
Cookiecutter for Computational Molecular Sciences: A Best Practices
Ready Python Project Generator
Levi N. Naden,* Jessica Nash, T. Daniel Crawford, and Ashley Ringer McDonald

Cite This: J. Chem. Educ. 2024, 101, 5105i5109 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Scientific software development takes far more than good
programming abilities and scientific reasoning. Concepts such as version
control, continuous integration, packaging, deployment, automatic doc-
umentation compiling, licensing, and even file structure are not traditionally
taught to scientific programmers. The skill gap leads to inconsistent code
quality and dijculty deploying products to the broader audience. Most of
the implementation of these skills however can be constructed at project
inception. The Cookiecutter for Computational Molecular Sciences
generates ready-to-go Python projects that incorporate all of the concepts
above from a single command. The final product is then a software project
which lets developers focus on the science and minimizes worries about
nonscientific and nonprogramming concepts because the best practices, as
established by the Molecular Sciences Software Institute, have already been
incorporated for them. This is a community driven project with widespread
adoption across the computational molecular sciences. The Molecular Sciences Software Institute and Computational Molecular
Sciences community also continually contribute and update the Cookiecutter for Computational Molecular Science, ensuring that
the project is responsive to community needs and tool updates. All are welcome to suggest changes and contribute to making this the
best starting point for Python-based scientific code.
KEYWORDS: Python, Cookiecutter, Software Development, GitHub, CI, Deployment, Graduate Education/Research,
Continuing Education, Interdisciplinary/Multidisciplinary, Computer-Based Learning, Distance Learning/Self Instruction,
Computational Chemistry

1. INTRODUCTION
Scientific enterprise in the modern day requires software for
everything from data acquisition and analysis to modeling and
data generation, and that software has to be written by
someone. Much of this code is so-called end-user software,
written by scientists (as opposed to professional software
developers) to be used by other researchers in their field.
These end-user developers vastly outnumber professional
software engineers1 and produce important software projects
in the chemistry discipline.
Creating useful software is nontrivial. For users other than

the original developer to be able to use a scientific software
package, there are many considerations, including documenta-
tion and user guides beyond in-line code and comments,
version control, testing to ensure not only programmatic
accuracy but also scientific regression accuracy, correct code
formatting to allow future development of the software, and
packaging with formal deployment that makes the code easy to
install and use. This set of skills comprises what the Molecular
Sciences Software Institute has identified as our “best
practices” for molecular sciences software development.

These concepts are not typically taught to students in the
undergraduate or graduate chemistry curriculum. Rather,
students develop these skills informally, many times by
learning from other members of their research group, which
unfortunately often means adoption of best practices is
inconsistent. We find that new software projects often simply
copy the configuration and files from older, existing projects.
This results in many deprecated methods and ideas, as well as
bad ones, perpetuating while new and better approaches are
never discovered.
To address this knowledge gap, the Molecular Sciences

Software Institute (MolSSI) has created a Python package
template, called the MolSSI Cookiecutter for Computational
Molecular Sciences (CC-CMS) (available at https://github.

Received: June 27, 2024
Revised: October 18, 2024
Accepted: October 21, 2024
Published: October 29, 2024

Technology Reportpubs.acs.org/jchemeduc

© 2024 American Chemical Society.
Published 2024 by American Chemical
Society and Division of Chemical
Education, Inc.

5105
https://doi.org/10.1021/acs.jchemed.4c00793

J. Chem. Educ. 2024, 101, 5105−5109

D
ow

nl
oa

de
d 

vi
a 

71
.8

4.
25

.1
21

 o
n 

A
ug

us
t 1

3,
 2

02
5 

at
 1

7:
42

:1
4 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



com/MolSSI/cookiecutter-cms/), to succinctly and ejciently
teach chemistry students and professionals the most critical
best practices in software development that will help them
write more useful, usable, maintainable, and sustainable
chemistry software. This can help ease the burden of the
nuances in software development that can otherwise be a
distraction from the primary scientific purpose of the software.
The MolSSI CC-CMS identifies a formalized set of best
practices, provides a curriculum to teach them consistently,
and creates a structure to build these best practices into a
software project f rom the start. This drastically simplifies the
cognitive overhead to developing scientific software for not
only our students, but also internally with our own projects.
Software that is more sustainable will ultimately benefit the
chemistry enterprise, enabling new science and reducing
duplication of ePort, just as it does in most fields that deploy
software.2
The Cookiecutter for Computational Molecular Sciences

(CC-CMS) Python Package created by MolSSI generates
skeletal starting repositories for new Python-based scientific
software projects with all of MolSSI’s best practices built in.
This tool will aid users of all skill levels in jump-starting their
software development by incorporating and setting up
nonscientific assets and tools that MolSSI teaches as best
practices.3 This project is constantly updated to reflect modern
tools and skills, and we encourage and have received active
contributions from the larger computational molecular sciences
(CMS) community as well. We have extensively applied this at
MolSSI ourselves and all of our new Python-based projects
start from this tool.

2. SOFTWARE DESCRIPTION AND FEATURES
At its core, the Cookiecutter for Computational Molecular
Sciences (CC-CMS) generates a directory on a user’s
computer with all of the configurations and file structures
needed to implement the best practices in a Python software
project. The folder and file structure are generated with the
powerful Cookiecutter program, a generalized software
template creation tool.4 One of the most important require-
ments of any scientific software is reproducibility, and that
includes with the software itself. This is accomplished by using
version control software, such as Git. To that end, the CC-
CMS automatically creates a Git directory of its output that is
ready to be deployed to GitHub, GitLab, or any other service
supporting Git for version control. The CC-CMS combines
numerous preconfigured tools and as many MolSSI best
practices as possible together into a new file tree, version
controlled through Git, that can serve as the foundation, or
roots, of a new project, which we have represented in Figure 1.
The CC-CMS provides features and tools for software

development that most computational molecular scientists,
chemists, cheminformatics specialists, and others will likely not
encounter in their formal scientific training. We developed this
software as a response to a combination of the MolSSI staP’s
own personal frustrations with software development and from
the struggles we were hearing from external collaborators,
contacts, principal investigators, and their students in public
forums. It was clear there was a need for better software
development practices to be more readily available to employ
without needing to scour the internet, parse through an
oversaturated amount of tutorials and suggestions, and then
figure out how to apply those ideas locally. That was when we
found the Cookiecutter program4 which provides the frame-

work for creating and deploying project structures. Cook-
iecutter itself does not have any of the content for the
structures it asks users to design, that falls on us. So, we
leveraged this framework, along with our internal expertise, to
directly address the pain points we had been seeing in the
community and create a starting template Python directory
which also has the following features:
2.1. Preconfigured, Autoversioned, Python Installation
Setup File pyproject.toml
The Python installation configuration file is not a simple object
to create from scratch or even to copy from existing projects.
This is particularly true now that it is recommended by the
Python Package Authority to use the pyproject.toml
instead of the legacy, but much more commonly seen,
setup.py.6 We have included a fully documented setup
file with the conditions to include or exclude specific settings.
Further, we have included integration with Git’s tagging system
to automatically assign version numbers to the software as it is
released so users do not accidentally forget to update their
version numbers between releases.
2.2. GitHub Actions Ready Continuous Integration (CI)
Files
Automatic testing of code, both syntactically and scientifically,
is critical to ensuring accurate and bug-free software. One of
the best times to execute such tests is when code is changed
and committed to the version control system, triggering a CI
event. We have chosen to provide the configuration files for
GitHub Actions, although many other quality CI services exist.
This way, once a user of the CC-CMS uploads their new
project to GitHub, the CI event triggers and GitHub will
automatically run preconfigured tests on Linux, OSX, and
Windows environments with multiple Python versions.

Figure 1. Pictorial representation of key tools and elements of a new
project generated by the Cookiecutter for Computational Molecular
Sciences. Every toolfrom documentation, to dependency reso-
lution, to packagingworks to create a foundation for new software
projects to flourish while automating tedious, often dijcult-to-
understand nonscientific concepts in software development. Base
image licensed under the CC0 1.0 Public Domain License.5

Journal of Chemical Education pubs.acs.org/jchemeduc Technology Report

https://doi.org/10.1021/acs.jchemed.4c00793
J. Chem. Educ. 2024, 101, 5105−5109

5106



2.3. Automatic Dependency sourcing
The Python ecosystem of packages is distributed over a large
number of providers. Even to expert Python users, sourcing
dependencies for your project can be a daunting and nuanced
task. We have integrated the CC-CMS to be able to pull from
pip,7 conda-forge8 or Anaconda’s main channel.9 The
user is given the choice of which to apply to their project at
creation time, and this can be changed later if they so choose.
These configurations are also applied to the sample
documentation for the package, and to the CI configuration
automatically.
2.4. Ready-to-Write Documentation Configurations
Documentation is often as important as the code itself.
Configuring documentation, however, can be dijcult, even
when copying from previous code bases. The CC-CMS
provides a documentation structure that requires no user
input to be ready to build docs in static web pages through the
Sphinx build system.10 This allows users to simply start writing
instead of configuring. There are future plans to allow
deployment to GitHub Pages as well.
2.5. Licensing from the Beginning
Scientific software projects must have a legal license provided
to end-users just like commercial software. Doing so protects
the developers from malicious actors as well as frivolous
lawsuits to a certain extent. The CC-CMS creates the license
file based on user input at the outset, before the first line of
code is written. Although this may seem like a trivial mater, it is
often an overlooked one, especially for users who have never
created a product with the intent for it to be deployed.

3. IMPACT ON THE COMMUNITY AND
EDUCATIONAL CURRICULA

The MolSSI CC-CMS is taught to approximately 200 students
per year directly through MolSSI educational programming,
particularly through the MolSSI Best Practices in Software
Development workshop.11 In this short course, students use
the CC-CMS to set up a Python package and learn a
collaborative code development workflow using Git and
GitHub. The workshop is oPered each summer for our new
MolSSI Software Fellows,12 as well as one or two other times
during the year at community-organized workshops, where a
university or group invites MolSSI to present the course on
their campus, or at events held in conjunction with existing
computational chemistry conferences.
In our MolSSI short courses where we teach the CC-CMS,

students learn the proper application of each CC-CMS feature.
A one to two hour lesson is provided for each one of the
features and concepts, including version control, code testing,
python code style, dependency sourcing, documentation
writing, and continuous integration. These lessons can be
found on our MolSSI Education Web site at https://education.
molssi.org/python-package-best-practices/. The lessons are
taught in an interactive style where the CC-CMS provides
the initial content and the highly regularized structures, and
the students populate the repository with specific information
for their particular research project using these features. In this
way, we attempt to maximize the CC-CMS’s ePectiveness and
instill both an appreciation and competency for the underlying
features within our tool.
Many more students find the CC-CMS through our online

resources.11 In total, the CC-CMS appears in over 1600

GitHub repositories as of April 29, 2024. Furthermore, the
CC-CMS has been actively accessed continuously since its
release in March 2018. We have tracked the number of times
the CC-CMS has been both viewed and downloaded since
February 2019 and plotted these results in Figure 2. The
project has over 10,000 downloads from unique IP addresses
and is a highly successful educational project from MolSSI.

The CC-CMS has also been used by faculty to train their
research teams. Though this is a slightly diPerent context than
using the tool in a classroom course, this is nonetheless an
important educational application of the CC-CMS. For
example, one of the authors (ARM) has used the CC-CMS
with her team of undergraduate research students to develop a
Python workflow tool that enables analysis of molecular
interactions in structures from molecular dynamics simula-
tions. The package is published on GitHub and a manuscript is
currently under review at the Journal of Open Source Software.
In another case, Prof. Jay Foley, a faculty member at University
of North Carolina at Charlotte, had their research team of two
undergraduate chemistry majors and two masters students
participate in MolSSI best practices workshop, learning to use
the CC-CMS to build a Python package utilizing modern
software development practices and tools including documen-
tation generation in Sphinx, unit testing integrated with version
control tools using GitHub Actions, and a standard protocol
for features updates and fixes using pull requests. After
completing the workshop, the research team mapped out how
to apply these practices to an existing software package the
group develops, called WPTherml.13 This led to a rewrite of
the majority of the code in that package starting from the CC-
CMS. The faculty member now regularly uses the lessons from
the Best Practices in Python Package Development workshop
as one of the onboarding activities for the research team, where
each student must build an example Python package from the
CC-CMS.14
The CC-CMS has also been used as the basis for

programming projects assigned in chemistry courses. For
example, in a quantum software course at Virginia Tech the
entire class uses the CC-CMS for a class project writing a
package to compute thermodynamics properties of the Ising

Figure 2. Cumulative GitHub activity of the MolSSI CMS
Cookiecutter from February 2019 to April 2024. Data tracked are
the number of visits to the base repository through GitHub’s Web site
(Views) and the number of times the CMS Cookiecutter has been
downloaded (Clones). Also tracked are the number of unique views
and clones, based on distinct IP addresses rather than multiple single-
source accesses such as those arising from repeated services such as
automated CI and classroom-related downloads. Tracking data were
lost (failed hard drive) for the hatch-marked time frame and thus do
not contribute to the totals.

Journal of Chemical Education pubs.acs.org/jchemeduc Technology Report

https://doi.org/10.1021/acs.jchemed.4c00793
J. Chem. Educ. 2024, 101, 5105−5109

5107



model. In the second course in the series, the students used the
CC-CMS to create new software for a quantum computing
research project that they create throughout the semester.15
In the wider CMS community, the CC-CMS serves as the

basis for a growing number of widely used open-source
projects and tutorials. For example, MDAKits from MDAnal-
ysis16 have their own Cookiecutter template based on the CC-
CMS. The Riniker lab has used the project as a starting point
for their package Ensembler17 - a molecular dynamics
prototyping package. Another notable example is from Dr.
Patrick Walters for a package of useful RDKit utilities.
We have also collected internal survey information to

directly measure the impact of the CC-CMS on student
learning. For every workshop taught at MolSSI, we post
voluntary exit surveys which ask for both numerical ratings and
free responses from participants. As of September 6, 2024;
there have been 350 numerical ratings given to the question
”Rate the usefulness of [the CC-CMS]” on a scale of 0−10
with 10 being ”extremely useful.” The CC-CMS has an average
of an 8.8 rating to this question. When the CC-CMS appears in
the open questions, its most commonly in response to our
question ”What is something you hadn’t expected to learn
about but found useful/enjoyable?” Overall, the responses are
overwhelmingly positive.
We want to note that these specific examples are ones we are

aware of or are from faculty and researchers who contacted us
to let us know they were using the CC-CMS; they are
representative examples of how the CC-CMS has and could be
used, not a comprehensive list.

4. ACTIVE DEVELOPMENT
The CC-CMS is in constant active development to keep up
with advancements in development, and has been for years.
The current version of the CC-CMS is 1.10.0, at the time of
writing. The versions represent years of third-party tool
advancement and updated best practices according to both
MolSSI11 and the broader CMS community. For example, the
original version of the CC-CMS supported Python 2.7, 3.5,
and 3.6; whereas now Python 3.12 is supported along with its
two predecessors. As another example, The CI back-end has
also evolved with time to transition from Travis-CI18 and
AppVeyor19 to the single GitHub Actions platform as features
and ease of access were considered. The CC-CMS cannot and
will not ever enforce certain tools or versions, only
recommendations and initial setups are provided because us
developers want to leave all final decisions up to the scientists
using this tool.
Best practices are dijcult to keep up to date on, due to

regular updates of the backend tools, but the CC-CMS
attempts not to overwhelm users by having a slower update
cycle. The development cycle for this tool releases major
versions only once a year, or for any large bug fixes as updating
the best practices take additional time to have community buy
in. MolSSI does not seek to be the definitive authority on such
things, so we invite those from outside our institute to help
steer the feature development for the CC-CMS.
Every year, the decisions as to what are the best practices to

include in the CC-CMS are determined with input from the
CMS community. Although MolSSI is the primary developers
of this tool, MolSSI is not the absolute authority on what are
the best practices. We seek constant input from the CMS
community as to what features, and what concepts, they want
to see incorporated into the tool through an annual

development sprint. These sprints include both MolSSI
Software Scientists, along with specifically invited third party
developers as part of an open invite to the CMS community. In
each sprint, the best practices educational material is debated,
decided, and updated;11 then the relevant concepts are
transferred to the CC-CMS. Some additions explicitly from
the community have included: better Integrated Development
Environment (IDE) connections, addition of GitHub Actions
as a supported CI service, and implementation of PEP 62120
and full migration to pyproject.toml;6 just to name a
few. The most recent development sprint from November
2023 updated the majority of third-party tools, documentation
themes for more visually pleasing outputs, and fixed a number
of depreciated features so our users do not have to think about
all the upstream changes that get in the way of their work.

5. A CALL TO THE COMMUNITY TO CONTRIBUTE
Software development never happens in a vacuum. Today’s
scientific software ecosystem relies on countless upstream
tools, third-parties, and decades of services and infrastructure
changes to be successful. Yes, a developer could write their
code on their own and distribute it purely by themselves; but
with the widespread adoption of open source software,
distribution platforms such as PyPI (through pip7) or
Conda (through conda-forge8,9), and the services to
handle testing and CI; more of that developer’s time can be
spent on the science, and less on everything else which makes
software usable.
The CC-CMS likewise is not developed in a vacuum and we

at MolSSI call on the community to help improve this package.
We fully acknowledge we will not solve all the distractions
which impede scientific software development, but we can try
to alleviate as many as we can. The best way for us to serve the
community with this package is for the community, and those
reading this paper, to tell us what features they would like to
see and/or pain points they have with scientific software
development we as MolSSI can investigate solutions for. Direct
contributions and development are also welcome at any time
for discussion. Opening an issue or pull request on the CC-
CMS GitHub21 is the most ePective way to communicate on
this issue and we encourage anyone to comment and
contribute. We are especially interested in discussing
developing the CC-CMS for other languages beyond Python
such as C++, Fortran, and Julia. Any discussions and
suggestions for additional languages is highly encouraged and
we openly welcome all discourse though the CC-CMS GitHub
project or contacting MolSSI directly.

z AUTHOR INFORMATION
Corresponding Author

Levi N. Naden − Molecular Sciences Software Institute,
Virginia Tech, Blacksburg, Virginia 24060, United States;
orcid.org/0000-0002-3692-5027; Email: info@

molssi.org

Authors
Jessica Nash − Molecular Sciences Software Institute, Virginia
Tech, Blacksburg, Virginia 24060, United States;
orcid.org/0000-0003-1967-5094

T. Daniel Crawford − Molecular Sciences Software Institute,
Virginia Tech, Blacksburg, Virginia 24060, United States;
orcid.org/0000-0002-7961-7016

Journal of Chemical Education pubs.acs.org/jchemeduc Technology Report

https://doi.org/10.1021/acs.jchemed.4c00793
J. Chem. Educ. 2024, 101, 5105−5109

5108



Ashley Ringer McDonald − Department of Chemistry and
Biochemistry, Bailey College of Science and Mathematics,
California Polytechnic State University, San Luis Obispo,
California 93407, United States; orcid.org/0000-0002-
4381-1239

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jchemed.4c00793

Notes

The authors declare no competing financial interest.

z ACKNOWLEDGMENTS
The Molecular Sciences Software Institute is supported by the
National Science Foundation under Grant CHE-2136142. The
Cookiecutter for Computational Molecular Sciences has also
received significant development by Daniel G. A. Smith, Jaime
Rodríguez-Guerra Pedregal, M. Eric Irrgang, The John
Chodera Lab, and the wider computational molecular sciences
community.

z REFERENCES
(1) Ko, A. J.; Abraham, R.; Beckwith, L.; Blackwell, A.; Burnett, M.;
Erwig, M.; Scaffidi, C.; Lawrance, J.; Lieberman, H.; Myers, B.;
Rosson, M. B.; Rothermel, G.; Shaw, M.; Wiedenbeck, S. The State of
the Art in End-User Software Engineering. ACM Comput. Surv. 2011,
43, 1−44.
(2) Kan, S. H. Metrics and Models in Software Quality Engineering,
2nd ed.; Addison-Wesley Longman, 2002.
(3) Nash, J. A.; Mostafanejad, M.; Crawford, T. D.; McDonald, A. R.
MolSSI Education: Empowering the Next Generation of Computa-
tional Molecular Scientists. Computing in Science & Engineering 2022,
24, 72−76.
(4) Roy, A.; Cookiecutter Community Cookiecutter: Better Project
Templates. https://cookiecutter.readthedocs.io/ (accessed 2023-10-
20).
(5) GDJ What Lies Beneath. OpenClipArt 2018. (Accessed 2023-10-
23.) (This work is licensed under the Creative Commons Zero 1.0
Public Domain License).
(6) Python Software Foundation. Python Packaging User Guide,
2020. https://packaging.python.org/ (accessed 2023-10-20).
(7) Python Software Foundation. PyPIThe Python Package Index.
https://pypi.org/ (accessed 2023-10-20).
(8) conda-forge community The conda-forge Project: Community-
Based Software Distribution Built on the conda Package Format and
Ecosystem, 2015. https://zenodo.org/records/4774217.
(9) Anaconda, 2016. https://anaconda.com. (accessed October 23,
2023).
(10) Sphinx Developers Sphinx. https://www.sphinx-doc.org/
(accessed 2023-10-20).
(11) The Molecular Sciences Software Institute Best Practices in
Python Package Development, 2023. https://education.molssi.org/
python-package-best-practices/. (accessed October 19, 2023).
(12) The Molecular Sciences Software Institute The MolSSI
Fellowship Program. https://molssi.org/fellowship/. (accessed June
25, 2024).
(13) Varner, J. F.; Eldabagh, N.; Volta, D.; Eldabagh, R.; Foley, J. J.
WPTherml: A Python Package for the Design of Materials for
Harnessing Heat. J. Open Res. Software 2019, 7, 28.
(14) Foley, J. Personal Communication, November 2024. Printed
with permission. (October 22, 2023).
(15) Mayhal, N. Personal Communication, November 2024. Printed
with permission. (October 24, 2023).
(16) Alibay, I.; Barnoud, J.; Beckstein, O.; Gowers, R. J.; Loche, P.
R.; MacDermott-Opeskin, H.; Matta, M.; Naughton, F. B.; Reddy, T.;
Wang, L. Building a community-driven ecosystem for fast,

reproducible, and reusable molecular simulation analysis using
mdanalysis. Biophysical journal 2023, 122, 420a.
(17) Ries, B.; Linker, S. M.; Hahn, D. F.; König, G.; Riniker, S.
Ensembler: A Simple Package for Fast Prototyping and Teaching
Molecular Simulations. J. Chem. Inf. Model. 2021, 61, 560−564.
(18) Idera, Inc. Travis-CI. https://www.travis-ci.com/ (accessed
October-2023-10-20).
(19) AppVeyor Systems Inc. AppVeyor. https://www.appveyor.com/
, (accessed 2023-10-20).
(20) Cannon, B.; Ingram, D.; Ganssle, P.; Gedam, P.; Eustace, S.;
Kluyver, T.; Chung, T. PEP 621Storing project metadata in
pyproject.toml, 2020. https://peps.python.org/pep-0621/
(21) The Molecular Sciences Software Institute Cookiecutter for
Computational Molecular Sciences (CMS) Python Packages. https://
github.com/MolSSI/cookiecutter-cms. (accessed April 29, 2024).

Journal of Chemical Education pubs.acs.org/jchemeduc Technology Report

https://doi.org/10.1021/acs.jchemed.4c00793
J. Chem. Educ. 2024, 101, 5105−5109

5109


