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Abstract. This work identifies a simple pre-training mechanism

that leads to representations exhibiting better continual and transfer

learning. This mechanism—the repeated resetting of weights in the

last layer, which we nickname “zapping”—was originally designed

for a meta-continual-learning procedure, yet we show it is surpris-

ingly applicable in many settings beyond both meta-learning and

continual learning. In our experiments, we wish to transfer a pre-

trained image classifier to a new set of classes, in few shots. We

show that our zapping procedure results in improved transfer accu-

racy and/or more rapid adaptation in both standard fine-tuning and

continual learning settings, while being simple to implement and

computationally efficient. In many cases, we achieve performance

on par with state of the art meta-learning without needing the expen-

sive higher-order gradients by using a combination of zapping and

sequential learning. An intuitive explanation for the effectiveness of

this zapping procedure is that representations trained with repeated

zapping learn features that are capable of rapidly adapting to newly

initialized classifiers. Such an approach may be considered a com-

putationally cheaper type of, or alternative to, meta-learning rapidly

adaptable features with higher-order gradients. This adds to recent

work on the usefulness of resetting neural network parameters dur-

ing training, and invites further investigation of this mechanism.

1 Introduction

Biological creatures display astounding robustness, adaptability, and

sample efficiency; while artificial systems suffer “catastrophic for-

getting” [23, 14] or struggle to generalize far beyond the distribution

of their training examples. It has been observed in biological systems

that repeated exposure to stressors can result in the evolution of more

robust phenotypes [28, 8]. However, it is not clear what type of stres-

sor during the training of a neural network would most effectively

and efficiently convey robustness and adaptability to that system at

test time.

It is common practice to have the training of a machine learning

system mimic the desired use-cases at test time as closely as possible.

In the case of an image classifier, this would include drawing inde-

pendent training samples from a distribution identical to the test set

(i.i.d. training). When the test scenario is itself a learning process—

such as few-shot transfer learning from a limited number of novel

1 Equal contribution.
2 Corresponding authors. Email: {lfrati,ntraft}@uvm.edu.

Figure 1. Alternating Sequential and Batch learning (ASB) alternates
between phases of (Step 2) individual examples from a single class, and

(Step 4) multi-class batches of examples. Before each sequential phase the

existing class is forgotten by � zapping.

examples—training can include repeated episodes of rapid adapta-

tion to small subsets of the whole dataset, thereby mimicking the test

scenario. Meta-learning algorithms (also known as learning-to-learn)

for such contexts are able to identify patterns that generalize across

individual learning episodes [29, 4, 16, 27, 10].

Going even further, we are interested in challenging scenarios of

online/continual learning with few examples per class. We ask, if

this is the test scenario, then what kind of training would best mimic

this? What kind of stressor could be applied in pre-training to con-

fer robustness upon deployment into the difficult setting of few-shot

continual learning?
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Recent work by Javed and White [18] and Beaulieu et al. [3] has

tackled this question with the application of meta-learning. When

the learning process itself is differentiable, one way to perform

meta-optimization is by differentiating through several model up-

dates using second-order gradients, as is done in Model-Agnostic

Meta-Learning (MAML) [10]. When applied to episodes of contin-

ual learning, this approach induces an implicit regularization (it pe-

nalizes weight changes that are disruptive to previously learned con-

cepts, without needing a separate heuristic to quantify the disrup-

tion).

The authors of Online-Aware Meta-Learning (OML) [18] divide

their architecture into two parts, where later layers are updated in a

fast inner loop but earlier layers are only updated in a slower outer

meta-update. Subsequently, A Neuromodulated Meta-Learning Al-

gorithm (ANML) [3] restructured the OML setup by moving the

earlier meta-only layers into a parallel neuromodulatory path which

meta-learned an attention-like context-dependent multiplicative gat-

ing, achieving state of the art performance in sequential transfer.

However, in this work we show that neither the asymmetric train-

ing of different parts of the network (like OML), nor a neuromodu-

latory path (like ANML), nor even expensive second-order updates

(like both), are necessary to achieve equivalent performance in this

setting. Instead, we reveal that the key contribution of the OML-

objective appears to be a previously overlooked mechanism: a weight

resetting and relearning procedure, which we call “zapping”. This

procedure consists of frequent random resampling of the weights

leading into one or more output nodes of a deep neural network,

which we refer to as “zapping” those neurons.3

After reinitializing the last layer weights, the gradients for the

weights in upstream layers quantify how the representation should

have been different to reduce the loss given a new set of random

weights. This is exactly the situation that the representation will be

presented with during transfer. In the case where all weights of the

last layer are reset, zapping closely matches the common technique

of transfer learning by resetting the classifier layer(s) on top of pre-

trained feature extraction layers (as in Yosinski et al. [34]). Over mul-

tiple repetitions, this leads to representations which are more suitable

for transfer.

We are able to show the efficacy of this forgetting-and-relearning

by introducing a variation which rehearses a continual learning pro-

cess without meta-learning. We call this Alternating Sequential and

Batch learning (ASB; Figure 1). This process runs through episodes

of continual learning just like OML/ANML, but does not perform

meta-optimization. However, it does zap a neuron at the beginning

of each continual learning episode, giving the model a chance to re-

learn the forgotten class. We hypothesize that this better prepares the

model for a similar learning process at transfer time.

We show that:

• The zapping forget-and-relearn mechanism accounts for the ma-

jority of the meta-learning improvements observed in prior work

(Section 3.1).

• Dedicating second-order optimization paths for certain layers

doesn’t explain the performance of meta-learning for continual

transfer (Section 3.1).

• Alternating Sequential and Batch (ASB), with zapping, is often

sufficient to match or outperform meta-learning without any ex-

pensive bi-level optimization (Sections 3.1 and 3.2).

3 In OML, weight resampling was employed primarily as a method
for maintaining large meta-gradients throughout meta-training and was
deemed non-essential (Javed and White [18, V1–Appendix A.1: Random
Reinitialization]).

• Representations learned by models pre-trained using zapping are

better for general transfer learning, not just continual learning

(Section 3.2).

• Zapping and ASB can be useful across different datasets and

model architectures (Section 3.3).

Source code for our methods are available at:

github.com/uvm-neurobotics-lab/reset-it-and-forget-it

2 Methods

As described in Javed and White [18] and Beaulieu et al. [3], we seek

to train a model capable of learning a large number of tasks T1..n, in

a few shots per task, with many model updates occurring as tasks are

presented sequentially. Tasks Ti come from a common domain D.

In our experiments we consider the domain to be a natural images

dataset and tasks to be individual classes Ci in that dataset.

Recent works show that reinitialization of some layers during

training can be used as a regularization method [37, 21, 1, 38, 5].

But there are several ways in which this reinitialization can be ap-

plied. We focus our attention on the last fully connected layer, right

before the output. While the information value within this last layer

may be marginal [17, 36] interventions in the last layer will affect

the gradient calculation of all the other layers in the network during

backpropagation (Figure 1, Step 3).

For consistency with prior approaches, our primary experiments

employ the model architecture from Beaulieu et al. [3] (minus the

neuromodulatory path). This model consists of a small convolutional

network with two main parts: a stack of convolutional layers that act

as a feature extractor, and a single fully connected layer that acts as

a linear classifier using the extracted features (see Appendix D [13]).

We then extend our findings on the larger VGG architecture [31] to

demonstrate the scalability of our approach.

Our “zapping” procedure consists of re-sampling all the connec-

tions corresponding to one of the output classes. Because of the tar-

geted disruption of the weights, the model suddenly forgets how

to map the features extracted by previous convolutional layers to

the correct class. To recover from this sudden change, the model

is shown examples from the forgotten class, one at a time. By tak-

ing several optimization steps, the model recovers from the negative

effect of zapping. This procedure constitutes the inner loop in our

meta-learning setup and is followed by an outer loop update using

examples from all classes [18]. The outer loop update is done with

a higher-order gradient w.r.t. the initial weights of that inner loop it-

eration [10]. But, as we will see, these inner and outer updates do

not actually need to be performed in a nested loop—they can also be

arranged in a flat sequence without meta-gradients, yielding similar

performance with much more efficient training.

2.1 Training Phases

Since we want to learn each class in just a few shots, it behooves us to

start with a pre-trained model rather than starting tabula rasa. There-

fore our set-up involves two stages. Within each stage, we examine

multiple possible configuration options, described in more detail in

the next sections.

1. (Sec. 2.1.1) Pre-Training: We use one of the following algorithms

to train on a subset of classes: (1) standard i.i.d. pre-training,

(2) alternating sequential and batch learning (ASB), or (3) meta-

learning through sequential and batch learning (meta-ASB). Each
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of these may or may not include the zapping procedure to forget

and relearn.

2. (Sec. 2.1.2) Transfer: Following pre-training, we transfer the

classifier to a separate subset of classes using (1) sequential trans-

fer (continual learning) or (2) standard i.i.d. transfer (fine-tuning).

2.1.1 Stage 1: Pre-Training

Our pre-training algorithm is described in Algorithm 1, and visual-

ized in Appendix E [13]. Our algorithm is based on the “Online-

aware” Meta-Learning (OML, Javed and White [18]) procedure,

which consists of two main components:

• Adapting (inner loop; sequential learning): In this phase the

learner is sequentially shown a set of examples from a single

random class and trained using standard SGD. The examples are

shown one at a time, so that the optimization performs one SGD

step per image.

• Remembering (outer loop; batch learning): After each adapting

phase, the most recent class plus a random sample from all classes

are used to perform a single outer-loop batch update. Those sam-

ples serve as a proxy of the true meta-loss (learning new things

without forgetting anything already learned). The gradient update

is taken w.r.t. the initial inner-loop parameters, and those updated

initial weights are then used to begin the next inner-loop adapta-

tion phase following the MAML paradigm [10].

Compared to OML we use a different neural architecture (which

improves classification performance; see Appendix D [13]), and do

not draw a distinction between when to update the feature extraction

vs. classification layers (updating both in the inner and outer loops).

Furthermore, while the original OML procedure included both zap-

ping and higher-order gradients, we ablate the effect of each compo-

nent by allowing them to be turned on/off as follows.

In configurations with zapping (denoted as zap in Algorithm 1),

prior to each sequential adaption phase on a single class Ci, the final

layer weights corresponding to that class are re-initialized—in other

words, they are re-sampled from the initial weight distribution4. We

call this procedure zapping as it destroys previously learned knowl-

edge that was stored in those connections.

In the meta-learning conditions (denoted as meta in Algo-

rithm 1), the “remembering” update is performed as an outer-loop

meta-update w.r.t. the initial weights of each inner-loop (as described

above), and these meta-updated weights are then used as the start-

ing point of the next inner-loop. However, we also wish to examine

the effect of zapping independent of meta-learning, and introduce a

new pre-training scenario in which we alternate between the adapt-

ing phase and the remembering phase. Different from meta-learning,

this new method does not backpropagate through the learning pro-

cess nor rewind the model to the beginning of the inner loop. Instead,

it simply takes normal (non-meta) gradient update steps for each im-

age/batch seen. The weights at the end of each sequence-and-batch

are used directly on the next sequence.

We refer to this approach as Alternating Sequential and Batch

learning (ASB), and the difference between ASB and meta-ASB can

be seen visually in Appendix E [13]. This approach—like Lamarck-

ian inheritance rather than Darwinian evolution [9]—benefits from

not throwing away updates within each inner-loop adaptation se-

quence, but loses the higher-order updates thought to be effective

4 Weights are sampled from the Kaiming Normal [15] and biases are set to
zero.

Algorithm 1 Pre-Training: ASB and Meta-ASB, with or without

zapping

Require: Dataset D : C classes, N examples per class, (H, W, Ch)

images

Require: Network f : (H, W, Ch) → C with parameters θ :
[θconv, θfc]

Require: ηin, ηout inner and outer learning rates

Require: K number of sequential inner-loop examples

Require: R number of outer-loop “remember” examples

Require: S number of outer-loop steps

1: for iteration = 1, 2, . . . , S do {outer loop; remembering}

2: C ∼ D {Sample one class}

3: Xinner ∼ C {K examples from class C}

4: Xrand ∼ D {R examples from the whole dataset}

5: Xouter ← Xinner ∪Xrand

6: if zap then

7: Reset connections in θfc corresponding to class C

{zapping}

8: end if

9: θ0 ← θ

10: for i = 0, . . . , K-1 do {inner loop; adapting}

11: ŷ ← f(Xi
inner; θi)

12: θi+1 ← θi − ηin∇θiL(ŷ, C) {single example SGD}

13: end for

14: if meta then

15: θ ← θ0 − ηout∇θ0L(f(Xouter; θK), Y ) {meta batch SGD (ex-

pensive)}

16: else

17: θ ← θK − ηout∇θKL(f(Xouter; θK), Y ) {standard batch SGD

(cheap)}

18: end if

19: end for

for these continual learning tasks [18, 3]. This sequential approach

allows us to employ the same zapping procedure as above: resetting

the output node of the class which we are about to see a sequence of.

We also wished to study how zapping may influence the learn-

ing of generalizable features without being coupled with sequential

learning. Thus, we also apply zapping to i.i.d. pre-training, which

uses standard mini-batch learning with stochastic gradient descent. In

this setting, a random sample of classes are zapped at a configurable

cadence throughout training. For example, we might resample the

entire final layer once per epoch, allowing the network to experience

an event which is similar to fine-tuning.

2.1.2 Stage 2: Transfer

We evaluate our pre-trained models using two different types of few-

shot transfer learning.

In sequential transfer (Alg. 2), we follow the evaluation method

used in prior works [18, 3]. The model is trained on a long sequence

of different unseen classes (continual learning). Examples are shown

one at a time, and a gradient update is performed for each image.

Only the weights in the final layer are updated (also referred to as

“linear probing” [2]).

We also test i.i.d. transfer (Alg. 3), where the model is trained on

batches of images randomly sampled from unseen classes (standard

fine-tuning).

In both transfer scenarios, the new classes were not seen during

the pre-training phase. There are only 15-30 images per class (few-

shot learning). Between the end of pre-training and transfer, the final
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linear layer of the model is replaced with a new, randomly initialized

linear layer, so it can learn a new mapping of features to these new

classes. Both sequential and i.i.d. transfer use the same set of classes

and images—the only difference is how they are presented to the

model.

Algorithm 2 Sequential Transfer Protocol (adapted from Beaulieu

et al. [3], Algorithm 2)

Require: C ← sequential trajectory of N unseen classes

Require: θ ← pre-trained weights of the network

Require: β ← learning rate hyperparameter

1: Strain = [ ]
2: for n = 1, 2, . . . , N do

3: Straj ∼ Cn {get training examples from next class}

4: Strain = Strain

⋃
Straj {add to seq. transfer train set}

5: for i = 1, 2, . . . , k do

6: θ ← θ − β∇θL(θ, S
(k)
traj) {SGD update on a single image}

7: end for

8: record L(θ, Strain) {eval current θ on classes trained so far}

9: Stest = (
⋃

1...n

Ci)− Strain {held-out from seen classes}

10: record L(θ, Stest) {eval current θ on held-out examples}

11: end for

Algorithm 3 I.I.D. Transfer Protocol

Require: Dtr,Dte ← training and held-out examples from N un-

seen classes from domain D

Require: θ ← pre-trained weights of the network

Require: β ← learning rate hyperparameter

Require: E ← number of training epochs

1: for i = 1, 2, . . . , E do

2: for i = 1, 2, . . . , N do {N is the number of batches in Dtr}

3: Bi ∼ Dtr {uniformly sample from Dtr w/o replacement}

4: θ ← θ − β∇θL(θ,Bi) {standard batch SGD update}

5: record L(θ,Dtr) {eval current θ on all classes}

6: record L(θ,Dte) {eval current θ on all held-out examples}

7: end for

8: end for

3 Results

We evaluate two significantly different datasets, both in the few-shot

regime.

Omniglot (Lake et al. [20]; handwritten characters, 1600 classes,

20 images per class) is a popular dataset for few-shot learning. Its

large number of classes allows us to create very long, challenging

trajectories for testing catastrophic forgetting under continual learn-

ing. However, due to its simple imagery we also include a dataset

consisting of more complex natural images.

Mini-ImageNet (Vinyals et al. [33]; natural images, 100 classes,

600 images per class) contains hundreds of images per class, but in

transfer we limit ourselves to 30 training images per class. This al-

lows us to test the common scenario where we are allowed a large,

diverse dataset in our pre-training, but our transfer-to dataset is of the

limited few-shot variety.

For each pre-training configuration (Meta-ASB / ASB / i.i.d. and

with/without zapping; Section 2.1.1), we report the average perfor-

mance across 30 trials for transfer/continual learning results (3 ran-

dom pre-train seeds and 10 random transfer seeds). We sweep over

three pre-training learning rates and seven transfer learning rates, and

present the performance of the top performing learning rate for each

configuration. We only evaluate the models at the end of training (i.e.

no early stopping), but the number of epochs is tuned separately for

each training method and dataset so as to avoid overfitting. See Ap-

pendix C [13] for more details on pre-training and hyperparameters.

Here we review the results on sequential transfer (Sec. 3.1) and

i.i.d. transfer (Sec. 3.2). In the supplementary materials [13] we also

show improvements due to zapping in the unfrozen sequential trans-

fer setting (Appendix H), and how zapping alone can improve train-

ing but not as much as when it is combined with our ASB method

(Appendix F).

3.1 Continual Learning

We evaluate the pre-trained variants described in 2.1.1 on the sequen-

tial transfer task as described in Section 2.1.2. To quickly recap, the

models are fine-tuned using linear probing on a few examples from

classes not seen during pre-training, the examples are shown one at

a time, and an optimization step is taken after each one.

As we see in Figure 2, our Convnet Meta-ASB model performs

similarly to the prior state of the art, ANML. In the prior work,

ANML achieved 63.8% accuracy after sequential learning of 600

classes. Our reimplementation shows a slightly higher performance

of 67% for both ANML and Meta-ASB.

However, our setup doesn’t use heuristics on where/when in the

model to apply optimization (like OML; Javed and White [18]), nor

context-dependent gating (like ANML; Beaulieu et al. [3]), and uses

fewer parameters than both prior works (see Appendix B [13]). This

begs the question: what is it about these meta-learning algorithms

that is contributing such drastic improvements?

As an answer, we see from the solid green and red lines in Fig-

ure 2, the models trained without zapping show significantly lower

performance (41.5% and 42.2% vs 67%)—even though they were

trained with meta-learning. Figure 3 shows that in all datasets, the

meta-learned models with zapping significantly outperform their

non-zapping counterparts, and outperform i.i.d. pre-training by an

additional margin.

On Omniglot, the best model without zapping achieves only

Figure 2. Sequential learning trajectories on Omniglot. Removing the
neuromodulation layers from ANML has no impact on accuracy (Meta-ASB
and ANML both achieve 67% final accuracy). Removing zapping, however,
drastically affects accuracy, even when employing meta-learning. We do not

compare directly to OML since ANML represents the state of the art.
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Figure 3. Average accuracy (and std dev error bars) for the sequential transfer learning problem, on Omniglot. Pre-Train is the final validation accuracy of
the model on the pre-training dataset. All the layers are trained during pre-train. Transfer is the accuracy on held-out instances from the transfer-to dataset at

the very end of sequential fine-tuning. Only the last layer is trained (linear probing) during transfer. Models trained with zapping produce significantly
(p < 10

−8) better transfer accuracy than their counterparts without zapping in all cases (p-values of a two-sided Mann-Whitney U test are shown above each
pair of bars). Note that the ANML model contains zapping by default and is therefore shaded in the legend.

42.6%. In fact, when applying zapping to i.i.d. pre-training, we can

even achieve better performance (56.4%) than the models which are

meta-learned but without zapping (�42%). This suggests that zap-

ping may be an efficient and effective alternative (or complement) to

meta-learning during pre-training.

On Mini-ImageNet (Figure 4), we again see a substantial differ-

ence between zapping models and their non-zapping counterparts

(except for i.i.d.+zap). While on Omniglot Meta-ASB+zap outper-

formed ASB+zap, on Mini-ImageNet we observe that ASB+zap

achieves the best accuracy, further demonstrating the effectiveness

of the ASB method as a way to emulate the challenges of transfer

during pre-training.

In Figure 3, we also include the pre-train validation accuracy: this

is the validation accuracy of the pre-trained model on the pre-training

dataset, before it was modified for transfer. We observe that ranking

Figure 4. Accuracy on classes seen so far during continual transfer
learning on Mini-ImageNet. Models are trained on 30 examples from 20 new

classes not seen during pre-training. All 30 images from a class are shown
sequentially one at a time before switching to the next class. After each

class, validation accuracy on the transfer set is measured using 100 examples
per class, from all classes seen up to that point. Models pre-trained with

ASB (with or without meta-gradients) significantly outperform i.i.d.
pre-training. ASB+zapping further outperforms plain ASB (p < 10

−10).

models by validation performance is not well correlated with ranking

of transfer performance. This lack of pre-train ↔ transfer correlation

introduces a dilemma, whereby we may not have a reliable way of

judging which models will be better for transfer until we actually try

them.

Across all three datasets, we have observed that:

1. Zapping is a significant driver of performance improvements (see

dashed vs. solid lines per treatment in Figures 2 and 4).

2. Zapping sometimes also improves normal (pre-)training perfor-

mance, although this trend is less consistent (Figure 3; more de-

tails in Appendix A, Table 1 [13]).

3. Counter-intuitively, even the Alternating Sequential and Batch

learning (ASB) sampling routine alone (without meta-gradients)

appears to provide some benefits for transfer (see ASB vs i.i.d. in

Figure 4). It may sometimes be unnecessary to use the much more

expensive and complex higher-order gradients.

3.2 Transfer Learning

Although the zapping and meta-learning methods described in Algo-

rithm 1 were originally designed to learn robust representations for

continual learning, we show that they are beneficial for transfer learn-

ing in general. Here we feature the results of standard i.i.d. transfer,

as described in Section 2.1.2. We train each model for five epochs of

unfrozen fine-tuning on mini-batches of data using the Adam opti-

mizer.

Figure 5 shows results on Omniglot and Mini-ImageNet. As in

the continual learning tests, here we also see substantial gains for

the models employing zapping over those that do not. When zap-

ping is not employed, models pre-trained with meta-gradients are

comparable to those trained simply with standard i.i.d. pre-training.

See Appendix A [13] for a detailed comparison of final values.

Despite both the zapping and ASB pre-training methods stemming

from attempts to reduce catastrophic forgetting in continual learning

settings, zapping consistently provides advantages over non-zapped

models for all pre-training configurations on standard i.i.d. trans-

fer learning. We hypothesize that these two settings—continual and

transfer learning—share key characteristics that make this possible.

Both cases may benefit from an algorithm which produces more

adaptable, robust features that can quickly learn new information

while preserving prior patterns that may help in future tasks.
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(a) Omniglot (15 training images / 5 testing images per class).

(b) Mini-ImageNet (30 training / 100 testing images per class).

Figure 5. Validation accuracy over training time on all classes in the
transfer set during fine-tuning with standard i.i.d. batches. For all datasets,

models pre-trained with zapping achieve significantly higher transfer
accuracy at end of fine-tuning. While ASB methods (green, orange) do not

dramatically improve final performance, they achieve more rapid fine-tuning
relative to i.i.d.+zap pre-training (blue).

3.3 Toward Larger Architectures

We conclude our investigation showing how zapping and ASB influ-

ence the training dynamics of a larger model, specifically the widely-

used VGG-16 architecture [31]. For this larger model, the simplicity

of Omniglot images presents a limitation; therefore we use a variant

called Omni-image [12]. The Omni-image dataset retains the task

structure of Omniglot (i.e. 20 images per class, high within-class

visual consistency) but uses natural images (instead of handwritten

characters) taken from the 1000 classes available in ImageNet-1k [6].

Omni-image was designed for few-shot and continual learning, and

we show some examples in Appendix G [13].

Figure 6 shows that models trained using zapping not only learn

faster but also achieve a better final performance. These results sug-

gest that zapping and ASB could potentially be applied to other ar-

chitectures but the advantages of ASB may depend on the specific

task and dataset structure. For instance, consider the differing results

observed with Omniglot and Omni-image (Figures 3 & 6). ASB+zap

outperformed i.i.d.+zap in the former, but was slightly worse in the

latter.

4 Discussion

Across three substantially different datasets, zapping consistently re-

sults in better representations for transferring to few-shot datasets,

leading to improvements in both a continual learning and standard

transfer setting. In many cases, we are still able to achieve the best

performance by just applying zapping and alternating optimizations

Figure 6. VGG-16 transfer on the Omni-image dataset. Zapping improves
both the speed of adaptation and the final accuracy, but ASB does not

contribute any further improvement.

of sequential learning and batch learning (ASB), without applying

any meta-gradients.

We even see some benefit from applying zapping directly to i.i.d.

training, without any sequential learning component. This raises the

question of whether we can match the performance of meta-learning

using only zapping and standard i.i.d. training. However, this setting

introduces new choices of when and where to reset neurons, since we

are learning in batches and not just one class at a time. We include ab-

lations in Appendix F [13] that examine this question; in most cases,

more zapping leads to better performance, but it is still outmatched

by ASB. This serves as a promising starting point, and better variants

of this scheme could likely be discovered.

It is reasonable to suppose that the constant injection of noise by

resetting weights during training helps to discover weights which are

not as affected by this disruption, thus building some resilience to

the shock of re-initializing layers. If it can be shown that the noise

injections reduce the co-adaptation of layers [34], thereby increas-

ing their resilience, it begs the question of how it relates to other

co-adaptation reducing mechanisms such as dropout, which is also

shown to improve continual [24] and transfer [30] learning.

The approaches explored here include pre-training by alternating

between sequential learning on a single class and batches sampled

from all pre-training classes (ASB), and resetting classifier weights

prior to training on a new class (zapping). The information accumu-

lated by repeating these simple methods across many tasks during the

pre-training process mimics the condition experienced during trans-

fer learning at test time. Episodes of sequential training are likely to

cause both catastrophic forgetting and overfitting. Models that man-

age to overcome those hurdles during training seem to develop re-

silient features, beyond what the loss function selects for. We thus

argue that the results above demonstrate a simple yet effective al-

ternative to meta-learning—one without expensive meta-gradients to

backpropagate through tasks.

5 Related work

As we have shown, the zapping operation of resetting last-layer

weights provides clear performance improvements, but what is it

about continually injecting random weights that enables this im-

proved learning?

The work of Frankle et al. [11] investigates the dynamics of learn-

ing during the early stages of network training. They show that large

gradients lead to substantial weight changes in the beginning of train-

ing, after which gradients and weight signs stabilize. Their work

suggests that these initial drastic changes are linked to weight-level

noise.
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Dohare et al. [7] also investigate the relationship between noise

and learning, showing that stochastic gradient descent is not enough

to learn continually, and that this problem can be alleviated by re-

peated injections of noise. Rather than resetting classification neu-

rons of the last layer, they choose weights to reset based on a pruning

heuristic.

The reinitialization of weights in a neural network during train-

ing is an interesting emerging topic, with many other works inves-

tigating this phenomenon in a number of different settings. Like us,

Zhao et al. [37] periodically reinitialize the last layer of a neural net-

work during training. Their focus is on ensemble learning for a single

dataset, rather than transfer learning. Li et al. [21] also periodically

reinitialize the last layer, but they do it during transfer, rather than

pre-training, which may not be possible depending on the applica-

tion. Both Alabdulmohsin et al. [1] and Zhou et al. [38] investigated

the idea of reinitialization of upper layers of the network, building

upon the work of Taha et al. [32]. They show performance improve-

ments in the few-shot regime. However, they focus on learning of a

single dataset rather than transfer learning. The same is true of Zaidi

et al. [35], who evaluate an extensive number of models to find under

which circumstances reinitialization helps. Nikishin et al. [25] apply

a similar mechanism to deep reinforcement learning. They find that

periodically resetting the final layers of the Q-value network is ben-

eficial across a broad array of settings. Ramkumar et al. [26] study

the application of resetting to a version of online learning where data

arrives in mega-batches. They employ resetting as a compromise be-

tween fine-tuning a pre-trained network and training a new network

from scratch. More generally, Lyle et al. [22] attempt to discover the

reasons for plasticity loss in neural networks, and show the resetting

of final layers to be one of a few effective methods in maintaining

plasticity.

One unique aspect of our work is the zapping + ASB routine,

where we forget one class at a time and focus on relearning that

class. Another major difference from prior investigations is that we

examine how resetting weights better prepares a pre-trained model

for transfer learning. In this regard, the concurrent work of Chen

et al. [5] examines the same topic, albeit in the domain of natural

language processing. Their method repeatedly forgets the early em-

bedding layers of a language model, rather than the later classifica-

tion layers of an image model. As with our work, they also find that

this repeated forgetting results in a meta-learning-like effect which

better prepares the model for downstream transfer. This gives us a

new lens through which to view weight resetting.

6 Conclusion & Future Work

We have revealed the importance of “zapping” and relearning for

pre-training, and its connection to meta-learning. We have shown that

zapping can lead to significant gains in transfer learning performance

across multiple settings and datasets. The concept of forgetting and

relearning has been investigated in other recent works, and our obser-

vations add to the growing evidence of the usefulness of this concept.

Aside from the benefits of zapping and relearning, our results

highlight the disruptive effect of the re-initialization of last lay-

ers in general. Resetting of the final layer is routine in the pro-

cess of fine-tuning a pre-trained model [34], but the impact of this

“transfer shock” is still not fully clear. For instance, it was only re-

cently observed that fine-tuning in this way underperforms on out-

of-distribution examples, and Kumar et al. [19] suggest to freeze

the lower layers of a network to allow the final layer to stabilize. A

deeper understanding of these mechanisms could significantly bene-

fit many areas of neural network research.

Finally, this work explores a simpler approach to meta-learning

than meta-gradient approaches. It does so by repeatedly creating

transfer shocks during pre-training, encouraging a network to learn

to adapt to them. Future work should explore other methods by which

we can approximate transfer learning during pre-training, how to in-

fluence the features learned to maximize transfer performance with

the most computational efficiency, and how the benefits of zapping

scale to larger models.
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