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1 Description
Climate change, access to food and water,
pandemics— these words, when uttered, immedi-
ately summon to mind global challenges with pos-
sible disastrous outcomes. The world faces enor-
mous problems in the coming decades on scales
of complexity never-before-seen. To address these
issues, developing scientific solutions which are
scalable, flexible, and inexpensive is critical. Fur-
ther, we need to develop these solutions quickly.
Broadly speaking, chemistry can provide molecular
solutions to many of these problems: breakthrough
drugs (e.g., kinase inhibitors (Ferguson and Gray,
2018)), materials (e.g., organic photovoltaics (Kip-
pelen et al., 2009)), and chemical processes. The
extremely large search spaces in which these solu-
tions exist make AI tools critical for finding them.
Of particular note, multimodal models combining
language with molecules are poised to be a crit-
ical tool for discovering these solutions (Zhang
et al., 2023). In this tutorial, we will discuss the
role which natural language processing can play
in discovering and accelerating solutions to global
problems via the broad chemistry domain.

One of the first questions that probably comes to
mind is why we would want to integrate natural lan-
guage with molecules. Succinctly, combining these
types of information has the possibility to acceler-
ate scientific discovery. As motivating scenarios,
imagine a future where a doctor can receive a novel,
patient-specific drug necessary to treat an ailment
just by writing a few sentences describing the pa-
tient’s symptoms (also taking into account their
genotype, phenotype, and medical history). Or,
imagine a scientist tackling challenging problems
by designing a molecule satisfying desired func-
tions (e.g., antimalarial or a photovoltaic) rather
than its structure or low level properties (e.g., solu-
bility). Controlling molecules and drug design in
such a high-level manner has potential to be hugely
impactful, but it requires a method of abstract de-

scription; luckily, humans have already developed
one: natural language.
In recent months, because of this potential im-

pact, significant attention and growth has occurred
in scientific NLP and AI research, including in-
tegration of molecules with natural language and
multimodal AI for science/medicine ((Zhang et al.,
2023) Section 10.3.3, (Wang et al., 2023)). We
believe a sufficient amount of work has now been
done, along with significant interest generated, to
propose an Introductory to NLP (yet stillCutting-
Edge) tutorial on "Language + Molecules". This
tutorial is designed to require no knowledge and
will enable participants to begin exploring relevant
and impactful research. Since most relevant work
is still cutting-edge, this will broaden the commu-
nity’s understanding of the associated challenges,
methodologies, and goals in multimodal molecule-
language models. We will present an interactive
hands-on example and release accompanying rele-
vant code and resources. The tutorial will precede
and prepare the way for the Language+Molecules
workshop later in the year at ACL.

2 Outline [180 min.]

Applying language models to the scientific domain
is becoming increasingly popular due to its po-
tential impact for accelerating scientific discovery
(Hope et al., 2022). Beyond extracting information
from scientific literature, NLP has the possibility
to increase control of the scientific discovery pro-
cess, which can be achieved through multimodal
representations and generative language models.

2.1 Background [60 min.]

Scientific Information Extraction [15 min.]

To start, we will provide a high-level overview on
traditional NLP tasks used for scientific discov-
ery (e.g., named entity recognition, entity linking,
and relation extraction), as well as recent domain-
specific LLMs designed for superior performance
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on scientific tasks (Beltagy et al., 2019).

What is a molecule? [15 min.]

Half of the title is molecules, but what is one? We
will start from scratch and discuss what a molecule
actually is, including the basic constituents of
molecules, atoms and bonds, and how they essen-
tially form graph structures. Then, we will focus on
molecular string languages, which are a key build-
ing block for chemical language models. We will
discuss tradeoffs of these languages (Grisoni, 2023;
Weininger, 1988; O’Boyle and Dalke, 2018; Krenn
et al., 2020; Cheng et al., 2023). Krenn et al. (2020)
proposes a formal grammar approach, which may
particularly interest the ACL community.

Molecule Design using Language Models [15]

Now that we know what a molecule is, we will
overview recent work applying NLP techniques to
these molecular languages with impressive results.
These molecular LLMs are trained with adapted
pre-training techniques from (natural) language
models to learn molecule representation from large
collections of molecule strings (Frey et al., 2022;
Chithrananda et al., 2020; Ahmad et al., 2022;
Fabian et al., 2020; Schwaller et al., 2021; NVIDIA
Corporation, 2022; Flam-Shepherd and Aspuru-
Guzik, 2023; Tysinger et al., 2023). Applications
include molecule and material generation, property
prediction, and protein binding site prediction.

Drug Discovery–A Brief Primer [15 min.]

Ok, so NLP is being used for molecules now.
What can we do with it?—here, we present a brief
overview of drug discovery–an important but chal-
lenging problem. Historically, molecular discov-
ery has commonly been done by humans who de-
sign and build individual molecules, but this can
cost over a billion dollars and take over ten years
(Gaudelet et al., 2021). We’ll discuss a little of
the process here, including non-NLP deep learning
methods, so that we know how to improve it.

2.2 Integrating Language with Molecules [95]

What does natural language have to offer? [15]

At least at first, integrating languages and
molecules seems like an odd idea. Here, we’ll start
an interactive discussion with the audience on what
they think potential benefits might be. We’ll make
sure to mention the following major advantages, as
discussed in the recent survey (Zhang et al., 2023):

1. Generative Modeling: One of the largest
problems in current LLMs—-hallucination—
becomes a strength for discovering molecules
with high-level functions and abstract proper-
ties. In particular, language is compositional by
nature (Szabó, 2020; Partee et al., 1984; Han
et al., 2023), and therefore holds promise for
composing these high-level properties (e.g., an-
timalarial) (Liu et al., 2022).

2. Bridging Modalities: Language can serve to
“bridge” between modalities for scarce data.

3. Domain Understanding: Grounding language
models into external real world knowledge (here,
molecular structures) can improve understand-
ing of unseen molecules and advance many
emerging tasks, such as experimental procedure
planning, which use LLMs as scientific agents.

4. Democratization: Language enables scientists
without computational expertise to leverage ad-
vances in scientific AI.

Do I want multimodality? [5 min.]

An important, yet often overlooked, question in
multimodal NLP is to ask: do I need multimodal-
ity? For example, if one wants to extract reactions
from the literature, a text-to-text model (Vaucher
et al., 2020) might be sufficient. However, editing a
drug with high-level instructions requires language
(Liu et al., 2023a; Fang et al., 2023). Here, we
will dive into this question and discuss example
scenarios with the audience for how to answer it.

2.2.1 Integrating Modalities [30 min.]

Ok, we’ve decided we want or need multimodality.
Next, we need to discuss how people are currently
tackling this-we’ll start with two primary methods,
bi-encoder models and joint representation models.

Bi-Encoder Models (and beyond) Bi-encoder
models consist of an encoder branch for text and
a branch for molecules. They have the advantage
of not requiring direct, early integration of the two
modalities, allowing existing single-modal models
to be integrated. Representative examples we will
discuss include Text2Mol (Edwards et al., 2021),
CLAMP (Seidl et al., 2023), and BioTranslator
(Xu et al., 2023). Generally, bi-encoder models
are effective for cross-modal retrieval (Edwards
et al., 2021; Su et al., 2022; Liu et al., 2022; Zhao
et al., 2023b), but they may also be integrated into
molecule (Su et al., 2022; Liu et al., 2022) and
protein (Liu et al., 2023b) generation frameworks.
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We’ll talk about all these tasks, applications, and re-
turn to some important motivations (e.g., bridging
modalities).

Joint Molecule-Language Models Joint models,
on the other hand, seeks to model interactions be-
tween multiple modalities inside the same network
to allow fine-grained interaction. We will discuss
encoder-only models (Zeng et al., 2022), encoder-
decoder models (Christofidellis et al., 2023), and
decoder-only models (Liu et al., 2023c).
Model Differences: We will answer important
questions such as: Which model should I use?
What tasks can each do? Tasks include retrieval
(Edwards et al., 2021), “translation” between
molecules and language (Edwards et al., 2022a),
editing molecules (Liu et al., 2022), and chemical
reaction planning (Vaucher et al., 2020, 2021).

An Interactive Example - Targeting
Microtubules for Cancer Treatment [20 min.]

At this point, there’s been a lot of ideas thrown
around. We’ll consolidate them by exploring an
interactive example of language-enabled molecule
design using Google Colab.
We will focus on microtubules for the example.
These cellular structures play an important role in
many processes such cell growth and division, and
mutations can be oncogenic (Mukhtar et al., 2014;
Wattanathamsan and Pongrakhananon, 2022). In
modern medicine, tumors such as pancreatic can-
cer are commonly treated by microtubule-targeting
drugs such as paclitaxel (Albahde et al., 2021). In
our example, we will explore creating new drugs
with this function using natural language instruc-
tions, which may be useful in cases of paclitaxel
resistance (Kavallaris, 2010). Our hands-on exam-
ple will consist of three components:
1. Language-enabled Drug Design:

Participants will explore inputs to
language→molecule models to generate
candidate drugs which target microtubules.

2. Language-Guided Assay Testing:
Here, participants will test their proposed drugs
in an assay. We will follow (Seidl et al., 2023),
where natural language descriptions are used for
assay predictions.

3. Interaction Prediction:
Finally, we will test if proposed drugs bind with
beta-tubulin using Autodock Vina, a well estab-
lished docking program (Trott and Olson, 2010),
via DockString (García-Ortegón et al., 2022).

Applications [25 min.] Here, we will dis-
cuss important applications to improve cross-
discipline communication, including drug discov-
ery (Mukhtar et al., 2014; Ferguson and Gray,
2018), organic photovoltaics (Kippelen et al.,
2009), and catalyst discovery for renewable energy
(Zitnick et al., 2020).

2.3 Recent Trends and Conclusion [25 min.]

Instruction-Following Molecular Design [10]

In the last year, instruction-following language
models (Wei et al., 2021) have surged in popularity.
Following this trend, training methodologies and
datasets have recently emerged to allow language
models to follow instructions related to molecule
properties (Liang et al., 2023; Fang et al., 2023;
Zeng et al., 2023; Zhao et al., 2023a). We will give
a brief overview of this new line of work.

LLMs as Scientific Agents [5 min.] Further,
we’ll focus on recent work which looks to control
experiments with language models (Boiko et al.,
2023) and to create tools for enabling domain-
specific capabilities in general language models
(Bran et al., 2023; Liu et al., 2023a).

Conclusion [10 min.] We will discuss the key
difficulties in the molecule-language domain that
need to be addressed by the research community to
allow similar progress to the vision-language do-
main. This includes 1) data scarcity due to domain
expertise requirements, 2) addressing inconsistency
when training on scientific literature, 3) improved
methods for integrating geometric structures into
LLMs, and 4) developing better evaluation met-
rics for chemical predictions without real-world
experiments.

3 Logistics and Details
Diversity Considerations For this tutorial, our
team originates from geographically distant coun-
tries and has varying level of seniority, including
two PhD students and a full professor, The team
includes a female researcher. This tutorial will aug-
ment a workshop on "Language + Molecules" to be
held at a the ACL conference, which already has
confirmed speakers and organizers with diversity in
geography, ethnicity, and gender. This tutorial will
strongly promote academic diversity, since it re-
quires combining the specialties of chemists, physi-
cians, pharmacists, computational linguists, and
machine learning researchers. Further, this tuto-
rial will promote the usage of NLP in high-impact
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areas, ranging from drug discovery to organic pho-
tovoltaics. The methods we will introduce are
language-agnostic. All tutorial materials (slides,
example, reading list) will be shared to reach such
a diverse audience.

Target Audience and Background We will tar-
get this tutorial at NLP researchers with no knowl-
edge of chemistry or molecules– thus, we will pro-
vide an extensive discussion of background mate-
rial. However, we will assume that the target audi-
ence is familiar with modern NLP methods includ-
ing training deep neural network-based language
models (e.g., BERT). We anticipate an audience
size of 75-150 researchers. We will discuss rele-
vant background for applying NLP to molecules
and important applications in chemistry.

Reading List
• Molecule Representations and Language Mod-
els: (Weininger, 1988; Krenn et al., 2020; Cheng
et al., 2023; Chithrananda et al., 2020; Ahmad
et al., 2022; Tysinger et al., 2023)

• Molecule-Language Modeling: (Edwards et al.,
2021; Zhao et al., 2023b; Zeng et al., 2022; Ed-
wards et al., 2022b; Zhao et al., 2023a; Su et al.,
2022; Liu et al., 2022, 2023c; Xu et al., 2023;
Liu et al., 2023a; Luo et al., 2023)

• Applications: (Jordan and Roughley, 2009;
Mukhtar et al., 2014; Kippelen et al., 2009)

• LLMs as Scientific Agents: (Boiko et al., 2023;
Bran et al., 2023; Castro Nascimento and Pi-
mentel, 2023; White et al., 2023)

• Survey: (Zhang et al., 2023) Section 10.3.3
We won’t require reading these beforehand to en-
sure the tutorial is introductory.

Breadth of Tutorial Papers in the reading list
were created by a diverse set of authors and include
other disciplines. Specifically, only 2 papers and a
survey from the instructors will be covered.

Ethical Considerations

Broader Impacts Our tutorial will have potential
broader impacts: 1) It will help ACL researchers to
better understand the research goals and constraints
in chemical sciences, allowing them to do more
impactful research there. 2) Studying language
models in the context of non-human languages can
help develop an understanding of their workings;
due to our own personal linguistic biases, human
researchers often misattribute abilities to language
models. This is particularly relevant for develop-
ing new methodologies which are applicable to

low-resource human languages. 3) It will promote
further research in text-based molecule generation,
with potential to enable a large shift in chemistry re-
search so that custom molecules can be developed
for each application or patient.
Ethical Concerns Like most methodologies reliant
on LLMs, there may be biases learned by the model
due to its large-scale training data. In this domain,
these biases may affect what type of molecules are
generated. Thus, any molecules or drugs discov-
ered should be strictly evaluated by standard clini-
cal processes before being considered for human
or medicinal use. Another risk is that potentially
dangerous molecules may be discovered. However,
knowledge of dangerous molecule’s existence and
structure is generally not harmful due to the requi-
site technical knowledge and laboratory resources
required for synthesis. Overall, we believe these
downsides are outweighed by the benefits to the
research and pharmaceutical communities.

3.1 Tutorial Presenters

Carl Edwards is a Ph.D. student in the Com-
puter Science Department at UIUC. Broadly, he
is interested in information extraction, informa-
tion retrieval, text mining, representation learning,
AI4Science, and multimodality. Particularly, he is
interested in applying these to the scientific domain
to accelerate scientific discovery. His work focuses
on integrating natural language and molecules, es-
pecially using multimodal representations.

Qingyun Wang is a Ph.D. student in computer
science at UIUC. His research lies in NLP for sci-
entific discovery. Recently, he works on extracting
reaction information from scientific literature. He
served as a PC member in conferences including
ICML, ACL, ICLR, NeurIPS, etc. His work was
recognized in the first Alexa Prize competition and
by the NAACL-HLT 2021 Best Demo Award. He
has presented a tutorial at EMNLP 2021.

Heng Ji is a professor at the Computer Science
Department of UIUC, and Amazon Scholar. She
is a leading expert on multimodal multilingual in-
formation extraction, including NLP for Science
with a particular interest in leveraging NLP for
drug discovery. She has coordinated the NIST
TAC Knowledge Base Population task since 2010.
She has served as the PC Co-Chair of many con-
ferences including NAACL-HLT2018 and AACL-
IJCNLP2022 and has presented many tutorials. She
was elected as NAACL secretary 2020-2023.
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