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Abstract

The first protocells are speculated to have arisen from the self-assembly of sim-

ple abiotic carboxylic acids, alcohols, and other amphiphiles into vesicles. To study

the complex process of vesicle formation, we combined laboratory automation with

AI-guided experimentation to accelerate the discovery of specific compositions and

underlying principles governing vesicle formation. Using a low-cost commercial liq-

uid handling robot, we automated experimental procedures, enabling high-throughput

testing of various reaction conditions for mixtures of seven (7) amphiphiles. Multi-

template Multi-scale Template Matching (MMTM) was used to automate confocal

microscopy image analysis, enabling us to quantify vesicle formation without tedious

manual counting. The results were used to create a Gaussian process surrogate model,

and then active learning was used to iteratively direct the laboratory experiments to
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reduce model uncertainty. Mixtures containing primarily trimetyl decylammonium and

decylsulfate in equal amounts formed vesicles at sub-millimolar critical vesicle concen-

trations, and that more than 20% glycerol monodecanoate prevented vesicles from

forming even at high total amphiphile concentrations.

Keywords

Gaussian process classifier, Template matching, Microscopy, Amphiphiles, Vesicles, Origins

of life

1 Introduction

Compartmentalization is a crucial step in the formation of life.1 Many studies over the past

decades have highlighted the role of non-biological amphiphilic compounds in forming vesicles

as compartments for the origins of life.2–5 This self-assembly of simple amphiphiles into

membrane structures (protocells) could have compartmentalized early biological processes on

prebiotic Earth and allowed for the selection of more fit individuals.6 However, it is unlikely

that only a single amphiphile type would be present in such an environment, as prebiotic

synthesis produces mixtures of compounds.7 Therefore, we assume that the first cells would

have self-assembled from a mixture of available compounds in the environment. Furthermore,

this process would need to occur at low amphiphile concentrations that would have been

present on early Earth. Despite progress on understanding the prebiotic synthesis of diverse

amphiphiles,8,9 studies of protocell self-assembly have generally considered relatively simple

(1-3 component) mixtures.

A combination of automation and machine learning could enable the study of otherwise

intractable mixtures, like the diverse compositions and conditions for protocell formation.

Recent review articles describe this combination as a “self-driving laboratory”10–13 and “au-

tonomous experimentation system”.14–16 Automation assists by reducing the time and labor
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needed to prepare, dehydrate, and rehydrate, and analyze samples. Thus, in addition to

taking advantage of automated liquid handling, computer vision methods can be used to au-

tomate the detection of vesicles in microscopy images.17–20 But brute force automation alone

is insu�cient. A complete combinatorial exploration of N amphiphiles at only 10 di↵erent

concentrations would require 10N experiments, which would be impossible to perform for

reasonably complex mixtures. Therefore, AI-guided techniques, such as active learning,21

are essential to accelerate the process. Active learning has been applied to a wide variety of

chemical problems from drug discovery22 to material synthesis,23 to nanoscience.24 The clos-

est related work are studies by Lapkin and co-workers which used active learning methods to

optimize the viscosity of 5-,25 7-,26 and 18-component27 surfactant/polymer/thickener for-

mulations. Cronin and co-workers used a combination of automation and machine learning

to study the behavior of 2- and 4-component fatty acid and alcohol oil droplets and their

interaction with dissolved surfactants as a model for protocell behavior.28–30

In this paper, we demonstrate the use of automated sample preparation and confocal mi-

croscopy characterization to find seven-component mixtures of abiotic amphiphiles capable

of forming vesicles at low concentrations. Active learning enables e�cient updates to the

underlying machine learning model, allowing us to generate experimentally testable predic-

tions and extract insights about the role of di↵erent amphiphile species in vesicle formation

in water.

2 Methods

The overall experimental cycle is depicted schematically in Figure 1.

Sample preparation. We explored mixed compositions of seven (7) di↵erent 10-carbon

amphiphiles (Chart 1). These amphiphiles were chosen as they represent a chemically

interesting set of headgroups, both polar and charged, and are short enough to be considered

prebiotically relevant. These amphiphiles are also relatively inexpensive and available from
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Figure 1: Schematic representation of the workflow process

commercial sources.

Chart 1: Chemical structures of chosen seven 10-carbon amphiphiles: (1) decanoic acid,
(2) decanoate, (3) decylamine, (4) decyl trimethyl ammonium bromide, (5) sodium decyl
sulfate, (6) decanol, (7) glycerol monodecanoate (GMD).

Stock solutions were prepared as 50 mM of decanoic acid (Thermo Fisher Scientific,

Agawam, MA, USA), decylamine (Thermo Fisher Scientific, Agawam, MA USA), decyltrimethyl

ammonium bromide (DTAB; TCI, Portland, OR, USA), were prepared in 70% ethanol. De-

canoate was prepared from decanoic acid in 0.1 M NaOH. Using a serial dilution, 10 mM

and 2 mM stock solutions were prepared from the 50 mM and 10 mM solution respectively.

The same process was followed to prepare 50 mM, 10 mM, and 2 mM of decyl sodium sulfate

(Chem-Impex Int’l Inc, Wood Dale, IL, USA) in deionized water. Decanol (Thermo Fisher
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Scientific, Agawam, MA, USA) was brought up in 70% ethanol at concentrations of 15 mM

and 3 mM. Glycerol monodecanoate (TCI, Portland, OR, USA) was dissolved in 70% ethanol

and brought to concentrations of 10 mM and 2 mM.

Samples were prepared by using an Opentrons OT-2 liquid handling robot (Brooklyn,

NY, USA)31 to dispense stock solutions into 96-well SBS microplates. We verified that

the use of 70% ethanol solutions was reliable in the liquid handler as shown in Figure S1.

The dispensing process used both ”touch tip” and ”blow out” instructions to ensure all the

liquid was pushed out from the tip for each operation. Experiments were typically performed

in batches of 48 compositions, repeated in quadruplicate over two SBS microplates, unless

noted otherwise. After the dispensing process, samples were dried at ambient temperature

by leaving the well plates on the bench (approximately 12 h) or using a vacuum concentrator

SpeedVac SPD120 at 35�C (approximately 2 h 30 min). Samples were then rehydrated using

the OT-2 to dispense 200 µL of deionized water, and mixing by repeat pipetting 20 times.

After all samples were rehydrated, the SBS plate was placed on a shaker for at least 12 h

to obtain well-mixed homogeneous solutions. Python codes used for all OT-2 processes are

available at https://github.com/mfbliposome/opentrons

Turbidity measurements. Turbidity measurements were performed using a UV/vis plate

reader Multiskan SkyHigh Microplate Spectrophotometer (ThermoScientific, USA). UV/vis

data were collected from 350 nm to 700 nm (in 10 nm intervals). Turbidity was evaluated

at 450 nm.

Critical Vesicle Concentration. A serial dilution of an amphiphile mixture was prepared

in well plates. To each 100 µL sample, 1 µL of 4 mM Merocyanine 540 was added. Visible

absorbance was collected from 400-600 nm. The baseline was normalized at 600 nm to 0,

and then the intensity ratio of the 570 to 540 nm peak was calculated. The CVC was then

determined as the first set of three points that had a slope above the baseline value.
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Confocal microscopy. Using the OT-2, 10 µL of Nile red was added to 100 µL of each

sample, then 25 µL of each sample was transferred from 96 well-plate to 384 well-plate

fitted with a coverslip base (Cellvis, USA) for automated confocal microscopy. Samples

were imaged using a Nikon AXR confocal microscope with a 60X/1.40 Plan Apo Lambda D

oil immersion lens and 561 nm excitation. A custom routine for automated 384 well-plate

imaging was programmed using NIS Elements’ JOBS function. Each well was imaged from

4 random fields, and exported as a TIFF file. The raw microscopy data is available at

https://doi.org/10.5281/zenodo.12522610

Image analysis. Depending on the image quality (determined by manual inspection), im-

ages were first preprocessed by background subtraction using a Gaussian filter, contrast en-

hancement using CLAHE (Contrast Limited Adaptive Histogram Equalization), and noise

suppression using a Gaussian blur. Vesicle detection and counting were performed using

template matching, a computer vision technique that finds the location of a small template

within a larger image by sliding a template image over the target image to find high-similarity

regions. More specifically, a multi-template multi-scale template matching (MMTM) al-

gorithm was used based on previously developed for extracellular vesicle counting,18 as

implemented in the cv2 module from the OpenCV library.32 Source code is available at

https://github.com/mfbliposome/ActiveLearning_Campaign/

Surrogate model and active learning. Active learning is a machine learning approach

that selects the most informative data points for labeling in an iterative setting.21 In this

work, we used active learning to e�ciently design experiments, achieving desired performance

with fewer iterations. This technique is particularly valuable in scenarios where experiments

are labor- and time-intensive. This work used two strategies—Bayesian optimization (BO)

with a Gaussian Process Regression (GPR) model and uncertainty sampling with a Gaussian

Process Classifier (GPC) model. The input to both models was a seven-dimensional vector,

where each dimension represents the concentration of the seven amphiphile species in units
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of millimolar. BO was performed using a Matern kernel to identify amphiphile compositions

most likely to form vesicles, focusing on minimizing total concentration. The probability of

improvement (PI) and expected improvement (EI) acquisition functions were used to select

subsequent experiments. GPC was employed to solve binary classification problems, with

entropy-based uncertainty used to select the next experiments. GPR and GPC models were

implemented by using the botorch33 and scikit-learn34 package. Program code is available

at https://github.com/mfbliposome/ActiveLearning_Campaign/

3 Results and discussion

Reliability of automated confocal microscopy image analysis. Figure 2 shows ex-

ample confocal microscopy and their analysis with the MMTM image processing algorithm.

The MMTM algorithm reliably detected vesicles across a wide range of concentrations, from

abundant to sparse. It also distinguished vesicles from non-vesicular structures such as crys-

talline formations and oil droplets, reducing the likelihood of false positives. For example,

the algorithm correctly excludes oil droplets (solid round shapes in Figure 2e) and crystalline

shapes (long strips in Figure 2c, f). A complete analysis of the 768 images in a batch of

experiments requires only 84 minutes of CPU time on a laptop computer and is trivially

parallelized. This is much faster than human experts. Although the present study only

required counting vesicles, the algorithm can also calculate vesicle sizes and automate pre-

processing and post-processing tasks, including the recording of individual image analyses

and compiling summary results for entire batches. This e�ciency accelerates the pace of

research and enhances reproducibility by minimizing human error.

Active learning directed experimentation. Finding low total amphiphile concentra-

tion compositions that reliably form vesicles informs our understanding these systems as

precursors to life in dilute pools on the early Earth. We used a human-in-the-loop active

learning approach, in which human experts set the concentration bounds to explore and the
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a b

c

e f

d

Figure 2: Analysis of 6 randomly selected confocal microscopy images. Each image was 102
µm x 102 µm. The detected vesicles are located inside red bounding boxes. Blue arrows
show oil droplets and crystals that are correctly not identified as vesicles by the MMTM
algorithm.

active learning (AL) algorithm selected the compositions within those bounds that would be

most useful for improving the model quality. Each AL round was performed in batches of

48 compositions, each replicated in quadruplicate. The outcomes and total concentrations

are shown in Figure 3a. The initial round (AL 0, green) was selected by uniform random

sampling at concentrations of the 7 amphiphiles in the hypercuboid between the origin and

the upper bounds of [5., 5., 5., 5., 5., 1.5, 1.0] mmol for each species. The smaller upper

bounds for decanol and glycerol monodecanoate were selected because of their lower solubil-

ity in ethanol. The distribution of total concentrations is a consequence of the central limit

theorem, as that the sum of uniformly distributed random numbers converges to a normal

distribution. Surprisingly, all but one of these randomly selected compositions results in the
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a

b

c

Figure 3: Active learning results and model performance. (a) Total concentration of am-
phiphiles evolution across the active learning rounds. Box and whisker plots indicate the
distribution of total concentrations for samples in each AL round. The box represents the
interquartile range (IQR), which captures the middle 50% of the data. The top and bottom
edges of the box correspond to the third quartile (75th percentile, Q3) and first quartile
(25th percentile, Q1) respectively. The whiskers represent the data points within 1.5 times
the IQR from Q1 and Q3, which capture the variability outside the IQR. Outliers are values
that fall outside the whiskers’ range. (b) Model performance (classification accuracy) along
with active learning rounds on the training (blue) and testing (red) datasets. (c) Model
uncertainty along active learning rounds, quantified by the total entropy of all samples in
the input space.
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formation of vesicles, with concentrations as low as 7.2 mM.

Using the data from AL 0, a BO/GPR model was used to select the AL 1 experiments.

The AL 1 results (orange) show that 54% of samples had vesicles, and the total concentration

was decreased since the objective function in BO is designed to lower the total concentration

of amphiphiles (see Equation S7). However, backtesting on the collected AL 0 and AL 1 data

at this stage revealed that the GPR model tended to overfit and had poor generalizability to

unseen data, because of a discontinuity in the penalty function for samples without vesicles

(see discussion in Supporting Information). Similar backtesting with a GPC model did not

have these problems, so the GPC model was used for all the subsequent AL rounds. This

transforms the question from an optimization into a binary classification problem. Samples

with more than zero vesicles were treated as positive samples, and others were treated as

negative samples. The most uncertain samples (i.e., samples near the classification bound-

ary) were selected for the subsequent round, starting with AL 2. First, 10 million samples

were randomly selected within the input space bounds. Based on predicted probabilities

from the GPC model, the most uncertain 48 samples were chosen as the next experimental

plan. The uncertainty was evaluated by the entropy of each data point, which is defined in

Equation S12 and Equation S13

About 13% of samples in AL 2 (blue) had vesicles, the average total concentration in

AL 2 was about 7.5 mM. To focus attention on lower concentrations in AL 3, the input

concentration maxima were reduced by half, and still, 92% of AL 3 samples (pink) had

vesicles! The total concentration bounds were limited to less than 1 mM for every amphiphile

in in AL 4 , but none of these samples contained vesicles (green). Hence, in AL 5 (yellow),

a decision was made to revert the input space bounds to the same as in AL 3. Although

the GPC model had been updated based on the new data, the results were similar to AL

3, and 94% samples had vesicles. This suggested that finding vesicles was relatively easy in

this range of concentrations.

To test the capability of the GPC model to extrapolate to lower concentrations, we used
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a GPC model trained on all data collected from AL 0 to AL 5 to predict the outcomes of

experiments with total concentrations less than 3 mM, 2 mM, and 1 mM (See Figure S7).

The possibilities of finding vesicles in the region where the total concentration was less than

3 mM were most promising. Therefore, in AL 6, half of the samples (24 samples) that had

the highest probability and the other half that had the lowest probability of forming vesicles

were chosen. The composition of those samples can be seen in Figure S2. Of the 24 samples

predicted to have the highest probability of vesicle formation, only 1 did not have vesicles

present (4% false positive). For the 24 samples having the lowest probabilities of vesicle

formation, only 2 samples were observed to have vesicles (8% false negative rate). Thus, the

experiment results are consistent with the model prediction, which demonstrates the ability

of the GPC model to extrapolate to low concentration conditions.

CVC measurements were performed on the four mixtures from AL 6 with the largest

number of vesicles to better characterize the lower limits of formation. The critical point

for vesicle formation was around 1 mM with the lowest value tested at 0.85 mM. These

values are exceedingly low for single-chain amphiphile membranes. For example, the most

well characterized prebiotic vesicles, formed from a mixture of decanoic acid/decanoate have

the CVC between 10 and 40 mM.35 While these membranes were still orders of magnitude

greater than that of stable phospholipid membranes (e.g., dipalmitoylphosphatidylcholine or

DPPC is estimated to have CVCs in the sub picomolar range),36 this work demonstrates how

active learning can find much lower CVCs for prebiotic amphiphile mixtures than previously

known.

How does the model evolve during this process? Having demonstrated the e↵ective-

ness of uncertainty-driven active learning to find compositions that form vesicles under low

total amphiphile concentration, a natural question is how the model evolves during this pro-

cess. In practice, monitoring this type of information is useful for guiding the decision about

when to stop the exploration stage (AL 0 - AL 5) and begin the exploitation stage (AL 6)
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in the process. Figure 3b shows the GPC model accuracy for AL 1 to AL 6, as AL 0 was

not directly comparable using the GPR model. The data pool was randomly split to 80%

for training and 20% for testing and repeated 10 times. Overall, the training and testing

accuracy increased as the AL round progressed, indicating good predictive capabilities and

generalizability of the model.

Figure 3c shows the model uncertainty for each AL round, as quantified by the total

information entropy for all samples in the initial input space. Predictions made by the GPC

model established after AL 6 were performed on 107 randomly selected samples in the initial

input space, then the entropy for each sample was calculated according to Equation S13.

For AL 1 to AL 4, the model uncertainty decreased monotonically, indicating that the model

predictions become more confident with each round. In AL 5, the data in AL 3 were revisited,

thus the model became more uncertain about existing data, and the total entropy increased.

In AL 6, more exploitation of the low concentration regions was investigated, thus, the model

gained new knowledge about this area, and the total entropy was also increased.

Another way to visualize the model’s evolution is by visualizing the decision boundary be-

tween vesicle forming and non-forming compositions. To allow for visualization, the original

7-dimensional compositional data were reduced to 2-dimensions using principal component

analysis (PCA). These first two components accounted for only about 50% of the variance,

demonstrating the complexities of understanding the input space. The top row of Figure 4

shows how the classifier decision boundary evolved as the AL round progressed. In AL 2, the

decision boundary roughly split data into two parts in 2D input space, and PC1 separated

as non-vesicles having negative values and vesicles having positive values. Then, AL 4 sam-

pled increased concentrations of glycerol monodecanoate, changing the decision boundary

so that negative values in both PC1 and 2 represented a low probability of forming vesi-

cles. In AL 6, the uncertain area became larger because new data explored an unknown

concentration/composition region for the model, and is consistent with the total entropy

calculation in Figure 3c. The increase in uncertain/grey areas, indicates that as the total
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amphiphile concentration ranges changed in AL 2 and 4 at 5-10 mM to <3 mM in AL 6, the

2D representation did not capture the fitness landscape in a meaningful way.

AL rounds

PC 1

PC
 2

AL 2 AL 4 AL 6

Figure 4: Updates of the classifier decision boundary(first row) and PCA loading plot (second
row) during active learning from AL round 2 (left) to AL round 6 (right). Red and blue
points represent experimental observations that form and do not form vesicles, respectively.
Contours indicate the probability of finding vesicles estimated by the classifier (red is high
and blue is low). The second row shows the evolution of PCA loading plots. Each plot
shows the contribution of 7 amphiphile concentrations to the first two principal components
(PCs). Vector lengths indicate the strength of feature relationships with the PCs, with larger
vectors representing higher feature correlation.

Model interpretability and chemical insight. Chemical insights about how di↵erent

amphiphiles contributed to vesicle formation could also be extracted from the model. The

bottom row of Figure 4 shows the PCA loading plot, which explains how di↵erent features

contributed to each PC (refer to Figure S6 for all rounds). For AL 2, with “high” to-

tal amphiphile concentrations, three charged amphiphiles, decanoate, decyl trimethylamine,

and decylamine, contributed most strongly to the high probability vesicle region (positive
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PC1 values). As the AL iteration progressed, decylsulfate inverted and also became more

important to the vesicle forming region as total concentrations of amphiphiles decreased.

Interestingly, glycerol monodecanoate became negatively related to PC1 in AL 4, which

is consistent with Figure 3 (a) and Figure S2 where those samples that have a larger

percentage of glycerol monodecanoate did not to form vesicles. This is in contrast to previous

studies that used glycerol monodecanoate to stabilize membranes when mixed with decanoic

acid/decanoate in compositional amounts from 10 to 50%.37,38 Glycerol monodecanoate is

the glycerol ester of decanoic acid, and thus has been suggested as an “evolutionary step”

in membrane composition between the simplest amphiphiles and phosphoglycerolipids.39

However, our results show that an abundance of this molecule, at about 10-20% of the total

amphiphile concentration, reduced the probability of finding vesicles. This result highlights

the complexities of predicting vesicle-forming compositions for the origins of life and suggests

that glycerol monodecanoate may be less prebiotically relevant than previously thought.

Among the low total concentration region (< 3 mM), those samples that had high prob-

abilities of forming vesicles were from 88-96% total decyl trimethylamine and decyl sulfate

compared to those samples having low probabilities of finding vesicles (Figure S2, top half

samples). The ratio of decyl trimethylamine to decylsulfate ranged from about 1:1 to 1:4 in

vesicle-forming samples. Moreover, finding vesicles in the region (< 3 mM) is very di�cult.

As shown in the bottom of Figure 5, only 813 out of 107 samples were found to have 70-80%

probabilities of finding vesicles. This low percentage can also seen in the histogram shown

in Figure 6. The majority of samples concentrated on the probability of 0.1, which means

they may not form vesicles according to the model-predicted probabilities. Interestingly, as

a quaternary amine, decyl trimethylamine has the same functional group that is found in

phosphatidylcholine head groups in modern lipids. Likewise, the decyl sulfate anion is an

analogue for a phosphate group, giving this composition type a similar charge structure to

lipid bilayers in extant cells.

These results highlight the ability of “messy” mixtures of amphiphiles to generate abun-
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Probability of vesicle formation(from 85% to 0%)

813 8741 48931 345091 3288244 6308180

Number of samples

Concentrations (mM)

Sa
m

pl
e 

in
de

x

0.85 0.570.71 0.42 0.140.28

Figure 5: The model prediction of amphiphile compositions for the input space in AL round
6. The total 10 million samples were divided into 6 regions according to vesicle formation
probabilities as indicated by the numbers in the top arrow. The figure displays amphiphile
concentrations for each region, with absolute concentrations shown and varying total con-
centrations per sample. Sample counts per region are provided at the bottom.

Figure 6: Model predicting probabilities of finding vesicles for amphiphiles compositions in
input space in AL round 6.
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dant self-assembled structures in water from non-biological lipids and are the first time such

a large chemical space has been explored for this purpose. Previous reports have looked at

up to three-amphiphile mixtures, generally carboxylate, alcohol, and glycerol. The mixture

of decanoate with either decanol or glycerol monoester reduces the critical vesicle concen-

tration to the 1-2 millimolar range.38,40 Our results are produced in pure water, with some

NaBr(aq) generated from the counter ions on our charged amphiphiles, sodium decanoate,

sodium decylsulfate and trimethy decylamine bromide. Most of the previous literature did

little to control the ionic strength of the solution but likely had between 50 and 150 mM

NaCl, which increases the aggregation of decanoate containing vesicles.35

Previous reports of vesicles generated from single-chain amphiphiles have been primarily

composed of a mixture of a polar headgroup (-OH containing) and a charged head group

(either NH +
3 or COO– , sometimes PO –

4 ).41–43 Interestingly, our ”best” membranes at low

concentrations were composed of a mixture of negative sulfate headgroups and positive qua-

ternary amine head groups. It is possible that ion pairing between headgroups contributes

to the stability of our novel aggregates. In biological membranes, lipids are generally zwit-

terionic, with a phosphophoester-linked amine as a majority of head groups in both E. coli

and human plasma membranes,44 suggesting the doubly charged amphiphiles are a preferred

evolutionary outcome.

Is turbidity a good measure of vesicle formation? Turbidity—quantified as optical

absorption at 450 nm—has previously been used to determine the critical vesicle concen-

tration of amphiphiles.42,45 This would be especially useful for rapid initial screening, as

acquiring UV/vis spectra is much faster and easier to process than confocal microscopy.

However, we observed that the turbidity was very low (< 0.05 AU at 450 nm) in many of

our vesicle-containing samples, and therefore the typical single-wavelength measurement was

of limited value. During the experimental process, we generated 5644 samples for which we

had both UV/vis spectra and confocal microscopy quantification, which could be used as
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inputs for machine learning analysis. We trained three di↵erent classifier models to predict

whether there was at least one vesicle observed in the (ground truth) confocal microscopy

image. Figure 7 shows the tradeo↵ between the optimal tradeo↵ between false positive and

true positive rates for the di↵erent methods; a perfect method would have an area under

the curve (AUC) of one, and higher values are better. The baseline model (green curve)

implements the typical strategy42,45 of defining a threshold value for the absorbance at 450

nm to indicate the presence of vesicles; each point along the curve is a di↵erent choice of

the threshold value, illustrating the sensitivity/selectivity tradeo↵. Better performance is

obtained by training a random forest classifier on the 450nm values (blue) curve, but the

best performance is obtained by using the entire UV/vis spectral data as input to the ran-

dom forest model (red). We suspect this is because it accounts for non-linearities in the

input. (Similar results are obtained with other classifier models, such as support vector

machines.) This high accuracy of the RF method (as measured against the ground truth

of confocal microscopy) and its much faster and simpler operation mean that it would be

well suited for serving as an initial, high-throughput screening technique for multi-fidelity

optimization methods,46 which could be explored in future studies. More generally, this

also demonstrates an additional benefit of automated experimentation—the acquisition a

systematic, machine-readable dataset of results which can be data-mined after the fact for

new insights.14,47

4 Conclusion

Automation and active learning can improve our ability to understand complex mixtures

for astrobiology, specifically membrane formation. These results demonstrate that submil-

limolar concentrations of amphiphiles are su�cient to form primitive membranes and that

an abundance of compositions form membranes when total amphiphile concentrations are

between 1 and 10 mM. A computer vision technique—MMTM has been established to auto-
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Figure 7: Receiver-Operator Characteristic Curves for predicting the presence of vesicles
from UV/vis absorption spectra. Markers indicate the Youdon’s-J optimal48 values for each
method.

mate confocal microscopy image analysis, which expedites the research process compared to

manual methods. Active learning incorporating human expert domain knowledge was em-

ployed to optimize experimental design, o↵ering an e�cient approach to explore the chemical

landscape without extensive prior knowledge or ground truth. The Gaussian process model

built during the active learning process not only quantifies uncertainty but also provides

chemical insights. Our model revealed that vesicle formation at lower concentrations is more

likely with higher percentages of decyl trimethylamine and decyl sulfate and lower glycerol

monodecanoate. While this work focused on a limited set of seven amphiphiles, the approach

is versatile and can be extended to more diverse chemical systems. Thus, considering more

diverse amphiphiles or constraining relative amphiphile abundances by knowledge of abiotic

processes/thermochemistry7–9 could be future steps. In addition to including other types of

fatty acids and alcohols, other prebiotic molecules could be incorporated. A promising exam-

ple would be dipeptides which increase the growth rate of decanoic acid vesicles.49 Expanding

the scope to include a broader range of environmental conditions, such as varying salinity or
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pH, could further refine our understanding of primitive membrane formation. Finally, our

current model does not include the chemical structure of the amphiphiles, and so methods

that can incorporate the structural aspects of the amphiphiles and their mixtures27,50 may

improve transferability and extrapolation.

5 Data and code availability

The data in this work are openly available on Zenodo at https://doi.org/10.5281/zeno

do.12522610, The code in this work are openly available on Github at https://github.c

om/mfbliposome/ActiveLearning_Campaign/tree/main, with a persistent archival copy

deposited in Zenodo at DOI: [to be deposited after article passes peer review]
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