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Abstract: We show certain rigidity for minimizers of generalized Colding—Minicozzi entropies. The proofs are
elementary and work even in situations where the generalized entropies are not monotone along mean curva-
ture flow.
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1 Introduction

We use an expansion of the volume of a submanifold in small geodesic balls as in Ref. [1] to show some rigidity
phenomena for natural generalizations of the Colding—Minicozzi entropy [2], [3]. In particular, the arguments
work even when the quantities are not monotone along mean curvature flow.

In order to define the generalized entropies we begin by setting

KnKn(Kzt, KT) K, t>0,r>0
KH,K(t’ r) = 1.1

rZ
(Art) ™" w k=0,t>0,r>0

where n > 1, k > 0 and K,, are explicit (if complicated) functions used in Ref. [4] to study the heat kernel on
hyperbolic space. For instance,

2
;
e x

Ky(t,r) = (4rt) "2

sinh(r)

The other K, are determined recursively — see Ref. [4] for details. In general,

Hy o (t, X5 8y, Xo) = Ky o (t — 8, dist, (x, Xp))
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is the heat kernel on (M, g) with singularity at x, and time ¢, precisely when (M, g) is a simply connected space
form of constant curvature —«2. Following [2], [3], [5], let

D@0 (t, %) = K, (ty — t, dist (X, X))

and for £ C M, an n-dimensional submanifold, define the Colding—Minicozzi x-entropy of X in (M, g) to be

K —_ 0, — T,
ig[Z] = sup /Cbn”,‘f(—r, JdV = sup /@n;‘)(o, J)dv,
b b

XoEM, >0 XoEM, >0

Whenx =0and (M, g) = ([R”+k , gR) is Euclidean space, this is the usual Colding—Minicozzi entropy, A[X],
of 2 from Ref. [3]. When k = 1and (M, g) = (I]-I]”+k , g[H]) is hyperbolic space, it is the entropy in hyperbolic space,
Ay[Z], from Ref. [5].

In Ref. [2, Theorem 1], it is shown that if (M, g) is an (n + k)-dimensional Cartan-Hadamard manifold with

sec, < —Kg and 0 < k < k, then, for any mean curvature flow of closed submanifolds, ¢t € [t;, t,] » X, C M,

g
WIS > ASIZ, )

This generalizes and unifies the monotonicity properties of the entropy of Refs. [3], [5]. Monotonicity also
holds for non-closed flow under appropriate hypotheses.

It follows readily from the definition that for any n-dimensional submanifold £ C M, one has /lg [Z]1>1
— see Ref. [2, Proposition 6.3]. We seek to understand what can be said about X in the case of equality - ie.,
when X minimizes a Colding—Minicozzi x-entropy. The monotonicity of entropy can be used to answer this and
related problems - see Refs. [6]-[8]. However, the question makes perfectly good sense in arbitrary Riemannian
manifolds where monotonicity may not hold. With this in mind, we establish some rigidity properties that hold
without using monotonicity.

Theorem 1.1. Let (M, g) be a (2 + k)-dimensional Riemannian manifold with sec, < —k2. If ¥ is a proper surface
and /1:,[2] =1, then X is totally umbilic. In particular, if (M, g) is Euclidean space and x = 0, then X is an affine
two-plane.

Remark 1.2. The result in Euclidean space follows from earlier work of L. Chen [7] who was also able to obtain
the same result for all dimensions and co-dimensions and also for incomplete surfaces. However, his argument
uses a fairly sophisticated mean curvature flow construction. Alternatively, it should also be possible to obtain
rigidity for hypersurfaces that are boundaries of nice enough subsets of R™! using the Gaussian isoperimetric
inequality [9], [10].

The techniques also allow us to show rigidity for minimal hypersurfaces in Einstein manifolds with appro-
priate Einstein constant — unlike the preceding theorem this is a setting where one may not have monotonicity
of the entropy.

Theorem 1.3. Let (M, g) be an n-dimensional Riemannian manifold satisfying
Ric, = —(n — Dk’g.

If X is a proper minimal hypersurface with /lg [X] =1, then X is totally geodesic.

Finally, we obtain a result for certain closed surfaces with ig[Z] =1 without any assumptions on the
ambient manifold.

Theorem 1.4. Let (M, g) be a (2 + k)-dimensional Riemannian manifold. If X is a closed, connected, orientable
surface satisfying /12, [X] =1, then the genus of X satisfies gen(X) < 1. Moreover; if gen(X) = 1, then X is totally
geodesic.
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Remark 1.5. This result is sharp in a certain sense as can be seen by considering a totally geodesic flat two-torus
inside of a higher dimensional flat torus.

We note that similar, but stronger, rigidity results for conformal volume of submanifolds of the sphere were
observed by Bryant in Ref. [11]. One difference between Ref. [11] and the current paper is that it is possible to
arbitrarily change the mean curvature at a point with a conformal transformation — i.e., with a symmetry of the
conformal volume. For Colding—Minicozzi entropies this cannot be done with the natural symmetries. However,
flowing by mean curvature flow seems to play a similar role.

2 Small-time asymptotics of Gaussian x-densities of submanifolds

Let (M, g) be a Riemannian manifold and £ C M a proper n-dimensional submanifold. We obtain the small time
asymptotics of the (localized) pairing of the kernel d)g:",;’(—t, -) with any n-dimensional submanifold of M when
Xy € 2.

Proposition 2.1. Let (M, g) be a (n + k)-dimensional Riemannian manifold and X" C M a n-dimensional subman-
ifold. For x, € %, if BS,(X,) is proper in M and ., = B%,(x;) N X is proper in BS,(x,), then, for; any k > 0, the
following asymptotic expansion holds:

/(Dﬁ:’fj(t, )V =1— %(% AL () + %|H§(x0)|2 — RE(x)) — nln — 1)z<2) + 0((—03 ) t—0".

Zp

where here Af is the second fundamental form of £, H, = tr,A is the mean curvature vector of £ and RS is the
scalar curvature of X.

In order to prove this, we will need a pair of elementary lemmata.

Lemma 2.2. Forany R > 0 andn > 1,k > 0 integers one has

R

_ (Artyk/? _B
/Kn’o(t, p)pn+k ldp = M +0le « ,t— 0+.
0
There are also constants C = C(R,n) so, for 0 < t < z(nl_ 1)R,
[s9)
2
/ K,1(t, p) sinh" " (p)dp < Ce 1.
R
Proof. Observe that, for all k > 0,
[s+] [s]
_ _ (Art)k/2
[ aolt. 9410 = @m0 [ Koott pptiiap = STV
0 0 R
While for any R > 0 and for small times we have
[ee]
2
/ Kot p)p"*tdp = 0<e‘ir>, t— 0™
R

The first claim is an immediate consequence.
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For the second claim we observe that [4, Theorem 3.1] yields

Ky(t, p) < CA+ p+ 02" 2(1+ p)e 2V 300 (¢, p),

One readily checks that, for p > R > 0 and % > t that,

Ky(t, p) SN (p) < 'L+ p + 02" 2 (1 + p)Kyo(t, p — tn — 1)
< C"R7 D (p — tln — D))" K, (¢, p — tn — D).

where " = C” (R, n). It follows that, for such R and ¢,

o] [so]
/ K,,(t, p)sinh™ Y (p)dp < "R~ 2D / UK, o (¢, wdu
R R—t(n—1)

[o9]

1 R%
< C"R_i(n_l)/ un_lKn’O(t, u)du < C"’e_Tsz,

R

2

Here """ = C""'(R, n) and we used the first computation of the proof. O

We also need information about the leading order asymptotics of K, , near the space-time origin - the
expansions was established in Ref. [4], but we needed some more information about the relationship hbetween
certain coefficients.

Lemma 2.3. Fix k > 0. There is a constant C, > 0 so that, for 0 < t < Kk2and0 < p <k,
Ko (t, p) — (14 K*a,t + k%b,p* ) K, o(t, p)| < Cux(t + p*K,(t, p)

where a,, b, satisfy
a, + 2nb, = —%n(n =1. 2.1

Proof. With out loss of generality we may assume x = 1, as the general result immediately follows from this
case and the definition of K, .. The existence of the a,, b, and C,, follow from Ref. [4]. To conclude the proof we
observe that for, all ¢t > 0,

o]

IS" e / Ky (t, p)sinh" ' (p)dp = 1.
0

Using the second estimate of Lemma 2.2 with R = 1 and the expansion sinh"(p) = p + "T_l %+ 0(p°), we
obtain

1
ISt = /Kn’l(t, p)sinh™ Y(p)dp + O(tH), t — 0
0
1

= /Kn’o(t,p)(1+ant+bnp2+
0

n-—1

s pz)p“‘ldp +0(),t— 0*

= |§"‘1|§<1 + (an +2nb, + %n(n - 1)>t) +0(), t - 0™
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where we used that

|Sn+k+1|[R — " k |Sn+k ll[R (22)

Hence, a, + 2nb, = —%n(n -1 o

Proof of Proposition 2.1. For the fixed point x, € X, choose R > R, > 0 small enough so that Bﬁo (xp) is geodesi-

cally convex. Up to shrinking R,, we may assume that the expansion of Theorem A.1 holds for | B (x,) N Z| g for
0 < s < Ry.As 2y is properin BfR(Z), we have | Xy, finite. Hence, by the pointwise estimates on K, , that follow
from Ref. [4, Theorem 3.1], we have, for —¢ sufficiently small,

Rg 3
/ OO (—t, )V < C|Zy] ¢ 7 = O((—t)i )
zR\B;'O(xO)

where here C = C(n, ).
Hence, it is enough to prove theresultfor X, =2 n Bﬁo (xp). Using the co-area formula we have, with p(q) =

dist g(q, Xo),
Jozum-] [ sz

z“RO 0 Bg(xg)
Ry
—/K (—t,s) / 1 dvds
e Vol
0 ABE (X))

Ry

/K (- ts) |Bg(x0)n2|ds
0

=K, (—t.R))|Zg | — / 0, Ky (—t,9) BE(x) N Z|ds.
0

Appealing again to Ref. [4, Theorem 3.1], we have

Koo (=8, R) 2, | ¢ < OISl e = o((-0%).
Moreover, by direct computation we have
K, o(=t,1) = —zltKn,o(—t, 1) = =27rK, 5 0(—t,T)
and, for k¥ > 0, the generalized Millison identity (e.g., Refs. [2], [4]) give
0Ky (—t,1) = —27€7™" tic ™ Sinh(kT)K g r (=, 7).

Hence, when k¥ = 0, we may use Theorem A.1 and Lemma 2.2 to obtain

RO
/ @UN(—t, )AV = 27 / Kpyg0(—t, 95| BE(xp) N Z[ds + 0((—03)
Ty, 0

Ry

= 27|B"| / Kpygo(—t,9)(s" + As™ + 0(s"*))ds + o((—tﬁ)
0
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= ||, (IS™2! + 4z |S™SIAG-D) + o((—t)%)
=1—2n+2At + 0((—t)3 )

where we used (2.2) and the coefficient A from Theorem A.11is

= 1 1 g 2 1 g 2 _ p§
B 6(n+2)<z|A2(p)|g + 4 M)l Rz(p)).

The expansion in the ¥ = 0 case follows.
When k > 0 the same reasoning yields

Ry
/Cbﬁjﬁ(—ﬁ NV = zﬂ-e—nxth—l/ Ko (=1, 9) Sil’lh(KS)|Bsg(X0) n Z|gds
T, 0

Ry

2
= 2ﬂ|B?|Re‘"’(Zt/ Kppg (-t s)(s + ’2s3>(s" + A" + O(s™*%)))ds

R,

2
= |§"+1|Re"”‘2‘/ Ky, (-, s)(l + As* + %sz + 0(33)>s”+1ds.
0

We now apply Lemma 2.2 ignoring terms of order O((—t)g) to obtain

Ry

2
|§"+1|Re‘"K2t/ Kyyg0(=t,9) <1 + As® + K* <86 + byyp8* — an+2t> > ds
0

= e (1= ¢(201+ D4+ K@y + 2+ Dby + 12 ) ))

3
=1- t(2(n +2A+ K2<an+2 + 20+ 2, + ”TJ’Z + n))
=1-t(2n+24- %n(n —Dx?).
where the last equality uses Lemma 2.3. The result is immediate. O

3 Rigidity
We are now able to prove the main rigidity results of the paper.

Proof of Theorem 1.1. Tt follows from the Gauss equations and the hypothesis sec, < —«? that, for any x, € Z,

g
—RE(xp) > n(n — Dk + |AS > — |HE %

Hence, Proposition 2.1 and /12,[2] = 1together imply that, for any x, € Z,
1 1
0> é|A§(x0)|2 + Z|H§(x0)|2 —n(n — Dx* — RE(x))

3 3 3,
> ZIAL00) - L0 = JIAL0G)

g
z

second fundamental form of X. As x;, was arbitrary, we conclude that Ai vanishes and so X is totally umbilic.

where the last equality used that 2 was two dimensional and 1°\§ = Aé - %H g is the trace-free part of the
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To conclude the proof we observe that if the ambient space is Euclidean and x = 0, then, as X is proper,
it must be a collection of affine two-planes and round two-spheres contained in three-dimensional affine sub-
spaces. However, one can readily compute that any such two-sphere has entropy strictly larger than 1. Likewise,
if there is more than one affine two-plane the entropy is also strictly larger than 1 and so the claim follows. []

We again use the Gauss equations to obtain the rigidity of Theorem 1.3.

Proof of Theorem 1.3. The Gauss equations imply that if X is an n-dimensional hypersurface in M, then
g _ ; 82 82
—RS = —R, + 2Ric,(n,n) + |AS|* — [HE %
The Einstein condition on (M, g) gives —R, = (n + Dnx? and so
g — 2 82 g2
—R; =n(n — Dk° + |A5|" — [Hg |
Hence, the hypotheses that /12 [X] = 1 together with Proposition 2.1 implies that, for any x, € X,
0> 11aZ0) + LG - nin — Di? - RS0
=9 0 4% 0 K >0
3 3 3
= §|A§(Xo)|2 - Z|H§(Xo)|2 = £|A§(Xo)|2-
Here the last equality used that >~ was minimal. Hence, as x, was arbitrary, X is totally geodesic. O
Finally, we use the Gauss—Bonnet theorem to prove Theorem 1.4.
Proof of Theorem 1.4. As above, /12,[2] = 1and Proposition 2.1 together imply that
Toagz, Tigez _ pe
0> §|Az| + Z|H2| —Rs
for all points on X. As X is closed, we may integrate this inequality over X to obtain
REQV > L |AS)? + 1|Hg|2dV >0
= =9 p 27 ="

z z

As X is closed and orientable, the Gauss—Bonnet theorem implies

8z (1 —gen(X)) > %/|A§|2 + %|H§|2dA > 0.
z

Hence, gen(X) < 1and if gen(X) = 1, then X is totally geodesic. O
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Appendix A. Generalized Karp-Pinksy expansion

We record here an asymptotic expansion of the volume of a submanifolds inside a geodesic ball in some Rie-
mannian manifold. This generalizes a result of Karp and Pinsky [1] who treated the Euclidean case. Such an
expansion is shown for submanifolds of hyperbolic space in Ref. [12] — see also Refs. [13], [14].

Theorem A.1. Let (M, g) be a Riemannian manifold and £ C M a submanifold of dimension n. For p € X, one has
the following expansion for R > 0 small

IBE(D) N Zl, = |BIaR" + AIB]IoR" + OR™).

here | - |, denote the g-volume and |B]|g, is the Euclidean volume of the ball and

1 1 1

A= <,Ag 2+7Hg Z_Rg )’
61 +2) 2I =Dl 4| =Dy — Ry (p)

where Ag is the second fundamental form, Hy = trgA§ is the mean curvature vector and Rg is the the scalar

curvature of ¥ with its induced metric.

We will prove this by isometrically embedding M into a large Euclidean space. First, we fix notation and
suppose that M is (n + K)-dimensional and i: M — R+ = RI+HK x [Ri," is anisometric embedding withi(p) = 0
and so di,,: T,M — R X {0}. In particular, if we set M’ = i(M), then 0 € M’ and R**¥ x {0} = {y = 0} = T,\M’
Let g’ be the induced metric on M" —ie,s0ix g’ = g.

We now define two maps from a neighborhood of 0 in R™X to M. For the first, observe that, near 0, M’ is
the graph of a function u(x) = (;(x), ..., uy(x)). Hence, the first map, G,;, may be defined in a neighborhood,
U, of 0 by

Gy:U— M, x (%, u(x)).

Note the hypotheses on M’ ensure u(0) = 0 and Du(0) = 0. Hence,

n+K
1 .e
u, (%) = iz Caxx; + O(x°)
=}

where we can readily identify

ij _ R
Ca = Cniira " Ayplole; €))

where A;'fj[, is the second fundamental form of M’. Up to shrinking U, we may also define a second map based on

the exponential map of g’.
EU- M, xr expl x) = i(exp‘f,(x))

where here we think of x as an element of T,M’ and also identify it in the natural way with an element of .M
via the isomorphism di,: T,M — T,M'.

Let X' be the n-dimensional submanifold of M’ so i(X') = . Write R™K = R? x RK. Wehave 0 € =’ and, up
to rotating the R"*X factor, may assume T,X' = R" X {0} = {z,y = 0} C R +N Hence, near 0 we can express
¥’ as the graph of a function v(w, z(w) = (v;(W), ... , Ug,y(W)) and define a map Gy in a neighborhood, V, of 0

Gs: V=X, W (w,v(w)).

Note the hypotheses on ¥’ ensure v(0) = 0 and Dv(0) = 0. In particular, we have

n
1 a2
D W) = 5 Y Adww;+ o(wl),
ij=1
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where we can readily identify the coefficients as

ij_ R
Ap = €nyq - Ay lo(e; €))

where A, is the second fundamental form of X'.
Lemma A.2. With notation as above, we have the asymptotic expansion
- 1
IEG () = 1XI* + 2Q'() + 0(x[)

where Q is a homogeneous degree four polynomial of the form

N n 2 n
Q') = 2 (Z Cffxl-xk> + Z HMxx X

a=1 \ k=1 ijkl=1
where the H satisfy H = 0,1 < i < nand, fori # j,
HY + g 4 jit 4 i 4 g 4 gt = 0,

Proof. The expansion of the metric in geodesic normal coordinates yields

n
: 1
E — E3 —_ 3
&; = (E*g")\4(e;, e)=0d;— §kzl=1Ri,q.lxk>(l + 0(x)%),

where here Ry, = Riem| ,(e;, e, e, ). are the coefficients the Riemann curvature tensor at p. Likewise,

n
5= (Gp8')Ixlepe) =8;+ Y Bxx + O(Ix°)
k,l=1

where, by Ref. [1, pg. 89], we have
N

BiK =3 ciclk.
a

a=1

As E(0) = Ey;(0) and DE(0) = DG, (0) and (E*g");; — (G* gz)l.j = 0(|x|?) it readily follows that

EY Gy (X)) = 04 + Ki(X)), ..., x, + K, (X)) + O(|x|*)

where K; are cubic homogeneous polynomials. In fact, for the metrics to agree to second order, one must have,

for1<i,j<n,
n

iy 1
a]Kl(X) + alK](X) = Z (Bl]klxkxl + §Rikﬂxkxl>.
k=1
Using K;(x) = %Z;.’:lx ;0;K;(x), we obtain

|EYGyy X)) — |X)% = 22 x;Ki(x) + 0(|x|%)
i=1

n
= %Zix,.xjajxi(x) +0(x[%)
i,j=

- %..21 XX;(0;K (%) + 0;K;(x) + O(|X/°)
L]=
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n
Z (B”kl + le],>xx XX + O(x]?).
i,j,k,1=1

UJ\H

To conclude we observe
n N n 2
ijkl _ ik
Z B xx g = Z Z CyxiX;j | -
i,jk,l=1 a=1 \ j,I=1

While if we set 1
H il = §R”‘ﬂ’
then the algebraic symmetries of the Riemann curvature tensor imply that, for1 < i < n, H = HY = gt =
and, for i # j,

1
0= 3 (Rl}l] + Ryji + Ry + Ry

= gV 4 gt 4 gt o it o il 4 gt

) = {4 gt ¢ gt 4 gt

The claim follows. O
We are now ready to prove the extension of the Karp—Pinsky estimate.

Proof. Continuing with the notation from above, let £ = G }(2) C R™¥ x {0}. Up to shrinking U, this is a
submanifold in R through 0 and tangent to R™ x {0} at that point. In particular, up to shrinking V, we can
express X'’ as a graph of a function z(w) = (z,(w), ... , zx(w)) and can define a map

GEH: V- Z/I, W (W, Z(W))

Note the hypotheses on ¥’ ensure v(0) = 0 and Dv(0) = 0. In particular, we have

z, (W) = ZA”ww +o(lw®),
1} =1

where we can readily identify these terms with

AU —
A _en+a' 2//|0(ep ])

As Gyr = Gy 0 Gy, the identification of T,M and ToM’ implies

Ag - Al] =e 2/' (ely ]) - g(ea+n’Ag| (el’ ])) 1 < « < K

a+n’

where here Ag is the second fundamental form of X in (M, g) and Ag, the projection of the second fundamental
form of ¥’ onto TM’. Likewise,

ij ij N
A =Cl=e k- Al lo(e e),1<a <N,

where here Ag, is the projection of the second fundamental form of X’ onto NM'.
Arguing as in Ref. [1], there is a homogeneous quartic polynomial Q so

G (W) = [ + Q(w)+0(|W|5)

where here

n K n K
Qwy = Y Y A¥Ajwawwao, = Y Y AXALww ww,.

i.jkl=1a=1 i,jkl=1a=1
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By Lemma A.2, if r(q) is the geodesic distance in M’ between ¢ and 0, then

Gy @))?* = |x|* + Q(x)+0(|x|)

Combining the two expansions yields,

Gy w))* = |w|* + %Q’((W, 0)) + iQ(W) + 0(jw]).
In particular, when R > 0 is sufficiently small there is a function k so that
GBS (p) = (w:h(w) <7}
where here h satisfies h(0) = 0, and, for w # 0, one has
hw) =[] = < Q'(G¥, )W’ = SQUIWI® + O(1wl*

where w = |w|~lw.
Following the argument of Karp—Pinksy directly, one obtains, for R small,

|Z N BE(D)|, = B |oR" + A|B} |gR" + O(R™?),
where the subleading coefficient is given as

N+K n
1 |IBflr X 1
2|B" n+zzz|lIz /Q,_Z/Q

a=1 i,k=1 St pei

It is shown in Ref. [1, pg. 90] that

|B"|R SOV L)
; )
/Q_n+2 2 AR+ D Al
i=1

o a=1| ij=1

The exact same computation and the properties of the H/¥ also imply that

1B's < [ < i RN
/ — 1 i
/Q—n+2 2 1P +( Y
Fa a=1| ij=1 i=1
2
— |B?|R < 2 A S Al
= Zl w2 ) |
a=1\ ij=1 i=1
Finally, using the identification of the AZ with the geometric data we have,
N+K n
Z 2 |Alk|2 |AR,(0)|2
a=1 i,k=1

Likewise, using G7,g’ = gg + O(x[*), yields

K

Z |A1]|2 |Ag(p)|2 and Z (ZAH> |H§(p)|2
= a=1 1

a=1i,j=1 =

and
N

Z |Aa+K| - (0)|2 and Z (ZAO,H() = (0)|2

a=11,j=1 =

J. Bernstein: Rigidity properties of Colding—Minicozzi entropies
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Itis clear that ati(p) =0
AL, ()2 = |AS(p)|* + |AY, (0)[* and [HE, (0)]* =

The Gauss equations imply

—R§(p) = =R, (0) = |AT,(0))* —

Hence, the coefficient A can be expressed as

[HE(p)I” + [HY,(0)[
HE, (0)].

(1P - Z1AY P = ZHY P — 2 jA%)? - S IHE?)

1
AL + |2——|H - JIASP - JIHE?)

_ 1
T 2n+2)
2(n+2)(
1
= 55 (31 2,|2——|H,|2 LIAZE+ L HEP)
g 24 82
= gz (RE+ A+ JIHE),

This concludes the proof.
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