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Abstract

We study notions of asymptotic regularity for a class of minimal submanifolds of complex
hyperbolic space that includes minimal Lagrangian submanifolds. As an application, we
show a relationship between an appropriate formulation of Colding-Minicozzi entropy and
a quantity we call the C R-volume that is computed from the asymptotic geometry of such
submanifolds.

Keywords Complex hyperbolic - Minimal surfaces - Lagrangian

Mathematics Subject Classification 53A10 - 53C42 - 53D12 - 32Q45 - 53E10

1 Introduction

In [3], the authors generalized the Colding-Minicozzi entropy [11] to submanifolds of Cartan-
Hadamard manifolds. In this article, we study the specific case where the ambient manifold
is complex hyperbolic space, CH"!. Recall, this is the (2n + 2)-dimensional complete
simply-connected Kéhler-Einstein manifold with metric gcy which has constant negative
holomorphic curvature; we adopt the convention that the sectional curvatures lie in [—4, —1].
This leads to a relationship between the entropy of certain minimal submanifolds (e.g., min-
imal Lagrangian submanifolds) and a quantity we call the C R-volume, which is associated
to their asymptotic geometry. This quantity is an analog, in the context of C R-geometry, of
the conformal volume of Li and Yau [24]; it is also related to the visual volume of Gromov
[16]—see Definition 2.4 in Sects.2.4 and 4.

Our study requires appropriate compactifications of CH"*!; we describe two choices
in Sect. 3. Both lead to well-defined and equivalent notions of ideal boundary, 800(C]HI”+1.
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Moreover, 3o CH"*! comes equipped with a corresponding C R-structure modeled on S2+1

viewed as the boundary of the unit complex ball Bfé“. Let & C CH"*! be a smooth proper
minimal submanifold. Such a ¥ is necessarily non-compact, and therefore a natural assump-
tion is that its asymptotic geometry can be modeled, via the compactifications of CH"!,
on a submanifold, 9,0 % C 9,oCH" ' —see Sect.3.4 for a detailed discussion. One may
then impose additional conditions on the asymptotic regularity and geometry of X. For
instance, X is asymptotically horizontal if 9., X is a horizontal submanifold of 3o CH" !
and asymptotically Legendrian when 0 2 is Legendrian—i.e., horizontal and of maximal
dimension. Indeed, a Lagrangian submanifold of sufficient asymptotic regularity is asymp-
totically Legendrian—see Lemma 3.2. We refer to Definitions 3.1 and 3.3 in Sect.3.1 for
specifics.

Our first result is that relatively weak assumptions on the asymptotic regularity of certain
minimal submanifolds imply stronger asymptotic regularity.

Theorem 1.1 Suppose that ¥ C CH"*! is an m-dimensional minimal submanifold. If ¥
is weakly C*-asymptotically regular and weakly asymptotically horizontal, then it is C'-
asymptotically regular and strongly horizontal.

Using this, we obtain a relationship between the generalized Colding-Minicozzi entropy
of these submanifolds and the C R-volume of their asymptotic boundaries.

Definition 1.2 («k-entropy [3]) Suppose that X is an m-dimensional submanifold of the (m +
k)-dimensional Cartan-Hadamard manifold (M, g). Let

D01, x) = Ko i (10 — 1, distg (x, x0))

where K, , are functions defined in [3, pg 2] following [5, 11] and come from the heat kernel
of H™. The Colding-Minicozzi k-entropy of X in (M, g) is given by

kg[E]: sup /-Cbggf‘,?(—t,x)dVolz(x): sup /@,’,;f‘,?(O,x)dVolg(x).
b »

xpeEM, >0 xpeEM,t>0
When « = 0 and (M, g) = (R"*, gr) is Euclidean space, this is the usual Colding-
Minicozzi entropy, A[X], of . When « = 1 and (M, g) = (H"*¥, gg) is hyperbolic space,
this is the entropy in hyperbolic space, Ag[X], introduced in [S]. By [3], kg is monotone
non-increasing along reasonable mean curvature flows in a Cartan-Hadamard manifold with

sectional curvatures bounded above by —k2. As CH" ! has sectional curvatures in [—4, —1],
we make the following definition.

Definition 1.3 (Complex hyperbolic entropy) The Colding-Minicozzi entropy of an m-
dimensional submanifold ¥ c CH"*! is given by

heu[Z] = Ay [Z1= sup /@Qj‘;’(o,x)dvz(x)
D)

XoeCH"! >0

where )»i, o 18 the k-entropy on CH"*! corresponding to an upper bound on sectional cur-

vatures of —1.

Theorem 1.4 If ¥ < CH'"' is an m-dimensional submanifold that is weakly C'-
asymptotically regular and weakly asymptotically horizontal, then

IS" N pAcH[Z] > AcrloZ].

If ¥ is also weakly C*-asymptotically regular and minimal, then equality holds.
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Remark 1.1 In [5, Theorem 1.5], an analogous result for appropriate submanifolds of hyper-
bolic space was obtained: If ¥ is an m-dimensional submanifold of H"*+* that is regular up
to the ideal boundary, then there is an inequality relating, A, [0~ 2], the conformal volume of
the ideal boundary of ¥ and Ay[ 2], the Colding-Minicozzi entropy of ¥ in hyperbolic space.
This was applied in [29, 30] to show a type of topological uniqueness for certain minimal
hypersurfaces in H"+1.

We conclude by discussing the applicability of Theorem 1.4. The most basic examples
are the totally geodesic Lagrangian submanifolds, ¥ = X, ;, that, for any p € CH"!
and Lagrangian subspace L C TP(CH"H, are uniquely determined by L = T, X. These
¥ are C*°-asymptotically regular, strongly horizontal with d., ¥ corresponding, modulo a
C R-automorphism, to a totally geodesic Legendrian sphere " ¢ S?**1. They also satisfy
rcmlz] = 1.

The fact that each X, ; is intrinsically, H"*!, the hyperbolic space with curvature —1,
yields more examples. Indeed, work of Anderson [1, 2], Hardt-Lin [20], Lin [22], and Tone-
gawa [28], give many minimal hypersurfaces in H"*+! with good asymptotic regularity. This is
done by solving an asymptotic Plateau problem for any C2-regular hypersurface in 9, H"*!;
note that, as observed in [28], higher asymptotic regularity is a subtle issue. See the survey
of Coskunuzer [13] for a thorough overview. Embedding these into X, 7 yields weakly C 2.
asymptotically regular and asymptotically horizontal n-dimensional minimal submanifolds
in CH"*!.

In another direction, in [12, Theorem 1], the authors describe a family of rotationally
symmetric minimal Lagrangian submanifolds of CH"*! that are topologically R x S". One
verifies that, when 7 is even, they are C*°-asymptotically regular while, when n is odd, they
are C"*!-asymptotically regular but not C"*2. In all dimensions, these submanifolds are
weakly C*-asymptotically regular and strongly horizontal. Moreover, their ideal boundary
corresponds to a pair of totally geodesic Legendrian spheres S” contained in S?**!. There
seem to be few other constructions of smooth minimal Lagrangian submanifolds in CH"+!—
see however [23]. If one allows (interior) singularities then, by taking a cone, any minimal
Legendrian in S?"*! gives rise to a (singular) minimal Lagrangian submanifold of CH"*+!—
see Corollary 3.7. There are many examples of such I in S?**!—for instance, the so-called
Clifford tori [17, Ex. 3.16]—see also [19]. In S° there is a particularly rich collection of
examples, including those of higher genus—see [10, 18, 25]. Note that Theorem 1.4 holds
for minimal submanifolds with interior singularities.

Finally, for any submanifold I C 9o CH" ! andin particular any horizontal submanifold,
it follows from [6, Theorem 4.3] that there is a (singular) area-minimizing current asymptotic
to I in a certain, weak, sense. To the authors’ knowledge, additional asymptotic regularity
has not been established in CH"*! for the solutions of [6], especially for those of high
codimension-cf. [21], which shows asymptotic regularity for high-codimension minimizers
in H"*+!. It would be interesting to produce solutions with sufficient asymptotic regularity in
this fashion.

2 Geometric background

We introduce needed geometric background and computations. In particular, we recall the
contact, Sasaki, and CR structures that arise by viewing S*'*+! ¢ R+ ~ C"*! as the
boundary of the unit ball B2*+2 ~ ]Bf’CH. Related structures exist on the ideal boundary of
complex hyperbolic space. Our main sources are [7, 27].
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2.1 Basic constructs on Euclidean space

Let us first introduce notation for various structures on R?"+2 ~ RA+1 x ]Rg+1 ~ Crtl,
Here we make the identification of (x,y) € R"*! x R"*! with C"*! viaz = x + iy. In
particular, the Euclidean coordinates given by xy, ..., X,4+1, Y1, - - ., Yu+1 correspond to the
holomorphic coordinates z;1 = x1 +iy1, ..., Zn+1 = Xpn+1 + [ Yn+1-

Denote the usual Euclidean Riemannian metric and symplectic form by

n+1 n+1
gR = Z (dsz +dy12-) and wr = de.,‘ Ady;j.
Jj=1 Jj=1

Let Jg be the associated almost complex structure on R2*+2 defined by

or(X,Y) = gr(X, Jr(Y)), ie., Jr (8?@) = —% and Jr <3i1> = %
In this convention the complexification of Jr satisfies Jp (8‘%) —i 7= Bz . Likewise,
dxjoJgr =dy;anddyj o Jg = —dx;.
Let r : R?"*+2 — R be the radial function defined by

P2 =Py 4 x4+ yE = P+ Iy = 2
One readily computes that
dr =r~" (idxy + yidyr + - + Xn1dxng1 + Yas1dYns1)
is a smooth one-form on RZ"*+2 \ {0}. Set
0 =r""droJg =r""(idy; — yidxi + - + Xpp1dyns1 — Yuy1dyns1) -
Define a symmetric (0, 2) tensor field on R2+2\ {0} by,

n+1
n= D (Gt yiy0 Axjd + dyjdye) + 23 ye(dxjdye — dyjdx)
Jok=1, j#k

One readily computes that
SR = dr* +r? (92 + 17) and wgp = %rde +rdr AG.
Hence, for X, Y € TI,RZ””,
- %d9(X, Jr(Y)) = —risz(X, Jr(Y)) + %(dr ANO(X, Jr(Y)) =n(X,Y). (2.1)

It is convenient to introduce vector fields

n+1 n+1
X 0 + 9 dT = Z 0 Jr(X)
= Xj an Xi —yi— || = —
—\Max; Ty Tay;  Max; %

where X is the position vector and T is a Killing vector field. They satisfy

1 1
dr(X) = ;gR(X,X) and 6(X) = r—zgR(X, T).
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One readily checks that if X is any vector field on R?**2 and V¥ is the Levi-Civita
connection of gg, then, because Jp is vR parallel, one has

VEX = X and VAT = V¥ (—Jr(X)) = —Jr(VEX) = —Jr(X).

2.2 Contact, Sasaki and CR geometry of S2"+1

By thinking of S?"*! as the boundary of the ball B?**? we may endow it with a natural
Sasaki structure. This comes along with associated CR and contact structures. In order to
understand the boundary behavior of complex hyperbolic space it will be helpful to understand
the interaction of these structures as well as their symmetries.

To that end, let § be the pullback of 6 to S?**!_ This is readily seen to be a contact form
on S2*1 with Reeb vector field T, the restriction of the tangential vector field T. Denote by
H C TS+ the contact distribution associated to 8, that is, the vector bundle over S+
satisfying, for each p € S?'*1,

Hp =kerd, = X e T,§%1 16,00 = 0) c T,8%+. 2.2)

Let gg denote the round metric on S**+! induced from gg. It is clear that { is g orthogonal
to T. It follows that Jr = Jrly is a bundle automorphism of H. We may extend this to a
bundle map Js : TS**+! — TS+ by setting J5(T) = 0.

The triple (Js, ’i‘, é) is, in the language of [7], an almost contact structure on S21+1 In
fact, together with the metric gg this is an almost contact metric structure and this almost
contact metric structure is also Sasakian. Indeed, by [7, Theorem 6.3], if VS is the Levi-Civita
connection of gs, then it suffices to check

(VxJs)Y = gs(X, T —0(Y)X,
holds for X, Y € T,,S"*!. This follows from V%JR = 0. Hence, for X € T,,Sz""'l,
ViT = —Js(X).
In a similar vein, by using the identification S*'*! ~ 8183%“ where
B%‘H = {(Zl; e Zn41) |Z]|2+...+ |Zn.5.1|2 < 1} C (C”H,

is the unit complex ball, one may interpret (H, Js) as a CR-structure. In this case, 9 is
a pseudo-convex pseudo-hermitian form, as the Levi form, L, is a positive definite inner
product on H—see [14]. Indeed, for X, Y € H,, itis given1 by

1 1
Ly(X,Y) = —2(dO)(X, J5(Y)) = —2dO(X, Jr(¥)) = n(X.Y)

where we used that X and Y are in the kernel of dr and 6. Hence, L; = n where 7 is

the pullback of 1 to S?**!. Moreover, the Webster metric associated to this data on S?'+!
recovers the standard metric, i.e.,

éz—i-Lé = gs.

1 we use the convention that dp(X,Y) = X(BY)) — Y(B(X)) — B(X,Y]), though dB(X,Y) =
% (X(B(Y)) —Y(B(X)) — B([X, Y])) is also common in the literature.

@ Springer



61 Page6of32 Geometriae Dedicata (2024) 218:61

S21+1 we denote

Given a C! function defined on
VIf=Vf— gV, DT

where H is the tangential component of the gradient.

2.3 Complex automorphisms of unit ball in C"*! and CR-automorphisms of S27+1

We denote by Autc (IB%("CH) the set of biholomorphic automorphisms of the unit disk. We refer
to [26] and [15] for properties of these automorphisms, but summarize some of the needed
facts.

First of all, we observe that for any A € U(n + 1), a unitary matrix, the map

bDpiz—> Az

is an element of AutC(BﬁéH). Secondly, for any fixed b € ]B%T'CJrl there is an element &y, €
Autc (IB%?’C'H) given by

®p:z+— /1 —|b|? L 4
1+b-

! 1+ L= [bP b
14+/1—pP I+b-z
This map can also be expressed as

b 1 b2 +b-
Dp(z) = VT b2 4 b +b-z,

I+b-z 14+ /1—|b2 1+b-z

Using the identification IB%E";rl ~ B?**2 we may think of ®y, as a Jg-biholomorphism of
B2"+2, i.e., satisfying

Jg o Dy® = D,d o Jg,

and identify Autc(B{:"") with Aut; (B***?2), the Jg-biholomorphisms of the ball.

Proposition 2.1 Forb = by + iby € BE'!, the map @y satisfies:

(1) There is a unique extension to a Jr-biholomorpism ®y, : B2'T2 — B21+2,
(2) On dB>"*2,

Oydr = Wydr and O30 = Wi
where Wy, € C®(B2"12) is given by

1 —|by|? — [by?
(14+by-x+by-y)2+ (b2-x—b;-y)?

Wh(x,y) =
(3) OndB*+2
Dido = Wodb + 2(Wy — W)rdr A0 +dWi A6 +dr A (dWy o JR).

Proof The existence of a smooth extension of ®}, follows from its formula and it is clear that
the extended map is Jr-holomorphic and smoothly invertible. A straightforward computation
gives

A= bR~ [zP)

Opz)2 =1 —
&y (@) BT

2.3)

@ Springer



Geometriae Dedicata (2024) 218:61 Page70f32 61

With z = x + iy, it is convenient to write
Wi(2) = (1 = )1 +b 2|72 = Wy(x. y).
By inspection, Wy, is a smooth and non-zero function on B212 We write (2.3) as
rPo®p=1—(1—r)W.

Hence,

(2r o ®p) Pydr = O} (2rdr) = Pid(r?) = d(r? o dp)

=d(1— (1 =rHWp) = —(1 — r)dWy, + 2Wprdr.

Combining this with the Jg-holomorphicity of @y, yields

1 —r2

5 (r20) = @, (rdr o Jg) = (r o Op)(Pfdr) o Jp = Wpr?6 — dWy o Jg.

Combining the above computations yields the second claim. We further compute,

Dprido = & (d(r?0) — 2rdr A 0) = d(D}r?0) — 2dfdr A Bfi(r0)

1 — 2
— AWy A 20 + Wod (F20) + rdr AdWy o Jg — ———d(dWy o Jg)
2 r2 r(]—rz)
—2Wy = rdr/\@—i—zi_Wb(de/\rQ—l—dr/\deoJR)
r< o oy r< o ®yp
A=) W A dWe o
_—— o .
2r2 o &y b b ok

On 9B%"*2 this simplifies to
Bido = Wod6 + 2(Wy — W2)dr A6 +dWy A0 +dr A (dWp o Jr),

which verifies the third claim.

Every element ® € Autc (Bfé“) satisfies
D=y 0Py 2.4)

for some A € Un + 1) and b € IBS%H. It follows from (2.4) and Proposition 2.1 that
every element ® € Aut;(B*'*?) extends smoothly to a map ® : B>+ — B2"+2. We
write Auty (]I_Bz"“) for the group of extended maps. The maps ® € Auty (@2””) have the
additional property that W = ®|qu+1 is a diffeomorphism of S*'*! to itself, which is a
CR-automorphism of S*'*1 that is,

DP\I’(HP) = H\y(p) and on HpvJS o DP\I’ = Dp\I—’ o Js.

Let us denote the set of such maps by Au_tCR(Sz”“). For b = by + iby € Bfgr], let
Uy, € Autcr(SH!) be, the restriction of @y, € Auty (B¥+2). For A € U(n + 1) define
W, € Autep(S?*1) in the same manner.

Proposition 2.2 The following properties of Autcg(S** 1) hold:

(1) Everyelementof Autcr (S2"+1Y is the restriction of aunique element of Aut (B2*2) and
in particular, for every ¥ € Autcr (S thereisan A € Un + 1) andb = by + ib,
such that ¥ = Wy o Wy,
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(2) The elements U € Autcr(SP*Y) are contactomorphisms, in fact for ¥ = W4 o Wy, one
has U0 = Wbe
(3) An element W = Wy o Wy, € Autcr(S* 1) acts on the metric gs by

\I/*gs=Wb(gg+cbb~é+é-cbb+arlogwbé2)
=W (77+60b 0+0- a)b+( flvﬁlong|S>92>

82n+1

where @y, is a one form on given by

1 1
= Edlog WpoJs = —EgS(Js(VHWb), ).

Remark 2.3 The deformed metrics gé’ = W*gg are special cases of more general deformations
of contact Riemannian manifolds studied by Tanno in [27, Section 9] where they were called
gauge transformations of contact Riemannian structures.

Proof The first claim is a standard fact—see [8, Lemma 1.1] and [9]. The second follows

from Proposition 2.1 and the fact that \I/;’;é =4.
By (2.1), on S = B2"*2_ one has

1
Wiy = Wpn + (W — W(dr? +67) + 5de -dr
1 1 1
+ 59 - (dWp o JR) + Edr -dWp + E(de o Jr) - 0.

S2"+ 1

Hence, if 7 : — R2"+! ig the usual inclusion, then /) = i*7 and

- R PO 1. R
i = Woi) + (Wp — W)H* + 0" (@Wy o Jr) + i (dWp 0 Jr) - 0

A aw
= Wpi) + (Wp — Wb+—")92+ “6-dWy o Js) + = (deon) 6

where Wy, = Wy 0i. As gs = 62 + 7, it follows that

Ypgs = Wp (gs+c?)b-é+é-cbb+a,logwbéz).

A straightforward computation shows that the following identity holds on S**!
oW = W2 — Wi 4+ L VWl
r¥WWb = Wy b 4 Wh

The final claim then follows from the above computations, the first claim, and the fact that
Wy is a gg-isometry. O

2.4 CR-volume

We introduce a notion of C R-volume for horizontal and Legendrian submanifolds of S+ —
this functional is further studied in [4]. An m-dimensional submanifold, I' c S*'t!, is
horizontal if T,I" C Hp, forall p € I', where H,, is as defined in (2.2). Properties of contact
manifolds ensure that m < n. When m = n, I is Legendrian.
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Definition 2.4 The CR-volume of T' C S***! an m-dimensional horizontal submanifold, is:

Acrll'] = sup [W(T)ls.

WeAutcp(S2+1)

Observe that elements W € Autcpg (Sz""'l) can be factored as ¥ = W, o Wy, where
AeUm+1)andb € IB%%H. Using the facts that W4 is an isometry of gs, I is horizontal,
along with Proposition 2.2 we obtain

Acr[l']l= sup [Yp(T)[s = sup /Wbi(P)dVr(P)
beB ! beBy! /T

(1—[bP)?
= sup /Jilder(p).
beB»&H r|1+b-z(p)|

Here we used that g2|7, = Wygs|y.

3 Complex hyperbolic space and its compactifications

In this section, we establish some properties of complex hyperbolic space, CH"*!, and its
submanifolds. Recall, CH"*! is the simply connected (complex) space form with constant
holomorphic sectional curvature. We think of it as a (2n + 2)-dimensional Kdhler-Einstein
manifold with Riemannian metric gcpr and the integrable (almost) complex structure Jepr. We
refer to [15] for background on this space, however, unlike in [15], we adopt the convention
that the sectional curvatures of gcy lie between —4 and —1.

3.1 Bergman metric and the Bergman compactification of submanifolds

A standard model of complex hyperbolic space is the Bergman model. Here the underlying
manifold is B2*+2 ~ Bfé“ with metric

1 n+1 n+1
8B = ﬁ ZdedZ_/’ + m Z ZjdedeZj
j=1 k=1
1 2 2 2 r2
= 0 .
A= T a— e ti e

One of the advantages of this model is that in it the complex structure, Jp, satisfies Jp = JR.
In particular, Aut;B (B2"+2), the orientation preserving isometries of gg, is identified with

Auty(B¥*2) and the corresponding symplectic form is

2

r 1 2

1
wp = d@—}-izrdr/\H:

227 T A= 2Rt

I 2rdr/\9.

.
(1=
Forany p € CH""! there is a diffeomorphism Y, : CH"™! — B2'+2 satisfying Y, (p) =
0 and Y gp = gcm. Moreover, this map is a biholomorphism and is unique up to post-
composition with an element of U(n 4 1). By making the identification with B2**2, this

=S | . .
leads naturally to a compactification, ca't , of complex hyperbolic space, which we call a
Bergman compactification. Observe, in this case, the ideal boundary 9-,CH"*! is identified
with $2*+1 = 3B2"+2. Different choices of p and the corresponding Y, give different
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compactifications, but they induce equivalent structures as manifolds with boundary. They
also endow 9, CH" ! with a canonical C R-structure, though only an equivalence class of
Sasaki structures.

We use Bergman compactifications to define asymptotic properties of submanifolds ¥ C
CH"*'. To that end, for an m-dimensional submanifold & ¢ CH"*!, a point p € CH"*!,
and a Bergman compactification Y, : CH"! — B2, Jet

%, =T,(%) c B2
We call X, a Bergman compactification of X.
Definition 3.1 Suppose that ¥ and X, are as above:

(1) Forany ! > 1, ¥ is Cl-asymptotically regular if ¥, is a C!-regular submanifold with
boundary and X, meets dB>"*2 transversally;

(2) If, in addition, d X, is a horizontal submanifold relative to the usual contact structure on
S+l = 9B *2 e, forallg € 3,, T,dE, C H, = ker 6, then X is asymptotically
horizontal,

(3) If, in addition, forall ¢ € %, T, X, is orthogonal to T, i.e., T, X, C ker 6,, then X is
strongly asymptotically horizontal.

Note (2) and (3) can only hold when m < n + 1. When m = n + 1 the term horizontal is
replaced by Legendrian.

If 3, is another choice of a Bergman compactification of X, then X, = o2 ) for some
® € Aut;(B**2). It follows from Propositions 2.1 and 2.2 that Definition 3.1 is independent
of choices. In particular, we may think of a C-asymptotically regular submanifold X, as
having a well defined C'-regular ideal boundary, d-oX C 95 CH"*!. The submanifold £
is asymptotically horizontal precisely when d., X satisfies this property with respect to the
natural contact structure of 9o, CH" .

The notion of being asymptomatically horizontal is natural as it automatically holds for
isotropic submanifolds of sufficient asymptotic regularity.

Lemma3.2 Ler ¥ C CH"*! bea C! -asymptotically regular m-dimensional submanifold. If
m > 2 and ¥ is isotropic, then it is asymptotically horizontal.

Proof Let X, be a Bergman compactification of X. Clearly, X is isotropic if and only if
%, is isotropic. Hence, for X, Y € T, %, one has wp(X,Y) = gp(X, Jp(Y)) = 0. Let us
denote by T, the tangential component, with respect to gg, of T along p- Using Jgp = Jp
we have,

gg(TT, Jr(XT)) =0.

As X, is C! up to the boundary and meets 9B>*+? transversally,
X" =aX+yT+v
where v is gr-orthogonal to X and T. Likewise, one has
T =BT+ 86X +w

where w is gr-orthogonal to X and T. On the boundary, we have

B=ITPanda=|X"|>#0
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while
y=grX',T)=gr(X",T") = gg(X,T") =35.
As w and Jp(v) are orthogonal to T, one computes

0=gp(T", Jr(X")) = gg(BT + X +w, —aT + yX + Jr(V))
r2 ,,2
I .
T T (W, Jz (V)

=(—af +yd)

Near the boundary, this gives the expansion:

_ sr(XT, TH? - ITTAXT|

0 4(1—r)?

+o((1=n72).

The Cauchy-Schwarz inequality and the fact that X7 # 0 on the boundary, implies TT =
bXT. As XT is gr-orthogonal to 0%, C S+l the same is true of T'. Hence, 0%, is
orthogonal to T and so it is horizontal. O

3.2 Modified Bergman compactification

While the Bergman compactification is well-adapted to the complex geometry of CH"*!,
it seems less satisfactory for studying the asymptotic regularity of minimal submanifolds;
this is apparent in the examples of [12]. Therefore, it is convenient to introduce a related
compactification, which possesses certain computational features that make it similar to the
usual conformal compactification of hyperbolic space.

To begin, consider the radial function s : B2+2 [0, 1] defined by

2s

, equivalently, by r = .
or, equivalently, by r T

,
§ = —
1++vV1—-1r2

Observe that r extends smoothly with derivative zero to s = 1 while s extends only as a
%-H(’jlder continuous function to r = 1. Using

1—s2:2<1_ 1 >:2 L andl—rzzﬂ
141 —r? 1+ 1 —r2 1+
one computes that
16s* 1654
_ ds® + s262 + 52 02 — 02
8B (1_s2)2( $T 707 +57n) + T =8 gp + T2

where gp is the Poincaré metric on B?"*+2 of constant curvature — 1. Likewise,

452 1 4(1 + s%)

e+ 5 s ne.
=222t ot

wp =

Now consider the diffeomorphism S : B>*+2 — B2*+2 given by

z Lo 1 2z
S:z+—> ——— withinverse S™ " : z

- —.
1+ 1 - [zf? 1+ |z
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This map extends to a %-Hblder continuous, but not smooth, homeomorphism, S, from the
closed ball B2*+2 to itself. Clearly, s(p) = r(S(p)) and so

1 2(1 — 52
S*dr = ds = dr.(57Vyds = dr = 205 45 and
VI=r20+V1-17) (1+5%)
S*0 =0 and S*n = n.
Hence, if we define a metric on B2+2 by
(5 ) ap = 4 N 16r4 62 — op 1+ 16r4 92
gB - gB - (l _rz)ng (1 _r2)4 _gP (l —}"2)4 El

then S*gz = gp. Here gz is the modified Bergman metric which is obtained from the
Poincaré metric in a particularly simple manner. The corresponding symplectic form, wj
satisfies S*wj = wp and the compatible almost complex structure is

1 1
Ji=r+2r| —XQ®r6 - ——T®dr|.
B R + r<1_r2 r 14,2 ® r>
A consequence is that Aut;é (B>"+2), the orientation preserving isometries of g § are not

holomorphic with respect to the usual complex structure of the ball. However, as every
element ® € Aut;,; (B¥+2) is of the form

d=SodoS!

for a unique ® € Aut], (B2"+2), it follows that ® extends smoothly to B2**? and induces

the same map in Autcg(S*'+!) as .

We now use S to define a modified form of the Bergman compactification. Fix p € CH" !
and let Y : CH"t' — B2'*2 be the corresponding choice of Bergman compactification.
Let Y“p : CH"t! — B2"+2 be the map Y“p =807, s0 Y;;gB = gcm and ?p(p) = 0. For

Y C (CH”“, an m-dimensional submanifold, set
$,=38(3,) = T,(2) c B2,

which we call a modified Bergman compactification of .

Definition 3.3 Suppose that X and ip are as above:

(1) Forany [ > 1, ¥ is weakly C'-asymptotically regular if by pisaC !_regular submanifold
with boundary in B*"*2 that meets dB2**2 transversally;

(2) If, in addition to (1), = p meets dB>"*2 orthogonally then X is asymptotically orthogonal,

(3) If, in addition to (1), 3%, is a horizontal submanifold of S?"*! = 3B>'+2, then ¥ is
weakly asymptotically horizontal.

For (3) to hold, m < n 4+ 1 and when m = n + 1 the term horizontal in (3) is replaced by
Legendrian.

In the above definition, the independence of items (1) and (3) from the choice of p follow
from the properties of Autg} (B2"1+2). To establish the independence of item (2) and to relate
Definitions 3.3-3.1 we use the following result.

Lemma3.4 Let ¥ C CH""! be an m-dimensional submanifold and fix an | > 1.
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(1) If X is C'-asymptotically regular, then S is weakly C'-asymptotically regular and asymp-
totically orthogonal.

(2) Conversely, if ¥ is weakly C'-asymptotically regular and asymptotically orthogonal,
then X is C'-asymptotically regular.

(3) If = is C'-asymptotically regular, then ¥ is asymptotically horizontal if and only if ©
is weakly asymptotically horizontal.

(4) If = is weakly C*-asymptotically regular and asymptotically orthogonal, then X is
strongly asymptotically horizontal if and only if ¥ is weakly asymptotically horizontal
and, for a modified Bergman compactification, 3. P

gr(T, AL (X7, X)) =0along 9%,,.
P

Remark 3.5 We observe that the converse direction of (2) must be genuinely weaker when
[ > 2 as can be seen by the examples of [12].

Proof Let X, = T,(X) C B2 pe a Bergman compactification of X. The fact that X
is C'-asymptotically regular means the following: ¥ is a C!- submanifold with boundary,
r=90%, C 9B2"*2 is a C!-submanifold, and ¥ p meets 9B +2 transversally along I'.
Hence, there is a parametrization of X, in a neighborhood of I" given by a C! map

F:(1-¢1]xT — %, c B

with the property that |F(p, ¢)| = p. By Taylor’s theorem, we may write

!
F(p.q) = X(@) + Y (1 - pYai(@) + (1 - p)'f(0.q)

i=l1

where f(1, g) = 0. The properties of X, ensure gr(aj(q), X(¢)) < 0. Thus,

1
SF(p.q) = ———F(p,
F(p,q)) l_i_\/m(pq)

! i 1

- 1-
Q=2 s+ L= t(.q).

1
=——X@q+) ——F——
141 —p2 ;1-1-\/1—,02 141 —p2

Consider the related map and its expansion

s(F 20
1+02,q
1+ 02 !

1 : . 1 ~
S X@) + 5 ) (=0 (1 +0*) g + 51— 0) (0, ).

i=1

F(o,q)

It follows that, up to shrinking e,
F:(1—e,1]xT > f)p c B2t2

is a C!-embedding and so parametrizes by p = Sz p) in a neighborhood of I =T.In
particular, ¥ pisaC !_regular submanifold with boundary. Moreover,

W F(1,q) =X(q)

and so we can conclude that 3 p meets 9B2"*2 orthogonally. This verifies (1).
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In the converse direction, let ¥ p be the appropriate modified Bergman compactification
of X. The hypotheses ensure that by pisaC I_regular submanifold with boundary that meets

dB2"+2 orthogonally. This means that there is a parametrization of % p in a neighborhood of
I" by a C'-embedding

G:(l—€1]xI — %, cB"?

with the property that I(}(G, q)| = o and Bgé(l, q) = X(g). By Taylor’s theorem,
- 1
G(o,q) = oX(g) + 5(1 —0)*b2(q) + (1 — 0)’g(0, 9)

where g(1, ¢) = 0 and we set by(q) = 0 when ! = 1. As |G (0, ¢)| = o,
gr(b2(g), X(g)) = 0.

It follows from the definition that

S (G(o, ) G(o,q)

l+02
20

20 20
= 1+02X(61) + <1 - W) b2(q) +2 <1 - W) g0, q)

which is not an immersion at ¢ = 1. Consider instead the expansion of the map

Go.g)=s"(6[—2— 4)]).
(0, q) ( (H_mq»)
= pX(q) + (1 = p) (b2(q) + &(p. q))

where g(1,¢) = 0. Up to shrinking e, this is readily checked to be a C' embedding
on (1 —€1] xI'" and so ¥, isa C 1—regular submanifold with boundary. Moreover,
gr(9,G(1, q),X(g)) = 1 and so X, meets aB21+2 transversally. This verifies (2). In addi-
tion, combined with (1) it also shows that being asymptotically orthogonal is independent
of the choice of modified Bergman compactification. Note that, when / > 2, unless g has
appropriate parity at o = 1, there can be a loss of regularity.

Having established (1) and (2), (3) is an immediate consequence of the definitions. Finally,
by what has already been shown, the hypotheses of (4) imply that ¥ is C'-asymptotically
regular. Using the parameterization, F, from above with / = 1, we see X is strongly asymp-
totically horizontal, if and only if gr(a;(q), T) = 0 for all ¢ € I'. It is not hard to see that
this is equivalent to

gr(32F(1,¢9),T) =0,

which can be readily checked to be equivalent to the geometric condition on ¥ p- O

3.3 Second fundamental form and mean curvature in CH"?

On B¥*2 leth = gj» be the modified Bergman metric, g = gp, be the Poincaré metric,

and set T = %9. Here and in the following subsections we abuse notation and use s
instead of r to emphasize that we are working with the modified Bergman metric. As such,
h is, in the sense of Appendix B.1, a rank one deformation of ¢ by 7 and 7(X) = g(X, T).

We specialize the computations of Appendix B.2 to this case.
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First observe that because gr and g = gp are conformal one has

2
™ — T+ 1Tl (1+35)? T

CIHITTR T (=2 +4TT
where we used the fact that TV = T+, i.e., the orthogonal component of T with respect to
¥ is the same for gr and g. Likewise, for a vector field V along X

N N N N 1 1 T+
VY= VY (VN T s = VE = g (VE T
TV 2 TL2

Proposition 3.6 Let = C B2"*2 be an m-dimensional submanifold. The mean curvature of
X inh = g and in gg are related by:

- (1 _ S2)2 - 1— SZ -
M) =~ H)" - (m + DX
N
(1 —s%)? (1_52 R T T T)
X—Ax(T', T ) —2Jr(T
G 2 ST TN = 2J5(TT)
and
0 1—s%)? 1—s? 2(1 — 52
gactl, ) = L2500 8 4 <m+1+(72)) gr(TT,X)
4 1+s
(1-5%? (1_52 T R pT T )
+ T ,X)—grAx(T",T"),T)].
1= 44T B\ 2 gr( ) — gr(AE( ), T)
Proof Using V§T = —Jr(X) and the formula for the connection of a conformally changed

metric, one has

VET = —Jr(Z) — Z -log(l — sHT — T - log(1 — 5%) + gr(Z, T)V¥ log(1 — 5%)

X
= —Jr(Z) +2gr(Z,X) —2gr(Z, T)m-

1 —s2

Using g(X, Jr(Y)) = —g(Jr(X), Y) and Jr(T) = X this yields,

262(Z,X) ., 2gr(Z,T)
g(ng,Y)=g(z,JR(Y))+gp< g]f_ﬁ T- giR_Sz X, Y
20 (Y.X), 2gr(Y,T
— o2 Jp ) +gp (- LDy 2850 Dy 7).
1—s 1—ys

Hence, the tensor field, a, from Proposition B.1 satisfies

a(T’) = —VE T = Jr(T") — 2gr(T", X) +2ITT

1 —s2 1 —s2

By Corollary B.2 and (1 — s2)2|TT|§, = 4|TT|]%, it follows that

ALA@T, TN + 20N + (1 — s TT2XN

Hh 1\~/:H81\~/
ML)V = HY) e
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The formula for the conformal change of the second fundamental form yields

28r(X, )X+
1 —s2
m(l — s2)X+

_ . )

AS(X,Y) =A% (X, Y) -

, 3.1
ey (3.1)

H HE
> 4 D

Hence,

252 - 2\w N
(1 4s ) (Hﬂé)N B m(1 2s )X
AETT, TN + 20TV + 11 — ) TT 12XV
1+ (TT2
(1—s% (1—s%

2 . -
:7HRN—7 IXN
7 Hy) 7 m+1)

HL)Y =

. a _SZ)X—AR(TT TT) — 2J(TT) !
1 + |TT|§ ) > ) R .
Using (1 — s2)2|TT|§, =4T7 |]12§ again, yields the first formula.

Corollary B.2, (3.1) and gr (X, T) = —gr(X, T1) imply

g
gALT, TT), 1)  EEEINT2 —20(Jp(TT), T)

1+ TT2 1+ T2
gARTT, TN, T)  2mge(X:.T)
1+ |TT|§ 1 —s2
2T 2gr(T T, X) 4gr(TT,X)|T2  2¢(TT,X)
_ 8 + 8
(I=s)A+|TTZ) (A —s2)A+[T2) ~ 1+]|T2
gAZTT, TN, T)  2(m+ Hgr(TT,X)
1+ |TT|§ 1—s2
2¢r(TT, X) 4gr(TT, X)
(I=s)(1+[TT2) 1+ s2

gL TV) = g(HE, T) —

=gr(Hy, T) —

= gr(HY, T) —

The second formula follows. ]

Corollary 3.7 If ' c S***! is minimal in gg and horizontal and ¥ is the (Euclidean) cone
over T with vertex 0 restricted to B*'*2, then  \ {0} is minimal in h = g 5 and isotropic
with respect to w .

Proof As T is minimal in gs, Hﬂé = 0 on X\ {0}. Likewise, as I is horizontal, TT =0on
3\ {0} and so H% = 0. This also implies that ¥ \ {0} is isotropic. O

3.4 Asymptotic behavior of minimal submanifolds in CH"*"
We use Proposition 3.6 to show an improvement of boundary regularity for minimal sub-

manifolds of the modified Bergman metric. That is, we prove Theorem 1.1.
We first show a preliminary partial result.
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Lemma3.8 Let ¥ C B¥'*2 be an m-dimensional C?-regular submanifold with boundary
that meets dB2 12 transversely along 3% C 3B *2 IfTT = 0 on 3%, then, near 3%,

1
T = (1= 9) s (U7 = SE.D).
Moreover, along 0X, we may write

X' = X"BX+Z = X"EX + Js(Z)) + 2o,

where Z is normal to X, 0% and T, Zy is tangent to 0%, Z> and Js(X3) are normal to E)
X, and T. Using this decomposition we obtain, along 0%,

T

2
XTI

(JrXNT =—-Z; and ST, (XT) = gr(T, AF(X", X)) +Z.

Proof The hypotheses on X ensure that X is horizontal and we can write
T =(1—s)v

for a C? vector field v tangent to X that extends in a C! fashion to the boundary. We compute
that on the boundary

VerT! = (Vgr (T =TT = (X)) + S5 XD,

As X' -5 = |XT|? on the boundary we verify that

1

V=g (FURXDT+SEAD).

On 0¥ we may write
XT=X"PX+Z=X"’X+UZ)+ 2

where Z is tangent to S*"*! = 9B2"*2 and thus orthogonal to 3 X. The hypotheses on %
ensure that X', and, thus Z, are orthogonal to T and dX. Hence, we may choose Z; to be
tangent to dX and so Z, and Js(Z;) are orthogonal to dX. When 0% is Legendrian, Z;
vanishes. Clearly, along 9%,

rX)NT = XTPT+ JsUs(Z) + 22) " = ~Z1.
For Y tangent to 0 %, the hypotheses on ¥ ensure

8= (T, AR (X", V) = ga (T, VFX) = ga(T, V} (X" 3X + Z))

= gr(T, Vy'Z2) = Y - gr(T, Z) — gr(Vy'T. Z)
=gr(Jr(Y), Z) = —gr(Js(2), Y) = gr(Z1, Y).

Hence, along 0%, we have
XT

2
XTIz

ST (X" =SF(X") = gr(T.AT(X".X")) + 7.

We now prove Theorem 1.1
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Proof of Theorem 1.1 Let us choose a modified Bergman compactification, %, of =. The
hypotheses ensure that 3 is C2 up to dB>"*2, meets the boundary transversally, has 9%
horizontal, and is minimal with respect to g 5. For simplicity, we will write X instead of by
for the remainder of the proof.

Our hypotheses ensure that near the boundary

T T X7
T =gr(T' . X)—5 +V 3.2
@ X (32)
where V is tangent to ¥, orthogonal to X, and vanishes along the boundary. This is well
defined as the hypotheses ensure that X s 0 along the boundary.
Using the minimality of ¥ along with the fact that X is C? up to the boundary, the second
formula of Proposition 3.6 can be rewritten as

_ 2 )
5 e (HE.T) + <m+ 1+ M) gR(TT,X>>

1
2,2 T2
0=(1-s)"+4T |R)< e

2
+2(1 = )( 5 L er(TT,X) — gr(AR (1T, TT), T))

From this expression one obtains that, near 0%,
4m + DITT [fer(TT.X) = 0(1 —s).

Hence, on 9%, either TT = 0 or gr(T T, X) = 0. In the latter case, (3.2) implies TT =0on
dX and, so in either case there is a vector field, v, tangent to ¥ with

T =(1-s)v.
From the first formula of Proposition 3.6, it follows that near d %, one has

— JrY + (m +1-

1 N
T X" +o(1).
1+| |]R + v

VIR

Hence, along the boundary
0 =2(Jr(V)N + ((m + DIvE +m) XV,
As we have shown T = T on 3 =, we may appeal to Lemma 3.8 to see
XV =Xt =X X" = [Xt3X - Z = X' 2X - Js(Z)) — Z»

where Z, Z| and Z, are as in the statement of Lemma 3.8. By Lemma 3.8, for appropriate
B, on 0% one has

_ 2 T_ T2
V=— Z + BX Zy+ B(X "X+ Js(Z1) + Z2).

IXT|2 XTI
Hence,

: 2 N
(Jr()N = ( DU +BIXTPT - 7, + JS(Zz))>

2
= —W(Js(zo)l + BUs(Zo)* .
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Plugging this into the previous identity we obtain

4
0=~ U2 + 2605220+ ((m + DIVE +m) X*

As Js(Z») is, by construction, orthogonal to 9%, X+, XT, and T, one has
Js(Z)N = (Js(2))* = Js(Za).

Moreover, as Js(Z1) is orthogonal to 9%,
XT

(s(Z)*h = Js(Z1) — gr(Us(Z1), XT )|XT|2’

which immediately implies that Js(Z>) is also orthogonal to (Js(Z )+, Hence,

BIs(Z2) =0 = — (Js(Z))*E + (m + DIv* +m) X,

4
IXT|?
This implies SJs(Z>) vanishes and

4
0= ‘Wlfs(znﬂz + (o + DIVE +m) gr(X*, Js(Z1)

4
= |XT|2|J§( D = (m 4+ DIV +m) | Js(Z))2.

It follows that Z; = Js(Z1) = (Js(Z1))+ = 0. Hence,
0= ((m+DIv]*+m)X*

and so X = 0. In particular, as a submanifold of CH"*!, ¥ is asymptotically orthogonal.
Moreover, along d X, one has a function « so

1

X2 SyL(XT) = —SF(X) = gr(T, AT X', X)X =oX".

V=—

As % meets dB2"*2 orthogonally, for X, Y tangent to § %,
ASs(X,Y) = (VEY): = AZ (X, 1).

Moreover, as TT = 0, for such X, Y,

gr(T, AZ (X, V) = ga(T, V§Y) = X - g (T, ¥) — gg(V}T, ¥)

=gr(Jr(X),Y) =0.

Hence, along the boundary,

HE = Hj; + AR (X", X7) and gr(HEs, T) = gs(H5y, T) = 0.
It follows that,

gr(Hy, T) = gr A (X", X7), T) = gr(v, X) = o
Using TT = (1 — s)v, the second formula of Proposition 3.6 reduces, on %, to:
0=(1+[vIx)gr(HS, T) + (m + Dgr(v, X)) + gr(v. X) — gr(AF (v, v), T)
= 4a®) @+ m+ D) +a—a® = (m+ 1)’ + (m +3)a.
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The only real root is @ = 0. Hence, v = 0 and gr (Aﬂé (XT,XT), T) = 0along d X. It follows
from Lemma 3.4 that 3, thought of as a submanifold of CH"*!, is C!-asymptotically regular
and strongly asymptotically horizontal. O

While we do not use it elsewhere in this paper, there is finer information about the boundary
geometry of the compactified surface.

Corollary 3.9 Suppose that ¥ C CH"*! is an m-dimensional minimal submanifold. If ¥ is
weakly C3-asymptotically regular and weakly asymptotically horizontal, and % C B2+2 js
a modified Bergman compactification of X, then, on 0%,

(1) gR(Aﬂé (X,Y),T) =0 for any tangent vectors X,Y to X.

(2) Aﬂé X7, v)= ﬁHiigR(XT’ Y) for any tangent vector Y to X.

Proof The hypotheses ensure that 3 is C up to dB>**2 and meets it transversally, has 9%
horizontal and is minimal with respect to g . For simplicity, we will write ¥ instead of )
for the remainder of the proof. Observe, that by Theorem 1.1, £ meets dB>"*2 orthogonally
and there is a vector field, w, tangent to X so

T' =1 —s5)°w.

Hence, on 0%, S% (X) = 0 which implies (1) holds.
The first formula of Proposition 3.6 implies that near 0 X,

0= (1 -HHEHHY —2(1 - HTaw)Y —mX¥ +o((1 - 5)).

To go further it is helpful to observe that

- 1 L
XV =Xt - g (X TH) 5 =X+ X, TN ——
TR TR

=Xt + 01 -5)?).

As (Vg Xt = —AR(XT, XT), it follows that near the boundary

XV = (1 - AEXT. XNV +o(1 —s).

Hence, we conclude that

N
0= (Hﬂé —2p(w) — mABXT, XT))
From these computations and item (1), this means that, on 0%,
_ N
2(Jr(w)N = ((1 —mARXT, XT) + H§E) =1 -mABXT XT) + HS,.

To complete the proof we need to compute w in terms of the geometry of X. To that end,
observe that

Ver X =XT 487, (XT) + AFXT,XT).
Hence,
.
VE RN = (Vir (=X = aX)F))
= X" +85 XD + AR X)) +85 70 (XD,
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The properties already established about the boundary geometry of ¥ yield, on 9%,
Ver(JrXN) T = JRAFXT, X)) —S%, (X)) = AT X', X).
We further compute that
gr(Vyr (ST (X)), ¥) =X g((SX.(XT), ¥) — g((Sy.(XT), Vg ¥)
=XT gr(TH ARXT, 7)) — g((ST.(XT), g+ 1)
= gr(—(JrX N —ATXT, TT), AF(X", 1))
+ gr(TH, (Vi AD)(XT,Y) + gr(TH AR (VEXT, V)
The Codazzi equations imply
gr(T, (Vgr AD(XT, ¥) = gr(TH, (VyASXT.XT))
=Y gr(TH AT X", X)) + gr((Jr()" + AT (Y, TN, AR X", XT)).
On the boundary, as TT =0, X" = X and item (1) holds, this simplifies to
gr(Vyr (ST (X)), ¥) = —gr(Jr(AF (X", XT), V) + ¥ - gr(T+ AT(X',XT))
= —gr(RAFX".XT), V) + X7 gr(TH AZ X, X"))gr(¥.X)

where we used X' = X on 9X.
Hence, on the boundary,

1 X7
W= Ver Vo T = —Jr@AS(XT, XD) + = - ga(TH AZXT, XT)X

and so
N

.
cgr(TH AR XT, XT))T) = ARXT, X"

. X
(Jrw)V = <Aﬂ§ X', X" — =
where we used item (1). Hence,
ARXT X"y = (1 —mATXT,XT) + Hy,

which yields item (2) for ¥ = X . When Y is orthogonal to X is immediate. O

4 Colding-Minicozzi entropy in CH"*+!

In this section, we prove Theorem 1.4. To do so we first introduce some notation. Let
T, Y : CH""' — B¥%2 be two choices of Bergman compactifications satisfying
Y(po) = Y'(py) = 0. By construction, there is an element ® € Aut(;,; (B¥'*2) satisfy-
ing Y' = ® o Y. Moreover, when py = py, this element ® is also an isometry of gr. As
a consequence, Y endows BOO(CH”+1 with a well-defined Riemannian metric, obtained by
pulling back gg from S¥'+! = 9B2"+2. While this metric depends on po, it is otherwise
independent of the choices of Y and so we denote it by g5" ¢y Clearly, g5 oy and g5° oy
are related by an element of Autcpr (S2"+1y for different choices of distinguished points pg
and go. Therefore any geometric quantity defined on S?**! that is Autcg(S***!) invariant
is well-defined on 3, CH"*!. Furthermore, as S acts as identity on S?**! one may also use
the modified Bergman compactification to the same effect.
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Fix an m-dimensional C' submanifold I' C 9,,CH" and let Y(I') C S?**! be the
submanifold associated to I' by the Bergman compactification, Y. Set

Voly,cu(, po) = [T()]s.

When py, is a different choice of a distinguished point, then, by the above discussion there is
an element, ¥ € Autcg(S¥" 1) such that

Voly..cu(T, py) = |¥'(D)ls = ¥ (Y (I))]s.
Hence, the CR-volume of a horizontal submanifold, I' C 8.oCH"*!, defined by

Acrlll = sup W T)ls = sup Vol cu (I, po)
WeAutcg (S2+1) pocCH"+!

is a well-defined quantity independent of choices. Moreover, using modified Bergman com-
pactifications yields the same value.

We now begin the proof of Theorem 1.4 and first record a basic relationship between
geodesic balls of the modified Bergman metric and the Euclidean metric.

Lemma 4.1 Setting s(R) = tanh g, it follows that
BiF(0) = B, (0).

Proof Suppose that £ is a line segment in B>"*2 with one endpoint through 0. Proposition 3.6
implies £ is also a geodesic of g . The length with respect to gz is

s 2 1
R:/ dt =1In ts .
0 1—1‘2 1—=s

As geodesics are always minimizing in Cartan-Hadamard spaces,

m}

It is also useful to clarify the relationship between Voly, cu(I'; po) and the geometry of
submanifolds asymptotic to I" for varying degrees of asymptotic regularity.

Lemma4.2 Ler ¥ C CH'"! be an m-dimensional submanifold that is weakly C'-
asymptotically regular and weakly asymptotically horizontal. For any po € CH"*!,
Volci (S N8B (po)

sinh”~1(r)

Voly, cH(0sc2; po) < liminf
r—00

where BﬁCH(po) is a ball of radius r centered at py in CH'*'. If S is Cl-asymptotically
regular and strongly asymptotically horizontal, then

Volcu (T N B (po))

Volycr(90 X3 po) = lim. T

Proof Let ?po : CH"*! — B2 be a modified Bergman compactification sending pg to
0. By Lemma 4.1, one has

Ty (9B (p0)) = 9BEE (0) = 3B,(0)
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where r = In (%"';)

Set B, = X NIBH(pp) and let X' = T, (2). Clearly, T, (Z,) = X' N 3B (0) =
Let g, be the metric on %, induced from gcp, g; be the metric induced on X} from gg, and
g/ be the metric on X induced from g 3. From the form of g ; and properties of ¥’ near the
boundary, that follow from ¥ being weakly C'-asymptotically regular, one has

4

" 4 / 4
8 = Toapd T s 2)4(12,9) = G 2)2g5, (4.1)

where the inequality is in the sense of symmetric bilinear forms.
Hence,

T e -1y h=2(r) 7 -
sinh™*(r = )
p"gs “\e +1 Pogs (1+ cosh(r))zgr

In particular, as E; is (m — 1)-dimensional, one has

|2 lcm
IZ{lR < ——— .
(1 4 cosh(r))™

The definition of weakly C'-regular asymptotic boundary ensures that
lim [E{[r = [9E|r = [9E'|s = Vola,,cr (90 T; po)-

sinh(r)
1+cosh(r)

Ass — 1,r — 00, and so, using lim,_, 5 = 1, we conclude

|Zr e

Vol; 000 X5 <l f—
0l cH (300 E; po) = limin I T cosh(r)m T

To see the second claim, observe that Lemma 3.4 implies that the new hypotheses on X
encompasses the previous ones and ensures that &’ has the property that T' on % . is of size
O((1 — 5)2). It follows that in this case, (4.1) satisfies

4
4

/ . 2 / /
8 = Toeps T ao e = Tt TS

for some constant C > 0. Hence, up to increasing C

1+ Ce )T L-Ce™
. _1-Ce™
pos 2 (1 + cosh(r))2 %"

This means that up to increasing C,

(1—Ce™)|Z) |cu
(1 + cosh(r))ym—1 °

=R >
The second claim then follows as before by taking s — 1 and r — oo. O

Theorem 1.4 is a consequence of Theorem 1.1 and the following proposition:

Proposition4.3 Ler ¥ C CH"'!' be an m-dimensional submanifold that is weakly C'-
asymptotically regular and weakly horizontal. Then

Voly, cu(3T'; po)
|S™ 1 |r

4.2)

t——00

liminf/ d>£2’117°(t, p)dVolx(p) >
s
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If S is C'-asymprotically regular and strongly asymptotically horizontal, then

Voly, . cu(00T'; po)
|S™ g

4.3)

[——00

lim | @%@, p)dVols(p) =
S

Proof Let ¥, = X N BBLCH(pO). Observe that, by the definition of being weakly C'-
asymptotically regular there is an Ry > O such that, for r > Ry, ¥ meets aBﬁCH(po)
transversally and so ¥, is a smooth (m — 1)-dimensional submanifold of BB;CH(pO).

By Lemma 4.2, for any € > 0, there is an R > Ry so, forr > R.,

|2, el
sinh” =1 ()’

As |Vcup| < 1, using the co-area formula, for R > R, one has

(I —e)Voly, cu(@0Z; po) <

o0
(1 — ) Voly o (00 T: p0) / K1 (to — £, 7) sinh™ ™ (r)dr
R

5/ (¢t p)dVolz(p).
2\BFH(po)

As K, 1(t,r) = K,y (2, 1), it follows from the proof of [5, Proposition 4.2] that

o0
lim K1 (to — t, ) sinh™ 1 (rydr = [S™ 715"
——00 R
Hence,
Vol doo Z; o
(1 — ¢ V1O X3 PO) i / (¢ p)dVolz (p)
IS"= R == Je\BRE (e

= liminf/ (2, pydVols (p)
s om

——00

where the second equality again uses (4.2). Sending ¢ — 0 yields,

Vols,.cu(30X; po) _ . . 0, P
|Sm71hR = ltlinlgj/z dJm,l (t’ P)dVOZE(P),

which verifies the first claim.

Suppose ¥ is C!-asymptotically regular and strongly asymptotically horizontal. By
Lemma 3.4, in the modified Bergman compactification, the compactified surface meets the
ideal boundary orthogonally. It follows that if p = distcy(p, po), then

pli)ngo Vep| = 1.
In particular, there is an R, > 0 sufficiently large such that for p € £ \ B%HI (po),
1< |Vspl™' < 1+e
Appealing to Lemma 4.2, up to increasing R, > 0 one has for r > R.,

|2y |cH

——F— < (1 +e)Vol; 000 25 .
S () =( YVoly,cr(9e0 X5 o)

Hence, for R > R., one has

f SO, p)dVols (p)
S\BEH (po)
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o0
< (14 2Voly_ci (9o Z; po) / Ko 1t — £, ) sin™ " (r)dr
R

Arguing as above,

Voly, cu(9s0X; po)
IS™1|r

lim sup/ (1, p)dVols(p) <
5 M

——00
This proves that

Voly, cr (90025 o)
IS™=1r

lim [ @0, p)dVols(p) =
)

——00
verifying the second claim. O
We may now prove Theorem 1.4.

Proof of Theorem 1.4 By definition, for any fixed py € CH"*!,

Acu[Z] > lim sup/ %Pz, p)dV ol (p).
t——00 JX '
Hence, Proposition 4.3 implies that
Voly,,cr(9s02; po)
ISR

AculX] =

Taking the supremum over py € CH"*! and using I' = 8, % yields,

AcrlTl]
ISm=r

AcH[Z] >

This proves the first claim.

To see the second claim, observe that if ¥ is weakly C2-asymptotically regular, weakly
asymptotically horizontal and minimal, then we may apply Theorem 1.1 to see that X is C'-
asymptotically regular and strongly asymptotically horizontal. In particular, Proposition 4.3
implies

Voly, cr (900 X5 o)
IS™=1r

[——00

lim [ &7, pydVols(p) =
L O

Furthermore, ¥ may be thought of as a static solution of mean curvature flow that, by
Lemma 4.2, and the co-area formula has exponential volume growth. Hence, by [3, Theorem
1.1], for all T > 0, one has

/q)?,;ﬁo(—r,p)d‘/olz(p)f lim /q)gﬂo(t—f,p)dVolz(P)
> ’ t——o00 [s ’

_ Vols cr@l's po) _ AcrIl]
B ISR TSR

Taking the supremum over > 0 and pg € CH"*! yields

Acr[I']

AcH[Z .
culX] = ST

Combined with the first claim this completes the proof. O
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Appendix A. Huisken monotonicity in CH"+?
In CH" !, the monotonicity formula from [3] has a particularly simple form. We first record
without proof the computation of the Hessian of a radial function.

LemmaA.1 Let p(p) = distcu(p, po) and suppose that F : [0, 00) — R is a C? function.
If f(p) = F(p(p)) on CH"*'\ {po}, then

Vg f = coth(p) F'(p)gca + (F"(p) — coth(p) F'(p)) dp*+
+tanh(p) F'(p)(dp o Jem)*.
We may now specialize some of the conclusions of [3] to CH"+!.

Proposition A.2 Suppose that {Z;},c0,1) is a mean curvature flow in CH"*! of m-
dimensional submanifolds with exponential volume growth. For any ty > 0, pg € CH"*!,
andt € (0, min {ty, T}) one has

d L gl0.P0 2
10, po _ T m,l 10, Po 10, Po

E . q)m’] dV)]r —_/;: W—Hzt +Qm,1 (t,X,NxEt) cDm,l dV):t.
t t m,1

Here, if we set ky, 1(t, 1) =log Ky, 1(t, r) and p(x) = distcu(x, po), then
Ot x, Ny ) = (kjy, 1 (t, p) — coth(p)ky, 1 (¢, p)) [V pl?
— tanh(p)|(Jeu(Veup) ' 1%k, 1 (¢, p) > 0.
Moreover, this inequality is strict somewhere unless ¥, is an isotropic cone over po.
Proof Set k = 2n + 2 — m and let Eq, ..., E; be an orthonormal basis of N, X;. By [3,
Proposition 5.1] to obtain the above formulas, it is enough to compute
k
Ot x, Ny %) = ) Veu @i (Ei, Ei)

m,1 m,1
i=1

+ ((m — 1) coth(p) — Acmp) 9, log @1,

By Lemma A.1,
Acmp = (2n + 1) coth(p) + tanh(p)
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0, po
m,1

while, using log ® (t, x) = ky,1(to — t, distcg(x, po)), one has

m,1

k
> Veu®e(E;, Ei) = kcoth(p)k,, | + (k;, | — coth(p)k), )|V pl*
i=1

+ tanh(p)k;, | |(Jeu(Verp)H 1.

The formula for Qig:f © follows from this. The inequality is an immediate consequence of
properties of K,, 1 —see [3, Section 5]. The strictness of the inequality unless %, is a geodesic
cone over pg follows from [3, Lemma 5.3]. Finally, if ¥ is a geodesic cone, then Vcmp
is tangent to ¥;. If the inequality is not strict, then Jcm(Vcmp) is orthogonal to %,. If
T : CH"! - B¥+2isa Bergman compactification with Y (pg) = 0, then this is equivalent
to Y(X), which is a Euclidean cone over 0, being orthogonal to T. This only occurs when
the cone is isotropic. O

Appendix B. Geometric computations
B.1. Rank one deformation

Let (M, g) be a Riemannian manifold, t a smooth one-form and « a smooth function. When
|t|§,a > —1, the Riemannian metric

h=g+oar®T, (B.1)

is called a rank one deformation of g.Let V& and V" denote the Levi-Civita connections of
g and h and let C(X, Y) be the (1, 2) tensor field

C(X,Y)=Viy —V{Y.
Using the Koszul formula we compute that
h(C(X,Y),Z) =g(C(X,Y), Z) +at(C(X,Y)T(Z) =c(X, Y, Z)
where c(X, Y, Z) satisfies
1 1 1
c(X,Y,Z)= 5(vgion)(y)r(Z) + 5(vion)()()r(Z) + EWXT(Z)T(Y)
1 1 1
+aVyT(2)T(X) - E(vgar)(x)r(Y) - Eavgr(lf)r()().

Let T be the vector field satisfying

g(T, Z2) = (2).
Choose orthonormal vectors E, ..., E, orthogonal to T so {Ey, ..., E,, T} spans T, M. It
follows that
IT|,> -
CX,Y)=—=2__¢(X,Y, T X,Y,E)E;
(X,Y) 1+a|T|§‘( ) +;c( DE;

where ¢ is a (0, 3) tensor field symmetric in the first two entries given by
1
(X, ¥, T) = 5 ((VRaT, T + g(VaT, X)[T[; + ag(VXT, Tig(T, ¥)
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+ag(V§T, T)g(T, X) — g(VaT, X)g(T, Y) — ag(ViT, Y)g(T, X))

and

1 1
(X, Y, Ej) = Eotg(Vng, Ei)g(T.Y) + Eoég(VIg/T, Ei)g(T, X)

1 1
— 38(VE QT X)g(T.Y) = Zg(V§, aT. V)g(T. X).

B.2. Second fundamental form

We compare the second fundamental forms computed for certain metrics, g and A, that are
related by a rank one deformation. Let ¥ C M be a submanifold. Observe that for X and Y
tangent to X one has

X, Y)=g(X,Y)+1(X)t(Y) = g(X,Y) + g(T, X)g(T, Y),
hs(X,Y) = gs(X,Y) + gs(TT, X)gs(TT, Y)

where T is the g-tangential component of T. In particular, 2y, is a rank one deformation of
gs. Denote by V=€ and V=" the induced connections on X.

Let TV be the g-normal component of T to ¥ and let T be the h-normal component.
We have

N |2 2
™V — TN _ T T_T_ 1+|T|8TT
1+ |TT2 L+ |TT 2"
Now choose Ny, ..., N; to be g-unit length tangent vectors that are g-orthogonal to T and
Y. These are also of #-unit length and are i-orthogonal to T and X. Likewise, let £, ..., Ex

be g-unit length vectors tangent to ¥ and g-orthogonal to T. For a vector V € T, M with
p € %, let us denote

VNV VN _gvV 1) L
g

l
= (V. N)N;.
i=1

So V¥ is both / and g-orthogonal to ¥ and T. In particular,
gVM, ) = g (VY. TV) = (VY. T) = 0.

Proposition B.1 Let (M, g) be a Riemannian manifold and T = g(T, -) a smooth one form.
Suppose that there is a (1, 1)-tensor field, a, satisfying
V5T = —a(Z) and g(a(X), Y) = —g(X, a(Y)).

If h is the rank one deformation of g by v and ¥ C M a submanifold, then one has the
following relationship between the second fundamental forms of &,

ALX, Y)Y = ALX, Y)Y — g(T. V)(@X)" — ¢(T. X)@¥))" and

gAL(X, V), TV) = g(AL(X, ), T)
1+|T";

— T BTV, aX))g(T. Y TV a(Y))g(T. X)).
1—|—|T|§, (g( ,a(X)g(T, Y) + g(T",a(Y))g(T, ))
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Proof The computations of Section B.1 yield, for X and Y tangentto X, and N; g-orthogonal
toX and T,

h(VEY,N;) = g(V§Y, Nj) +c(X, Y, N})
=g(AL(X, V), N)) + %g(ViT, Nj)g(T,Y) + %g(Vf}T, Nj)g(T, X)
- %g(vf\’,jT, X)g(T.Y) — %g(Vﬁ,jT, Y)g(T, X).
The additional hypothesis on T and a imply
h(VRY,Nj) = gAS (X, Y), Nj) — g@(X), N)g(T,Y) — g@(), Nj)g(T, X).

This immediately yields the first formula.
It directly follows from Section B.1 that

h(VRY. T) = (1+ [T[g(VyY. T) + ¢(X, V. T)
= (1+ TP (g(V5 Y. TT) + g(AL (X, V), T) +c(X, ¥, T)

where, the properties of a and T, yield

1
(X, ¥, T) = S (&(VET, VITIZ + g (VT X)ITIG + g (VT Tig(T, ¥)

+g(V§T, Dg(T, X) — g(V4T, X)g(T, Y) — g(V4T, Y)g(T, X))
=g@(X), Dg(T.Y) + g(a¥), T)g(T, X).

Likewise, treating 4y as a rank one deformation of g, one has
ROVEMY,TT) = (14 TTR)g(VEtY, T +ex (X, ¥, TT)
=1+ T gV Y. T) +ex (X, Y, T,

As (ViW) T = Vf,’z W, for tangential V, W, the definition of ¢y gives

es(X, Y, Th) = %((g(viTT, Y) + (VT , X)) T S + g(VET', THg(TT, Y)
+g(VTT, THe(TT, X)

= 8(Vi T X)g(TT,¥) = g(Vir TT. V)g(TT, X)).

For tangent vectors V, W one has
gVETT, W) = g(Vi(T —TV), W) = g(V§T, W) + g(T, AL (V, W)).

Hence, the properties of a and T, yield

ex(X, Y, TN = %((g(viT, Y) + g(V§T, X)) T3 + g(VZT. TT)g(T, Y)
+g(ViT, THg(T, X) — g(Vi+ T, X)g(T, ¥) — g(V§: T, V)g(T, X))

+g(T, AL (X, Y)TT[;
=g@(X), T")g(T, Y) + g(@(¥), T )g(T, X) + g(T, AL (X, Y)ITT[;.
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Hence, the definition of TN yields

14T2

h(VE’hY TT)
T2 X ’
1+ [TT2

h(VEY TV = h(Vhy,T) —

1+T|3

=WM’ AL (X, Y)—g(@a(X), TV)g(T, Y)—g(a(¥), TV)g(T, X).

As TV is h-orthogonal to X, the formula for £ in terms of g yields

2
1+ T2

— 8 A (x.y). TV).

h(VEY TV = n@AL (X, v), TV) =

Combining this with the previous computation yields the second formula. O

Corollary B.2 The relationship between the mean curvatures is given by

AL TT)Y 42TV

d
T+ T o

@)Y = |V

S AS(TT, TT), T) 2¢@(T"), T
g(Hh,TN):g(Hg,T)— g( E( Tz) )_ g(a( )72 )
14+ T2 1+|T3

Proof At a point, p € X, where TT( p) = 0, we immediately see that H};: (p) = H§ (p).
This verifies both equations in this case.

When T (p) # 0, we may choose a g-orthonormal basis of T,% of the form E| =
ITTI;'TT, Ea, ..., Eg. Clearly, g(T, Ej) = 0 for2 < j < k. Set

1

B = and observe 28 — |TT 2% = —————.
L+ [TT 12 +,/1+]TT2 # 1+TT2
We obtain an A-orthonormal basis, Ej, ..., Ej by taking
TT
El=———— = (- BITT)E].
T /1+ITT2

Using this i-orthonormal basis and Proposition B.1 one obtains
¥ _ e , g 2@TT)Y
HE)Y = HHN — 2B — T [BHALTT, TV — T e
8

g AT, 1YY 2@a)V

1+|TT2 I+ |TT2°

This gives the first equation.
In the same manner, one obtains

2g(TV, a(TT))

g(HE, TV) = g(HA, T) — 28 — |TT281)gAL(TT, T, T) - TTTE
+T)

gAS(MT,TT),T)  2g(T.a(T"))

=gHS,T) —
§Hz. D L+ |TT2 I+ [T
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Here the second equality used the anti-symmetry of a to see that

2
1+ T2

——— L e(TT,a(T")) = g(T,a(T")).
14+|TT2

2™V a(T")) = g(T,a(T"))
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