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Abstract: We show certain rigidity for minimizers of generalized Colding–Minicozzi entropies. The proofs are

elementary and work even in situations where the generalized entropies are not monotone along mean curva-

ture flow.
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1 Introduction

We use an expansion of the volume of a submanifold in small geodesic balls as in Ref. [1] to show some rigidity

phenomena for natural generalizations of the Colding–Minicozzi entropy [2], [3]. In particular, the arguments

work even when the quantities are not monotone along mean curvature flow.

In order to define the generalized entropies we begin by setting

Kn,𝜅 (t, r) =
⎧⎪⎨⎪⎩
𝜅
nKn(𝜅

2t, 𝜅r) 𝜅, t > 0, r ≥ 0

(4𝜋t)−n∕2e−
r2

4t 𝜅 = 0, t > 0, r ≥ 0
(1.1)

where n ≥ 1, 𝜅 ≥ 0 and Kn are explicit (if complicated) functions used in Ref. [4] to study the heat kernel on

hyperbolic space. For instance,

K3(t, r) = (4𝜋t)−
3

2
r

sinh(r)
e−t−

r2

4t .

The other Kn are determined recursively – see Ref. [4] for details. In general,

Hn,𝜅 (t, x; t0, x0) = Kn,𝜅 (t − t0, distg(x, x0))
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is the heat kernel on (M, g) with singularity at x0 and time t0 precisely when (M, g) is a simply connected space

form of constant curvature −𝜅2. Following [2], [3], [5], let

Φt0,x0
n,𝜅

(t, x) = Kn,𝜅 (t0 − t, distg(x, x0))

and for Σ ⊂ M, an n-dimensional submanifold, define the Colding–Minicozzi 𝜅-entropy of Σ in (M, g) to be

𝜆
𝜅

g
[Σ] = sup

x0∈M,𝜏>0∫
Σ

Φ0,x0
n,𝜅

(−𝜏, ⋅)dV = sup
x0∈M,𝜏>0∫

Σ

Φ𝜏,x0
n,𝜅

(0, ⋅)dV.

When 𝜅 = 0 and (M, g) =
(
ℝn+k, gℝ

)
is Euclidean space, this is the usual Colding–Minicozzi entropy, 𝜆[Σ],

ofΣ from Ref. [3]. When 𝜅 = 1 and (M, g) =
(
ℍn+k, gℍ

)
is hyperbolic space, it is the entropy in hyperbolic space,

𝜆ℍ[Σ], from Ref. [5].

In Ref. [2, Theorem 1], it is shown that if (M, g) is an (n+ k)-dimensional Cartan–Hadamard manifold with

secg ≤ −𝜅2
0
and 0 ≤ 𝜅 ≤ 𝜅0, then, for any mean curvature flow of closed submanifolds, t ∈ [t1, t2] ↦ Σt ⊂ M,

𝜆
𝜅

g
[Σt1

] ≥ 𝜆
𝜅

g
[Σt2

].

This generalizes and unifies the monotonicity properties of the entropy of Refs. [3], [5]. Monotonicity also

holds for non-closed flow under appropriate hypotheses.

It follows readily from the definition that for any n-dimensional submanifold Σ ⊂ M, one has 𝜆𝜅
g
[Σ] ≥ 1

– see Ref. [2, Proposition 6.3]. We seek to understand what can be said about Σ in the case of equality – i.e.,

when Σminimizes a Colding–Minicozzi 𝜅-entropy. The monotonicity of entropy can be used to answer this and

related problems – see Refs. [6]–[8]. However, the questionmakes perfectly good sense in arbitrary Riemannian

manifolds where monotonicity may not hold. With this in mind, we establish some rigidity properties that hold

without using monotonicity.

Theorem 1.1. Let (M, g) be a (2+ k)-dimensional Riemannian manifold with secg ≤ −𝜅2. If Σ is a proper surface

and 𝜆𝜅
g
[Σ] = 1, then Σ is totally umbilic. In particular, if (M, g) is Euclidean space and 𝜅 = 0, then Σ is an affine

two-plane.

Remark 1.2. The result in Euclidean space follows from earlier work of L. Chen [7] who was also able to obtain

the same result for all dimensions and co-dimensions and also for incomplete surfaces. However, his argument

uses a fairly sophisticated mean curvature flow construction. Alternatively, it should also be possible to obtain

rigidity for hypersurfaces that are boundaries of nice enough subsets of ℝn+1 using the Gaussian isoperimetric

inequality [9], [10].

The techniques also allow us to show rigidity for minimal hypersurfaces in Einstein manifolds with appro-

priate Einstein constant – unlike the preceding theorem this is a setting where one may not have monotonicity

of the entropy.

Theorem 1.3. Let (M, g) be an n-dimensional Riemannian manifold satisfying

Ricg = −(n− 1)𝜅2g.

If Σ is a proper minimal hypersurface with 𝜆𝜅
g
[Σ] = 1, then Σ is totally geodesic.

Finally, we obtain a result for certain closed surfaces with 𝜆0
g
[Σ] = 1 without any assumptions on the

ambient manifold.

Theorem 1.4. Let (M, g) be a (2+ k)-dimensional Riemannian manifold. If Σ is a closed, connected, orientable

surface satisfying 𝜆0
g
[Σ] = 1, then the genus of Σ satisfies gen(Σ) ≤ 1. Moreover, if gen(Σ) = 1, then Σ is totally

geodesic.
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Remark 1.5. This result is sharp in a certain sense as can be seen by considering a totally geodesic flat two-torus

inside of a higher dimensional flat torus.

We note that similar, but stronger, rigidity results for conformal volume of submanifolds of the sphere were

observed by Bryant in Ref. [11]. One difference between Ref. [11] and the current paper is that it is possible to

arbitrarily change themean curvature at a point with a conformal transformation – i.e., with a symmetry of the

conformal volume. For Colding–Minicozzi entropies this cannot be donewith the natural symmetries. However,

flowing by mean curvature flow seems to play a similar role.

2 Small-time asymptotics of Gaussian 𝜿-densities of submanifolds

Let (M, g) be a Riemannianmanifold andΣ ⊂ M a proper n-dimensional submanifold. We obtain the small time

asymptotics of the (localized) pairing of the kernelΦ0,x0
n,𝜅

(−t, ⋅) with any n-dimensional submanifold ofM when

x0 ∈ Σ.

Proposition 2.1. Let (M, g) be a (n+ k)-dimensional Riemannian manifold andΣn
⊂ M a n-dimensional subman-

ifold. For x0 ∈ Σ, if g

2R
(x0) is proper in M and Σ2R = g

2R
(x0) ∩ Σ is proper in g

2R
(x0), then, for, any 𝜅 ≥ 0, the

following asymptotic expansion holds:

∫
ΣR

Φ0,x0
n,𝜅

(t, ⋅)dV = 1− t

3

(
1

2
|Ag

Σ(x0)|2 + 1

4
|Hg

Σ(x0)|2 − R
g

Σ(x0)− n(n− 1)𝜅2
)
+ O

(
(−t)

3

2

)
, t→ 0−.

where here A
g

Σ is the second fundamental form of Σ, Hg

Σ = trgA
g

Σ is the mean curvature vector of Σ and R
g

Σ is the

scalar curvature of Σ.

In order to prove this, we will need a pair of elementary lemmata.

Lemma 2.2. For any R > 0 and n ≥ 1, k ≥ 0 integers one has

R

∫
0

Kn,0(t, 𝜌)𝜌
n+k−1d𝜌 = (4𝜋t)k∕2|𝕊n+k−1|ℝ + O

(
e−

R2

4t

)
, t→ 0+.

There are also constants C = C(R, n) so, for 0 < t ≤ 1

2(n−1)R,

∞

∫
R

Kn,1(t, 𝜌) sinh
n−1(𝜌)d𝜌 ≤ Ce−

R2

16t .

Proof. Observe that, for all k ≥ 0,

∞

∫
0

Kn,0(t, 𝜌)𝜌
n+k−1d𝜌 = (4𝜋t)k∕2

∞

∫
0

Kn+k,0(t, 𝜌)𝜌
n+k−1d𝜌 = (4𝜋t)k∕2|𝕊n+k−1|ℝ .

While for any R > 0 and for small times we have

∞

∫
R

Kn,0(t, 𝜌)𝜌
n+k−1d𝜌 = O

(
e−

R2

4t

)
, t→ 0+.

The first claim is an immediate consequence.
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For the second claim we observe that [4, Theorem 3.1] yields

Kn,1(t, 𝜌) ≤ C(1+ 𝜌+ t)
1

2
n− 3

2 (1+ 𝜌)e−
1

2
(n−1)2 t− 1

2
(n−1)𝜌Kn,0(t, 𝜌).

One readily checks that, for 𝜌 ≥ R > 0 and
R

2(n−1) ≥ t that,

Kn,1(t, 𝜌) sinh
n−1(𝜌) ≤ C′(1+ 𝜌+ t)

1

2
n− 3

2 (1+ 𝜌)Kn,0(t, 𝜌− t(n− 1))

≤ C′′R−
1

2
(n−1)(𝜌− t(n− 1))n−1Kn,0(t, 𝜌− t(n− 1)).

where C′′ = C′′(R, n). It follows that, for such R and t,

∞

∫
R

Kn,1(t, 𝜌) sinh
n−1(𝜌)d𝜌 ≤ C′′R−

1

2
(n−1)

∞

∫
R−t(n−1)

un−1Kn,0(t, u)du

≤ C′′R−
1

2
(n−1)

∞

∫
R

2

un−1Kn,0(t, u)du ≤ C′′′e−
R2

16t .

Here C′′′ = C′′′(R, n) and we used the first computation of the proof. □

We also need information about the leading order asymptotics of Kn,𝜅 near the space-time origin – the

expansions was established in Ref. [4], but we needed some more information about the relationship between

certain coefficients.

Lemma 2.3. Fix 𝜅 > 0. There is a constant Cn > 0 so that, for 0 ≤ t ≤ 𝜅−2 and 0 ≤ 𝜌 ≤ 𝜅−1,

|Kn,𝜅 (t, 𝜌)− (
1+ 𝜅

2ant + 𝜅
2bn𝜌

2
)
Kn,0(t, 𝜌)| ≤ Cn𝜅

4(t + 𝜌
2)2Kn,0(t, 𝜌)

where an, bn satisfy

an + 2nbn = − 1

3
n(n− 1). (2.1)

Proof. With out loss of generality we may assume 𝜅 = 1, as the general result immediately follows from this

case and the definition of Kn,𝜅 . The existence of the an, bn and Cn follow from Ref. [4]. To conclude the proof we

observe that for, all t > 0,

|𝕊n−1|ℝ
∞

∫
0

Kn,1(t, 𝜌) sinh
n−1(𝜌)d𝜌 = 1.

Using the second estimate of Lemma 2.2 with R = 1 and the expansion sinhn−1(𝜌) = 𝜌+ n−1
6
𝜌3 + O(𝜌5), we

obtain

|𝕊n−1|−1ℝ =
1

∫
0

Kn,1(t, 𝜌) sinh
n−1(𝜌)d𝜌+ O(t2), t→ 0+

=
1

∫
0

Kn,0(t, 𝜌)
(
1+ ant + bn𝜌

2 + n− 1

6
𝜌
2
)
𝜌
n−1d𝜌+ O(t2), t→ 0+

= |𝕊n−1|−1ℝ
(
1+

(
an + 2nbn +

1

3
n(n− 1)

)
t
)
+ O(t2), t→ 0+.
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where we used that |𝕊n+k+1|ℝ = 2𝜋

n+ k
|𝕊n+k−1|ℝ. (2.2)

Hence, an + 2nbn = − 1

3
n(n− 1). □

Proof of Proposition 2.1. For the fixed point x0 ∈ Σ, choose R ≥ R0 > 0 small enough so that g

R0
(x0) is geodesi-

cally convex. Up to shrinking R0, we may assume that the expansion of Theorem A.1 holds for |g
s (x0) ∩ Σ|g for

0 < s < R0. AsΣR is proper ing

2R
(Σ), we have |ΣR|g finite. Hence, by the pointwise estimates on Kn,𝜅 that follow

from Ref. [4, Theorem 3.1], we have, for −t sufficiently small,

∫
ΣR∖g

R0
(x0)

Φ0,x0
n,𝜅

(−t, ⋅)dV ≤ C|ΣR|ge− R2
0

−16t = O
(
(−t)

3

2

)
.

where here C = C(n, 𝜅).

Hence, it is enough to prove the result forΣR0
= Σ ∩ g

R0
(x0). Using the co-area formulawe have, with 𝜌(q) =

distg(q, x0),

∫
ΣR0

Φ0,x0
n,𝜅

(t, ⋅)dV =
R0

∫
0

∫
𝜕g

s (x0)

Φ0,x0
n,𝜅

(t, ⋅)
1|∇Σ𝜌|dVds

=
R0

∫
0

Kn,𝜅 (−t, s) ∫
𝜕g

s (x0)

1|∇Σ𝜌|dVds

=
R0

∫
0

Kn,𝜅 (−t, s)
d

ds
|g

s (x0) ∩ Σ|ds

= Kn,𝜅 (−t,R0)|ΣR0
|g −

∞

∫
0

𝜕rKn,𝜅 (−t, s)|g
s (x0) ∩ Σ|ds.

Appealing again to Ref. [4, Theorem 3.1], we have

Kn,𝜅 (−t,R0)|ΣR0
|g ≤ C|ΣR|ge− R2

0
−16t = O

(
(−t)

3

2

)
.

Moreover, by direct computation we have

𝜕rKn,0(−t, r) = − r

2t
Kn,0(−t, r) = −2𝜋rKn+2,0(−t, r)

and, for 𝜅 > 0, the generalized Millison identity (e.g., Refs. [2], [4]) give

𝜕rKn,𝜅 (−t, r) = −2𝜋e−n𝜅2 t
𝜅
−1 sinh(𝜅r)Kn+2,𝜅r(−t, r).

Hence, when 𝜅 = 0, we may use Theorem A.1 and Lemma 2.2 to obtain

∫
ΣR0

Φ0,x0
n,𝜅

(−t, ⋅)dV = 2𝜋

R0

∫
0

Kn+2,0(−t, s)s|g
s (x0) ∩ Σ|ds+ O

(
(−t)

3

2

)

= 2𝜋|Bn
1
|ℝ

R0

∫
0

Kn+2,0(−t, s)
(
sn + Asn+1 + O(sn+2)

)
ds+ O

(
(−t)

3

2

)
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= |𝕊n+1|ℝ(|𝕊n+1|−1ℝ + 4𝜋|𝕊n+3|−1ℝ A(−t)
)
+ O

(
(−t)

3

2

)

= 1− 2(n+ 2)At + O
(
(−t)

3

2

)
.

where we used (2.2) and the coefficient A from Theorem A.1 is

A = 1

6(n+ 2)

(
1

2
|Ag

Σ(p)|2g + 1

4
|Hg

Σ(p)|2g − R
g

Σ(p)
)
.

The expansion in the 𝜅 = 0 case follows.

When 𝜅 > 0 the same reasoning yields

∫
ΣR0

Φ0,x0
n,𝜅

(−t, ⋅)dV = 2𝜋e−n𝜅
2t
𝜅
−1

R0

∫
0

Kn+2,𝜅 (−t, s) sinh(𝜅s)|g
s (x0) ∩ Σ|gds

= 2𝜋|Bn
1
|ℝe−n𝜅2t

R0

∫
0

Kn+2,𝜅 (−t, s)
(
s+ 𝜅2

6
s3
)
(sn + Asn+2 + O(sn+3)))ds

= |𝕊n+1|ℝe−n𝜅2t

R0

∫
0

Kn+2,𝜅 (−t, s)
(
1+ As2 + 𝜅2

6
s2 + O(s3)

)
sn+1ds.

We now apply Lemma 2.2 ignoring terms of order O((−t)
3

2 ) to obtain

|𝕊n+1|ℝe−n𝜅2t

R0

∫
0

Kn+2,0(−t, s)
(
1+ As2 + 𝜅

2

(
s2

6
+ bn+2s

2 − an+2t

))
ds

= e−n𝜅
2t
(
1− t

(
2(n+ 2)A+ 𝜅

2
(
an+2 + 2(n+ 2)bn+2 +

n+ 2

3

)))

= 1− t
(
2(n+ 2)A+ 𝜅

2
(
an+2 + 2(n+ 2)bn+2 +

n+ 2

3
+ n

))

= 1− t
(
2(n+ 2)A− 1

3
n(n− 1)𝜅2

)
.

where the last equality uses Lemma 2.3. The result is immediate. □

3 Rigidity

We are now able to prove the main rigidity results of the paper.

Proof of Theorem 1.1. It follows from the Gauss equations and the hypothesis secg ≤ −𝜅2 that, for any x0 ∈ Σ,

−RgΣ(x0) ≥ n(n− 1)𝜅2 + |Ag

Σ|2 − |Hg

Σ|2.
Hence, Proposition 2.1 and 𝜆𝜅

g
[Σ] = 1 together imply that, for any x0 ∈ Σ,

0 ≥ 1

2
|Ag

Σ(x0)|2 + 1

4
|Hg

Σ(x0)|2 − n(n− 1)𝜅2 − R
g

Σ(x0)

≥ 3

2
|Ag

Σ(x0)|2 − 3

4
|Hg

Σ(x0)|2 = 3

2
|Åg

Σ(x0)|2.
where the last equality used that Σ was two dimensional and Å

g

Σ = A
g

Σ −
1

2
H
g

ΣgΣ is the trace-free part of the

second fundamental form of Σ. As x0 was arbitrary, we conclude that Å
g

Σ vanishes and so Σ is totally umbilic.
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To conclude the proof we observe that if the ambient space is Euclidean and 𝜅 = 0, then, as Σ is proper,

it must be a collection of affine two-planes and round two-spheres contained in three-dimensional affine sub-

spaces. However, one can readily compute that any such two-sphere has entropy strictly larger than 1. Likewise,

if there is more than one affine two-plane the entropy is also strictly larger than 1 and so the claim follows. □

We again use the Gauss equations to obtain the rigidity of Theorem 1.3.

Proof of Theorem 1.3. The Gauss equations imply that if Σ is an n-dimensional hypersurface inM, then

−RgΣ = −Rg + 2Ricg(n,n)+ |Ag

Σ|2 − |Hg

Σ|2.
The Einstein condition on (M, g) gives −Rg = (n+ 1)n𝜅2 and so

−RgΣ = n(n− 1)𝜅2 + |Ag

Σ|2 − |Hg

Σ|2.
Hence, the hypotheses that 𝜆𝜅

g
[Σ] = 1 together with Proposition 2.1 implies that, for any x0 ∈ Σ,

0 ≥ 1

2
|Ag

Σ(x0)|2 + 1

4
|Hg

Σ(x0)|2 − n(n− 1)𝜅2 − R
g

Σ(x0)

= 3

2
|Ag

Σ(x0)|2 − 3

4
|Hg

Σ(x0)|2 = 3

2
|Ag

Σ(x0)|2.
Here the last equality used that Σ was minimal. Hence, as x0 was arbitrary, Σ is totally geodesic. □

Finally, we use the Gauss–Bonnet theorem to prove Theorem 1.4.

Proof of Theorem 1.4. As above, 𝜆0
g
[Σ] = 1 and Proposition 2.1 together imply that

0 ≥ 1

2
|Ag

Σ|2 + 1

4
|Hg

Σ|2 − R
g

Σ

for all points on Σ. As Σ is closed, we may integrate this inequality over Σ to obtain

∫
Σ

R
g

ΣdV ≥ 1

2∫
Σ

|Ag

Σ|2 + 1

2
|Hg

Σ|2dV ≥ 0.

As Σ is closed and orientable, the Gauss–Bonnet theorem implies

8𝜋(1− gen(Σ)) ≥ 1

2∫
Σ

|Ag

Σ|2 + 1

2
|Hg

Σ|2dA ≥ 0.

Hence, gen(Σ) ≤ 1 and if gen(Σ) = 1, then Σ is totally geodesic. □
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Appendix A. Generalized Karp–Pinksy expansion

We record here an asymptotic expansion of the volume of a submanifolds inside a geodesic ball in some Rie-

mannian manifold. This generalizes a result of Karp and Pinsky [1] who treated the Euclidean case. Such an

expansion is shown for submanifolds of hyperbolic space in Ref. [12] – see also Refs. [13], [14].

Theorem A.1. Let (M, g) be a Riemannian manifold andΣ ⊂ M a submanifold of dimension n. For p ∈ Σ, one has
the following expansion for R > 0 small

|g

R
(p) ∩ Σ|g = |Bn

1
|ℝRn + A|Bn

1
|ℝRn+2 + O(Rn+3),

here | ⋅ |g denote the g-volume and |Bn1 |ℝ is the Euclidean volume of the ball and

A = 1

6(n+ 2)

(
1

2
|Ag

Σ(p)|2g + 1

4
|Hg

Σ(p)|2g − R
g

Σ(p)
)
,

where A
g

Σ is the second fundamental form, HΣ = trgA
g

Σ is the mean curvature vector and R
g

Σ is the the scalar

curvature of Σ with its induced metric.

We will prove this by isometrically embedding M into a large Euclidean space. First, we fix notation and

suppose thatM is (n+ K)-dimensional and i:M → ℝn+K+N = ℝn+K
x

×ℝN
y
is an isometric embeddingwith i(p) = 0

and so di p: TpM → ℝn
x
× {0}. In particular, if we setM′ = i(M), then 0 ∈ M′ andℝn+K × {0} = {y = 0} = T

0
M′

Let g′ be the induced metric onM′ – i.e., so i × g′ = g.

We now define two maps from a neighborhood of 0 in ℝn+K toM′. For the first, observe that, near 0,M′ is

the graph of a function u(x) = (u1(x),… , uN (x)). Hence, the first map, GM′ , may be defined in a neighborhood,

U , of 0 by

GM′ :U →M′
,x ↦ (x,u(x)).

Note the hypotheses onM′ ensure u(0) = 0 and Du(0) = 0. Hence,

u𝛼(x) =
1

2

n+K∑
i, j=1

C
i j
𝛼 xix j + O(|x|3)

where we can readily identify

C
i j
𝛼 = en+k+𝛼 ⋅ A

ℝ
M′ |0(ei, e j)

where Aℝ
M′ is the second fundamental form ofM′. Up to shrinking U , we may also define a second map based on

the exponential map of g′.

E:U →M′
,x ↦ exp

g′

0
(x) = i(exp

g
p(x))

where here we think of x as an element of T
0
M′ and also identify it in the natural way with an element of T pM

via the isomorphism dip: T pM → T
0
M′.

LetΣ′ be then-dimensional submanifold ofM′ so i(Σ′) = Σ.Writeℝn+K = ℝn
w
×ℝK

z
.Wehave0 ∈ Σ′ and, up

to rotating theℝn+K factor, may assume T
0
Σ′ = ℝn × {0} = {z, y = 0} ⊂ ℝn+K+N . Hence, near 0we can express

Σ′ as the graph of a function v(w, z(w) = (𝑣1(w),… , 𝑣K+N (w)) and define a map GΣ′ in a neighborhood, V , of 0

GΣ′ :V → Σ′
,w ↦ (w, v(w)).

Note the hypotheses on Σ′ ensure v(0) = 0 and Dv(0) = 0. In particular, we have

𝑣𝛼(w) =
1

2

n∑
i, j=1

A
i j
𝛼𝑤i𝑤 j + O(|w|3),
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where we can readily identify the coefficients as

A
i j
𝛼 = en+𝛼 ⋅ A

ℝ
Σ′ |0(ei, e j)

where Aℝ
Σ′ is the second fundamental form of Σ′.

Lemma A.2. With notation as above, we have the asymptotic expansion

|E(G−1
M′ (x))|2 = |x|2 + 1

3
Q′(x)+ O(|x|5)

where Q is a homogeneous degree four polynomial of the form

Q′(x) =
N∑
𝛼=1

(
n∑

i,k=1
Cik
𝛼
xixk

)2

+
n∑

i, j,k,l=1
Hijklxix jxlxk

where the Hijkl satisfy Hiiii = 0, 1 ≤ i ≤ n and, for i ≠ j,

Hijij + Hijji + Hjiji + Hjiij + Hiijj + Hjjii = 0.

Proof. The expansion of the metric in geodesic normal coordinates yields

gE
i j
= (E∗g′)|

x
(ei, e j) = 𝛿i j −

1

3

n∑
k,l=1

Rikjlxkxl + O(|x|3),
where here Rijkl = Riem|p(ei, e j, ek, el). are the coefficients the Riemann curvature tensor at p. Likewise,

gG
i j
=

(
G∗
M′ g

′)|
x
(ei, e j) = 𝛿i j +

n∑
k,l=1

Bijklxkxl + O(|x|3)
where, by Ref. [1, pg. 89], we have

Bijkl =
N∑
𝛼=1

Cil
𝛼
C
jk
𝛼 .

As E(0) = EM′ (0) and DE(0) = DGM′ (0) and (E∗g′)i j −
(
G∗gΣ

)
i j
= O(|x|2) it readily follows that

E−1(GM′ (x)) = (x1 + K1(x)),… , xn + Kn(x))+ O(|x|4)
where Ki are cubic homogeneous polynomials. In fact, for the metrics to agree to second order, one must have,

for 1 ≤ i, j ≤ n,

𝜕 jKi(x)+ 𝜕iK j(x) =
n∑

k,l=1

(
Bi jklxkxl +

1

3
Rikjlxkxl

)
.

Using Ki(x) = 1

3

∑n

j=1x j𝜕 jKi(x), we obtain

|E−1(GM′ (x))|2 − |x|2 = 2

n∑
i=1

xiKi(x)+ O(|x|5)

= 2

3

n∑
i, j=1

xix j𝜕 jKi(x)+ O(|x|5)

= 1

3

n∑
i, j=1

xix j(𝜕iK j(x)+ 𝜕 jKi(x))+ O(|x|5)
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= 1

3

n∑
i, j,k,l=1

(
Bijkl + 1

3
Rikjl

)
xix jxkxl + O(|x|5).

To conclude we observe
n∑

i, j,k,l=1
Bijklxix jxkxl =

N∑
𝛼=1

(
n∑

j,l=1
Cik
𝛼
xix j

)2

.

While if we set

Hikjl = 1

3
Rikjl,

then the algebraic symmetries of the Riemann curvature tensor imply that, for 1 ≤ i ≤ n, Hiiii = Hiijj = Hjjii = 0

and, for i ≠ j,

0 = 1

3

(
Rijij + Rijji + Rjiij + Rjiji

)
= Hijij + Hijji + Hjiij + Hjiji

= Hijij + Hijji + Hjiji + Hjiij + Hiijj + Hjjii.

The claim follows. □

We are now ready to prove the extension of the Karp–Pinsky estimate.

Proof. Continuing with the notation from above, let Σ′′ = G−1
M′ (Σ′) ⊂ ℝn+K × {0}. Up to shrinking U , this is a

submanifold in ℝn+K through 0 and tangent to ℝn × {0} at that point. In particular, up to shrinking V , we can
express Σ′′ as a graph of a function z(w) = (z1(w),… , zK (w)) and can define a map

GΣ′′ :V → Σ′′
,w ↦ (w, z(w)).

Note the hypotheses on Σ′ ensure v(0) = 0 and Dv(0) = 0. In particular, we have

z𝛼(w) =
1

2

n∑
i, j=1

Â
i j
𝛼𝑤i𝑤 j + O(|w|3),

where we can readily identify these terms with

Â
i j
𝛼 = en+𝛼 ⋅ A

ℝ
Σ′′ |0(ei, e j).

As GΣ′ = GM′ ⚬GΣ′′, the identification of T pM and T
0
M′ implies

A
i j
𝛼 = Â

i j
𝛼 = e𝛼+n ⋅ A

T

Σ′ |0(ei, e j) = g(e𝛼+n,A
g

Σ| p(ei, e j)), 1 ≤ 𝛼 ≤ K,

where here A
g

Σ is the second fundamental form of Σ in (M, g) and AT

Σ′ the projection of the second fundamental

form of Σ′ onto TM′. Likewise,

A
i j

𝛼+K = C
i j
𝛼 = e𝛼+n+K ⋅ AN

Σ′ |0(ei, e j), 1 ≤ 𝛼 ≤ N,

where here AN

Σ′ is the projection of the second fundamental form of Σ′ onto NM′.

Arguing as in Ref. [1], there is a homogeneous quartic polynomial Q so

|GΣ′′ (w)|2 = |w|2 + 1

4
Q(w)+ O(|w|5)

where here

Q(w) =
n∑

i, j,k,l=1

K∑
𝛼=1

Âik
𝛼
Â
jl
𝛼𝑤i𝑤 j𝑤k𝑤l =

n∑
i, j,k,l=1

K∑
𝛼=1

Aik
𝛼
A
jl
𝛼𝑤i𝑤 j𝑤k𝑤l.
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By Lemma A.2, if r(q) is the geodesic distance inM′ between q and 0, then

(r(GM′ (x)))2 = |x|2 + 1

3
Q′(x)+ O(|x|5).

Combining the two expansions yields,

(r(GΣ′ (w)))2 = |w|2 + 1

3
Q′((w, 0))+ 1

4
Q(w)+ O(|w|5).

In particular, when R > 0 is sufficiently small there is a function h so that

G−1
Σ′ (g′

R
(p)) = {w: h(w) ≤ r}

where here h satisfies h(0) = 0, and, for w ≠ 0, one has

h(w) = |w|− 1

6
Q′((ŵ, 0))|w|3 − 1

8
Q(ŵ)|w|3 + O(|w|4)

where ŵ = |w|−1w.
Following the argument of Karp–Pinksy directly, one obtains, for R small,

|Σ ∩ g

R
(p)|g = |Bn

1
|ℝRn + A|Bn

1
|ℝRn+2 + O(Rn+3),

where the subleading coefficient is given as

A = 1

2|Bn
1
|ℝ

⎛⎜⎜⎝
|Bn

1
|ℝ

n+ 2

N+K∑
𝛼=1

n∑
i,k=1

|Aik
𝛼
|2 − 1

3 ∫
𝕊n−1

Q′ − 1

4 ∫
𝕊n−1

Q

⎞⎟⎟⎠.

It is shown in Ref. [1, pg. 90] that

∫
𝕊n−1

Q = |Bn
1
|ℝ

n+ 2

K∑
𝛼=1

⎛⎜⎜⎝2
n∑

i, j=1
|Ai j𝛼 |2 +

(
n∑
i=1

Aii
𝛼

)2⎞⎟⎟⎠.

The exact same computation and the properties of the Hijkl also imply that

∫
𝕊n−1

Q′ = |Bn
1
|ℝ

n+ 2

N∑
𝛼=1

⎛⎜⎜⎝2
n∑

i, j=1
|Ci j𝛼 |2 +

(
n∑
i=1

Cii
𝛼

)2⎞⎟⎟⎠
= |Bn

1
|ℝ

n+ 2

N∑
𝛼=1

⎛⎜⎜⎝2
n∑

i, j=1
|Ai j

𝛼+K |2 +
(

n∑
i=1

Aii
𝛼+K

)2⎞⎟⎟⎠.

Finally, using the identification of the A
i j
𝛼 with the geometric data we have,

N+K∑
𝛼=1

n∑
i,k=1

|Aik
𝛼
|2 = |Aℝ

Σ′ (0)|2

Likewise, using G∗
M′ g

′ = gℝ + O(|x|2), yields
K∑
𝛼=1

n∑
i, j=1

|Ai j𝛼 |2 = |Ag

Σ(p)|2 and
K∑
𝛼=1

(
n∑
i=1

Aii
𝛼

)2

= |Hg

Σ(p)|2

and
N∑
𝛼=1

n∑
i, j=1

|Ai j
𝛼+K |2 = |AN

Σ′ (0)|2 and
N∑
𝛼=1

(
n∑
i=1

Aii
𝛼+K

)2

= |HN

Σ′ (0)|2.
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It is clear that at i(p) = 0

|Aℝ
Σ′ (0)|2 = |Ag

Σ(p)|2 + |AN

Σ′ (0)|2 and |Hℝ
Σ′ (0)|2 = |Hg

Σ(p)|2 + |HN

Σ′ (0)|2.
The Gauss equations imply

−RgΣ(p) = −Rℝ
Σ′ (0) = |Aℝ

Σ′ (0)|2 − |Hℝ
Σ′ (0)|2.

Hence, the coefficient A can be expressed as

A = 1

2(n+ 2)

(|Aℝ
Σ |2 − 2

3
|AN

Σ′ |2 − 1

3
|HN

Σ′ |2 − 1

2
|Ag

Σ|2 − 1

4
|Hg

Σ|2
)

= 1

2(n+ 2)

(|Ag

Σ|2 + 1

3
|AN

Σ′ |2 − 1

3
|HN

Σ′ |2 − 1

2
|Ag

Σ|2 − 1

4
|Hg

Σ|2
)

= 1

2(n+ 2)

(
1

3
|Aℝ

Σ′ |2 − 1

3
|Hℝ

Σ′ |2 + 1

6
|Ag

Σ|2 + 1

12
|Hg

Σ|2
)

= 1

6(n+ 2)

(
−RgΣ +

1

2
|Ag

Σ|2 + 1

4
|Hg

Σ|2
)
.

This concludes the proof. □
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