Journal of Edge Computing, 2024, 3(2), pp. 168-206 https://doi.org/10.55056/jec.786

Ambience: an operating system for IoT microservices

Fatih Bakir’, Sierra Wang?, Tyler Ekaireb’, jack Pearson’, Chandra Krintz' and
Rich Wolski!

!Computer Science Department, University of California, Santa Barbara, CA 93106, United States

Abstract. Increasingly, the heterogeneity of devices and software that comprise the Internet of Things
(IoT) is impeding innovation. IoT deployments amalgamate compute, storage, networking capabilities
provisioned at multiple resource scales, from low-cost, resource constrained microcontrollers to resource
rich public cloud servers. To support these different resource scales and capabilities, the operating systems
(OSs) that manage them have also diverged significantly. Because the OS is the “API” for the hardware,
this proliferation is causing a lack of portability across devices and systems, complicating development,
deployment, management, and optimization of IoT applications. To address these impediments, we
investigate a new, “clean slate” OS design and implementation that hides this heterogeneity via a new
set of abstractions specifically for supporting microservices as a universal application programming
model in IoT contexts. The operating system, called Ambience, supports IoT applications structured as
microservices and facilitates their portability, isolation, and deployment time optimization. We discuss
the design and implementation of Ambience, evaluate its performance, and demonstrate its portability
using both microbenchmarks and end-to-end IoT deployments. Our results shows that Ambience can
scale down to 64MHz microcontrollers and up to modern x86_64 servers, while providing similar or
better performance than comparable commodity operating systems on the same range of hardware
platforms.
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1. Introduction

Today, applications and systems that amalgamate heterogeneous, resource-restricted, or em-
bedded devices with traditional resource-rich compute resources (e.g. cloud-hosted virtual
servers) cannot use a single, “universal” set of abstractions to execute on all hardware compo-
nents. Specifically, in an “Internet of Things” (IoT) context, resource-constrained, small scale
devices are programmed using special-purpose or embedded technologies [6, 34, 75, 86] that
then must interoperate with services programmed using popular and productivity-enhancing
cloud technologies. Embedded development often sacrifices the convenience and productivity
enhancement accruing to cloud development in favor of the ability to optimize comprehen-
sively throughout the software stack. Cloud technologies are too abstract to support low-level
system optimizations, and low-level and often bespoke device programming technologies are
too granular to support productive and sustainable cloud applications. For IoT, this bifurca-
tion of the system software between high-level software stacks that enable rapid development
of scalable cloud services and highly-optimizable “bare bones” operating systems targeting
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resource-constrained devices, creates reliability, maintainability, security and scalability chal-
lenges.

Microservices are a popular architecture for building scalable, distributed network services
and applications [63]. The microservice architecture has seen wide adoption, with numerous
supporting infrastructure projects [1, 46, 55]. Applications structured as microservices are
composed of many small and “simple” services (to promote code reuse and service cohesion).
Moreover, separately developed services can interoperate successfully despite their internal use
of widely varying software technologies when they interact via well-defined, message-based
interfaces. For these reasons, microservices are typically hosted within separate isolation do-
mains to improve fault isolation and/or implement multi-layered trust and security policies.
For uniformity, service requests and responses between microservices are commonly imple-
mented using typed, Remote Procedure Call (RPC) interfaces and web-service frameworks or
middleware.

Furthermore, since microservice design promotes the proliferation of many different services
in a single application, users and administrators of these applications often employ container
orchestration technologies to implement and maintain application deployments [20, 25, 55].
Using these frameworks, developers describe the end-state of a service-mesh deployment using a
declarative language, and the framework instantiates and maintains it by creating new instances
and decommissioning stale ones [15]. Thus, while the microservice architecture depends upon
the integration of heterogeneous software stacks, it also typically requires an additional runtime
framework for orchestrating isolation containers.

Both the microservice software stacks associated with each individual service, and the
container management systems for orchestrating them, depend on general purpose operating
systems which are typically a Linux or Windows variant. This dependence poses two key
research challenges that are becoming increasingly difficult to overcome with respect to
managing the proliferation of technology heterogeneity in IoT settings. The first is that the
plethora of hardware platforms (e.g. embedded IoT devices, microcontrollers, accelerators, edge
computers, security co-processors, etc.) do not support a common set of operating system
abstractions, let alone a common operating system, either among themselves or in common with
commodity servers. That is, while most commodity servers and virtualization environments
support some form of Linux or Windows, neither of these general purpose operating systems
can be supported on all devices in a distributed deployment that includes special purpose or
embedded systems.

Cloud vendors have attempted to address part of this challenge by providing “serverless”
computing support for IoT applications. Serverless, or FaaS (Functions as a Service) microser-
vices [7, 21, 76] provide programming environments which permit developers to write simple-
event driven service “handlers” that are then uploaded to a runtime service responsible for
deploying them automatically, dispatching service requests to them, and scaling them up and
down in response to offered service request load. FaaS functionality was originally developed
to support automatic scaling cloud-hosted web services as a way of reducing hosting costs. For
IoT, many of the large cloud vendors have extended this FaaS functionality to include service
deployment “at the edge” - on a machine not part of the cloud, but reachable from it via a
network. However, cloud providers have yet to extend the FaaS model to microcontrollers,
possibly due to efficiency and security challenges associated with doing so. Thus, even with
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FaaS technologies that require no direct operating system interactions, the state-of-the-art
is that the edge and the cloud can be programmed with a uniform “Function-as-a-Service”
model, but microcontrollers must be programmed using different technologies (e.g., MQTT
FreeRTOS [28, 34], and IoT SDKs. As a result, applications, even when adopting microservices
in this context must correctly compose an increasingly vast array of disparate protocols and
separately-developed technologies to achieve functionality.

The second research challenge is that the cloud model of performance scaling does not
translate feasibly to an IoT context. While “scale out” — the addition of separate virtualized
hosts to a cloud-hosted web service (e.g. via a FaaS platform in response to increasing request
load) - has proved economical and effective in a cloud context [30, 62], it is less effective or
infeasible for deployments that include collections of low-resource or resource-restricted devices.
When scale-out is infeasible, the alternative is to “scale up” by migrating or co-hosting services
within larger, more resource-rich machines. For IoT, where geographic and siting limitations
make the resource deployment topology heterogeneous, it is often not possible to find or site
a more resource-rich machine to effect scale up. Further, even in homogeneous cloud-hosted
deployments, as our results presented herein indicate, the generality of commodity operating
systems introduces a per-node performance penalty when executing microservices, thereby
limiting the effectiveness of scaling up.

Our thesis is that for [oT applications to take advantage of cloud, edge and device infrastructure
and technologies, they require a new and unifying software environment based on a common
set of efficient abstractions that can be implemented at all resource scales. Further, to take
maximal advantage of the technological success accruing to cloud computing, these applications
are best structured as microservices. To investigate this thesis, we present Ambience — a new
operating system specifically designed to support IoT applications structured as microservices in
heterogeneous distributed settings that include device and resource capabilities spanning a range
of resource scales. Ambience is not a general purpose operating system. Instead, it is a unique
combination of loT-aware design features that facilitate optimization, efficient use of resources

across scales, and microservices-based programming. The Ambience design features include
» Deployment-time determination of isolation boundaries — Ambience delays the decision

of how to implement isolation between microservices until deployment. Specifically,
microservices can be conjoined within the same isolation domain without recoding while
avoiding unnecessary messaging overhead (cf. subsection 3.1).

» Asynchronous Computational Model — The default computational model for Ambience
is stackless coroutines [47], although fibers [51] and callbacks are also supported. This
choice (described in subsection 3.4) combined with single, queue-based Application Binary
Interface (or ABI — described in subsection 3.3) make Ambience space and time efficient
enough to comprise all resource scales in an IoT deployment.

» Typed System Calls and Compile-time Optimization — Ambience requires that applications
make requests for operating service using typed interfaces. It uses this information both
to ensure system integrity and to perform compile-time optimizations (cf. subsection 3.6).
In this way, Ambience can commingle application code and operating system code into a
single, optimized system image (cf. section 4).

» Automatic Network Overlay Generation — Because Ambience generates a set of system
images for a single deployment of a microservice mesh, it can also automatically generate
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application-level message forwarding services (cf. subsection 3.11) and (using the mech-
anisms describe in subsection 3.2) include these services in the kernel of each system
image.

+ Capability-based Access Control — To implement end-to-end access control across a de-
ployed service mesh, Ambience extends an efficient capability system designed for multi-
scale distributed systems (cf. subsection 3.12).

The Ambience abstractions (e.g. isolation groups, coroutine-based asynchrony, typed inter-
faces, and deployment specification) support these design choices and enable introspection and
automatic specialization of the microservices it hosts through the use of deployment manifests.
Rather than a single kernel image shared across all nodes of a deployment, Ambience generates
custom kernel images (composing optimized hosted microservices) for each target node. More-
over, Ambience lacks virtual addressing, POSIX compatibility, and synchronous system calls. We
discuss how Ambience compensates for these omissions (and the benefits of doing so) without
introducing the overhead imposed by general purpose operating systems. To aid development
and deployment of Ambience applications, we employ a number of automated techniques into
Ambience, including code synthesis capabilities (e.g. it autogenerates and inserts RPC code from
cross-node communication), specialization techniques (e.g. it makes heavy use of zero-copy
communication whenever possible), and secure network transparency.

We evaluate Ambience using microbenchmarks and an end-to-end (i.e. sensors-edge-cloud)
IoT application for wildlife monitoring. We also make it available as open source (https://github.
com/MAYHEM-Lab/ambience). We show that its design features allow Ambience to achieve
throughputs on the order of hundreds of thousands of requests per second across isolation
domains on a single x86 core. Moreover, we show how it enables microservice reuse without
modification — across microcontrollers, single board computers, x86 hypervisors (KVM [53],
Firecracker [2] and VirtualBox [65]) with virtio [73] support, and embedded within Linux
systems (to facilitate incremental transition to Ambience).

We compare Ambience’s key characteristics both to Linux and to Azure’s IoT platform [43]
with respect to IoT application development and deployment. We find that Ambience is often
one to three orders of magnitude more efficient. We also compare Ambience’s microcontroller
features to the Tock embedded operating system for safe multi-tasking on microcontrollers.
We find that Ambience is able to support up to 7x greater throughput than Tock with lower
per-request latencies, with binary image sizes that are 5-6 times smaller. In the sections that
follow, we contextualize these contributions in terms of prior work and through an exposition
of the Ambience abstractions, automated optimizations, deployment support, and evaluation.

2. Related work

Related work includes middleware, microservice frameworks and operating systems advances
that target IoT deployments. Middleware is an alternative approach employed to hide the
heterogeneity of IoT deployments and to reduce the barrier to entry for IoT application devel-
opment. [oT Middleware (also called an IoT platform) attempts to bridge disparate protocols,
architectures, software architectures, and interfaces used by IoT devices and systems. Many
middleware systems for IoT and microservices-based systems have been proposed in related
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work [13, 83, 88]. Unfortunately, the lack of standardization has led each IoT platform to
propose its own abstractions, APIs, and data models, which are incompatible with those of
other middleware and platforms. As a consequence, programming interactions between an
IoT consuming application and an IoT platform is time-consuming, error prone, and depends
requires sophisticated distributed systems and platform expertise [17, 77]. These systems share
the approach to (un-)marshaling data for interoperation between platforms and interfaces, e.g.
[83], as Ambience does for disparate networking protocols. Ambience however is a complete
operating system for individual devices not a bolt-on software package that attempts to unify
existing platforms.

Microservice frameworks are typically designed to use Linux containers to provide both
isolation between conflicting software dependencies that individual service stacks may have and
also runtime isolation for security purposes [4, 50, 67, 78]. The proliferation of container images,
runtime configurations, and operational lifecycles among separately developed microservices
(often within the same application) created the need for runtime and orchestration technologies
that automate provisioning, scheduling, and deployment of microservices [1, 20, 55, 56]. Kuber-
netes [55] has received wide-spread adoption from users and service providers alike. Kubernetes
requires developers to specify their entire deployment in declarative files instead of manual
provisioning. This makes the creation and migration of entire multi-node clusters a trivial
operation. Ambience integrates these mechanisms at the operating system level and leverages
a similar declarative approach for deployment specification.

Serverless computing and Functions-as-a-Service (FaaS) constitute an alternative to deploying
and managing microservices using cloud platforms [7, 10, 39, 41]. FaaS platforms are cloud-
hosted service venues that accept service request handlers and trigger them when specific
requests are forwarded to them via either a network facing request dispatcher or some other
cloud-based service. Because users of Faa$S platforms only provide handler code (and do not
provision servers or other resources necessary to dispatch and execute the hander code), the
term FaaS$ is often synonymous with the terms “serverless” or “serverless computing” These
Faa$ or serverless systems provide high availability, fault tolerance, dynamic elasticity via auto-
mated, event-driven provisioning, containerized execution, and management of the underlying
infrastructure. Philosophically, Ambience shares the view of microservices (implemented using
Faa$S) as an “omniplatform” for IoT with [85] but it goes on to illustrate that miniaturizable
FaaS functionality, by itself, is not sufficiently performant in terms of memory footprint and
execution efficiency. Also, the authors of [85] specify no model for device I/O - a key feature in
an IoT development context. The authors of [46] exploit locality across serverless microservices
to replace RPC with IPC primitives to increase throughput and lower latency. The authors
conclude that there remain many individual overheads. By co-designing the entire stack for
deployment and performance, Ambience eliminates a significant number of these overheads.

Ambience integrates abstractions (lightweight isolation, asynchronous interfaces between
trust domains, queues, groups, etc.) and tooling (deployment IDL, compilation support, deploy-
ment/code specialization) that are also found in other systems [25, 38, 40, 55]. The authors
of [79, 80] introduce the implementation of asynchronous system calls in Linux by designating
pages of memory as a buffer that is polled by kernel threads. However, to achieve adequate
concurrency and performance, a large number of kernel threads are required, which causes
memory pressure. The io_uring [26] effort is a recent approach to implementing an alternative
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asynchronous (async) system call for Linux [19]. However, at the time of this writing, it does not
support all system calls, and does not support kernel-to-user requests. A similar queue design
is used in virtio’s [73] interface where a guest operating system communicates with the host
through virtqueues, similar to the earlier Xen [11]. While they too do not support host-to-guest
requests, unlike io_uring, they use a unified pool of queue elements, so the guest can issue more
work with the same amount of memory without VM-exits. Unlike these approaches, Ambience
supports bidirectional asynchronous communication with low kernel resource consumption
over its queue interface.

Kernel bypass systems [12, 45, 70] try to eliminate kernel overheads related to network pro-
cessing and context switching. Ambience, alternatively, attempts to eliminate these overheads
by specializing the kernels it generates to support the user space microservices they host.

In [37, 57], the authors explore the use of memory protection units on microcontrollers to
improve reliability and enable the execution of untrusted code. However, these approaches
do not support server or edge class machines. Authors of [9, 31, 85] show that a lightweight
serverless architecture implementation running in both Linux user space and on microcontroller
systems, even without memory protection, is a viable architecture for building distributed IoT
systems. Ambience is distinct from these efforts in that it is a comprehensive operating system
approach that supports microservices running at all resource scales.

Unikernels [18, 60, 64] reduce operating system overheads by merging the kernel and the
application, and by eliminating kernel protection. The motivation behind removing kernel
protection is that because virtual machines implement isolation between applications, kernel
corruption can only affect the application using it. However, their lack of IPC primitives prevents
them from exploiting locality. Ambience supports multiple isolated services running in the
same VM with efficient communication among them (including zero-copy IPC similar to that
originally described in [72]). For deployment settings in which isolation is not desired, Ambience
also supports transparent placement of services inside kernel space.

Using language typing to ensure operating system integrity is a feature of [14] and, more
recently, [42], both of which use strong types to enforce isolation of user provided programs
inside privileged domains. Through safe user code inside the kernel, such systems allow the
dynamic introduction of efficient abstractions. However, for both systems, the type system is
only available in special programming languages, and does not extend to untrusted programs
written in arbitrary languages. Further, the type information is not used for performance
optimizations, and mainly exists to statically enforce safety. Alternatively, [71] embeds a JIT
(Just-In-Time) compiler in the kernel to automatically and dynamically create optimized code
paths, facilitating specialization. However, performing this specialization dynamically precludes
[71] from running on resource constrained devices. Ambience performs specialization using
a variety of information available statically, making it possible to run fully optimized images
across resource tiers.

3. Methods

In this section, we overview the key abstractions, design choices, their trade-offs, and our
implementation approach for Ambience. The primary abstraction of Ambience is a service.
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A service is a collection of procedures, each with a strongly typed interface, operating on
a common, ephemeral state. The procedures act as entry points which can be concurrently
executed. A service interface is a nominal abstract type consisting of procedure interfaces,
defined in an interface definition language (IDL). Ambience includes its own IDL for generating
service interfaces called lidl.

A node is an abstract entity that can host Ambience services. They can be physical machines
(e.g. servers, single board computers or microcontrollers) or virtual (e.g. cloud virtual machines,
Linux processes, a webpage running webassembly [36], etc.). Ambience provides different levels
of service on different host types since it does not have the same level of control in all physical
and virtual devices. A cluster is a set of nodes and networks that connect those nodes. All
Ambience runtime abstractions are deployed via declarative manifests. Manifests direct the
Ambience to “compile” images (one for each node in a deployment) that instantiate services
(including their dependencies), describe network topologies, define security isolation groups,
etc. Ambience manifests are written in a Domain Specific Language (DSL) embedded in Python.
Ambience manifests encapsulate more information than existing declarative approaches [25, 55].
Specifically, they include service interface types and dependencies, which Ambience uses to
synthesize efficient code for communication, and security isolation. Listing 1 shows an example
deployment manifest excerpt.

Ambience injects service dependencies using information within manifests during image
construction, thereby precluding the need by each service to perform service discovery. That is,
the service mesh topology associated with a specific deployment is “compiled into” the images
that make up the topology. Ambience enforces type-safety in the manifests and synthesizes
code that brings up all services in the correct order and passes dependencies to each service.

3.1. Service groups

Microservice design advocates for the prolifera-
tion of small, simple, isolated services. In existing
systems, the decision about whether to execute
two or more services in the same isolation domain
is often binary and irreversible - two services are
either separate entities deployed in isolation, or
they are part of the same service. The need to de-
cide whether two services will be isolated or comin-
gled poses an early design challenge in the service
development engineering cycle. Developers must
make design decisions about service isolation that
are difficult and costly to reverse or change once

Listing 1: Ambience deployment manifest

# Services
instance (name="detection",
service=tflite_detection)
instance (name="camera" ,
service=demi_camera,
dependencies={"frame_handler":
"detection"})
export(service="camera",
networks ={"udp-internet”:
# Deployment
group (name="camera_group ",
services=["detection", "camera"])
deploy (node="camera_microcontroller”,
groups=["camera_group"])

4898))

}

development begins, and becomes more difficult to change as development matures. Further, the
performance of the resulting service mesh is not typically known until relatively late in the de-
velopment lifecycle and, often, isolation design decisions must be revisited, and implementations
recoded, to enhance performance.

Microservice design can also pose a deployment challenge in resource restricted settings.
Each isolated runtime entity (e.g. a process) consumes system resources: page tables, thread
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structures, kernel entries, communication costs etc. Tying the allocation of these resources
to each service reduces deployment flexibility and portability. For instance, deploying two
related services in different address spaces may be desirable on a cloud server but not on a
microcontroller, especially when the microcontroller logically constitutes a single protection
domain (i.e. it has one owner or one user). Further, a developer may simply wish to improve
performance when all services can run in the same trust domain, by removing the isolation
boundaries.

Existing commodity operating systems do not support such flexibility directly: a program
becomes a process when executed and a process is not meant to be occupied by multiple distinct,
separately developed programs. Moreover, each process has global state associated with it (file
descriptors, signal handlers, file system root, quotas, etc.) that are space-expensive to replicate
in resource-restricted execution environments.

To overcome these challenges, Ambience eliminates all global state associated with a “pro-
cess.” Instead, it defines protected regions of address space that can be occupied by separate
microservices. To enable this lighter-weight form of isolation we introduce groups as the unit
of runtime execution and deployment.

Microservices assigned to the same group share address space and are not isolated from
one another. Microservices assigned to separate groups, but hosted on the same node, are
isolated and must communicate using fast Ambience local interprocess communication (IPC)
as described in Section 3.2. Microservices executing on separate nodes must be in separate
groups and communicate using RPC. Importantly, assignment of services to groups is not
a design-time or development-time decision with Ambience, but rather a deployment-time
decision. That is, the developer or operational manager can decide what assignment of services
to groups is most appropriate for each deployment, based on site-specific trust policies, security
policies, performance requirements, etc., without design or code modifications to the services
or duplication.

When microservices are assigned to separate groups in a deployment, Ambience automatically
incorporates IPC to facilitate communication between groups. It emits direct function calls
to optimize communication within a group. Note that it is not possible to make a similar
decision of whether to include two service components in the same Linux process or different
Linux processes at deployment time without having two separate versions of the code: one for
conjoined deployment and the other for separate deployment.

Services within a group share runtime resources: the queues as explained in Section 3.2, an
event loop and associated system threads, heap and page tables. By default, Ambience allocates
a group per service. A developer is allowed to create explicit groups and include the services
they wish to couple.

Note that under the Ambience group resource abstraction, services do not receive implicit
resources and ambient privileges. For example, there is no global file system inherited by each
group in Ambience: if a microservice requires file system access, the developer can explicitly
assign a dedicated file system service to it or if two services are meant to share a file system, the
developer can assign both of them to use a single file system service explicitly (either within
the same group, separate groups, or in any combination.)

This flexibility is designed to support severely resource restricted devices as well as more
resource-rich servers. For example, on microcontrollers with a few kB of memory, all services
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in a node can be placed in a single group, eliminating most of the Ambience runtime isolation
memory footprint. Key to this approach, is that services need no changes when they are assigned
to the same or different groups and the ability of Ambience automatically to insert appropriate
communication primitive based on how the services are to be deployed.

3.2. User space design

Microservices (particularly those that employ a FaaS design structure) make use of event driven
and asynchronous programming, whereas most traditional systems provide a synchronous
programming environment, and the user space code is expected to implement asynchrony on
top of synchronous abstractions provided by a kernel. Most kernels are themselves designed to
implement these synchronous abstractions for user space programs using an event-driven and
asynchronous model to interact with the hardware. For microservices, this translation from an
asynchronous hardware interface, to a synchronous system call interface, and then back to an
asynchronous model within the microservices themselves creates inefficiencies that Ambience
attempts to avoid.

To do so, Ambience exposes the asynchronous abstractions used by the kernel to microservice
components running in user space. Ambience provides and manages an event loop at the kernel
level for each user space. This event loop shares code with, and is almost identical to, the one
used inside the kernel to handle hardware events. The kernel issues user-space procedure calls
directly, instead of having the user space poll and route requests. This optimization reduces the
workload on each service, and provides centralized, dynamic configuration parameters such as
concurrency limits and a unified tracing and observability infrastructure.

Computations in separate groups use bidirectional asynchronous queues for communication
with the kernel. Specifically, groups implement dedicated lock-free queues for both the kernel-
to-user and user-to-kernel communication. Both queues index into a per-group, shared array of
queue elements. The allocation of these elements is lock-free. Lock freedom here is necessary
since multiple user or kernel threads may attempt to allocate an element concurrently. Unlike
existing ring or queue based interfaces [73], Ambience allows both ends to make and serve
requests.

3.3. Kernel “styles”

Ambience’s kernel does not feature an ABI (Application Binary Interface) with a fixed set of
system calls. Instead, its ABI is an interface that permits communication via the asynchronous
ring data structures. Further, all core operating system functionality is exposed and deployed
as services that are accessed just like user services, meaning that services can be individually
omitted or deployed inside the kernel or a user space. Such flexibility is unique to Ambience and
allows individual deployments (not service implementations) to be configured using different
operating system kernel “styles” such as a unikernel [60], where every service is deployed inside
the kernel group; a monolithic kernel [3, 84] where device services are deployed inside the
kernel whereas user services are deployed in user space groups, a microkernel [33, 49] where
supported device services as well as user services are deployed in user space groups, or an
entirely new class, with no changes to the base system.
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Listing 2: Ambience’s concurrency design allows the API for writing data to be decoupled from the
model of asynchronous concurrency used by the microservice using the APL In this code, the write()
creates a job that can be bound and completed by a coroutine, thread, fiber resumer, or callback.

struct write_job {
bytes data;
b
// Constructs asynchronous job for writing bytes.
write_job write(bytes);

bytes some_data = ...;

// Construct a job from some_data

//(job is not started until its bound below)
aute job = write(some_data);

co_await job:; //coroutine

sync_wait(job); //thread

fiber_wait(job, this_fiber); //fiber

auto state = bind(job, [](aute res) {}); //callback

For example, an Ambience file system service exposes a file system interface and depends on
a block device service. Since Ambience’s ABI does not include system calls, the file system can
be transparently deployed inside or outside the kernel, with different security, performance and
reliability trade-offs, and accessed via typed interface like any other Ambience microservice.

Because user-space microservices use the same ring interface to communicate with each
other as they do to request service from the kernel, user-level microservices can be “moved”
into the kernel transparently (e.g. for performance reasons). This design feature also allows
Ambience programs to be potentially portable to other operating systems, provided the ring
interface and necessary core services are re-implemented. Ambience makes use of this feature
for debugging Ambience services using gdb on Linux, albeit with reduced performance, since it
does not yet have such a sophisticated native debugger.

3.4. Asynchronous programming model

Due to their superior efficiencies, wide spread availability, and ease of programming, Ambience
uses stackless coroutines as its default computational model. However, it also supports other
asynchronous programming models to enable compatibility with existing libraries and applica-
tions. Ambience supports user-mode threads (i.e. fibers [51]) to support developer preferences
and compatibility with existing libraries expecting to be able to block in a deep call stack.
Ambience’s low level ring interface facilitates callback-style programming as well. We compare
the performance fibers and coroutines in Ambience in Subsection 5.4.

Implemented naively, support for multiple concurrency models together requires the the
implementation of some functionality to be duplicated. To avoid this, Ambience defines work
units, called jobs that can then be bound to a particular completion handler associated with
one of several different concurrency models. That is, the completion handler can be a callback,
coroutine, fiber resumer, or a thread. This decoupling of the computational work specification
from the concurrency model allows a single asynchronous API (for example, a network packet
transmission API), to be used with different concurrency models employed by individual
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Listing 3: Ambience code for implementing job completion as a thread.

template <AsyncJob JobType=
aute sync_wait (JobType&& job) {
// Allocate stack space to store the async result.
late_initialized <result_type <JobType=> result;
// sync_wait uses a semaphore to block the current thread
semaphore sem {0};
// bind launches an async job with a callback
// bind returns an object that must remain alive until
// the callback is invoked, which is trivially done in sync_wait
auto state = bind(job, [&](auto&& res) {
result.emplace(std :: move(res));
sem.up();
1
// Block until the semaphore is signaled by the callback
// As we are blocking here until the callback is invoked,
// the semaphore, the temporary storage for the result, and
// the bind state remain valid as long as the async job is alive
sem.down ();
return std ::move(result). get();

microservices. Listing 2 shows the developer facing API for writing a byte object, and Listing 3
shows the implementation of sync_wait which is used to complete the write job using a
thread stack. Note that only sync_wait is coded to use threading, and the implementation
of write can be used with any of the other concurrency models efficiently. This job-based
deduplication reduces driver size in Ambience by 3 times.

3.5. Immutability and specialization

Microservice deployment orchestration frameworks [25, 55] often employ immutable and
declarative languages to describe a deployment (i.e. how services are mapped to machines and
their network interconnection topology). These frameworks use this specification to install, start,
and maintain services across the nodes in a deployment. In practice, microservice orchestration
frameworks deploy services in Linux containers, where each container is assigned to a node
in a deployment. When a change is made to a service, the framework stops the container or
containers running the service and starts one or more replacements with the updated image.
Thus, the containers are immutable.

Ambience also uses a declarative language model to describe each deployment, but in a
different way. Instead of instantiating a deployment strictly at runtime (as most container
orchestration frameworks do) it builds a potentially unique kernel image for each node in a
deployment, optimized for the microservice workload the node will run. Specifically, it carries
relevant type and deployment information specified in an IDL and manifest files that are used
by an image builder to create optimized images for each node in a deployment.

Ambience also can, opportunistically, preallocate some resources for services at build time, to
reduce cold start times and to detect insufficient resources ahead of time. Currently, Ambience
can preallocate the following for each group: isolation structures, system thread stacks and
control blocks, queues, in-kernel group descriptors. It also preallocates networking structures,
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for instance UDP control blocks, for services that communicate across nodes. When possible,
these resources are initialized at compile time using constexpr data structures and algorithms.
constexpr allows some stateless C++ code to execute at compile time. Ambience also supports
dynamic provisioning of these resources at runtime. For example, pages can still be allocated
and mapped dynamically, threads can be created and destroyed, and sockets can be created at
runtime, only with higher runtime cost and the possibility of runtime failure.

3.6. Use of user-defined types in the kernel

Microservices in Ambience communicate over statically typed interfaces defined in an IDL
which also conveys type information to the kernel. Further, because the microservice code and
the kernel are “compiled” together when each node image is constructed, this information is
used to optimize the user-space kernel interactions. Ambience also uses this type information to
auto-generate any serialization code that is needed to facilitate message-based communication
(e.g. when services deployed to separate nodes communicate).

Note that by contrast, commodity general purpose operating systems typically implement
“typeless” system call interfaces. That is, when a write or read system call is invoked, any
data passed to or from them is an untyped collection of bytes. Communicating clients and
servers recover the type information via serialization and deserialization. For example, a client-
server application using a modern IDL such as gRPC contains type information which is used
by the user-space code implementing the microservice interaction for correctness, and as a
programming aid. However, once a request or a response needs to be sent between the client
and the server, the microservice stack will eventually make a call to the POSIX write system
call, or a socket send call on the sending side and, conversely, a read or recv system call on
the receiving side. These system calls only view the information as untyped collections of bytes.

In contrast, Ambience maintains interface type information for as long as possible. Service
interfaces are typed at deployment time and this type information is available and used when
the kernel is constructed. Type erasure is only performed when an Ambience invocation crosses
a network boundary.

Ambience makes extensive use of this information to implement efficient communication,
enable compiler optimizations, gain observability, and to introduce additional functionality.
Ambience queues are strongly typed: when a user space microservice component makes a
request, it does not perform serialization. Instead, it packs pointers to its arguments in a typed
data structure designed to facilitate a zero-copy transfer that is generated by the IDL. If the
request is to a service running in the the local kernel (recall that Ambience can support in-kernel
microservices as described in Subsection 3.2) it is handled via this zero-copy mechanism. If
the request is to a component running in another Ambience group on the node, Ambience
synthesizes specialized code using the static type information to implement efficient parameter
passing between the groups. If the request is to be handled off-node, Ambience performs
serialization and communication. Critically, it is the Ambience image builder (and not the
programmer) that automatically generates and inserts what ever code is needed to facilitate the
communication efficiently, based on the IDL types and on the deployment manifest.

Finally, Ambience also uses this information to synthesize a broad range of higher level func-
tionality. For example, because Ambience can make sense of the bytes in service requests it can
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auto-generate externally accessible REST end-points to be consumed by web applications, and
automatically inject sophisticated authorization code by inspecting parameters for correctness.

3.7. Memory management

Unlike unikernels, Ambience supports multiple address spaces natively. However, services run-
ning in isolated address spaces (i.e. separate Ambience groups) cannot communicate via direct
function calls the way that services within the same address space can and, thus must involve
the kernel to facilitate efficient passing and returning of necessary information between address
spaces. For communication between microservice components mapped to separate nodes, this
communication is implemented by automatically inserted serialization/deserialization and RPC
communication primitives. However, for cross-group communication within the same node,
Ambience makes heavy use of any memory protection features that are available from the node
where the kernel is executing.

Ambience’s memory management system is designed both to work on hardware systems
that include a full-featured MMU (implementing paged virtual memory) as well as low-level,
embedded systems with memory “Memory Protection Units” (MPUs) that implement protection
(but no address mapping) of physical memory segments. Lack of virtual addressing on machines
with MPUs means that Ambience’s design must include the ability for services to work with a
single address space with protected segments of memory.

Ambience’s memory subsystem supports a generalized “page” abstraction called an address
space fragment. An address space fragment is a range of contiguous memory in one address
space that can be zero-copy shared with another address space. Supportable fragment sizes
and the ability to support multiple sizes are hardware dependent. On paged systems (i.e. ones
with MMUs), a fragment corresponds to a page directly and page sizes cannot be changed. On a
microcontroller system, however, the fragment sizes and alignments can change dynamically.
For example, MPU and PMP (Physical Memory Protection) hardware found in the ARM [52]
and RISC-V [32] architectures correlate protected segment size with alignment. Specifically, a
segment of size n (where n is a power of 2) must be aligned on an address that is a multiple of
n. Therefore, there is no single fragment layout in such systems and runtime calculations are
required to determine a fragment given a range of memory.

3.8. Memory sharing

When Ambience provides transparent access to a service in another address space, the kernel
will automatically map memory segments from the caller’s address space to the callee’s address
space usually in a read-only fashion to achieve zero-copy calls. Memory for the return values
are also supplied by the caller via the message_builder type. Fragments belonging to a
message_builder are mapped with read-write privileges to the callee. Allocation of these
regions can be managed by users, but Ambience provides a user space library for simplifying
their management, as these regions must be well-aligned. All fragments related to a call are
immediately unmapped as soon as the callee completes the request.

Ambience’s support for transparent cross-address space mapping is a novel feature. Cross-
address space mapping in many existing systems requires non-trivial coordination across the
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processes accessing the shared memory. On POSIX systems, for example, memory can be shared
using MAP_SHAREd anonymous pages across a fork or using a shared file or shared memory
objects. In all such cases, programmers of both the caller and the callee must explicitly setup
the sharing and make sure all arguments are in the shared area. While the sharing can support
zero-copy communication, it is difficult to automate and/or error prone to program.

In particular, one challenge Ambience’s design addresses is that a caller process might supply
the same fragments (due to memory space limitation concerns) for multiple concurrent requests
to the same server. In this case, the operating system must ensure that the fragments must
remain mapped until the last request is completed. Our prototype associates an atomic reference
count with each fragment mapped to an address space, and the reference count is maintained at
every call and return.

3.9. Efficient cross-address space communication

Cross-address space interprocess communication (IPC) is implemented by Ambience using a
combination of memory copies (for small values) and pointer sharing and memory mapping (for
larger ones). Because all interfaces are typed, Ambience can generate and automatically insert
optimized IPC when microservices deployed to separate address spaces on the same machine
communicate.

An Ambience IPC consists of a typed structure on the sending side of the communication
that the operating system replicates on the receiving side. As the kernel has a priori knowledge
about the contents of the structure, it can replicate arbitrarily complex data structures and use
the most efficient primitives for performing this replication.

Since large objects are passed by pointer, the kernel will follow the pointers and ensure the
same data structure is replicated from the sender side to the receiver side. Whether a “true”
zero-copy transfer for a data structure referenced by a pointer is possible or not depends on the
data structure’s alignment in the sender. For example, if a user-space computation attempts to
send a string containing 100 characters on a paged system with 4k pages, it is impossible to
directly map the page because the string shares the page with other data structures that should
not be sent. However, as another example, consider sending a string of size 8193 bytes, on a
system with 4K pages, starting at address 4096 * k + 4095 for some constant k. This means that
except for 1 byte at the beginning, the whole string can be mapped directly from the sending
address space to the receiving one. For this case, Ambience will allocate an anonymous page to
the receiver, copy the single byte to the end and map this at address 4096 * k in the destination
address space. The rest of the data will be mapped directly at 4096 * (k + 1). This partial-copy
approach ensures no unintended data is sent from the sender to the receiver service while using
as little data copying as possible for large objects.

Note that on MPU systems, partial copying is not possible if the sending data structure not
well aligned and sized, and a total copy has to be made since it is impossible to supply different
physical memory for the unaligned portions of the data structure without virtual memory
support. Zero-copy is still supported for buffers that are well aligned and sized so that they do
not share memory fragments with other data structures.
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3.10. Interprocess communication implementation using C++

Ambience’s IPC mechanism is implemented within the kernel and written in C++. Since the
approach is type based, Ambience can make use of C++ templates to synthesize the neces-
sary functions. The IPC interface requires that each fundamental type in a message “opt-in”
by providing a specialization of the primary sharer<T> template. The sharer interface con-
sists of two required static functions: size_t compute_size(const T& arg); and T
do_share(Share auto& share, const T& arg);.

The compute_size function returns how many bytes of extra data would arg need in the
destination address space. For example, for small scalars, this function always returns 0 since
such scalars are always stored within the structure itself. For a string, it would be the size of the
string if a total-copy needs to be made, or 0 if the string can be memory mapped. do_share
performs the actual share through copying or memory mapping. Notice that if T is a pointer,
do_share returns a pointer as well.

Using these specializations, passing an entire structure can be achieved by copying the
structure verbatim to the destination address space and transforming each member through
the sharer<T>: :do_share method. The resulting code for sharers is very concise, and the
overall sharing code is easy to read and maintain. The sharing functions for all fundamental
types are implemented in less than 250 lines of code, most of which are templates. For user
defined interface types, the necessary functions are automatically synthesized using these
templates since they are by definition a composition of the fundamental types and can be
trivially synthesized. Also, because the IPC code is implemented using static polymorphism,
Ambience is able to optimize complicated, multi-step shares to a use a single memcpy and even
to a single SIMD store instruction for smaller parameter packs.

The overall effect of the Ambience memory management functionality is to allow it to
implement highly efficient IPC between microservices that are co-located on the same machine,
but do not share addresses spaces. The operating system code makes maximal use of memory
mapping to implement zero-copy communication on both systems with an MMU and on those
with only MPU support (although with greater restrictions for the latter). Finally, the goal of
Ambience is to allow the mapping of microservices to protection domains to be a transparent
deployment-time decision, and without sacrificing performance. In this this way, Ambience
makes use of typed interfaces, C++ templates, and static polymorphism to automate IPC
optimization.

3.11. Automatic network overlay generation

Ambience services that communicate over a network (i.e. between nodes) do not use overt
network communication abstractions. Instead, the Ambience kernel supports efficient message
forwarding (using the mechanisms described in Subsection 3.7) and the Ambience image builder
automatically synthesizes an application-level network overlay for each deployment using
the lidl (Ambience’s IDL) specifications for each microservice interface and the deployment
manifest. By incorporating the network overlay as first-class operating system abstraction that
is automatically constructed at deployment time, Ambience is able to map the same service
mesh to different heterogeneous network topologies without developer intervention.
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Figure 1: Ambience services import network interfaces when they need to accept off-node requests
and export interface when they are required to send requests off-node. The build process generates
an network overlay path by modeling the node mesh as a weighted directed graph and finding the
shortest path from the desired service’s node to the importing node. In this figure, the letters identify
each edge and the MCU can import a service from VM2 through the path H,G, D, C, B, A. Note this
automatic overlay generation feature allows Ambience to deploy the same service mesh over different
heterogeneous, private and asymmetric networks.

/Mecv\  (Edge)

From a deployment manifest, the Ambience image builder constructs a graph in both networks
and nodes are both represented as vertices. In figure 1, the networks are marked as “Xbee”
represent a low-power Xbee radio network, “Internet” represents the common-carrier Internet,
and “SFO2” represents an internal private network. Services that communicate off-node import
from a network when they will perform requests to a node in that network and export to a
network when they will serve requests to nodes in that network. An import is represented by a
directed edge from the network vertex for the last “hop” in the graph to the node vertex where
the service is to be hosted and, similarly, an export is a directed edge from the hosting node
vertex to the network vertex that will be used for off-node that must traverse that network to
reach their next hop. The edges are directed to allow for potential asymmetry in the connectivity
(e.g. firewall rules that control connectivity) and weighted to allow deployment-time valuation
of forwarding paths (e.g. by representing the relative bandwidth, latency, or reliability of
alternative network choices).

Using this graph, Ambience constructs a high level communication overlay at the application
layer (i.e. in terms of typed service requests rather than routing of untyped packets) as opposed
to at the network layer as found on many existing systems [55]. The Ambience image builder
consults the deployment manifest and the graph to determine which services may send and
receive requests that traverse more than one network vertex in the graph. Using the edge
weights, it computes a least-weighted path between all pairs of communicating services. It then
uses the lid] specification for any services that communicate across more than one network
vertex to synthesize request forwarders for each node vertex along a a least-weighted path.
These forwarders are then compiled into forwarding services and added to the deployment. For
example, using the graph shown in figure 1, the image builder would create a request forwarder
for each request from VM1 to the MCU and it would assign the forwarders to the node marked
“Edge” in the figure. Finally, the image builder would set the destination address for any request
from VM1 to the MCU to be the forwarder microservice on Edge.

Note that Ambience uses the same lidl specification for each service in a deployment to
synthesize and inject IPC code and to generate the overlay forwarding microservices. Using
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this application-level overlay approach Ambience can transparently join public and private IP
networks, low-power networks such as XBee [27, 61], as well as point-to-point links such as
USB [5], SPI [22] and UART [35].

Note also that the generated application-level forwarding microservices take full advantage
of the fast [IPC mechanisms described in Subsection 3.7. Further, since they are synthesized by
the image builder, Ambience deploys them within the kernel’s isolation domain (as described
in Subsection 3.3) for the best possible forwarding performance. In this way, Ambience builds
application-level network overlays into the kernels of a specific deployment, making such
overlays a first-class operating system abstraction.

Ambience need not deploy a common network software implementation to the radio links
and wired networks alike. Returning to the example graph shown in figure 1, XBee network
communications are encrypted by default. Thus, Ambience need not deploy an additional
encryption layer such as TLS [24] when messages are traversing edges A and B in the figure,
while the communication from Edge to VM1 (traversing edges C' and D in the figure) will require
TLS, as IP networks are not encrypted by default. These specializations are automatically built
into the individual kernel images, along with the required networking software, as dependencies
needed to support microservices that are assigned to each node in a deployment.

3.12. End-to-end access control & security

In typical microservice applications, network paths may be publicly accessible and (if software
defined networking or network function virtualization is deployed) network traversal may
require other services to be invoked. As a result, per “The End-to-end Argument” [74], the
microservice mesh is expected to implement access control via an amalgamation of authorization
mechanisms such as role- or attribute-based access control, access control lists, or decentralized,
token-based authorization primitives [16, 48]. This approach introduces redundant work,
precludes a separation of concerns, and limits the operating system’s ability to specialize
services within the same trust domain.

At the service level, access control takes the form of sanitization; it must answer the the
question, “Can the current subject call this procedure with these arguments?” With conventional
operating systems, the microservices are the “ends” with respect to end-to-end security. However,
Ambience essentially convolves the microservices and operating system abstractions when it
builds each image in a deployment. That is, the Ambience images are the “ends” in the terms of
an End-to-end argument for security. As a result, the images can implement end-to-end security
using code automatically inserted during image construction. Ambience combines the typed
interfaces for each microservice with a with formal specification of predicates to ensure per
procedure to synthesize access control code in each image of a deployment where it is needed.

To implement this support, Ambience incorporates CAPLets [8], an open source, capability-
based authorization framework that runs on both microcontrollers and resource-rich machines.
CAPLets requires policies to be defined as capabilities and constraints and written manually
by developers. Ambience extends this approach to automatically generate capabilities and
constraints from manifests, precluding the possibility of definition mismatch and reducing
programmer burden. For requests that take place on the same machine, Ambience uses CAPLets
policies directly, as synthesized and automatically injected code, when services communicate
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across groups. For off-node requests, Ambience automatically injects the CAPLets network
protocol, which serializes the request, signs it, adds replay protection, and optionally encrypts
it. Once received by the destination node, and the message is deserialized (again using injected
code) the CAPLets policy mechanism is invoked.

The secret keys needed for network requests inside the deployment are automatically managed
by Ambience using the CAPLets API with no user visibility or involvement. However, if a service
within a deployment must respond to externally generated requests (e.g. from a non-Ambience
service) Ambience also generates capability tokens that can be shared (manually) with other
parties. In this case Ambience also automatically generates ingress services to act as proxies for
the target Ambience services to validate the tokens and implement the CAPLets policies.

This deployment-aware access control improves the pace of development by relieving pro-
grammers from implementing access control explicitly, reducing bugs through automatic syn-
thesis of code, and improving runtime efficiency by optimizing away unnecessary checks. It also
simplifies administration by providing a uniform authorization infrastructure at the operating
system level.

3.13. Lack of POSIX compatibility

To understand the technology adoption risk associated with Ambience, we analyzed the Death-
Star microservices benchmark suite [29] to determine whether a POSIX compatibility layer
was an essential feature. The Deathstar benchmarks make use of a test harness framework
to implement networking, software dependencies, and platform configuration. We found that
while microservices can be ported to Ambience, the test harness (which implements similar
functionality to Ambience using conventional Linux system calls) cannot. Because it is not
clear how to separate microservice performance from the performance of the test harness in the
original Deathstar benchmark implementations, however, we chose not to use them to generate
the performance evaluations described in Section 5.

From a code inspection, we found that the microservices within the benchmark suite all
communicate with each other not through unstructured pipes or sockets, but over strongly
typed interfaces, either via gRPC or Thrift. Further, none of the 33 services make direct use
of Linux operating system calls. Even the test harness uses only the Linux signal and exit
system calls, relying on lower-level libraries to interface to the operating system. This finding,
coupled with our experience with microservice applications, leads us to believe that POSIX
system call compliance is not a requirement in this domain.

The Deathstar suite also incorporates functionality not implemented using microservices (e.g.
databases) that make operating system calls. To understand the universality of the Ambience
design, we have developed Ambience microservices that provide equivalent functionality. Thus,
while the Deathstar suite depends on external functionality that is not, itself, implemented
using microservices, the Ambience equivalents are complete microservice implementations.

These surprising observations have two important consequences for Ambience. First, as with
any non-derivative operating system approach, users of Ambience must be concerned with
software backwards compatibility, in this case, largely with the POSIX system call interface.
The Deathstar benchmarks show that for microservices, this concern is potentially unfounded.
Secondly, Ambience needs not include a POSIX compatibility layer that would increase its

185



Journal of Edge Computing, 2024, 3(2), pp. 168-206 https://doi.org/10.55056/jec.786

Deployment
Manifest

¥ ¥
Service A || Service B

Service W Service W

Manifest Manifest

Services
Edge Microcontroller
External \ /
. G G
Clients 14 < roup / \ rouP>

4

‘< Group> ( Group )

Import

External .
Servers

Figure 2: End-to-end overview of how Ambience constructs a deployment.

Ambience Cluster

abstraction and implementation “footprints” and potentially degrade its performance. However,
we note that Ambience does not have any limitation precluding a POSIX compatibility layer
from being implemented in its user space.

4. Deployment construction

To achieve both the level of IPC optimization that Ambience enables and also to implement
the automatic synthesis of application-level network overlays, Ambience constructs a set
of customized images (once for each node) in a deployment. These images must then be
installed on each node in a node-dependent manner to form an Ambience Cluster. In terms
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of nomenclature, we refer to the entire collection of artifacts as a “deployment” and the set
of installed and running images as a “cluster” Figure 2 presents an end-to-end overview of
Ambience deployment construction.

A Deployment Manifest document enumerates the services that will be hosted in the cluster,
each of which is described by its own Service Manifest. Each Service Manifest specifies the
interface types for the service, as well as the interface types of all of its dependencies. The
Deployment Manifest also specifies what nodes and networks will be included in the cluster (cf.

).
oUsing the Deployment Manifest to determine the node topology and the type information
from the interfaces described in each Service Manifest, Ambience automatically synthesizes
code to perform cross-group authorization (cf. e) and optimized interservice communication
(cf. @)

Each Service Manifest also specifies an artifact (either binary or source) that Ambience com-
piles, if necessary, and links into loadable groups (cf. 0) Loadable groups are binary modules

that are combined with the Ambience-synthesized authorization code (cf. o), communication

code (cf. °) to form node-specific kernel images. Ambience uses metadata associated with
each loadable group to pre-allocate certain runtime resources, such as page tables and sockets
(cf. @)

Ambience combines kernel and group artifacts associated with each specific node to create
a bootable image for that node. For x86 or ARM-based fully-featured platforms Ambience
generates a bootable ISO disk image and for microcontrollers, it generates a loadable image (cf.
e, o, and @) Using the Deployment Manifest, Ambience also generates memory layouts
for all loadable groups. While a global memory layout is not necessary on hardware with paged
virtual memory, microcontrollers operate directly on physical memory and each group must
be loaded at a suitable location. At this stage, Ambience has the information necessary to
allocate memory regions for nodes that do not support virtual memory. This build-time memory
mapping relieves the microcontroller kernels from performing runtime memory relocations as
well as avoids the use of position independent code to achieve maximum performance.

In the current implementation, bootable images generated by Ambience must be delivered to
their respective nodes in a machine-dependent manner (cf. ). For example, for cloud-hosted
nodes, the images for each node must be uploaded to the cloud’s image registery. Alternatively,
for microcontrollers, the images must be installed via the serial interface or flashed to the
microcontroller ROM.

Within a deployed cluster, services assigned to different groups that are co-located on the
same node communicate using Ambience’s synthesized, local Inter Service Communication
mechanism (cf. @). Within a node, Ambience passes arguments and return values between
address spaces using its most optimal strategy (e.g. using memory mapping to deliver large
amounts of data across protection domains).

To support off-node communication (determined from the Deployment Manifest) Ambience
automatically includes the serialization and deserialization code necessary for communication
to take place across a network, as well as access control code for protecting these interfaces (cf.

@). It is this component that enables application-level network transparency via automatically-
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generated network overlays.

To allow Ambience to service requests originating outside of the cluster, Deployment Mani-
fests can specify explicit Exports so that Ambience services can support externally facing service
interfaces (cf. ). For example, Ambience supports the access of any internal service via an
HTTP REST endpoint that is automatically generated and inserted in a node image with no
involvement from the developer.

Similary, Ambience Deployment Manifests can also specify explicit Imports for cluster-
external services so that Ambience services may issue requests to non-ambience services (cf.
@) However, an imported external service must provide an RPC-style interface so that it can
be accessed transparently (i.e. as if it were an Ambience service) via automatically inserted com-
munication code. Consequently, integrating with non-RPC services (e.g. a service supporting a
streaming interface) requires the Ambience developer to perform a manual integration.

5. Discussion of results/findings

Evaluating the utility of an operating system with a novel system model is challenging. In par-
ticular, it is often difficult to make comparisons to existing systems that explain differences (e.g.
performance improvements) analytically. Operating system functionality is often a convolution
of architectural features that are difficult to study in isolation in a way that yields meaningful
comparisons.

In light of this challenge, we focus our evaluation of Ambience on two of its key design goals:

» the ability to deploy end-to-end microservice meshes in different configurations without
modifications to the microservice code, and

» the effects of its aggressive build-time optimization strategies on per-node microservice
performance.

We note that it is, in fact, Ambience’s ability to achieve deployment reconfigurability without
recoding coupled with aggressive node-level optimization that constitute the basis of its novelty
and utility in an IoT setting. Also, we focus on node-level performance since cross-node
performance is often dominated by network speed and the performance of the network protocol
stack. Optimizations applied to either of these features benefit Ambience and any alternative
operating systems equally.

To evaluate deployment reconfigurability, we have developed a motion-triggered “camera
trap” application used in wildlife monitoring settings that captures digital images from a remote
camera, processes them to perform classification of the images, and stores the classification
results in a data repository. We use equivalent implementations for Ambience and the IoT soft-
ware framework from Azure [43] and report both quantitative and qualitative (e.g. productivity)
metrics associated with deploying each version in different configurations.

To evaluate the Ambience design decisions from a performance perspective, we use a set of
microbenchmarks to provide isolated measurements of specific functionality. We also use other
service-level benchmarks to expose the characteristics of different deployments, such as the
effect of service call depth. Quantitatively, we focus on energy use, latency, portability, and
scalability. In practical remote IoT settings, sensor and actuator nodes often use battery power
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(recharged during daylight hours using solar power) and operate on a duty cycle consisting
of active periods and periods of low-power dormancy [23, 54, 58]. The minimum duration
of the active periods is defined by execution speed and communication delay. Thus power
consumption is often correlated with execution duration and, hence, reduced execution duration
implies less energy consumption and the use of smaller batteries, a smaller solar array, more
active periods per unit time, etc., for the same communication duration. Latency measures the
duration of a specific operation or set of operations, and scalability plots the performance of a
node as a function of the load it hosts.

The experimental testbed for these evaluations consists of four different computational
resources (two microcontrollers, one small-board edge computer, and one cloud) and two
different networking technologies. We name the computational platforms Motion, Camera,
Edge, and Cloud respectively. Their resource configuration is as follows:

» Motion is a nRF52840s microcontroller with an ARM Cortex-M4 core running at 64MHz,
256KB of RAM and 1MB of flash memory with an attached motion sensor [69], and an
Xbee radio network interface [61].

» Camera is an STM32F746 microcontroller with an ARM Cortex-M7 core running at
216MHz, 512KB of RAM, and 1MB of flash memory, an OV5640 CMOS image sensor [66],
a motion sensor [69], and both an Xbee radio interface [61] and a 100-Mbit Ethernet
interface.

» Edge is a single core x86_64 virtual machine with 1GB of RAM running under QEMU-
KVM supported by a Linux Kernel 5.15.6 on an AMD 5950x processor running at 3.4GHz,
on gigabit Ethernet network interface.

» Cloud are two single core cloud-hosted virtual machines with 1GB of RAM on Intel
Skylake processors.

On the Edge and Cloud platforms, Ambience executes directly on the hypervisor as a stand-
alone virtual machine with custom virtio [73] drivers (i.e. it is not “embedded” in another
operating system). On the Motion and Camera microcontrollers, Ambience runs as the native
operating system. Both motion sensors are polyelectric infrared (PIR [87]) sensors and all code
is implemented using C++.

5.1. Wildlife monitoring application

As a motivating application and to demonstrate the flexibility that Ambience makes possible,
we describe an end-to-end wildlife monitoring system designed for off-the-grid locations (e.g.
research reserves). Physical sensors and cameras employ embedded microcontrollers. The
application uses a version of Tensorflow [59] designed for mobile platforms (e.g. smart phones)
to process images either on-camera, or off-camera (possibly traversing a network link in the
process) on an x86_64 edge server device which then posts the analysis results to the cloud over
an Internet connection.

In a typical deployment the motion detector nodes run completely on batteries, making
battery life paramount. The camera nodes have solar power, but power usage is still important
since the camera uses a battery during nighttime operation that is recharged during daylight
hours. In the deployment we use, the edge servers also use batteries, but they are from a large
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Figure 3: Service mesh deployment configuration for the Camera Trap application. For brevity, we omit
the lower-level services such as logging, timers etc.

battery complex with a large solar array located in an open space. The cameras communicate
with the edge server via an Ethernet network, and the sensors communicate with the camera
via low-power Xbee radios. Using this testbed, we deploy the following service mesh. Note that
all of the mesh components are implemented as microservices.

» Motion Sensor manages low level hardware events from the PIR motion sensors and
forwards them to its event handler.

» Camera Manager manages the OV5640 camera using the STM32 Digital Camera Module
Interface (DCMI) peripheral, capturing a full sized image every time it is triggered and
passes the image data to the frame handler.

» Detection implements an animal detection service using Tensorflow on a sub-sampled
image. If an animal is detected, the frame is passed to the recognition service. The model
used in this service takes up around 320KB and is fully portable across the Camera and
Edge nodes.

» Recognition implements an animal recognition service, using Tensorflow but on a higher
resolution version of the frame, and classifies the subject. The classification result is
passed to the database service.

+ Database implements an append only log of classification events.

The service mesh deployment configuration shown in figure 3 represents a typical deployment
in a wildlife monitoring setting. The Motion device is located near a “stage” (e.g. a watering
location) that is imaged by the Camera device from a clear vantage. Thus this service mesh
configuration consists of four “tiers” Motion (tier 1) communicates with Camera (tier 2) via
Xbee low power radio to trigger an image capture. Camera then communicates with Edge (tier
3) which has a public Internet connection that it uses to communicate with Cloud (tier 4). This
four-tiered deployment requires 53 lines of Ambience configuration code (in addition to the
code for the service mesh components), all of which is contained in Ambience Manifests.

In settings where the image stage is larger than what a single PIR sensor can cover, a different
deployment configuration that uses the motion sensors on both Metion and Camera together
is necessary. Switching from using only the motion detector on Motion to using both motion
detectors requires 5 lines of Ambience Manifest change, and no change to the service mesh
code itself. Ambience synthesizes the necessary networking overlay code with no additional
input from the user.

190



Journal of Edge Computing, 2024, 3(2), pp. 168-206 https://doi.org/10.55056/jec.786

30 35
Motn IRQ [ Motn Tx EJ Tx-Rx Space Camera Rx
E Cam Work B Cam Tx Tx-Rx Space B Motn Rx

Figure 4: Timeline of the events captured using a logic analyzer when the Detection service is deployed
on the Edge node and the Motion service is deployed on the Motion node. Units are in milliseconds.

We deploy the Tensorflow Detection service on Camera by default. However if a camera
is particularly active causing the Detection service to drain the battery at a rate that could
threaten an overnight shut down, the service can be transparently offloaded to Edge (extending
the battery charge duration of Camera) and then and moved back once the battery is recharged
(to reduce computational load Edge). Offloading requires that we change 2 Ambience Manifest
configuration lines, and no change to the service code itself.

5.2. Microcontroller latency analysis

To understand the efficiency of the Ambience implementation on the microcontrollers, in figure 4
we show a timeline of Ambience events that take place when the Motion Sensor microservice is
executed on Motion and it makes a service request of the Camera Manager service on Camera
to capture an image. The timeline units are milliseconds and the data was gathered with a
logic analyzer attached to both microcontrollers. Our goal, with this study, is to understand
the efficiency of the Ambience interaction between services hosted on microcontrollers in the
camera trap application. In particular, we wanted to understand the prospective battery life of
Motion since it does not have a solar array to recharge its battery.

On Motion, an IRQ (approximately 1 ms) triggers Ambience to start the process of sending a
request to Camera. Next, approximately 15 ms (marked Motn Tx in the figure) are required
to activate the Xbee radio through an on-board serial interface. Sending a message over the
radio (marked Tx-Rx space in the figure) requires approximately 5 ms of communication latency
during which time both the radios on Motion and Camera are active. To transfer the message
from the Xbee radio through the serial interface on Camera requires approximately 15 ms
(marked Camera Rx in the figure). The Ambience-induced workload necessary to receive the
message and send a response (marked Cam Work) is approximately 2 ms, followed by 2 ms
needed to transfer the short service response across the serial interface on Camera to the Xbee
radio (marked Cam Tx in the figure). The 5 ms of network latency for the response is followed
by 2 ms for the response to traverse the serial interface between radio and microcontroller
(marked Motn Rx) on Motion.

Note from figure 4 that approximately 40 of the 50 milliseconds are devoted to serial commu-
nication with radios on each microcontroller board. During these periods, the microcontroller
processors are in low-power sleep and the transfers are made entirely using DMA hardware
to conserve power. In particular, the Motion microcontroller is awake for less than 3% of
the entire operation and spends less than 20 uJ for the entire event with the radio requiring
4.32 mJ. Using a battery cell with 13Wh capacity [68], this energy consumption is sufficient
for the device to service approximately 10 million events detected and transmitted over an
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Figure 5: Overhead ratios for three benchmark regimes. The overhead ratio is computed as number of
non-compute processor cycles to compute cycles processor cycles. In the Compute benchmark (left),
the x-axis shows increasing compute workload summed over 16 concurrent requests and a fixed, 200KB
message. For the IO benchmark (middle), the x-axis shows increasing request message size for a single
request (concurrency 1) requiring 0.25 ms of compute cycles. For the Concurrency benchmark (right), the
x-axis shows increasing concurrent requests, each requiring 0.25 ms of compute and a 200KB message
size. Both the x-axis and the y-axis are shown on a log scale in each graph.

XBee network. At reasonable event rates and quiescent current leakages, the battery could last
multiple years, demonstrating Ambience’s abstractions are efficient and effective enough to
support low power applications as well as high performance ones.

5.3. Edge platform overheads

To facilitate reuse and scaling, individual microservices often implement very narrow func-
tionalities, which are composed to form higher level services. Such services are deployed in
separate trust domains (processes, address spaces) to achieve isolation. Services then use the IPC
mechanisms implemented by the operating system to communicate between domains. Previous
work [29, 46] notes that microservices can have quite large communication-to-computation
ratios. From a performance perspective, cycles spent for computation is “useful work” and cycles
spent for communication is “overhead” — a cost required to implement the useful work. Thus the
ratio of communication cycles (cost) to computation cycles (benefit) is a simple representation
of the cost/benefit ratio associated with a microservice deployment. We term this metric the
overhead ratio.

To study the overhead imposed by the platforms, we implement a pair of Camera Manager
and and Detection services 3 ways: natively on Ambience, using Azure [oT SDK, and using lidl
on Linux over Unix Domain Sockets. To avoid differences in workload caused by the effects
of numerical precision and Ambience’s inlining of application and operating system code, we
use parameterizable “mock” versions of both services that allow the the compute cycle counts
for the microservice portion of the workloads to be set explicitly. We then compare the same
services across three platforms in different configurations. Our mock Detection service allows
us to specify an exact cycle count (regardless of architecture) to use to subsample an image
in a given frame. We also experiment with multiple concurrent requests to try and amortize
communication costs.

Figure 5 presents the overhead results. The y-axis in each graph is the overhead ratio
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computed as
overhead_ratio = (total_cycles — work_cycles) /work_cycles (1)

We set the number of work cycles explicitly in the benchmark and measure the total processor
time using the real-time clock on Edge, dividing the overall time by the processor clock rate.

In figure 5, we show the overhead ratio on the y-axis (on a log scale) for three different
benchmark regimes using the “mock” Detection benchmark. The leftmost graph of figure 5,
shows results for a “Compute” benchmark. The z-axis corresponds to increasing compute
workload for each of 16 concurrent requests that each require a 200 KB payload. The center
graph shows results for increasing message payload along the x-axis for a single request
requiring 0.25 ms. Finally, the rightmost graph shows increasing message concurrency along
the z-axis, for 0.25 ms requests, each requiring a 200KB message payload. Note that Azure sets
a 256KB limit on message payload and that the z-axis is depicted on a log scale in each graph.
A ratio of greater than 1.0 gives the number “extra” non-work cycles necessary to accomplish a
single cycle of useful work.

The evaluation shows that for low-compute, high-communication scenarios, Linux imposes
significant overheads, with an communication-to-computation ratio of as much as 61. In
contrast, the Azure overhead ratio of 1381 is almost two-orders of magnitude higher than that
for the highest overhead native Linux implementation (large message sizes in the IO graph).
By comparison, the overhead ratio for Ambience ranges from between 0.008 to 0.59. That is,
Ambience is between two and four orders of magnitude more efficient than Linux, and between
four and six orders of magnitude more efficient than Azure, in terms of communication-to-
computation overhead ratio. Further, the overhead ratio for Ambience is never greater than
1.0 in these experiments indicating that the Ambience optimizations are able to amortize each
overhead cycle against multiple work cycles in these benchmark regimes.

The predominant reason for this significant difference in efficiency is that the Linux and
Azure IPC mechanisms require data to be copied when it traverses a protection domain. While
this approach induces relatively little overhead when the data is small and the computations are
lengthy, it creates significant overheads in a microservice context where each service performs a
simple computation and the overall application is a large composition of such service invocations.
For example, the Detection service requires the entire image to be passed between address spaces,
but once it has been moved, the compute requirements are relatively small (since it subsamples
the image). Thus the communication-to-computation ratio is potentially large when the entire
image is copied into the protection domain hosting the Detection service.

Further, we note from the analysis of the DeathStar benchmark suite [29] discussed in
Subsection 3.13 that simple computations are common to many of the microservice requests
it embodies. For cloud-based microservices, the resulting overheads may not be a serious
impediment, but in an IoT context, where the overhead results in additional power consumption,
this per-request efficiency is an important point of optimization.

Also of note is that all systems show improvements as concurrency increases, since certain
costs such as i-cache and TLB misses and context switches amortize between concurrent
requests, with Ambience improving the most while being the best overall. We expand our
analysis of IPC overheads below using microbenchmarks. Note also that Azure imposes a hard
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limit of 256KB [44] on message size, preventing us from using it for comparative purposes with
large messages. However, these results demonstrate that Ambience’s aggressive type-aware,
specialized IPC mechanism can dramatically reduce cross-domain overheads for microservices
on a single node.

5.4. Microbenchmarks

While the wildlife camera trap application exemplifies the utility of Ambience in an end-to-end
IoT context, its complexity makes isolating the effects of specific design choices challenging.
To permit a more focused analysis, we detail the performance of individual design features
using a combination of synthetic benchmarks and benchmarks extracted from more complex
applications. Together, we refer to these as “microbenchmarks” since they each test a specific
Ambience feature or subsystem.

Interface benchmarking

To evaluate the effects of Ambience’s integration of interface type information into the kernel,
we created a variety of synthetic microservice interfaces designed to cover a representative
set of results. Specifically, we constructed benchmarks with interfaces consisting of scalars of
a uniform type, scalars of mixed types and relatively large strings and buffers. We executed
the benchmarks while increasing the sizes of the arguments to identify any potentially hidden
overheads. For each interface, we executed 10K requests using four implementation strategies
and measured the average latency and overall throughput of each.

We compare four different interface strategies for implementing each interface. The User
strategy represents typical interprocess communication (IPC) using byte wise copy between
user spaces and the kernel (e.g. Linux pipes). All type erasure occurs in the user space, the
kernel copies the bytes from the client to the server and the server deserializes the buffer.
For Linux, we re-implemented the User strategy using pipes on Linux 5.15.6 and the same
serialization/deserialization code in each comparative experiment.

In the Dynamic strategy, the user space code sets up a vector of pointers to arguments and
tells the kernel the types of the pointers dynamically. The kernel then performs the sharing to
the other address space, and creates a new vector of pointers to arguments the server address
space can access. The advantage of this approach over the User strategy is the kernel can
automatically map pages for large buffers (although it cannot precompile optimized sharing for
each argument).

The Static strategy (the Ambience default strategy) is one in which the user space sets up
a tuple of typed arguments and passes a pointer to this tuple to the kernel. Since the kernel
has been compiled with type information from the interface for the system call it “knows” the
structure of the data the tuple at compile time. It again creates the same structure on the server
address space by either copying the arguments or mapping pages but the decision is “hard
coded” into the kernel and optimized during the kernel image build.

Figure 6 shows the throughput achieved by the four strategies (Static, User, Linux, and
Dynamic) with four different payload sizes (4 bytes, 32 bytes, 64 bytes, and 128 bytes). Each
payload size consists of either a single scalar type (denoted “Uniform” or a mixed set of scalars
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Figure 6: Average throughput for passing scalar arguments (of varying total size) between two address
spaces. Uniform depicts the case where the scalars are all of the same type and mixed shows the effect of
multiple scalar types in the argument payload. Each experiment is repeated 10,000 times and the units
are megabytes/second.
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Figure 7: Average throughput for passing larger buffers across address spaces. User and Linux fall short
as they always perform copies.

(denoted Mixed) where the sizes of the constituent scalars sum to the payload size. For example,
the Uniform 32-byte payload consists of four 64-bit integers while the Mixed 32-byte payload
comprises a 64-bit unsigned integer, a 64-bit signed integer, an 8-bit boolean, a signed 8-bit
integer, a 32-bit floating-point scalar, a 16-bit signed integer, and a 64-bit floating point scalar.

From the figure, each strategy achieves approximately the same throughput performance for
small payload sizes, except the Dynamic strategy which incurs a noticeable throughput penalty
when the payload is Mixed. Note that the Static strategy (the Ambience default) achieves higher
throughputs as the payload size increases, with little difference between the Uniform and Mixed
payloads.

Further, comparing the Static and Dynamic strategies shows the effect of compile-time
optimizations. While Dynamic uses the same primitives as Static in a program, for Dynamic,
Ambience must traverse a list and make an indirect function call for each argument. The effects
of this implementation is most apparent when there are many parameters of different types (i.e.
Mixed workload) causing substantial branch mis-predictions and I-Cache invalidations. Static,
User, and Linux on the other hand have no virtual function calls and there is no list to traverse:
parameters are simply a packed, contiguous tuple. On top of the cache-friendliness, the static
type information unlocks inlining opportunities for the compiler. For example, when passing 16
scalar arguments, the Static strategy emits a single large memcpy as opposed to 16 small ones.
For passing few, well aligned large buffers (starting at around 100KB), Dynamic achieves similar
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results when its cache and inlining disadvantages are overshadowed by the efficiencies of page
table manipulation.

Note also that because User and Linux need to perform multiple copies of large buffers (one
for in-process serialization, another for IPC), they cannot achieve the high throughput afforded
by direct page mapping. However, as they can make use of the static types in user space, they
still outperform Dynamic for the mixed-type workload.

Figure 7 shows similar throughput results for larger buffers that are both page aligned and
unaligned. Specifically the 1024 and 4000 are not page aligned sizes and thus must be copied for
all cases. However, the 4096 byte buffer can be directly mapped for the strategies that can take
advantage of page remapping.

Overall, the results show that the Static strategy is superior in both the small payload and
large buffer experiments achieving 2.66x and 3.18x (respectively) higher average and 4.08x and
2.29x (respectively) higher maximum throughput. Further, the Linux and User results are almost
identical results since they are implemented in a very similar manner.

Scalability benchmarking

Ambience supports stackless coroutines as its basic computational model. To explore the
efficiency of this choice, with respect to service request scalability, we implemented two different
versions of a recursive and caching, DNS-like, name resolving service where clients make
requests to resolve names to network addresses.

The experiment consists of two terminal resolvers (one implemented with coroutines and
the other with fibers) each storing half of the known domains. A single client of each resolver
generates 10,000 requests for uniformly randomly selected domains (including some invalid
domains). The requests are sent in batches where each request in a batch is serviced concurrently.
We compute average request time as the total time to complete all requests divided by 10,000.

For the fiber version, we use a stack size of 32KB which we note is moderately sized compared
to the space (often tens of megabytes) allocated for stacks by other systems. In contrast, the
coroutine version dynamically allocates a specifically-sized continuation frame of 627 bytes
which is the minimum needed for each request.

Because the resolver is recursive, if the requested hostname is not cached, it will make a
request to one or more of its upstream resolvers (we use a university campus DNS service as
the most immediate upstream in these experiments) and wait. If the result is in the cache, it
responds immediately. Once a request completes, all resources are freed. This means that if
a request completes without any blocking, it consumes memory for only a very short time.
Therefore, if the cache hit fraction is NV, only B * (1 — N) requests consume memory in a batch
of requests having size B. We have tuned the request streams so that NV is approximately 0.5 in
the experiments we conduct.

Figure 8 compares the scalability of each approach in terms for four metrics: average request
throughput, memory usage, TLB misses, and CPU processor cache misses, each as a function of
increasing request concurrency. The throughput units are requests per second, memory usage
is measured in bytes, TLB misses and cache misses are counts. Note that the cache-miss graph
is on a log scale.

The results show that coroutines achieve approximately 2x greater maximum throughput
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Figure 8: Throughput (requests per second x 10°) and memory use (bytes) for Ambience coroutines vs

fibers.

compared to fibers while supporting a maximum of 50 x the number of requests in the same
memory footprint. This comparison illustrates both the runtime overheads and excess memory
that a fiber implementation incurs, compared to coroutines, particularly when requests must
block waiting for an upstream response. The results also show that maximum throughput
occurs when each batch of requests is size 64 (i.e. when B = 64) for both coroutines and fibers.
Small batch sizes have many more context switches (leading to more TLB misses). Large batch
sizes have large working sets as individual, dedicated pages are created for each request and
response (leading to more cache misses).

Cross isolation group benchmarking

A key design feature of Ambience is the ability to change trust domain topology at deployment
time without code modification. To explore the effect of this feature on performance, we
compare a deployment scenario in which the client and the DNS resolver are trusted equally by
the deployer to a scenario in which the deployer places them in separate trust domains. Note
that in a Linux microservice context, this choice is not typically available — the deployer must
use separate isolation domains regardless of the trust architecture associated with a specific
deployment. To evaluate this design feature, we placed the coroutine recursive resolver in the
same group as the client and compare that performance to the performance shown in figure 8
for the coroutine version where the client and resolver are in separate Ambience groups.
Figure 9 shows the comparative throughput in requests per second (x10°). Note that the
solid bars in the figure are generated from the data shown in figure 8 which uses units an order
of magnitude less than those in figure 9. For example, in figure 8, the average cross group
throughput for concurrency level 64 is approximately 2 x 10° requests per second which is
shown in figure 9 as 0.2 x 10° requests per second. This change of scale is necessary because
colocation of the client and the service within the same security group results in more than
an order of magnitude increase in throughput. Critically, this benchmark comparison did not
require code changes to either the client or resolver microservice code. Only the Ambience
deployment manifest differs between the two deployment isolation topologies compared in

figure 9.
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Figure 9: Comparing request throughput when the resolver and the client are deployed in the same and
separate isolation groups. The units are requests per second x 108.

Benchmarking “kernelized” services

For deployments where the microservices and the Ambience kernel are equally trusted (e.g. on
a device with a single owner who wishes to dedicated it to running one or more microservices),
Ambience allows the microservices to share the kernel’s address space. Note that this deployment
choice, again, only requires manifest declarations indicating kernel deployment with no code
changes to the services themselves. Also, it is possible to “kernelize” multiple microservices
with the same kernel, in contrast to a unikernel approach where each service may be comingled
with its own, separate kernel.

Kernelized services (where they can be deployed according to the localized trust architecture)
permit low-latency request responses because they avoid the context switching overhead
necessary for user-space execution. In-kernel deployment reduces time to service latency by
27x for the x86_64-based Edge and by 8x for Motion microcontroller. The performance
improvement is because when the service is in-kernel, Ambience can immediately schedule
the service on the kernel job queue without initializing the memory protection data structures
necessary for a full context switch.

Microcontroller benchmarking

Finally, we compare Ambience’s performance on microcontrollers against the popular Tock [57,
82] operating system for embedded devices. Tock is a multi-tasking operating system for
microcontrollers with support for memory protection. For this study we use an nRF52840 [81]
microcontroller with a 64MHz ARM Cortex-M4 core, 256KB of RAM, and 1MB of Flash memory.

To fit multiple microservices on a single device, we use a simple string search microservice
benchmark which has three services written in C++. A client service sends two 25-character
strings to a post service and receives an 8-byte key in return. A post service makes two requests
to an analysis service, each with a client string as input; each request returns a variable length
vector. The analysis service searches for the string in a fixed size message cache and returns a
list of offset-length pairs if found. All microservices execute concurrently. We perform 5 runs
of 10000 requests, increasing the number of concurrent requests from 1 to 10, and measure the
request throughput and latency.

To ensure a fair comparison, we ported the Ambience user-space libraries to Tock so that our
experiments only measure kernel-level performance differences. That is, the user-space code
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Figure 10: Microcontroller operating system comparison: throughput (requests per second) and latency
(microseconds) comparison as the number of concurrent requests increases for Tock and Ambience. The
table on the far right shows the binary sizes for Tock and Ambience in kilobytes. The microservices
application is a simple string search application (App) that consists of 3 microservices co-located on an
nRF52840 microcontroller device.

for both Ambience and Tock is the same in each experiment. Note that while Tock supports
concurrent isolated processes, only one request can be in progress at any time between 2
processes due to its shared memory IPC mechanism (i.e. Tock uses a single message buffer
for the request and the response is a two-way IPC). For Ambience, we place each service in a
separate group and services communicate via IPC.

Figure 10 shows the throughput (left graph) in requests per second and latency (right graph)
in microseconds for Ambience and Tock. The x-axis denotes the number of concurrent requests.
Because Tock sequentializes the asynchronous Ambience coroutine implementation, it has the
same performance regardless of concurrency level. Ambience achieves significantly higher
throughput but additional concurrency increases latency due to the small memory size of the
device. This relationship indicates that the microcontroller core is close to 100% utilization even
with sequential requests. Ambience maximizes throughput at a concurrency level of five. The
results indicate that Ambience is able to support up to 7x greater throughput than Tock with
lower per-request latencies.

The table on the right of the figure shows the binary sizes for the kernels and average
program sizes for both Tock and Ambience in kilobytes. While the user space components
have comparable sizes, Ambience’s kernel is significantly smaller than Tock’s. The small
application size difference comes from Tock’s use of printf, whereas Ambience has a statically
typed logging API, and omits printf family of functions. The kernel difference, on the other
hand, demonstrates Ambience’s optimization advantage. As Tock builds a generic kernel image
for use by all applications, it contains code for features that may not be needed (e.g. USB, IPv6,
Bluetooth, 802.15.4 radio, drivers for various external peripherals etc.). In contrast, Ambience
automatically specializes the kernel for the microservices it is hosting and thus only links in
the components that are needed for a specific deployment in the image it creates. For this
deployment, Tock binaries consume greater than 5x more memory than Ambience.
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6. Conclusions and recommendations/Future directions

We present Ambience, a new operating system for efficiently executing and deploying microservice-
based IoT applications. It does so via a novel combination of abstractions for isolation, asyn-
chronous control flow, statically typed interfaces, automatic network overlays, capability-based
access control, and separated declarative deployment orchestration. This combination makes it
possible to optimize individual services and kernels running those services and to reduce the
overheads that hamper general purpose operating systems on resource constrained machines
and devices.

Our empirical evaluation of Ambience demonstrates both the ability to deploy unmodified mi-
croservices at different scales in an end-to-end IoT application and the performance opportunities
and costs associated with different deployment configurations for the same set of microservices.
At the same time, this additional flexibility does not impose a performance penalty relative to
the state of the art. Ambience is often between one and three orders of magnitude more efficient
than commercial, multi-resource IoT frameworks. It is also more performant and produces sig-
nificantly smaller binary images than a leading embedded operating system for microcontrollers.
Ambience is available as open source from https://github.com/MAYHEM-Lab/ambience.

To achieve these results, Ambience sacrifices “traditional” operating systems abstractions for
more flexible isolation and control flow. In this respect, it is non-derivative and not backward
compatible with other operating systems (although many of its features are inspired by and
partially shared with other different systems). Part of the rationale for the “clean-slate” design
approach stems from its focus on microservices which, at present, do not make heavy use of
typical operating system abstractions directly.

For IoT, where the proliferation of devices, deployment requirements, and distributed security
concerns span resource scales from small embedded systems to the cloud, Ambience postulates
a unifying operating system that is designed to “tame” this heterogeneity. At the same time,
it recognizes that for IoT, the in situ requirements defined by individual deployments should
allow the same set of microservices that comprise an application to be deployed in different
configurations without the need for recoding or developer intervention.
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