2 (Correctness of PRDC): Oninputs [x (u,v)]* and
qt» the PRDC can correctly determine whether z,, <z, ¢.

Proof: To prove the correctness of PRDC, it is essential
to demonstrate that £(J;) accurately reflects the relationship
among x;, T,; and g; as specified by (4) for each ¢ from 1 to d.
Similarly, the correctness of E(d441) must be verified to ensure
it accurately determines whether x,,, ,,, and ¢ conform to (5).

Input:[x(u, v)]*, ¢ and pk.

Output:An encrypted check result E(7).
1A = [x(u,v)]" -

2:for i € [1,d] do

4: end for

5: B(r) = [T B(5);
6: return E(7);

Given the data ciphertext [x(u,v)]* and a query token ¢; =
{0, {B(1:) }4!'}, A can be expanded as

A= [xwo)]"-¢

= [x(u, 0)[1 M2 My (s1[n(V)]3 . saln(d)]3,
sa+1112)

= (s1{Dx(w, )]0, [n(W]2), -+ sallx(w, o)1, [n(d)]2),
sat1{x(u, v)]1, [4]2)) - ©)

For A; = s;{[x(u,v)]1,[n(i)]2), 1 <i <d, since [n(i)]2 =
PIPSD.Obfy(PP,<,n(i), M;"), we know that A; is
actually s, multiplied by a PIPSD’s checking result which
indicates  whether  (x(u,v),n(i)) = (22, — 224;Ty;) - 1 +
Tyi - (2¢:) + 1 (=¢7) = (@ui — T0i)® — (@ — i)* <0
holds.  Assuming (7,; — Zyi)? — (¢; — 74)? <0 holds,
we have ([x(u,v)]1,[n(i)]2) >0. If s;=1, we have
E(p;) = E(0) and A; > 0. According to line 3 in Algorithm 5,
we can deduce that E(J;) = E(1). If s; = —1, we have
E(p;) = E(1) and A; <0, so E(6;) = E(1). In contrast,
when (2,; — 2,i)? — (¢; — 2,;)? < 0 does not hold, we have
(Ix(u,v)]1, [7(2)]2) < 0.Ifs; = 1, wehave E(u;) = E(0)and
A; < 0. Then, we can deduce that E(J;) = E(0). If s, = —1,
we have E(u;) = E(1) and A; > 0, so E(d;) = E(0). From
the above analysis, we have proved that F(d;)(1 <i < d)
correctly indicates whether x,,;, x,; and g; satisfy (4).

For  Agy1 = sar1([x(w, v)]1,[v]2), since  [v]2 =
PIPSD.Obfy(PP,<,v, M; "), we know that Agy; is
actually sg41 multiplied by a PIPSD’s checking result which
indicates whether (x(u,v),7) = Y%, (22, — 200iwy:) - 1 +

i=1 ui

Sy i (200) + T 1 (=) = Tl (vus — 20i)* =

Z?Zl (gi — wi)? < 0 holds. Assuming Z?Zl (Tui — Toi)? —
S0 (gi — 20i)? < 0 holds, we have ([x(u,v)]1, [v]2) > 0.
If sq1 =1, we have E(ugy1) = E(0) and Agpq > 0.
According to line 3 in Algorithm 5, we can deduce that
E(dg41) = E(1). If sq41 = —1, we have E(puq41) = E(1)
and Agpq <0 so that E(d441) = E(1). In contrast, when
Sy (ui — 20i)? = 320, (@ — w0i)? <0 does ot hold,
we have ([x(u,v)]1,[v]2) <0. If s441 =1, we have
E(ugy1) = E(0) and Agzyq < 0. Similarly, we can deduce that
E(d441) = E(0).If s441 = —1, we have E(p441) = E(1) and
Ag+1 > 0sothat E(dg4+1) = E(0). Now, we have proved that
E(d4+41) correctly indicates whether z,,, x,, and ¢ satisfy (5).
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Algorithm 6: ePRSQ Dataset Encryption.

Algorithm 7: ePRSQ Reverse Skyline Search Algorithm.

Input:A dataset D, public parameters PP and two matrix
My, Ms.

Output:An encrypted dataset
[D] = {Ix(@ )" 4,5 € [L,n] Ai # 5}

1: [D] = @

2: for x; in D do

3:  forz;inDdo

4

5

if i # j then
Ix(, )" =
PRDC.ETLC(.I‘i,xj,PP, ]\/Il,MQ);
6: [D]  [x(i, )1
7. end if
8: end for
9: end for

10: return [D];

So far, we have proved that E(§;)(1 < i < d) correctly indi-
cates whether x,;, x,; and g; satisfy (4), and E(d441) correctly
indicates whether x,,, x, and ¢ satisfy (5). According to the
definition of dominance relation, we have E(7) = Hfi L E(5;).

So, the correctness of PRDC is proved. 0

C. The ePRSQ Scheme

Our ePRSQ scheme includes five phases described below.

1) System initialization: Assuming DO has a d-dimensional
dataset D, in which the upper bound on the absolute value of the
datais 7. Toinitialize the system, DO first selects an asymmetric
encryption algorithm AE(-), e.g., ElIGamal, and generates a key
pair {sk g, pkap} randomly. Then, DO generates parameters
of PRDC, i.e., {PP, My, My} = PRDC.Setup(d, T'). Finally,
DO publishes the public parameters {PP,pkg} and sends
sk ag to CS via a secure channel. Meanwhile, if a QU wants to
utilize the RSQ service, he or she must first register with DO.
Upon approval from DO, M; * and M, ! are transmitted to QU
via a secure communication channel.

2) Data Outsourcing: In this phase, DO first converts the
dataset D into an encrypted dataset [D] using Algorithm 6
to guarantee the security of the dataset D. After that, DO
outsources [D] to CS.

3)  Query  Generation:  First, for a  query
vector ¢, QU generates a query token ¢ =
PRDC.QueryGen(q, PP, M;*, My",pk)  according to
PRDC query generation algorithm. Second, QU encrypts the
query token g; with CS’s public key pk 4 g, thatis AE (pkag, qt),
and chooses SHE parameters {pk, sk}. Finally, Ol sends the
query request Req = {AE(pkag,qt), pk} to CS and keeps sk
secretly.

4) Reverse Skyline Search: Once CS receives a query request
Req from QU, it extracts pk and decrypts AE(pkag, ;) with
skag to recover the query token ¢;. Then, CS executes the
Algorithm 7 to perform the reverse skyline query with privacy-
preserving. Finally, CS sends the encrypted query result Sy, to
.

Input:An encrypted dataset
{Ix,N]* 4,7 € [1,n] Ai# j}, aquery token ¢, and a
SHE public parameter pk.

Output:A set containing n data indexes and SHE
ciphertexts, Ssiy = {¢ || E(6;) | 1 < i < n}.

1: Sery = @5

2:1=1;

3: while i < n do

4: j=1

5: E(6;) = E(0);

6: while j < n do

7: E(r) = PRDC.Check([x(j,9)]*, ¢, pk);
8: E(6;) = E(6;) + E(7);

9: j=J+1

10: end while

11: Ssiy < (1] E(6:));
12: t=1+1;

13: end while

14: return Sy, ;

Algorithm 8: ePRSQ Query Result Recover.
Input:An encrypted query result
Ssky = {1 || E(0;) | 1 <i <n}, and a SHE private
parameter sk.
Output:A set S;p that contains reverse skylines’ IDs.
1: Sip =@,
2:fori | E(6;)in Sepy do
3 0; = SHE.Dec(sk, E(0;));
4: if 0; = 0 then
5.
6

S[D — i;
end if
7: end for
8: return Sp;

5) Result Recovery: Uponreceiving the encrypted query result
from CS, QU performs the Algorithm 8 to recover the reverse
skylines’ IDs regarding q.

Note: Our ePRSQ returns the number and IDs that meet
the query condition, which is reasonable in some applications
where the query user only needs to know the basic information
of the query results, such as in advertising push mentioned
in the introduction and commercial site selection. In addition,
we can extend our ePRSQ to support returning specific query
data using proxy re-encryption (PRE) technology [35]. During
system initialization, DO generates a PRE key based on each
QU’s public key and sends it to CS. In the query phase, CS
returns the IDs with the PRE of the corresponding ciphertext
data. Finally, QU can recover the plaintext data by decrypting
the PRE ciphertexts using the private key.

Theorem 3 (Correctness of ePRSQ): According to QU’s
query request, ePRSQ can return the correct reverse skyline
query result by searching in the encrypted dataset [D].

Proof: From the correctness of PRDC, F(7) in line 7 of
Algorithm 7 determines whether x; <., ¢ holds or not, so it
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is easy to know that F(0;) represents how many data vectors
reverse dominate x; in the dataset. According to the definition
of RSQ (Definition 2), the data vector x; satisfies the condition
of reverse skyline query iff E(6;) = E(0). Therefore, QU can
correctly filter out reverse skylines according to Algorithm 8.[]

V. SECURITY ANALYSIS

In this section, we first prove the security of PIPSD and PRDC,
followed by the security analysis of ePRSQ.

A. Security of the PIPSD Scheme

In this section, we demonstrate that PIPSD is selective security
within the framework of the real/ideal world model, as delineated
in Section III-B. Let [z]; and [y]2 be the outputs of x and
y after obfuscated by PIPSD.Obf,(-) and PIPSD.Obfs(-),
respectively, the leakage information of PIPSD is the inner
product of [z]; and [y]a, i.e., £ = ([z]1, [y]2)-

Ideal world: There is a PPT adversary A and a simulator in
the ideal world interacting as follows.

e Setup phase: A selects w; random d-dimensional vectors
{xz}l 1» where w; is a polynomial number. Next, it sends
{z;};", and the upper limit T" of the absolute value of the
vector’s elements to the simulator. After receiving {x; };*;
and 7', the simulator selects w; random d + 1-dimensional
vectors [x;]] as the obfuscated vectors of {z; };"*;.

® Query phase I A sends wy random d-dimensional query
vectors {y; } "2, to the simulator, where wj, is a polynomial
number. After receiving {y; };2 | the simulator constructs
obfuscated query vectors {[[yz]] 72, according to the leak-
age function £ and {[Jz;]5 The simulator performs the
following steps to construct each Tyi]5-

s It generates wq random real numbers {v; };’*, satisfying
the following equation:

{Ui >0, ([zi]1,[yil2) >0 7
v; <0, ([zi]1, [yil2) <0
« It randomly selects a vector [y;]5 satisfying
([z;1h, [yils) = viforj € [1, Uﬂ]
Finally, the simulator returns {[y;]5};%*, to A.
® Challenge phase: The simulator sends {332 to A

® Query phase II: Adversary A randomly selects a set
of (wh — wy) d-dimensional query vectors {yl}lﬂﬁwz 41
where wj is a polynomial number. Subsequently, A for-
wards these vectors {y; }.> ®w, 1 to the simulator. Upon
receipt of the query vectors, the simulator responds by
returning the obfuscated query vectors {[y;]5}; 2w2 41 to
A, which is similar to the Query Phase 1.

Since the experiment in the real world is to execute our
PIPSD normally, the real world’s view of A is View 4 rea =
{{[[xl]]l};*’zll,{[[ql]]g};fl} Meanwhile the view Of A in the
ideal world is View 4 1geat = {{[:]1 }i2, {[a:]5} ;2
above.

Definition 4 (Security of the PIPSD): The PIPSD scheme
achieves selective security on the leakage function £ iff for any
A that initiates a polynomial number of data vector obfuscations

1 } as shown

and query vector obfuscations, there exists a Sim(.A) that .4 has
anegligible advantage in distinguishing the views of real or ideal
worlds, i.e., View 4 real = View A,Ideal -

We prove that the PIPSD scheme achieves selective security
on the leakage function £ in the following.

Theorem 4: PIPSD achieves selective security on L.

Proof: Recalling the Definition 4, we prove that it is hard for
A to distinguish View 4 rea from View 4 1gea1. We must consider
two cases:

1) The real-world obfuscated vectors {[xz;]1 };;

w1

tinguishable from {[z;]} };7,.

are indis-

2) The real-world obfuscated query vectors {[[yz]]g}ff1 are

indistinguishable from {ﬂyl]]g}f;’?l

We discuss these two cases respectively below.

e In the real world, [z;]; = (w1 + 71,00 +72,. ..,
ax;q + 74, 3)M. Since each [z;]; includes more than two
random numbers {«, 3,71, ...,74}, and A does not know
the random matrix M, {[x;]:};”; are indistinguishable
from random vectors. Because {[z;]}};?!; are randomly
generated in the ideal world, {[z;]1 };-*, are indistinguish-
able from {[z;]} }:7.

e In the real world, [y;]o = M 1(a/y;1 + 1], yia + 15,

., &y;q + 1, B'). Since each [y;]2 includes more than
two random numbers {&/, 5,7, ..., 7/}, and A does not
know the random matrix M ~1, it is hard to distinguish
{[[yl]]g}z”:/zl from random vectors. Each [y;]5 is limited by
the leakage function £ in the ideal world. According to (3),
we can know that the result of ([;]1, [y:]2) is random,
and v; in (7) is also random. Therefore, {[y;]5};.2, are
indistinguishable from random vectors under the random

.. Therefore, {[y;]2}"2,
are indistinguishable from {[[yz]]Q}w2

In summary, we can deduce that A cannot distinguish

View g reat OF View g 1geat 0f our PIPSD. Therefore, PIPSD
achieves selective security on the leakage function L. ]

generated ciphertexts {[z;]} it

B. Security of the PRDC Scheme

In this section, we show that PRDC achieves selective security
in the real/ideal world model. Let [x(u,v)]* be the cipher-
text of x,, and x, generated by PRDC.Enc(-). Additionally,
let b and E(u;) be the obfuscated query vector and SHE
ciphertexts generated by PRDC.QueryGen(-), respectively.
The definition of the leakage function of the PRDC scheme is
L= ([x(w,v)[", ).

Ideal world: There is a PPT adversary A and a simulator in
the ideal world interacting as follows.

e Setup phase: A sends w; random d-dimensional vector
pairs {xy,, Ty, }i%; to the simulator, where w; is a poly-
nomial number. After receiving {z,,, z,, };-;, the simula-
tor randomly generates w; (2d + 2)-dimensional vectors
{Ix(ws, v)]*' 32, where [x (i, v;)]* is the ciphertext of
Ty, and z,, .

® Query phase I: A sends wo random query vectors {q; }:-%,
to the simulator, where w, is a polynomial number. After
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receiving {g;};”,, the simulator constructs the cipher-

texts {9 }:72 and {E(pg); | 1 < k < d+ 1};%%, using the

leakage function £ and {Ix(ws, vi)]*'};2,. The simulator

performs the following steps to construct each ¢, and

{E(ue); |1 <k <d+1}.

% It generates w; X (d+ 1) random real numbers
{Vmew, ,ne(d+1)} and each v, , satisfies the leakage

function L:
foma <0 (Iumnll v <0
Um,n > 0, ([[X(U'HL;U'HL)]]* wz)n >0

* It randomly selects a (2d + 2)-dimensional vector
satisfying ([x(tm, 0m)J* * $])n = O
* It selects d + 1 random integers {1, € {0,1}}%"} and
then generates the ciphertexts {E(uy); | 1 <k < d+
1} of them using SHE encryption.
Finally, the simulator returns {¢} }:"2, and { E'(px); | 1 < k <
d+1}/2 to A
e Challenge phase: The simulator sends {[x(u;, v;)]
to A.
® Query phase II: A sends w),

*/ W1
=1

— wy random query vectors
{q ;”:’211)2 41 to the simulator, where wy is a polynomial
number. After receiving them, the simulator returns the
ciphertexts {4} }:"2, and {E(ug); | 1 <k <d+ 1} to
A, which is the same as query phase I.

Since the experiment in the real world is to execute our

PRDC normally, the real world’s view of A is View 4, Real =

(s, o) 1732y {20 A B ()i | 1 < b < d+ 132
Meanwhile, the ideal worlds view of A is Viewy, Real =

D, vl Y28, U2 LB (s | 1 < k< d+ 132
as shown above.

Definition 5 (Security of the PRDC): The PRDC scheme
achieves selective security on the leakage function L iff for any
A that initiates a polynomial number of data vectors encryptions
and query token generations, there exists a Sim(.4) such that A
has a negligible advantage in distinguishing the views of real or
ideal worlds, i.e., View 4 real < View A,Ideal -

We prove that the PRDC scheme achieves selective security
on the leakage function £ in the following.

Theorem 5: PRDC achieves selective security on leakage
function L.

Proof: Recalling the Definition 5, we should prove that it is
hard for A to distinguish between View 4 rea and View 4 jgear. T0
prove the indistinguishability, we must consider three cases:

1) The real-world SHE ciphertexts {E(u); | 1 <k <d+

1}1-:21 cannot be distinguished from {E(u); |1 <k <
d+ 1};”:,2 1
2) The real-world data ciphertexts {[x(u;, v;)]*};}; are in-
distinguishable from {[x (u;, v;)]* }i2,.
3) The real-world query ciphertexts {wl}:izl are indistin-
guishable from {w;};i“l
We discuss these three cases respectively below.

e Since SHE has been proved to be IND-CPA secure [27],
{B(ur)i |1 <k <d+ 1} 21 are indistinguishable from

{B(pp)i |1 <k <d+1}2

e In the real world, [x(u;, vl)]] [x(wi,v;)]1 - Ms. Since
PIPSD is selectively secure with £, and A does not know
random matrix Ms, {[x(u;,v;)]*};2, are indistinguish-
able from random vectors. Because { [ (u;, v;)]*'};2, are
randomly generated in the ideal world, {[x(u;, v;)]*}:
are indistinguishable from {[x (u;, v;)]*'}i2.

e In the real world, {1/11}7:/21 =My*-
(81[[77(1)]];7 ) Sd[[ﬂ(d)]]ga 8d4ﬂ[h]]§)' Since  PIPSD
is selectively secure with £, and A does not know random
matrix Mz’l, it is hard to distinguish {¢; ;"U:él from
random vectors. Each ¢} is limited by the leakage function
L in the ideal world. According to (6), we know that
the result of ([x(us,v;)]*, ;) is random, SO v,y 4, in (8)

is random. Therefore, {wi};i?l cannot be distinguished

from random vectors under the randomly generated

ciphertexts {[x(u,v)]*};2,. As a result, {wz}z”:/zl are
indistinguishable from {1} 2”2,21

In summary, we conclude that A cannot distinguish

View 4 reat OF View 4 jgeal. Therefore, PRDC achieves selective

security on the leakage function L. O

C. Security of the ePRSQ Scheme

In our security model, CS is honest-but-curious, which means
it is curious about the plaintext of the dataset, query requests,
and query results. Meanwhile, QUf may eavesdrop on the query
requests and query results of other QUs, but cannot collude
with CS. Next, we show our ePRSQ is security and privacy-
preserving.

Theorem 6: Our ePRSQ is security and privacy-preserving
under the proposed security model.

Proof: The security and privacy protection of the ePRSQ is
mainly reflected in the security of the dataset, and the privacy
protection of query requests and query results. We prove that
ePRSQ meets the requirements from these two aspects respec-
tively.

The dataset is secure: In ePRSQ, DO obfuscates the dataset
D using the PRDC encryption algorithm and then outsources
the obfuscated dataset [D] to CS. As shown in Section V-B,
PRDC guarantees that the plaintext data cannot be recovered
from the ciphertext if M and M5 are kept secret. Since these
two matrices are only known by DO and QUs, and Qs do not
collude with CS, CS cannot recover plaintexts of D from [D].
Besides, CS may infer the private information of D during the
reverse skyline search phase, such as single-dimensional privacy.
Recalling Section IV-C, CS needs to compute A = [x(u, v)]* -
1. According to (6), A; is PIPSD’s check result multiplied by a
random number. So, it is impossible for CS to recover x(u, v),
7(2) or v from A. Moreover, since the check result is multiplied
by a random number, which is 1 or —1, CS needs to combine the
SHE ciphertexts sent by QU and use homomorphic operations
to get the encrypted real check result. As the SHE is IND-CPA,

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2025 at 22:25:19 UTC from IEEE Xplore. Restrictions apply.



PENG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING REVERSE SKYLINE QUERY OVER SINGLE CLOUD 39

CS cannot infer any private information about D. Therefore, the
dataset is secure in ePRSQ.

The query requests and query results are privacy-preserving:
In ePRSQ, the query token ¢; consists of 1 and {E(u;)}4t],
where 1) is generated by the PRDC query generation algorithm.
As shown in Section V-B, the security of PRDC can guarantee
that ¢ cannot be recovered from ¢ and intermediate result A
if M " and M, ! are kept secret. Since these two matrices are
only known by DO and QUs, and QUs do not collude with CS,
CS cannot recover ¢ from . After finishing the reverse skyline
search, CS gets the results of SHE ciphertext. Since it does
not know the sk corresponding to SHE, CS cannot retrieve any
private information from the encrypted query results. Therefore,
the query requests and query results are privacy-preserving from
CS.

In addition, although each QU has the same secret keys
M ' and My ', QU encrypts his/her query request using AE(+)
and CS’s public key pkag. So, other OUs cannot retrieve
the plaintext of ¢ from the query request. Meanwhile, since
each QU holds different SHE parameters pk and sk when
performing PRDC.QueryGen(-), other QU cannot decrypt
QU’s query result. Therefore, the query requests and query
results are privacy-preserving from other QUs.

In conclusion, ePRSQ is secure and privacy-preserving.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ePRSQ and
compare it with related work, i.e., PPARS [9] and OPPRS [10],
from computational costs and communication overhead aspects.
ePRSQ contains five phases. Since there is no calculation in the
system initialization phase and only data decryption operation
is required in the result recovery phase, we mainly evaluate
the performance of the data outsourcing, query generation, and
reverse skyline search phases.

A. Experimental Setting

Three datasets from different fields, i.e., the Eye state
dataset [36], the India house prices dataset [37], and the US
census dataset [38], are adopted in our experiments to evaluate
the performance of the schemes and their stability in diverse
datasets. Both our ePRSQ and PPARS [9] adopt SHE as the
cryptography primitive. Since SHE is a leveled homomorphic
encryption, the maximum depth of its homomorphic multipli-
cation depends on ky. Generally, there are two ways to support
more homomorphic multiplication operations. One is to utilize
the bootstrapping protocol [27], and the other is to enlarge
ko. As ePRSQ is designed under a single cloud model, the
bootstrapping protocol cannot be used in ePRSQ, and k¢ = 4096
meets the requirement of ePRSQ. Therefore, we set the security
parameters of SHE as ky = 4096, k1 = 80, and ko = 160 .
OPPRS [10] uses Paillier homomorphic encryption as its cryp-
tography primitive and its security parameter is set to 512.

We implemented the three schemes using C++ programming
language on a computer with 192GB of memory, Intel (R) Xeon
(R) Gold 5218R CPU @ 2.10GHz and Ubuntu 20.04 OS, and

the source codes of the experiments are available on Github'.
Besides, to facilitate the implementation of the schemes, we
scale the decimals in the dataset to integers by the same multiple.
Furthermore, all computational cost results in the experiments
are taken from the average of 10 experimental runs.

B. Computational Costs

1) Performance of Data Outsourcing Phase: As PPARS [9]
stores the dataset in plaintext on the cloud, there is no computa-
tional consumption in the data outsourcing. Therefore, we only
compare the computational costs of ePRSQ and OPPRS [10] in
this phase. As shown in Section IV-C, in our ePRSQ, DO sends
the obfuscated dataset [D] = {[x(¢,5)]* | ¢, € [1,n] Ai # j}
to CS. Consequently, the computational costs in the data out-
sourcing phase are associated with the size n of the dataset and
the dimension d of the data.

Figs. 3 and 4 show the computational costs of ePRSQ and OP-
PRS [10] in the data outsourcing phase. Specifically, Fig. 3(a),
(b) and (c) depict the computational costs of encrypting a dataset
that varies with n and d = 3 on three different datasets. The
dataset encryption time of both ePRSQ and OPPRS [10] in-
creases with the dataset size. Specifically, for a 3-dimensional
dataset with size 2000, in ePRSQ, DO needs 11.65s to generate
the obfuscated dataset while OPPRS [10] needs 1.20s to gen-
erate the encrypted dataset. Besides, when n is fixed, the time
costs of the data outsourcing in ePRSQ and OPPRS [10] both
linearly increase with the number of dimensions d. Fig. 4(a),
(b) and (c) depict the computational costs of encrypting three
datasets that vary with d and n = 1000, from which we note
that for a 10-dimensional dataset with 1000 vectors, ePRSQ and
OPPRS [10] need 4.12 s and 1.53 s to generate the encrypted
dataset, respectively.

In summary, PPARS [9] directly outsources plaintext datasets
without computational overhead, but it cannot guarantee data se-
curity from CS. The computational efficiency of ePRSQ is some-
what inferior to that of OPPRS [10] in the outsourcing phase.
However, it didn’t have much impact. First, data outsourcing
only needs to be performed once and can be done offline. At the
same time, the computational cost of ePRSQ in the experimental
dataset is at second level. Therefore, the computational cost of
ePRSQ in the outsourcing phase is acceptable.

2) Performance of Query Generation Phase: According to
Section IV-C, QU generates and sends the query request Req =
{AE(pkag,q:),pk} to the cloud, where g = {4, E(u;),i €
[1,d + 1]}. Consequently, the computational costs of the query
generation phase are related to the number of dimensions d.

Fig. 5 illustrates the computational costs comparison among
three schemes on three different datasets to generate a query
request, where d changes from 2 to 8. As can be seen from the
figure, the computational costs of ePRSQ and OPPRS [10] are
relatively low and their growth rates are significantly slower. In
contrast, the computational cost of generating query vectors in
PPARS [9]is relatively large, and its growth trend is significantly
higher than that of ePRSQ and OPPRS [10]. Specifically, when

Uhttps://github.com/NigulasiLiu/SkylineExperiment
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Fig. 5. Computational costs of query generation on different datasets that varies with d and n = 1000.

n = 1000 and d = 8, the computational cost of ePRSQ is only
0.076ms, while OPPRS [10] and PPARS [9] consume 1.57ms
and 42.94ms, respectively. In other words, the efficiency of
ePRSQ in query generation is 20.65x and 565X of that of
OPPRS [10] and PPARS [9], respectively. The reason is that
the main calculation of ePRSQ in this phase is the product
of a (2d 4+ 2) x (2d + 2) matrix and a (2d + 2) x (d 4+ 1) ma-
trix, which can be performed quickly. In contrast, PPARS [9]
needs to generate multiple encrypted bloom filters, which is
more time-consuming than matrix multiplication. OPPRS [10]
needs to perform d times Paillier encryption, which is more
time-consuming than SHE encryption. So, the computational
costs of PPARS [9] and OPPRS [10] to generate a query request
are much larger than that of ePRSQ.

3) Performance of Reverse Skyline Search Phase: The re-
verse skyline search needs to be executed multiple times online
and consumes the most computational cost to protect security
and privacy. Therefore, the computational cost evaluation of this
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phase is the most important because it best reflects the compu-
tational efficiency of the protocol. Obviously, its computational
cost is related to both n and d.

Figs. 6 and 7 show the computational cost of the reverse
skyline search phase of ePRSQ, PPARS [9] and OPPRS [10] on
three different datasets. Specifically, Fig. 6(a), (b) and (c) depict
the computational costs of reverse skyline query of different
schemes on different datasets varying with the size of dataset
n. Each scheme needs to perform n? operations to ascertain
the reverse skyline results. However, the figures reveal that
ePRSQ is significantly more computationally efficient than that
of PPARS [9] and OPPRS [10]. When d is fixed to 3 and n
varies from 200 to 2000, the computational cost of ePRSQ is
only 30% of that of PPARS [9] and nearly equivalent to 1.4% to
3.6% of that of OPPRS [10]. For example, for a 3-dimensional
dataset of size 2000, i.e., n = 2000 and d = 3, our ePRSQ
takes 352.38s, 358.31s and 356.58s to complete the reverse sky-
line search procedure on the three datasets, respectively, while
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Fig. 7. Computational costs of searching on different datasets that varies with d and n = 1000.

PPARS [9] needs 1245.43s, 1245.42s, and 1185.41s and OP-
PRS [10] needs 19316.7s, 19792.76s, and 19568.40s to achieve
the same objective. This is because ePRSQ requires only one
matrix multiplication and 2d + 1 SHE homomorphic operations
to get the dominance relationship. In contrast, PPARS [9] needs
to check multiple encrypted bloom filters, followed by SHE op-
erations. OPPRS [10] requires executing multiple homomorphic
comparison protocols, which involve a lot of time-consuming
homomorphic operations.

Similarly, Fig. 7 depicts the computational costs of reverse
skyline search of different schemes on three datasets varying
with d and n = 1000. In ePRSQ, the size of the matrix deter-
mining the dominance relationship increases with the growth
of d, thus the computational cost increases accordingly. For
every increase of lin the data dimension d, the PPARS [9]
requires 2 additional Bloom filters to determine the dominance
relationship. Similarly, OPPRS [10] requires the execution of 13
additional homomorphic operations coupled with 2 decryption
processes to achieve the same goal. In addition, as the number
of dimensions d increases, OPPRS [10] needs to execute a more
secure window query protocol containing several homomorphic
operations.

Although all three schemes show a linear growth trend, the
computational costs of ePRSQ and PPARS [9] are significantly
more efficient than OPPRS [10] when n is fixed. Specifically,
when n = 1000 and d varies from 2 to 8, the computational costs
of ePRSQ are about 30% of that of PPARS and 1.18% to 4.19%
of that of OPPRS. Take n = 1000 and d = 8 as an example,
ePRSQ’s computational costs on three datasets in this phase are
196.9 s, 196.4 s and 210.6 s, respectively. But PPARS [9] con-
sumes 609.3 s,676.0 s and 609.5 s, respectively, and OPPRS [10]
consumes 5830.2 s, 5911.8 s and 5795.6 s, respectively.
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Fig. 8. Communication overhead of data outsourcing.

Based on the above analysis, it is obvious that ePRSQ signifi-
cantly improves the computational efficiency of reverse skyline
search compared to PPARS [9] and OPPRS [10].

C. Communication Overhead

We analyze the communication overhead of ePRSQ and com-
pare it with PPARS [9] and OPPRS [10]. We use T'otalSize =
Neipher * Scipher to represent the communication overhead be-
tween different participants, where Neipher and Sgipher are
the number of ciphertexts and the ciphertext size, respectively.
Since we set SHE’s parameter ko = 4096, the size of a SHE
ciphertextis 2 - kobits = 1024B. The security parameter of Pail-
lier homomorphic encryption is 512, so the size of a Paillier
ciphertext is 512 * 2bits = 128B. In addition, ePRSQ needs to
transmit matrices between different participants, and the size of
an element in matrices is set as 8B.

1) Communication Overhead of Data Outsourcing Phase:
Fig. 8 shows the communication overhead of data outsourc-
ing of three schemes. From Section IV-C, we know that DO
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needs to send an encrypted dataset that contains ”22’ L (2d + 2)-
dimensional vectors to CS for data outsourcing. Therefore, for a
d-dimensional dataset of size n, the communication overhead of
ePRSQ is 4(2d + 2)(n? — n)B. In OPPRS [10], the encrypted
dataset contains nd Paillier ciphertexts, so its communication
overhead is 128ndB. Fig. 8(a) and (b) depict the communication
overhead of the data outsourcing phase that varies with n and d,
respectively. We can observe from them that the communication
overhead of ePRSQ increases quadratically with n and increases
linearly with d in the data outsourcing phase. This is because
ePRSQ needs to encrypt every two different data vectors once
during the data outsourcing. Since PPARS [9] stores the data
in plaintext on the cloud, its communication overhead is equiv-
alent to its dataset size. However, PPARS [9] cannot protect
the security of users’ data from CS, while ePRSQ solves the
security problem of users’ data. The communication overhead
of OPPRS [10] in this phase is small because it only needs to
perform one Paillier encryption on each record in the dataset.

2) Communication Overhead of Query Generation and
Search Phase: From Section IV-C, we know that QU needs
to send a query request with a (2d + 2) x (d + 1)-dimensional
matrix and d 4+ 1 SHE ciphertexts to CS. Therefore, the com-
munication overhead of ePRSQ in this phase is 8(2d + 2)(d +
1) +1024(d + 1) = 16d? + 1056d + 1040 B. According to the
experimental setting of [9], [10], we know that the communica-
tion overhead of PPARS [9] and OPPRS [10] at this phase are
1024 % 2 [122967 . d = 165888 - d B and 128 x d B, respec-
tively. We can see from these formulas that the coefficients of d
in the communication overhead of ePRSQ and PPARS [9] are
16d 4 1056 and 165888 respectively. Only when d is greater
than 10301, the communication overhead of ePRSQ is greater
than that of PPARS [9]. But in reality, the dimension of data is
often small, so the communication overhead of ePRSQ is much
smaller than that of PPARS [9]. Besides, OPPRS [10] requires
two clouds to cooperate during the search phase, thus incurring
a communication overhead of 128(%712 + nd + 2kn — %n —
k)B, where k is a variable related to the query vector and the
dataset. For convenience, we let k = 1.

Fig. 9 shows the communication overhead of all three schemes
during the reverse query. Fig. 9(a) depicts the communication
overhead of the query phase varies with n and set d = 3. We can
intuitively see that OPPRS’s communication overhead is very
huge and far greater than that of ePRSQ and PPARS [9]. For
example, when n = 1000, OPPRS’s communication overhead
has reached 3419.84 MB, PPARS’s is 1.95 MB, and ePRSQ’s is

just 0.002 MB. Similarly, Fig. 9(b) depicts the communication
overhead of the query phase varies with d and set n = 1000.
It demonstrates the results of the theoretical analysis, i.e., the
communication overhead of OPPRS [10] is huge and that of
ePRSQ is much less than PPARS [9]. For example, when d =
10, the communication overhead of OPPRS [10] is 857.06 MB,
PPARS [9] is 6.48 MB, and ePRSQ is just 0.007 MB.

To sum up, ePRSQ has a relatively large communication
overhead in the data outsourcing phase, but this communication
overhead is one-time, and ePRSQ protects privacy against CS. In
addition, the ePRSQ shows a notably high communication effi-
ciency during the reverse skyline query process. Ford < 100, the
communication cost of ePRSQ is less than 0.3% of PPARS [9],
and even more significantly, it is less than 0.03% of OPPRS [10].

D. Summary of Performance Evaluation

Based on the above extensive experimental evaluations and
analysis, we summarize the performance analysis and draw the
following conclusions: (1) The experimental performance trends
of ePRSQ on diverse datasets in different scenarios are relatively
consistent, so the performance of ePRSQ on diverse datasets is
stable; (2) The computational cost and communication overhead
of ePRSQ in outsourcing phase are higher than PPARS [9] and
OPPRS [10]. However, PPARS [9] directly outsources plaintext
and cannot guarantee data security. Furthermore, data outsourc-
ing can be done offline and only needs to be performed once, so
the computational and communication overhead of the ePRSQ in
the outsourcing phase is acceptable; (3) The computational and
communication efficiency of ePRSQ in reverse skyline query
is far superior to PPARS [9] and OPPRS [10]. ePRSQ has
improved the computational efficiency by at least 3 x compared
with PPARS [9] that stores plaintext, and by more than 60x
compared with OPPRS [10] that ensures data security, while the
communication overhead of ePRSQ is negligible. In summary,
ePRSQ is secure and efficient.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first design PIPSD to determine whether the
inner product of two vectors satisfies a specific relation with
0 without revealing the information of the vectors. Then, we
design PRDC based on PIPSD and SHE to check the reverse
dominance relationship in a privacy-preserving manner. Finally,
we realize a privacy-preserving reverse skyline query scheme
(ePRSQ) on the single-cloud model based on PIPSD and PRDC.
Security analysis shows that all these three schemes achieve
selective security in the real/ideal world model, and our ePRSQ
guarantees the security of dataset plaintext, and the privacy of
query request and query result. Moreover, ePRSQ is validated
to be efficient by extensive experiments on diverse datasets. In
the future, we will extend the technologies in ePRSQ to build
privacy-preserving static and dynamic skyline queries. Taking
the dynamic skyline query as an example, we can express the
dynamic dominance relationship as two equations similar to (1)
and (2) in Section II-A. Based on this, like (4) and (5) in Section
IV-B1, we can transform the determination of the dynamic
dominance relationship between vectors into the relationship
between the inner product of the vectors and 0. Finally, similar to
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ePRSQ, after receiving the encrypted query token from QU, CS
calculates the inner products of the query token and the vectors in
the DO’s outsourced dataset, and outputs the encrypted dynamic
skyline query results by determining the relationship between
the inner products and E(0).
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