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Abstract
We study notions of asymptotic regularity for a class of minimal submanifolds of complex
hyperbolic space that includes minimal Lagrangian submanifolds. As an application, we
show a relationship between an appropriate formulation of Colding-Minicozzi entropy and
a quantity we call the CR-volume that is computed from the asymptotic geometry of such
submanifolds.
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1 Introduction

In [3], the authors generalized theColding-Minicozzi entropy [11] to submanifolds of Cartan-
Hadamard manifolds. In this article, we study the specific case where the ambient manifold
is complex hyperbolic space, CHn+1. Recall, this is the (2n + 2)-dimensional complete
simply-connected Kähler-Einstein manifold with metric gCH which has constant negative
holomorphic curvature; we adopt the convention that the sectional curvatures lie in [−4,−1].
This leads to a relationship between the entropy of certain minimal submanifolds (e.g., min-
imal Lagrangian submanifolds) and a quantity we call the CR-volume, which is associated
to their asymptotic geometry. This quantity is an analog, in the context of CR-geometry, of
the conformal volume of Li and Yau [24]; it is also related to the visual volume of Gromov
[16]—see Definition 2.4 in Sects. 2.4 and 4.

Our study requires appropriate compactifications of CHn+1; we describe two choices
in Sect. 3. Both lead to well-defined and equivalent notions of ideal boundary, ∂∞CH

n+1.
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Moreover, ∂∞CH
n+1 comes equipped with a correspondingCR-structure modeled on S2n+1

viewed as the boundary of the unit complex ball Bn+1
C

. Let � ⊂ CH
n+1 be a smooth proper

minimal submanifold. Such a � is necessarily non-compact, and therefore a natural assump-
tion is that its asymptotic geometry can be modeled, via the compactifications of CHn+1,
on a submanifold, ∂∞� ⊂ ∂∞CH

n+1—see Sect. 3.4 for a detailed discussion. One may
then impose additional conditions on the asymptotic regularity and geometry of �. For
instance, � is asymptotically horizontal if ∂∞� is a horizontal submanifold of ∂∞CH

n+1

and asymptotically Legendrian when ∂∞� is Legendrian—i.e., horizontal and of maximal
dimension. Indeed, a Lagrangian submanifold of sufficient asymptotic regularity is asymp-
totically Legendrian—see Lemma 3.2. We refer to Definitions 3.1 and 3.3 in Sect. 3.1 for
specifics.

Our first result is that relatively weak assumptions on the asymptotic regularity of certain
minimal submanifolds imply stronger asymptotic regularity.

Theorem 1.1 Suppose that � ⊂ CH
n+1 is an m-dimensional minimal submanifold. If �

is weakly C2-asymptotically regular and weakly asymptotically horizontal, then it is C1-
asymptotically regular and strongly horizontal.

Using this, we obtain a relationship between the generalized Colding-Minicozzi entropy
of these submanifolds and the CR-volume of their asymptotic boundaries.

Definition 1.2 (κ-entropy [3]) Suppose that � is anm-dimensional submanifold of the (m +
k)-dimensional Cartan-Hadamard manifold (M, g). Let

�t0,x0
m,κ (t, x) = Km,κ (t0 − t, distg(x, x0))

where Km,κ are functions defined in [3, pg 2] following [5, 11] and come from the heat kernel
of Hm . The Colding-Minicozzi κ-entropy of � in (M, g) is given by

λκ
g[�] = sup

x0∈M,τ>0

∫
�

�0,x0
m,κ (−τ, x)dVol�(x) = sup

x0∈M,τ>0

∫
�

�τ,x0
m,κ (0, x)dVol�(x).

When κ = 0 and (M, g) = (Rm+k, gR) is Euclidean space, this is the usual Colding-
Minicozzi entropy, λ[�], of �. When κ = 1 and (M, g) = (Hm+k, gH) is hyperbolic space,
this is the entropy in hyperbolic space, λH[�], introduced in [5]. By [3], λκ

g is monotone
non-increasing along reasonable mean curvature flows in a Cartan-Hadamard manifold with
sectional curvatures bounded above by−κ2. AsCHn+1 has sectional curvatures in [−4,−1],
we make the following definition.

Definition 1.3 (Complex hyperbolic entropy) The Colding-Minicozzi entropy of an m-
dimensional submanifold � ⊂ CH

n+1 is given by

λCH[�] = λ1gCH [�] = sup
x0∈CHn+1,τ>0

∫
�

�
τ,x0
m,1 (0, x)dV�(x)

where λ1gCH is the κ-entropy on CH
n+1 corresponding to an upper bound on sectional cur-

vatures of −1.

Theorem 1.4 If � ⊂ CH
n+1 is an m-dimensional submanifold that is weakly C1-

asymptotically regular and weakly asymptotically horizontal, then

|Sm−1|RλCH[�] ≥ λCR[∂∞�].
If � is also weakly C2-asymptotically regular and minimal, then equality holds.
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Remark 1.1 In [5, Theorem 1.5], an analogous result for appropriate submanifolds of hyper-
bolic space was obtained: If � is an m-dimensional submanifold of Hm+k that is regular up
to the ideal boundary, then there is an inequality relating, λc[∂∞�], the conformal volume of
the ideal boundary of� and λH[�], the Colding-Minicozzi entropy of� in hyperbolic space.
This was applied in [29, 30] to show a type of topological uniqueness for certain minimal
hypersurfaces in Hn+1.

We conclude by discussing the applicability of Theorem 1.4. The most basic examples
are the totally geodesic Lagrangian submanifolds, � = �p,L , that, for any p ∈ CH

n+1

and Lagrangian subspace L ⊂ TpCH
n+1, are uniquely determined by L = Tp�. These

� are C∞-asymptotically regular, strongly horizontal with ∂∞� corresponding, modulo a
CR-automorphism, to a totally geodesic Legendrian sphere Sn ⊂ S

2n+1. They also satisfy
λCH[�] = 1.

The fact that each �p,L is intrinsically, Hn+1, the hyperbolic space with curvature −1,
yields more examples. Indeed, work of Anderson [1, 2], Hardt-Lin [20], Lin [22], and Tone-
gawa [28], givemanyminimal hypersurfaces inHn+1 with good asymptotic regularity. This is
done by solving an asymptotic Plateau problem for anyC2-regular hypersurface in ∂∞H

n+1;
note that, as observed in [28], higher asymptotic regularity is a subtle issue. See the survey
of Coskunuzer [13] for a thorough overview. Embedding these into �p,L yields weakly C2-
asymptotically regular and asymptotically horizontal n-dimensional minimal submanifolds
in CH

n+1.
In another direction, in [12, Theorem 1], the authors describe a family of rotationally

symmetric minimal Lagrangian submanifolds of CHn+1 that are topologically R× S
n . One

verifies that, when n is even, they are C∞-asymptotically regular while, when n is odd, they
are Cn+1-asymptotically regular but not Cn+2. In all dimensions, these submanifolds are
weakly C∞-asymptotically regular and strongly horizontal. Moreover, their ideal boundary
corresponds to a pair of totally geodesic Legendrian spheres Sn contained in S

2n+1. There
seem to be few other constructions of smoothminimal Lagrangian submanifolds inCHn+1—
see however [23]. If one allows (interior) singularities then, by taking a cone, any minimal
Legendrian in S2n+1 gives rise to a (singular) minimal Lagrangian submanifold ofCHn+1—
see Corollary 3.7. There are many examples of such � in S2n+1—for instance, the so-called
Clifford tori [17, Ex. 3.16]—see also [19]. In S

5 there is a particularly rich collection of
examples, including those of higher genus—see [10, 18, 25]. Note that Theorem 1.4 holds
for minimal submanifolds with interior singularities.

Finally, for any submanifold� ⊂ ∂∞CH
n+1, and in particular anyhorizontal submanifold,

it follows from [6, Theorem 4.3] that there is a (singular) area-minimizing current asymptotic
to � in a certain, weak, sense. To the authors’ knowledge, additional asymptotic regularity
has not been established in CH

n+1 for the solutions of [6], especially for those of high
codimension-cf. [21], which shows asymptotic regularity for high-codimension minimizers
inHn+1. It would be interesting to produce solutions with sufficient asymptotic regularity in
this fashion.

2 Geometric background

We introduce needed geometric background and computations. In particular, we recall the
contact, Sasaki, and CR structures that arise by viewing S

2n+1 ⊂ R
2n+2 � C

n+1 as the
boundary of the unit ball B2n+2 � B

n+1
C

. Related structures exist on the ideal boundary of
complex hyperbolic space. Our main sources are [7, 27].
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2.1 Basic constructs on Euclidean space

Let us first introduce notation for various structures on R
2n+2 � R

n+1
x × R

n+1
y � C

n+1
z .

Here we make the identification of (x, y) ∈ R
n+1 × R

n+1 with C
n+1 via z = x + iy. In

particular, the Euclidean coordinates given by x1, . . . , xn+1, y1, . . . , yn+1 correspond to the
holomorphic coordinates z1 = x1 + iy1, . . . , zn+1 = xn+1 + iyn+1.

Denote the usual Euclidean Riemannian metric and symplectic form by

gR =
n+1∑
j=1

(
dx2j + dy2j

)
and ωR =

n+1∑
j=1

dx j ∧ dy j .

Let JR be the associated almost complex structure on R2n+2 defined by

ωR(X , Y ) = gR(X , JR(Y )), i.e., JR

(
∂

∂x j

)
= − ∂

∂ y j
and JR

(
∂

∂ y j

)
= ∂

∂x j
.

In this convention the complexification of JR satisfies JR
(

∂
∂z j

)
= −i ∂

∂z j
. Likewise,

dx j ◦ JR = dy j and dy j ◦ JR = −dx j .

Let r : R2n+2 → R be the radial function defined by

r2 = x21 + y21 + · · · + x2n+1 + y2n+1 = |x|2 + |y|2 = |z|2.
One readily computes that

dr = r−1 (x1dx1 + y1dy1 + · · · + xn+1dxn+1 + yn+1dyn+1)

is a smooth one-form on R2n+2 \ {0}. Set
θ = r−1dr ◦ JR = r−2 (x1dy1 − y1dx1 + · · · + xn+1dyn+1 − yn+1dyn+1) .

Define a symmetric (0, 2) tensor field on R2n+2\ {0} by,

η = 1

r2

n+1∑
j,k=1, j 
=k

(
(x j xk + y j yk)(dx j dxk + dy j dyk) + 2x j yk(dx j dyk − dy j dxk)

)
.

One readily computes that

gR = dr2 + r2
(
θ2 + η

)
and ωR = 1

2
r2dθ + rdr ∧ θ.

Hence, for X , Y ∈ TpR
2n+2,

− 1

2
dθ(X , JR(Y )) = − 1

r2
ωR(X , JR(Y )) + 1

r
(dr ∧ θ)(X , JR(Y )) = η(X , Y ). (2.1)

It is convenient to introduce vector fields

X =
n+1∑
j=1

(
x j

∂

∂x j
+ y j

∂

∂ y j

)
and T =

n+1∑
j=1

(
x j

∂

∂ y j
− y j

∂

∂x j

)
= −JR(X)

where X is the position vector and T is a Killing vector field. They satisfy

dr(X) = 1

r
gR(X ,X) and θ(X) = 1

r2
gR(X ,T).
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One readily checks that if X is any vector field on R
2n+2 and ∇R is the Levi-Civita

connection of gR, then, because JR is ∇R parallel, one has

∇R

XX = X and ∇R

XT = ∇R

X (−JR(X)) = −JR(∇R

XX) = −JR(X).

2.2 Contact, Sasaki and CR geometry of S2n+1

By thinking of S2n+1 as the boundary of the ball B2n+2 we may endow it with a natural
Sasaki structure. This comes along with associated CR and contact structures. In order to
understand the boundary behavior of complexhyperbolic space itwill be helpful to understand
the interaction of these structures as well as their symmetries.

To that end, let θ̂ be the pullback of θ to S
2n+1. This is readily seen to be a contact form

on S2n+1 with Reeb vector field T̂, the restriction of the tangential vector field T. Denote by
H ⊂ TS2n+1 the contact distribution associated to θ̂ , that is, the vector bundle over S2n+1

satisfying, for each p ∈ S
2n+1,

Hp = ker θ̂p =
{
X ∈ TpS

2n+1 : θ̂p(X) = 0
}

⊂ TpS
2n+1. (2.2)

Let gS denote the roundmetric onS2n+1 induced from gR. It is clear thatH is gS orthogonal
to T̂. It follows that JH = JR|H is a bundle automorphism of H. We may extend this to a
bundle map JS : TS2n+1 → TS2n+1 by setting JS(T̂) = 0.

The triple (JS, T̂, θ̂ ) is, in the language of [7], an almost contact structure on S
2n+1. In

fact, together with the metric gS this is an almost contact metric structure and this almost
contact metric structure is also Sasakian. Indeed, by [7, Theorem 6.3], if∇S is the Levi-Civita
connection of gS, then it suffices to check

(∇S

X JS)Y = gS(X , Y )T̂ − θ̂ (Y )X ,

holds for X , Y ∈ TpS
n+1. This follows from ∇R

X JR = 0. Hence, for X ∈ TpS
2n+1,

∇S

X T̂ = −JS(X).

In a similar vein, by using the identification S2n+1 � ∂Bn+1
C

where

B
n+1
C

= {
(z1, . . . , zn+1) : |z1|2 + . . . + |zn+1|2 < 1

} ⊂ C
n+1,

is the unit complex ball, one may interpret (H, JS) as a CR-structure. In this case, θ̂ is
a pseudo-convex pseudo-hermitian form, as the Levi form, L

θ̂
, is a positive definite inner

product on H—see [14]. Indeed, for X , Y ∈ Hp , it is given1 by

L
θ̂
(X , Y ) = −1

2
(d θ̂ )(X , JS(Y )) = −1

2
dθ(X , JR(Y )) = η(X , Y )

where we used that X and Y are in the kernel of dr and θ . Hence, L
θ̂

= η̂ where η̂ is
the pullback of η to S

2n+1. Moreover, the Webster metric associated to this data on S
2n+1

recovers the standard metric, i.e.,

θ̂2 + L
θ̂

= gS.

1 we use the convention that dβ(X , Y ) = X(β(Y )) − Y (β(X)) − β([X , Y ]), though dβ(X , Y ) =
1
2 (X(β(Y )) − Y (β(X)) − β([X , Y ])) is also common in the literature.
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Given a C1 function defined on S2n+1 we denote

∇H f = ∇S f − gS(∇S f , T̂)T̂

where H is the tangential component of the gradient.

2.3 Complex automorphisms of unit ball inCn+1 and CR-automorphisms of S2n+1

We denote by AutC(Bn+1
C

) the set of biholomorphic automorphisms of the unit disk.We refer
to [26] and [15] for properties of these automorphisms, but summarize some of the needed
facts.

First of all, we observe that for any A ∈ U(n + 1), a unitary matrix, the map

�A : z �→ A · z
is an element of AutC(Bn+1

C
). Secondly, for any fixed b ∈ B

n+1
C

there is an element �b ∈
AutC(Bn+1

C
) given by

�b : z �→
√
1 − |b|2 z

1 + b̄ · z + 1

1 + √
1 − |b|2

(
1 +

√
1 − |b|2
1 + b̄ · z

)
b.

This map can also be expressed as

�b(z) =
√
1 − |b|2 z + b

1 + b̄ · z + 1

1 + √
1 − |b|2

|b|2 + b̄ · z
1 + b̄ · z b.

Using the identification B
n+1
C

� B
2n+2 we may think of �b as a JR-biholomorphism of

B
2n+2, i.e., satisfying

JR ◦ Dp� = Dp� ◦ JR,

and identify AutC(Bn+1
C

) with AutJ (B2n+2), the JR-biholomorphisms of the ball.

Proposition 2.1 For b = b1 + ib2 ∈ B
n+1
C

, the map �b satisfies:

(1) There is a unique extension to a JR-biholomorpism �̄b : B̄2n+2 → B̄
2n+2.

(2) On ∂B2n+2,

�̄∗
bdr = Wbdr and �̄∗

bθ = Wbθ

where Wb ∈ C∞(B̄2n+2) is given by

Wb(x, y) = 1 − |b1|2 − |b2|2
(1 + b1 · x + b2 · y)2 + (b2 · x − b1 · y)2 .

(3) On ∂B2n+2,

�̄∗
bdθ = Wbdθ + 2(Wb − W 2

b )rdr ∧ θ + dWb ∧ θ + dr ∧ (dWb ◦ JR).

Proof The existence of a smooth extension of �b follows from its formula and it is clear that
the extendedmap is JR-holomorphic and smoothly invertible. A straightforward computation
gives

|�̄b(z)|2 = 1 − (1 − |b|2)(1 − |z|2)
|1 + b̄ · z|2 . (2.3)

123



Geometriae Dedicata (2024) 218 :61 Page 7 of 32 61

With z = x + iy, it is convenient to write

Wb(z) = (1 − |b|2)|1 + b̄ · z|−2 = Wb(x, y).

By inspection, Wb is a smooth and non-zero function on B̄
2n+2. We write (2.3) as

r2 ◦ �̄b = 1 − (1 − r2)Wb.

Hence, (
2r ◦ �̄b

)
�̄∗

bdr = �̄∗
b(2rdr) = �̄∗

bd(r2) = d(r2 ◦ �̄b)

= d(1 − (1 − r2)Wb) = −(1 − r2)dWb + 2Wbrdr .

Combining this with the JR-holomorphicity of �̄b yields

�̄∗
b(r

2θ) = �̄∗
b (rdr ◦ JR) = (r ◦ �̄b)(�̄

∗
bdr) ◦ JR = Wbr

2θ − 1 − r2

2
dWb ◦ JR.

Combining the above computations yields the second claim. We further compute,

�̄∗
br

2dθ = �̄∗
b
(
d(r2θ) − 2rdr ∧ θ

) = d(�̄∗
br

2θ) − 2�̄∗
bdr ∧ �̄∗

b(rθ)

= dWb ∧ r2θ + Wbd(r2θ) + rdr ∧ dWb ◦ JR − 1 − r2

2
d(dWb ◦ JR)

− 2W 2
b

r2

r2 ◦ �̄b
rdr ∧ θ + r(1 − r2)

r2 ◦ �̄b
Wb (dWb ∧ rθ + dr ∧ dWb ◦ JR)

− (1 − r2)2

2r2 ◦ �̄b
dWb ∧ dWb ◦ JR.

On ∂B2n+2, this simplifies to

�̄∗
bdθ = Wbdθ + 2(Wb − W 2

b )dr ∧ θ + dWb ∧ θ + dr ∧ (dWb ◦ JR),

which verifies the third claim.
��

Every element � ∈ AutC(Bn+1
C

) satisfies

� = �A ◦ �b (2.4)

for some A ∈ U(n + 1) and b ∈ B
n+1
C

. It follows from (2.4) and Proposition 2.1 that
every element � ∈ AutJ (B2n+2) extends smoothly to a map �̄ : B̄

2n+2 → B̄
2n+2. We

write AutJ (B̄2n+2) for the group of extended maps. The maps �̄ ∈ AutJ (B̄2n+2) have the
additional property that 
 = �̄|S2n+1 is a diffeomorphism of S2n+1 to itself, which is a
CR-automorphism of S2n+1, that is,

Dp
(Hp) = H
(p) and on Hp,JS ◦ Dp
 = Dp
 ◦ JS.

Let us denote the set of such maps by AutCR(S2n+1). For b = b1 + ib2 ∈ B
n+1
C

, let

b ∈ AutCR(S2n+1) be, the restriction of �̄b ∈ AutJ (B2n+2). For A ∈ U(n + 1) define

A ∈ AutCR(S2n+1) in the same manner.

Proposition 2.2 The following properties of AutCR(S2n+1) hold:

(1) Every element of AutCR(S2n+1) is the restriction of a unique element of AutJ (B̄2n+2) and
in particular, for every 
 ∈ AutCR(S2n+1) there is an A ∈ U(n + 1) and b = b1 + ib2
such that 
 = 
A ◦ 
b.

123
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(2) The elements 
 ∈ AutCR(S2n+1) are contactomorphisms, in fact for 
 = 
A ◦ 
b one
has 
∗θ̂ = Wbθ̂ .

(3) An element 
 = 
A ◦ 
b ∈ AutCR(S2n+1) acts on the metric gS by


∗gS = Wb

(
gS + ω̂b · θ̂ + θ̂ · ω̂b + ∂r logWbθ̂

2
)

= Wb

(
η̂ + ω̂b · θ̂ + θ̂ · ω̂b +

(
Wb + 1

4
|∇H logWb|2S

)
θ̂2

)

where ω̂b is a one form on S
2n+1 given by

ω̂b = 1

2
d logWb ◦ JS = −1

2
gS(JS(∇HWb), ·).

Remark 2.3 Thedeformedmetrics gb
S

= 
∗gS are special cases ofmore general deformations
of contact Riemannian manifolds studied by Tanno in [27, Section 9] where they were called
gauge transformations of contact Riemannian structures.

Proof The first claim is a standard fact—see [8, Lemma 1.1] and [9]. The second follows
from Proposition 2.1 and the fact that 
∗

A θ̂ = θ̂ .
By (2.1), on S2n+1 = ∂B2n+2, one has


∗
bη = Wbη + (Wb − W 2

b )(dr2 + θ2) + 1

2
dWb · dr

+ 1

2
θ · (dWb ◦ JR) + 1

2
dr · dWb + 1

2
(dWb ◦ JR) · θ.

Hence, if î : S2n+1 → R
2n+1 is the usual inclusion, then η̂ = î∗η and

�̄∗
bη̂ = Wbη̂ + (Wb − W 2

b )θ̂2 + 1

2
θ̂ · î∗(dWb ◦ JR) + 1

2
î∗(dWb ◦ JR) · θ̂

= Wbη̂ + (Wb − W 2
b + ∂Wb

∂r
)θ̂2 + 1

2
θ̂ · dŴb ◦ JS) + 1

2
(dŴb ◦ JS) · θ̂

where Ŵb = Wb ◦ î . As gS = θ̂2 + η̂, it follows that


∗
bgS = Wb

(
gS + ω̂b · θ̂ + θ̂ · ω̂b + ∂r logWbθ̂

2
)

.

A straightforward computation shows that the following identity holds on S2n+1

∂rWb = W 2
b − Wb + 1

4

|∇HWb|2
Wb

.

The final claim then follows from the above computations, the first claim, and the fact that

A is a gS-isometry. ��

2.4 CR-volume

We introduce a notion ofCR-volume for horizontal and Legendrian submanifolds of S2n+1—
this functional is further studied in [4]. An m-dimensional submanifold, � ⊂ S

2n+1, is
horizontal if Tp� ⊂ Hp for all p ∈ �, whereHp is as defined in (2.2). Properties of contact
manifolds ensure that m ≤ n. When m = n, � is Legendrian.

123
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Definition 2.4 The CR-volume of � ⊂ S
2n+1, anm-dimensional horizontal submanifold, is:

λCR[�] = sup

∈AutCR(S2n+1)

|
(�)|S.

Observe that elements 
 ∈ AutCR(S2n+1) can be factored as 
 = 
A ◦ 
b where
A ∈ U(n + 1) and b ∈ B

n+1
C

. Using the facts that 
A is an isometry of gS, � is horizontal,
along with Proposition 2.2 we obtain

λCR[�] = sup
b∈Bn+1

C

|
b(�)|S = sup
b∈Bn+1

C

∫
�

W
m
2
b (p)dV�(p)

= sup
b∈Bn+1

C

∫
�

(1 − |b|2)m
2

|1 + b̄ · z(p)|m dV�(p).

Here we used that gb
S
|H = WbgS|H.

3 Complex hyperbolic space and its compactifications

In this section, we establish some properties of complex hyperbolic space, CHn+1, and its
submanifolds. Recall, CHn+1 is the simply connected (complex) space form with constant
holomorphic sectional curvature. We think of it as a (2n + 2)-dimensional Kähler-Einstein
manifoldwithRiemannianmetric gCH and the integrable (almost) complex structure JCH.We
refer to [15] for background on this space, however, unlike in [15], we adopt the convention
that the sectional curvatures of gCH lie between −4 and −1.

3.1 Bergmanmetric and the Bergman compactification of submanifolds

A standard model of complex hyperbolic space is the Bergman model. Here the underlying
manifold is B2n+2 � B

n+1
C

with metric

gB = 1

1 − r2

n+1∑
j=1

dz j d z̄ j + 1

(1 − r2)2

n+1∑
j,k=1

z j z̄kdzkdz̄ j

= 1

(1 − r2)2
dr2 + r2

(1 − r2)2
θ2 + r2

1 − r2
η.

One of the advantages of this model is that in it the complex structure, JB , satisfies JB = JR.
In particular, Aut+gB (B2n+2), the orientation preserving isometries of gB , is identified with
AutJ (B2n+2) and the corresponding symplectic form is

ωB = r2

1 − r2
1

2
dθ + 1

(1 − r2)2
rdr ∧ θ = 1

1 − r2
ωR + r2

(1 − r2)2
rdr ∧ θ.

For any p ∈ CH
n+1 there is a diffeomorphismϒp : CHn+1 → B

2n+2 satisfyingϒp(p) =
0 and ϒ∗

pgB = gCH. Moreover, this map is a biholomorphism and is unique up to post-

composition with an element of U(n + 1). By making the identification with B̄
2n+2, this

leads naturally to a compactification, CH
n+1

, of complex hyperbolic space, which we call a
Bergman compactification. Observe, in this case, the ideal boundary ∂∞CH

n+1 is identified
with S

2n+1 = ∂B2n+2. Different choices of p and the corresponding ϒp give different
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compactifications, but they induce equivalent structures as manifolds with boundary. They
also endow ∂∞CH

n+1 with a canonical CR-structure, though only an equivalence class of
Sasaki structures.

We use Bergman compactifications to define asymptotic properties of submanifolds � ⊂
CH

n+1. To that end, for an m-dimensional submanifold � ⊂ CH
n+1, a point p ∈ CH

n+1,
and a Bergman compactification ϒp : CHn+1 → B

2n+2, let

�p = ϒp(�) ⊂ B̄
2n+2.

We call �p a Bergman compactification of �.

Definition 3.1 Suppose that � and �p are as above:

(1) For any l ≥ 1, � is Cl-asymptotically regular if �p is a Cl -regular submanifold with
boundary and �p meets ∂B2n+2 transversally;

(2) If, in addition, ∂�p is a horizontal submanifold relative to the usual contact structure on
S
2n+1 = ∂B2n+2, i.e., for all q ∈ ∂�p , Tq∂�p ⊂ Hq = ker θ̂q , then� is asymptotically

horizontal;
(3) If, in addition, for all q ∈ ∂�p , Tq�p is orthogonal to T, i.e., Tq�p ⊂ ker θq , then � is

strongly asymptotically horizontal.

Note (2) and (3) can only hold when m ≤ n + 1. When m = n + 1 the term horizontal is
replaced by Legendrian.

If�p′ is another choice of a Bergman compactification of�, then�p = �̄(�p′) for some
�̄ ∈ AutJ (B̄2n+2). It follows from Propositions 2.1 and 2.2 that Definition 3.1 is independent
of choices. In particular, we may think of a Cl -asymptotically regular submanifold �, as
having a well defined Cl -regular ideal boundary, ∂∞� ⊂ ∂∞CH

n+1. The submanifold �

is asymptotically horizontal precisely when ∂∞� satisfies this property with respect to the
natural contact structure of ∂∞CH

n+1.
The notion of being asymptomatically horizontal is natural as it automatically holds for

isotropic submanifolds of sufficient asymptotic regularity.

Lemma 3.2 Let � ⊂ CH
n+1 be a C1-asymptotically regular m-dimensional submanifold. If

m ≥ 2 and � is isotropic, then it is asymptotically horizontal.

Proof Let �p be a Bergman compactification of �. Clearly, � is isotropic if and only if
�p is isotropic. Hence, for X , Y ∈ Tq�p , one has ωB(X , Y ) = gB(X , JB(Y )) = 0. Let us
denote by T�, the tangential component, with respect to gR, of T along �p . Using JR = JB
we have,

gB(T�, JR(X�)) = 0.

As �p is C1 up to the boundary and meets ∂B2n+2 transversally,

X� = αX + γT + v

where v is gR-orthogonal to X and T. Likewise, one has

T� = βT + δX + w

where w is gR-orthogonal to X and T. On the boundary, we have

β = |T�|2 and α = |X�|2 
= 0
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while

γ = gR(X�,T) = gR(X�,T�) = gR(X,T�) = δ.

As w and JR(v) are orthogonal to T, one computes

0 = gB(T�, JR(X�)) = gB(βT + δX + w,−αT + γX + JR(v))

= (−αβ + γ δ)
r2

(1 − r2)2
+ r2

1 − r2
η(w, JR(v)).

Near the boundary, this gives the expansion:

0 = gR(X�,T�)2 − |T�|2|X�|2
4(1 − r)2

+ o((1 − r)−2).

The Cauchy-Schwarz inequality and the fact that X� 
= 0 on the boundary, implies T� =
bX�. As X� is gR-orthogonal to ∂�p ⊂ S

2n+1, the same is true of T�. Hence, ∂�p is
orthogonal to T and so it is horizontal. ��

3.2 Modified Bergman compactification

While the Bergman compactification is well-adapted to the complex geometry of CHn+1,
it seems less satisfactory for studying the asymptotic regularity of minimal submanifolds;
this is apparent in the examples of [12]. Therefore, it is convenient to introduce a related
compactification, which possesses certain computational features that make it similar to the
usual conformal compactification of hyperbolic space.

To begin, consider the radial function s : B̄2n+2 → [0, 1] defined by

s = r

1 + √
1 − r2

or, equivalently, by r = 2s

1 + s2
.

Observe that r extends smoothly with derivative zero to s = 1 while s extends only as a
1
2 -Hölder continuous function to r = 1. Using

1 − s2 = 2

(
1 − 1

1 + √
1 − r2

)
= 2

√
1 − r2

1 + √
1 − r2

and 1 − r2 = (1 − s2)2

(1 + s2)2
,

one computes that

gB = 4

(1 − s2)2
(ds2 + s2θ2 + s2η) + 16s4

(1 − s2)4
θ2 = gP + 16s4

(1 − s2)4
θ2

where gP is the Poincaré metric on B2n+2 of constant curvature −1. Likewise,

ωB = 4s2

(1 − s2)2
1

2
dθ + 4(1 + s2)

(1 − s2)3
sds ∧ θ.

Now consider the diffeomorphism S : B2n+2 → B
2n+2 given by

S : z �→ z

1 + √
1 − |z|2 with inverse S−1 : z �→ 2z

1 + |z|2 .
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This map extends to a 1
2 -Hölder continuous, but not smooth, homeomorphism, S̄, from the

closed ball B̄2n+2 to itself. Clearly, s(p) = r(S(p)) and so

S∗dr = ds = 1√
1 − r2(1 + √

1 − r2)
dr , (S−1)∗ds = dr = 2(1 − s2)

(1 + s2)2
ds. and

S∗θ = θ and S∗η = η.

Hence, if we define a metric on B2n+2 by

gB̃ = (S−1)∗gB = 4

(1 − r2)2
gE + 16r4

(1 − r2)4
θ2 = gP + 16r4

(1 − r2)4
θ2,

then S∗gB̃ = gB . Here gB̃ is the modified Bergman metric which is obtained from the
Poincaré metric in a particularly simple manner. The corresponding symplectic form, ωB̃
satisfies S∗ωB̃ = ωB and the compatible almost complex structure is

JB̃ = JR + 2r

(
1

1 − r2
X ⊗ rθ − 1

1 + r2
T ⊗ dr

)
.

A consequence is that Aut+gB̃ (B2n+2), the orientation preserving isometries of gB̃ are not
holomorphic with respect to the usual complex structure of the ball. However, as every
element �̃ ∈ Aut+gB̃ (B2n+2) is of the form

�̃ = S ◦ � ◦ S−1

for a unique � ∈ Aut+gB (B2n+2), it follows that �̃ extends smoothly to B̄
2n+2 and induces

the same map in AutCR(S2n+1) as �̄.
We now useS to define amodified form of the Bergman compactification. Fix p ∈ CH

n+1

and let ϒp : CHn+1 → B
2n+2 be the corresponding choice of Bergman compactification.

Let ϒ̃p : CHn+1 → B
2n+2 be the map ϒ̃p = S ◦ ϒp so ϒ̃∗

p g̃B = gCH and ϒ̃p(p) = 0. For
� ⊂ CH

n+1, an m-dimensional submanifold, set

�̃p = S̄(�p) = ϒ̃p(�) ⊂ B̄
2n+2,

which we call a modified Bergman compactification of �.

Definition 3.3 Suppose that � and �̃p are as above:

(1) For any l ≥ 1, � is weakly Cl -asymptotically regular if �̃p is a Cl -regular submanifold
with boundary in B

2n+2 that meets ∂B2n+2 transversally;
(2) If, in addition to (1), �̃p meets ∂B2n+2 orthogonally then� is asymptotically orthogonal;
(3) If, in addition to (1), ∂�̃p is a horizontal submanifold of S2n+1 = ∂B2n+2, then � is

weakly asymptotically horizontal.

For (3) to hold, m ≤ n + 1 and when m = n + 1 the term horizontal in (3) is replaced by
Legendrian.

In the above definition, the independence of items (1) and (3) from the choice of p follow
from the properties of Aut+gB̃ (B2n+2). To establish the independence of item (2) and to relate
Definitions 3.3–3.1 we use the following result.

Lemma 3.4 Let � ⊂ CH
n+1 be an m-dimensional submanifold and fix an l ≥ 1.
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(1) If� is Cl -asymptotically regular, then� is weaklyCl -asymptotically regular and asymp-
totically orthogonal.

(2) Conversely, if � is weakly Cl -asymptotically regular and asymptotically orthogonal,
then � is C1-asymptotically regular.

(3) If � is C1-asymptotically regular, then � is asymptotically horizontal if and only if �

is weakly asymptotically horizontal.
(4) If � is weakly C2-asymptotically regular and asymptotically orthogonal, then � is

strongly asymptotically horizontal if and only if � is weakly asymptotically horizontal
and, for a modified Bergman compactification, �̃p,

gR(T,AR

�̃p
(X�,X�)) = 0 along ∂�̃p.

Remark 3.5 We observe that the converse direction of (2) must be genuinely weaker when
l ≥ 2 as can be seen by the examples of [12].

Proof Let �p = ϒp(�) ⊂ B̄
2n+2 be a Bergman compactification of �. The fact that �

is Cl -asymptotically regular means the following: � is a Cl - submanifold with boundary,
� = ∂�p ⊂ ∂B2n+2 is a Cl -submanifold, and �p meets ∂B2n+2 transversally along �.
Hence, there is a parametrization of �p in a neighborhood of � given by a Cl map

F : (1 − ε, 1] × � → �p ⊂ B̄
2n+2

with the property that |F(ρ, q)| = ρ. By Taylor’s theorem, we may write

F(ρ, q) = X(q) +
l∑

i=1

(1 − ρ)iai (q) + (1 − ρ)l f(ρ, q)

where f(1, q) = 0. The properties of �p ensure gR(a1(q),X(q)) < 0. Thus,

S(F(ρ, q)) = 1

1 + √
1 − ρ2

F(ρ, q)

= 1

1 + √
1 − ρ2

X(q) +
l∑

i=1

(1 − ρ)i

1 + √
1 − ρ2

ai (q) + (1 − ρ)l

1 + √
1 − ρ2

f(ρ, q).

Consider the related map and its expansion

F̃(σ, q) = S
(
F

(
2σ

1 + σ 2 , q

))

= 1 + σ 2

2
X(q) + 1

2

l∑
i=1

(1 − σ)2i (1 + σ 2)i−1ai (q) + 1

2
(1 − σ)2l f̃(σ, q).

It follows that, up to shrinking ε,

F̃ : (1 − ε, 1] × � → �̃p ⊂ B̄
2n+2

is a Cl -embedding and so parametrizes �̃p = S̄(�p) in a neighborhood of �̃ = �. In
particular, �̃p is a Cl -regular submanifold with boundary. Moreover,

∂σ F̃(1, q) = X(q)

and so we can conclude that �̃p meets ∂B2n+2 orthogonally. This verifies (1).
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In the converse direction, let �̃p be the appropriate modified Bergman compactification
of �. The hypotheses ensure that �̃p is a Cl -regular submanifold with boundary that meets
∂B2n+2 orthogonally. This means that there is a parametrization of �̃p in a neighborhood of
� by a Cl -embedding

G̃ : (1 − ε, 1] × � → �̃p ⊂ B̄
2n+2

with the property that |G̃(σ, q)| = σ and ∂σ G̃(1, q) = X(q). By Taylor’s theorem,

G̃(σ, q) = σX(q) + 1

2
(1 − σ)2b2(q) + (1 − σ)2g(σ, q)

where g(1, q) = 0 and we set b2(q) = 0 when l = 1. As |G̃(σ, q)| = σ ,

gR(b2(q),X(q)) = 0.

It follows from the definition that

S−1(G̃(σ, q)) = 2

1 + σ 2 G̃(σ, q)

= 2σ

1 + σ 2X(q) +
(
1 − 2σ

1 + σ 2

)
b2(q) + 2

(
1 − 2σ

1 + σ 2

)
g(σ, q)

which is not an immersion at σ = 1. Consider instead the expansion of the map

G(ρ, q) = S−1

(
G̃

(
ρ

1 + √
1 − ρ2

, q

))
, )

= ρX(q) + (1 − ρ) (b2(q) + g̃(ρ, q))

where g̃(1, q) = 0. Up to shrinking ε, this is readily checked to be a C1 embedding
on (1 − ε, 1] × � and so �p is a C1-regular submanifold with boundary. Moreover,
gR(∂ρG(1, q),X(q)) = 1 and so �p meets ∂B2n+2 transversally. This verifies (2). In addi-
tion, combined with (1) it also shows that being asymptotically orthogonal is independent
of the choice of modified Bergman compactification. Note that, when l ≥ 2, unless g has
appropriate parity at σ = 1, there can be a loss of regularity.

Having established (1) and (2), (3) is an immediate consequence of the definitions. Finally,
by what has already been shown, the hypotheses of (4) imply that � is C1-asymptotically
regular. Using the parameterization, F, from above with l = 1, we see � is strongly asymp-
totically horizontal, if and only if gR(a1(q),T) = 0 for all q ∈ �. It is not hard to see that
this is equivalent to

gR(∂2σ F̃(1, q),T) = 0,

which can be readily checked to be equivalent to the geometric condition on �̃p . ��

3.3 Second fundamental form andmean curvature inCHn+1

On B
2n+2, let h = gB̃ , be the modified Bergman metric, g = gP , be the Poincaré metric,

and set τ = 4s2

(1−s2)2
θ . Here and in the following subsections we abuse notation and use s

instead of r to emphasize that we are working with the modified Bergman metric. As such,
h is, in the sense of Appendix B.1, a rank one deformation of g by τ and τ(X) = g(X ,T).
We specialize the computations of Appendix B.2 to this case.
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First observe that because gR and g = gP are conformal one has

TN̂ = T − 1 + |T|2g
1 + |T�|2g

T� = T − (1 + s)2

(1 − s)2 + 4|T�|2
R

T�

where we used the fact that TN = T⊥, i.e., the orthogonal component of T with respect to
� is the same for gR and g. Likewise, for a vector field V along �

VÑ = VN − g(VN ,T)
TN

|TN |2g
= V⊥ − gR(V⊥,T)

T⊥

|T⊥|2
R

.

Proposition 3.6 Let � ⊂ B
2n+2 be an m-dimensional submanifold. The mean curvature of

� in h = gB̃ and in gR are related by:

(Hh
�)Ñ = (1 − s2)2

4
(HR

�)Ñ − 1 − s2

2
(m + 1)XÑ

+ (1 − s2)2

(1 − s2)2 + 4|T�|2
R

(
1 − s2

2
X − AR

�(T�,T�) − 2JR(T�)

)Ñ

and

gR(Hh
�,TN̂ ) = (1 − s2)2

4
gR(HR

�,T) + 1 − s2

2

(
m + 1 + 2(1 − s2)

1 + s2

)
gR(T�,X)

+ (1 − s2)2

(1 − s2)2 + 4|T�|2
R

(
1 − s2

2
gR(T�,X) − gR(AR

�(T�,T�),T)

)
.

Proof Using ∇R

XT = −JR(X) and the formula for the connection of a conformally changed
metric, one has

∇g
ZT = −JR(Z) − Z · log(1 − s2)T − T · log(1 − s2) + gR(Z ,T)∇R log(1 − s2)

= −JR(Z) + 2gR(Z ,X)
T

1 − s2
− 2gR(Z ,T)

X
1 − s2

.

Using g(X , JR(Y )) = −g(JR(X), Y ) and JR(T) = X this yields,

g(∇g
ZT, Y ) = g(Z , JR(Y )) + gP

(
2gR(Z ,X)

1 − s2
T − 2gR(Z ,T)

1 − s2
X, Y

)

= g(Z , JR(Y )) + gP

(
−2gR(Y ,X)

1 − s2
T + 2gR(Y ,T)

1 − s2
X, Z

)
.

Hence, the tensor field, a, from Proposition B.1 satisfies

a(T�) = −∇g
T�T = JR(T�) − 2gR(T�,X)

T
1 − s2

+ 2|T�|2
R

X
1 − s2

.

By Corollary B.2 and (1 − s2)2|T�|2g = 4|T�|2
R
, it follows that

(Hh
�)Ñ = (Hg

�)Ñ − (Ag
�(T�,T�))Ñ + 2(JR(T�))Ñ + (1 − s2)|T�|2gXÑ

1 + |T�|2g
.
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The formula for the conformal change of the second fundamental form yields

Ag
�(X , Y ) = AR

�(X , Y ) − 2gR(X , Y )X⊥

1 − s2
,

Hg
� = (1 − s2)2

4
HR

� − m(1 − s2)X⊥

2
.

(3.1)

Hence,

(Hh
�)Ñ = (1 − s2)2

4
(HR

�)Ñ − m(1 − s2)XÑ

2

− (AR
�(T�,T�))Ñ + 2(JR(T�))Ñ + 1

2 (1 − s2)|T�|2gXÑ

1 + |T�|2g
= (1 − s2)2

4
(HR

�)Ñ − (1 − s2)

2
(m + 1)XÑ

+ 1

1 + |T�|2g

(
(1 − s2)

2
X − AR

�(T�,T�) − 2JR(T�)

)Ñ

.

Using (1 − s2)2|T�|2g = 4|T�|2
R
again, yields the first formula.

Corollary B.2, (3.1) and gR(X�,T) = −gR(X,T⊥) imply

g(Hh
�,TN̂ ) = g(Hg

�,T) − g(Ag
�(T�,T�),T)

1 + |T�|2g
+

4gR(T�,X)

1−s2
|T|2g − 2g(JR(T�),T)

1 + |T|2g
= gR(HR

�,T) − g(AR
�(T�,T�),T)

1 + |T�|2g
− 2mgR(X⊥,T)

1 − s2

− 2|T�|2ggR(T�,X)

(1 − s2)(1 + |T�|2g)
+ 4gR(T�,X)|T|2g

(1 − s2)(1 + |T|2g)
+ 2g(T�,X)

1 + |T|2g
= gR(HR

�,T) − g(AR
�(T�,T�),T)

1 + |T�|2g
+ 2(m + 1)gR(T�,X)

1 − s2

+ 2gR(T�,X)

(1 − s2)(1 + |T�|2g)
+ 4gR(T�,X)

1 + s2
.

The second formula follows. ��
Corollary 3.7 If � ⊂ S

2n+1 is minimal in gS and horizontal and � is the (Euclidean) cone
over � with vertex 0 restricted to B

2n+2, then � \ {0} is minimal in h = gB̃ and isotropic
with respect to ωB̃ .

Proof As � is minimal in gS, HR
� = 0 on �\ {0}. Likewise, as � is horizontal, T� = 0 on

� \ {0} and so Hh
� = 0. This also implies that � \ {0} is isotropic. ��

3.4 Asymptotic behavior of minimal submanifolds inCHn+1

We use Proposition 3.6 to show an improvement of boundary regularity for minimal sub-
manifolds of the modified Bergman metric. That is, we prove Theorem 1.1.

We first show a preliminary partial result.
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Lemma 3.8 Let � ⊂ B̄
2n+2 be an m-dimensional C2-regular submanifold with boundary

that meets ∂B2n+2 transversely along ∂� ⊂ ∂B2n+2. If T� = 0 on ∂�, then, near ∂�,

T� = (1 − s)
1

|X�|2
(
(JR(X�))� − S�

T⊥(X�)
)

.

Moreover, along ∂�, we may write

X� = |X�|2
R
X + Z = |X�|2

R
X + JS(Z1) + Z2,

where Z is normal to X, ∂� and T, Z1 is tangent to ∂�, Z2 and JS(X2) are normal to ∂�̃,
X, and T. Using this decomposition we obtain, along ∂�,

(JR(X�))� = −Z1 and S�
T⊥(X�) = gR(T,AR

�(X�,X�))
X�

|X�|2
R

+ Z1.

Proof The hypotheses on � ensure that ∂� is horizontal and we can write

T� = (1 − s)v

for aC2 vector field v tangent to� that extends in aC1 fashion to the boundary. We compute
that on the boundary

∇�
X�T

� = (∇R

X�(T − T⊥))� = −(JR(X�))� + S�
T⊥(X�).

As X� · s = |X�|2 on the boundary we verify that

v = − 1

|X�|2
(
−(JR(X�))� + S�

T⊥(X�)
)

.

On ∂� we may write

X� = |X�|2X + Z = |X�|2X + JS(Z1) + Z2

where Z is tangent to S
2n+1 = ∂B2n+2 and thus orthogonal to ∂�. The hypotheses on �

ensure that X�, and, thus Z , are orthogonal to T and ∂�. Hence, we may choose Z1 to be
tangent to ∂� and so Z2 and JS(Z2) are orthogonal to ∂�. When ∂� is Legendrian, Z2

vanishes. Clearly, along ∂�,

(JR(X�))� = (−|X�|2T + JS(JS(Z1) + Z2))
� = −Z1.

For Y tangent to ∂�, the hypotheses on � ensure

gR(T,AR
�(X�, Y )) = gR(T,∇R

Y X
�) = gR(T,∇R

Y

(
|X�|2

R
X + Z

)
)

= gR(T,∇R

Y Z) = Y · gR(T, Z) − gR(∇R

Y T, Z)

= gR(JR(Y ), Z) = −gR(JS(Z), Y ) = gR(Z1, Y ).

Hence, along ∂�, we have

S�
T⊥(X�) = S�

T (X�) = gR(T,AR
�(X�,X�))

X�

|X�|2
R

+ Z1.

��
We now prove Theorem 1.1
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Proof of Theorem 1.1 Let us choose a modified Bergman compactification, �̃, of �. The
hypotheses ensure that �̃ is C2 up to ∂B2n+2, meets the boundary transversally, has ∂�̃

horizontal, and is minimal with respect to gB̃ . For simplicity, we will write � instead of �̃

for the remainder of the proof.
Our hypotheses ensure that near the boundary

T� = gR(T�,X)
X�

|X�|2
R

+ V (3.2)

where V is tangent to �, orthogonal to X�, and vanishes along the boundary. This is well
defined as the hypotheses ensure that X� 
= 0 along the boundary.

Using the minimality of � along with the fact that � is C2 up to the boundary, the second
formula of Proposition 3.6 can be rewritten as

0 = ((1 − s2)2 + 4|T�|2
R
)

(
1 − s2

2
gR(HR

�,T) +
(
m + 1 + 2(1 − s2)

1 + s2

)
gR(T�,X)

)

+ 2(1 − s2)

(
1 − s2

2
gR(T�,X) − gR(AR

�(T�,T�),T)

)
.

From this expression one obtains that, near ∂�,

4(m + 1)|T�|2
R
gR(T�,X) = O(1 − s).

Hence, on ∂�, either T� = 0 or gR(T�,X) = 0. In the latter case, (3.2) implies T� = 0 on
∂� and, so in either case there is a vector field, v, tangent to � with

T� = (1 − s)v.

From the first formula of Proposition 3.6, it follows that near ∂�, one has

0 = 2

1 + |v|2
R

(JR(v))Ñ +
(
m + 1 − 1

1 + |v|2
R

)
XÑ + o(1).

Hence, along the boundary

0 = 2(JR(v))Ñ + (
(m + 1)|v|2

R
+ m

)
XÑ .

As we have shown T⊥ = T on ∂�, we may appeal to Lemma 3.8 to see

XÑ = X⊥ = X − X� = |X⊥|2
R
X − Z = |X⊥|2

R
X − JS(Z1) − Z2

where Z , Z1 and Z2 are as in the statement of Lemma 3.8. By Lemma 3.8, for appropriate
β, on ∂� one has

v = − 2

|X�|2 Z1 + βX� = − 2

|X�|2 Z1 + β(|X�|2X + JS(Z1) + Z2).

Hence,

(JR(v))Ñ =
(

− 2

|X�|2 JS(Z1) + β(|X�|2T − Z1 + JS(Z2))

)Ñ

= − 2

|X�|2 (JS(Z1))
⊥ + β(JS(Z2))

⊥.
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Plugging this into the previous identity we obtain

0 = − 4

|X�|2 (JS(Z1))
⊥ + 2β(JS(Z2))

⊥ + (
(m + 1)|v|2 + m

)
X⊥.

As JS(Z2) is, by construction, orthogonal to ∂�, X⊥, X�, and T, one has

JS(Z2)
Ñ = (JS(Z2))

⊥ = JS(Z2).

Moreover, as JS(Z1) is orthogonal to ∂�,

(JS(Z1))
⊥ = JS(Z1) − gR(JS(Z1),X�)

X�

|X�|2 ,

which immediately implies that JS(Z2) is also orthogonal to (JS(Z1))
⊥. Hence,

β JS(Z2) = 0 = − 4

|X�|2 (JS(Z1))
⊥ + (

(m + 1)|v|2 + m
)
X⊥.

This implies β JS(Z2) vanishes and

0 = − 4

|X�|2 |JS(Z1)
⊥|2 + (

(m + 1)|v|2 + m
)
gR(X⊥, JS(Z1))

= − 4

|X�|2 |JS(Z1)
⊥|2 − (

(m + 1)|v|2 + m
) |JS(Z1)|2.

It follows that Z1 = JS(Z1) = (JS(Z1))
⊥ = 0. Hence,

0 = (
(m + 1)|v|2 + m

)
X⊥

and so X⊥ = 0. In particular, as a submanifold of CHn+1, � is asymptotically orthogonal.
Moreover, along ∂�, one has a function α so

v = − 1

|X�|2 S
�
T⊥(X�) = −S�

T (X) = gR(T,AR
�(X�,X�))X� = αX�.

As � meets ∂B2n+2 orthogonally, for X , Y tangent to ∂�,

AS

∂�(X , Y ) = (∇R

XY )⊥ = AR
�(X , Y ).

Moreover, as T� = 0, for such X , Y ,

gR(T,AR
�(X , Y )) = gR(T,∇R

XY ) = X · gR(T, Y ) − gR(∇R

XT, Y )

= gR(JR(X), Y ) = 0.

Hence, along the boundary,

HR
� = HS

∂� + AR
�(X�,X�) and gR(HR

∂�,T) = gS(HS

∂�, T̂) = 0.

It follows that,

gR(HR
�,T) = gR(AR

�(X�,X�),T) = gR(v,X) = α.

Using T� = (1 − s)v, the second formula of Proposition 3.6 reduces, on ∂�, to:

0 = (1 + |v|2
R
)(gR(HR

�,T) + (m + 1)gR(v,X)) + gR(v,X) − gR(AR
�(v, v),T)

= (1 + α2)(α + (m + 1)α)) + α − α3 = (m + 1)α3 + (m + 3)α.
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The only real root is α = 0. Hence, v = 0 and gR(AR
�(X�,X�),T) = 0 along ∂�. It follows

from Lemma 3.4 that�, thought of as a submanifold ofCHn+1, isC1-asymptotically regular
and strongly asymptotically horizontal. ��

Whilewe do not use it elsewhere in this paper, there is finer information about the boundary
geometry of the compactified surface.

Corollary 3.9 Suppose that � ⊂ CH
n+1 is an m-dimensional minimal submanifold. If � is

weakly C3-asymptotically regular and weakly asymptotically horizontal, and �̃ ⊂ B̄
2n+2 is

a modified Bergman compactification of �, then, on ∂�̃,

(1) gR(AR

�̃
(X , Y ),T) = 0 for any tangent vectors X , Y to �.

(2) AR

�̃
(X�, Y ) = 1

m+1H
S

∂�̃
gR(X�, Y ) for any tangent vector Y to �.

Proof The hypotheses ensure that �̃ is C3 up to ∂B2n+2 and meets it transversally, has ∂�̃

horizontal and is minimal with respect to gB̃ . For simplicity, we will write � instead of �̃

for the remainder of the proof. Observe, that by Theorem 1.1, � meets ∂B2n+2 orthogonally
and there is a vector field, w, tangent to � so

T� = (1 − s)2w.

Hence, on ∂�, S�
T (X) = 0 which implies (1) holds.

The first formula of Proposition 3.6 implies that near ∂�,

0 = (1 − s)(HR
�)Ñ − 2(1 − s)(JR(w))Ñ − mXÑ + o((1 − s)).

To go further it is helpful to observe that

XÑ = X⊥ − gR(X,T⊥)
T⊥

|T⊥|2
R

= X⊥ + gR(X,T�)
T⊥

|T⊥|2
R

= X⊥ + O((1 − s)2).

As (∇R

X�X
⊥)⊥ = −AR

�(X�,X�), it follows that near the boundary

XÑ = (1 − s)(AR
�(X�,X�))Ñ + o(1 − s).

Hence, we conclude that

0 =
(
HR

� − 2JR(w) − mAR
�(X�,X�)

)Ñ
.

From these computations and item (1), this means that, on ∂�,

2(JR(w))Ñ =
(
(1 − m)AR

�(X�,X�) + HS

∂�

)Ñ = (1 − m)AR
�(X�,X�) + HS

∂�.

To complete the proof we need to compute w in terms of the geometry of �. To that end,
observe that

∇R

X�X
� = X� + S�

X⊥(X�) + AR
�(X�,X�).

Hence,

∇�
X�(JR(X�))� =

(
∇R

X�
(
JR(X�) − (JR(X�))⊥

))�

= (JR(X� + S�
X⊥(X�) + AR

�(X�,X�)))� + S�
(JR(X�))⊥(X�).
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The properties already established about the boundary geometry of � yield, on ∂�,

∇�
X�(JR(X�))� = JR(AR

�(X�,X�)) − S�
T⊥(X�) = JR(AR

�(X�,X�)).

We further compute that

gR(∇R

X�(S�
T⊥(X�)), Y ) = X� · g((S�

T⊥(X�), Y ) − g((S�
T⊥(X�),∇R

X�Y )

= X� · gR(T⊥,AR
�(X�, Y )) − g((S�

T⊥(X�),∇R

X�Y )

= gR(−(JR(X�))⊥ − AR
�(X�,T�),AR

�(X�, Y ))

+ gR(T⊥, (∇⊥
X�A

R
�)(X�, Y ) + gR(T⊥,AR

�(∇�
X�X

�, Y ))

The Codazzi equations imply

gR(T⊥, (∇⊥
X�A

R
�)(X�, Y ) = gR(T⊥, (∇⊥

Y A
R
�)(X�,X�))

= Y · gR(T⊥,AR
�(X�,X�)) + gR((JR(Y ))⊥ + AR

�(Y ,T�),AR
�(X�,X�)).

On the boundary, as T� = 0, X� = X and item (1) holds, this simplifies to

gR(∇R

X�(S�
T⊥(X�)), Y ) = −gR(JR(AR

�(X�,X�), Y ) + Y · gR(T⊥,AR
�(X�,X�))

= −gR(JR(AR
�(X�,X�), Y ) + X� · gR(T⊥,AR

�(X�,X�))gR(Y ,X)

where we used X� = X on ∂�.
Hence, on the boundary,

w = 1

2
∇�
X�∇�

X�T
� = −JR(AR

�(X�,X�)) + X�

2
· gR(T⊥,AR

�(X�,X�))X

and so

(JR(w))Ñ =
(
AR

�(X�,X�) − X�

2
· gR(T⊥,AR

�(X�,X�))T
)Ñ

= AR
�(X�,X�)

where we used item (1). Hence,

2AR
�(X�,X�) = (1 − m)AR

�(X�,X�) + HS

∂�,

which yields item (2) for Y = X�. When Y is orthogonal to X� is immediate. ��

4 Colding-Minicozzi entropy inCH
n+1

In this section, we prove Theorem 1.4. To do so we first introduce some notation. Let
ϒ,ϒ ′ : CH

n+1 → B
2n+2 be two choices of Bergman compactifications satisfying

ϒ(p0) = ϒ ′(p′
0) = 0. By construction, there is an element � ∈ Aut+gB (B2n+2) satisfy-

ing ϒ ′ = � ◦ ϒ . Moreover, when p0 = p′
0, this element � is also an isometry of gR. As

a consequence, ϒ endows ∂∞CH
n+1 with a well-defined Riemannian metric, obtained by

pulling back gS from S
2n+1 = ∂B2n+2. While this metric depends on p0, it is otherwise

independent of the choices of ϒ and so we denote it by gp0
∂∞CH

. Clearly, gp0
∂∞CH

and gq0
∂∞CH

are related by an element of AutCR(S2n+1) for different choices of distinguished points p0
and q0. Therefore any geometric quantity defined on S

2n+1 that is AutCR(S2n+1) invariant
is well-defined on ∂∞CH

n+1. Furthermore, as S̄ acts as identity on S2n+1 one may also use
the modified Bergman compactification to the same effect.
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Fix an m-dimensional C1 submanifold � ⊂ ∂∞CH
n and let ϒ(�) ⊂ S

2n+1 be the
submanifold associated to � by the Bergman compactification, ϒ . Set

Vol∂∞CH(�, p0) = |ϒ(�)|S.
When p′

0 is a different choice of a distinguished point, then, by the above discussion there is
an element, 
 ∈ AutCR(S2n+1) such that

Vol∂∞CH(�, p′
0) = |
 ′(�)|S = |
(ϒ(�))|S.

Hence, the CR-volume of a horizontal submanifold, � ⊂ ∂∞CH
n+1, defined by

λCR[�] = sup

∈AutCR(S2n+1)

|
(ϒ(�))|S = sup
p0∈CHn+1

Vol∂∞CH
n (�, p0)

is a well-defined quantity independent of choices. Moreover, using modified Bergman com-
pactifications yields the same value.

We now begin the proof of Theorem 1.4 and first record a basic relationship between
geodesic balls of the modified Bergman metric and the Euclidean metric.

Lemma 4.1 Setting s(R) = tanh R
2 , it follows that

B
gB̃
R (0) = BR

s(R)(0).

Proof Suppose that � is a line segment inB2n+2 with one endpoint through 0. Proposition 3.6
implies � is also a geodesic of gB̃ . The length with respect to gB̃ is

R =
∫ s

0

2

1 − t2
dt = ln

(
1 + s

1 − s

)
.

As geodesics are always minimizing in Cartan-Hadamard spaces,

s(R) = eR − 1

eR + 1
= tanh

R

2
.

��
It is also useful to clarify the relationship between Vol∂∞CH(�; p0) and the geometry of

submanifolds asymptotic to � for varying degrees of asymptotic regularity.

Lemma 4.2 Let � ⊂ CH
n+1 be an m-dimensional submanifold that is weakly C1-

asymptotically regular and weakly asymptotically horizontal. For any p0 ∈ CH
n+1,

V ol∂∞CH(∂∞�; p0) ≤ lim inf
r→∞

VolCH(� ∩ ∂BCH
r (p0))

sinhm−1(r)

where BCH
r (p0) is a ball of radius r centered at p0 in CH

n+1. If � is C1-asymptotically
regular and strongly asymptotically horizontal, then

Vol∂∞CH(∂∞�; p0) = lim
r→∞

VolCH(� ∩ ∂BCH
r (p0))

sinhm−1(r)
.

Proof Let ϒ̃p0 : CHn+1 → B
2n+2 be a modified Bergman compactification sending p0 to

0. By Lemma 4.1, one has

ϒ̃p0(∂B
CH
r (p0)) = ∂B

gB̃
r (0) = ∂Bs(0)
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where r = ln
(
1+s
1−s

)
.

Set �r = � ∩ ∂BCH
r (p0) and let �′ = ϒ̃p0(�). Clearly, ϒ̃p0(�r ) = �′ ∩ ∂Bs(0) = �′

s .
Let gr be the metric on �r induced from gCH, g′

s be the metric induced on �′
s from gR, and

g′′
s be the metric on �′

s induced from gB̃ . From the form of gB̃ and properties of �′ near the
boundary, that follow from � being weakly C1-asymptotically regular, one has

g′′
s = 4

(1 − s2)2
g′
s + 4s4

(1 − s2)4
(i∗�′

s
θ)2 ≥ 4

(1 − s2)2
g′
s, (4.1)

where the inequality is in the sense of symmetric bilinear forms.
Hence,

ϒ̃∗
p0g

′
s ≤

(
er − 1

er + 1

)2

sinh−2(r)ϒ̃∗
p0g

′′
s = 1

(1 + cosh(r))2
gr .

In particular, as �′
s is (m − 1)-dimensional, one has

|�′
s |R ≤ |�r |CH

(1 + cosh(r))m−1 .

The definition of weakly C1-regular asymptotic boundary ensures that

lim
s→1

|�′
s |R = |∂�′|R = |∂�′|S = Vol∂∞CH(∂∞�; p0).

As s → 1, r → ∞, and so, using limr→∞ sinh(r)
1+cosh(r) = 1, we conclude

Vol∂∞CH(∂∞�; p0) ≤ lim inf
r→∞

|�r |CH
(1 + cosh(r))m−1 .

To see the second claim, observe that Lemma 3.4 implies that the new hypotheses on �

encompasses the previous ones and ensures that �′ has the property that T� on �′
s is of size

O((1 − s)2). It follows that in this case, (4.1) satisfies

g′′
s = 4

(1 − s2)2
g′
s + 4s4

(1 − s2)4
(i∗�′

s
θ)2 ≤ 4

(1 − s2)2
g′
s + Cg′

s

for some constant C > 0. Hence, up to increasing C

(1 + Ce−2r )ϒ̃∗
p0g

′
s ≥ 1 − Ce−2r

(1 + cosh(r))2
gr .

This means that up to increasing C ,

|�′
s |R ≥ (1 − Ce−2r )|�r |CH

(1 + cosh(r))m−1 .

The second claim then follows as before by taking s → 1 and r → ∞. ��
Theorem 1.4 is a consequence of Theorem 1.1 and the following proposition:

Proposition 4.3 Let � ⊂ CH
n+1 be an m-dimensional submanifold that is weakly C1-

asymptotically regular and weakly horizontal. Then

lim inf
t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p) ≥ Vol∂∞CH(∂∞�; p0)

|Sm−1|R . (4.2)
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If � is C1-asymptotically regular and strongly asymptotically horizontal, then

lim
t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p) = Vol∂∞CH(∂∞�; p0)

|Sm−1|R . (4.3)

Proof Let �r = � ∩ ∂BCH
r (p0). Observe that, by the definition of being weakly C1-

asymptotically regular there is an R0 > 0 such that, for r ≥ R0, � meets ∂BCH
r (p0)

transversally and so �r is a smooth (m − 1)-dimensional submanifold of ∂BCH
r (p0).

By Lemma 4.2, for any ε > 0, there is an Rε > R0 so, for r > Rε ,

(1 − ε)Vol∂∞CH(∂∞�; p0) ≤ |�r |CH
sinhm−1(r)

.

As |∇CHρ| ≤ 1, using the co-area formula, for R > Rε , one has

(1 − ε)Vol∂∞CH(∂∞�; p0)
∫ ∞

R
Km,1(t0 − t, r) sinhm−1(r)dr

≤
∫

�\BCH
R (p0)

�
t0,p0
m,1 (t, p)dVol�(p).

As Km,1(t, r) = Km(t, r), it follows from the proof of [5, Proposition 4.2] that

lim
t→−∞

∫ ∞

R
Km,1(t0 − t, r) sinhm−1(r)dr = |Sm−1|−1

R
.

Hence,

(1 − ε)
Vol∂∞CH(∂∞�; p0)

|Sm−1|R ≤ lim inf
t→−∞

∫
�\BCH

R (p0)
�

t0,p0
m,1 (t, p)dVol�(p)

= lim inf
t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p)

where the second equality again uses (4.2). Sending ε → 0 yields,

Vol∂∞CH(∂∞�; p0)
|Sm−1|R ≤ lim inf

t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p),

which verifies the first claim.
Suppose � is C1-asymptotically regular and strongly asymptotically horizontal. By

Lemma 3.4, in the modified Bergman compactification, the compactified surface meets the
ideal boundary orthogonally. It follows that if ρ = distCH(p, p0), then

lim
p→∞ |∇�ρ| = 1.

In particular, there is an R′
ε > 0 sufficiently large such that for p ∈ � \ BCH

R′
ε

(p0),

1 ≤ |∇�ρ|−1 ≤ 1 + ε.

Appealing to Lemma 4.2, up to increasing R′
ε > 0 one has for r > R′

ε ,

|�r |CH
sinhm−1(r)

≤ (1 + ε)Vol∂∞CH(∂∞�; p0).

Hence, for R > R′
ε , one has∫

�\BCH
R (p0)

�
t0,p0
m,1 (t, p)dVol�(p)
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≤ (1 + ε)2Vol∂∞CH(∂∞�; p0)
∫ ∞

R
Km,1(t0 − t, r) sinhm−1(r)dr .

Arguing as above,

lim sup
t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p) ≤ Vol∂∞CH(∂∞�; p0)

|Sm−1|R .

This proves that

lim
t→−∞

∫
�

�
t0,p0
m,1 (t, p)dVol�(p) = Vol∂∞CH(∂∞�; p0)

|Sm−1|R
verifying the second claim. ��

We may now prove Theorem 1.4.

Proof of Theorem 1.4 By definition, for any fixed p0 ∈ CH
n+1,

λCH[�] ≥ lim sup
t→−∞

∫
�

�
0,p0
m,1 (t, p)dVol�(p).

Hence, Proposition 4.3 implies that

λCH[�] ≥ Vol∂∞CH(∂∞�; p0)
|Sm−1|R .

Taking the supremum over p0 ∈ CH
n+1 and using � = ∂∞� yields,

λCH[�] ≥ λCR[�]
|Sm−1|R .

This proves the first claim.
To see the second claim, observe that if � is weakly C2-asymptotically regular, weakly

asymptotically horizontal and minimal, then we may apply Theorem 1.1 to see that � is C1-
asymptotically regular and strongly asymptotically horizontal. In particular, Proposition 4.3
implies

lim
t→−∞

∫
�

�
0,p0
m,1 (t, p)dVol�(p) = Vol∂∞CH(∂∞�; p0)

|Sm−1|R .

Furthermore, � may be thought of as a static solution of mean curvature flow that, by
Lemma 4.2, and the co-area formula has exponential volume growth. Hence, by [3, Theorem
1.1], for all τ > 0, one has∫

�

�
0,p0
m,1 (−τ, p)dVol�(p) ≤ lim

t→−∞

∫
�

�
0,p0
m,1 (t − τ, p)dVol�(p)

= Vol∂∞CH(∂∞�; p0)
|Sm−1|R ≤ λCR[�]

|Sm−1|R .

Taking the supremum over τ > 0 and p0 ∈ CH
n+1 yields

λCH[�] ≤ λCR[�]
|Sm−1|R .

Combined with the first claim this completes the proof. ��
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Appendix A. Huiskenmonotonicity inCH
n+1

InCHn+1, the monotonicity formula from [3] has a particularly simple form. We first record
without proof the computation of the Hessian of a radial function.

Lemma A.1 Let ρ(p) = distCH(p, p0) and suppose that F : [0,∞) → R is a C2 function.
If f (p) = F(ρ(p)) on CHn+1 \ {p0}, then

∇2
CH

f = coth(ρ)F ′(ρ)gCH + (
F ′′(ρ) − coth(ρ)F ′(ρ)

)
dρ2+

+ tanh(ρ)F ′(ρ)(dρ ◦ JCH)2.

We may now specialize some of the conclusions of [3] to CH
n+1.

Proposition A.2 Suppose that {�t }t∈[0,T ) is a mean curvature flow in CH
n+1 of m-

dimensional submanifolds with exponential volume growth. For any t0 > 0, p0 ∈ CH
n+1,

and t ∈ (0,min {t0, T }) one has
d

dt

∫
�t

�
t0,p0
m,1 dV�t = −

∫
�t

⎛
⎝

∣∣∣∣∣
∇⊥

�t
�

t0,p0
m,1

�
t0,p0
m,1

− H�t

∣∣∣∣∣
2

+ Qt0,p0
m,1 (t, x, Nx�t )

⎞
⎠ �

t0,p0
m,1 dV�t .

Here, if we set km,1(t, r) = log Km,1(t, r) and ρ(x) = distCH(x, p0), then

Qt0,p0
m,1 (t, x, Nx�t ) = (

k′′
m,1(t, ρ) − coth(ρ)k′

m,1(t, ρ)
) |∇⊥

�ρ|2
− tanh(ρ)|(JCH(∇CHρ))�|2k′

m,1(t, ρ) ≥ 0.

Moreover, this inequality is strict somewhere unless �t is an isotropic cone over p0.

Proof Set k = 2n + 2 − m and let E1, . . . , Ek be an orthonormal basis of Nx�t . By [3,
Proposition 5.1] to obtain the above formulas, it is enough to compute

Qt0,p0
m,1 (t, x, Nx�t ) =

k∑
i=1

∇2
CH

�
t0,p0
m,1 (Ei , Ei )

+ ((m − 1) coth(ρ) − �CHρ) ∂ρ log�
t0,p0
m,1 .

By Lemma A.1,

�CHρ = (2n + 1) coth(ρ) + tanh(ρ)
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while, using log�
t0,p0
m,1 (t, x) = km,1(t0 − t, distCH(x, p0)), one has

k∑
i=1

∇2
CH

�
t0,p0
m,1 (Ei , Ei ) = k coth(ρ)k′

m,1 + (k′′
m,1 − coth(ρ)k′

m,1)|∇⊥
�ρ|2

+ tanh(ρ)k′
m,1|(JCH(∇CHρ))⊥|2.

The formula for Qt0,p0
m,1 follows from this. The inequality is an immediate consequence of

properties of Km,1 – see [3, Section 5]. The strictness of the inequality unless�t is a geodesic
cone over p0 follows from [3, Lemma 5.3]. Finally, if � is a geodesic cone, then ∇CHρ

is tangent to �t . If the inequality is not strict, then JCH(∇CHρ) is orthogonal to �t . If
ϒ : CHn+1 → B

2n+2 is a Bergman compactification withϒ(p0) = 0, then this is equivalent
to ϒ(�t ), which is a Euclidean cone over 0, being orthogonal to T. This only occurs when
the cone is isotropic. ��

Appendix B. Geometric computations

B.1. Rank one deformation

Let (M, g) be a Riemannian manifold, τ a smooth one-form and α a smooth function. When
|τ |2gα > −1, the Riemannian metric

h = g + ατ ⊗ τ, (B.1)

is called a rank one deformation of g. Let ∇g and ∇h denote the Levi-Civita connections of
g and h and let C(X , Y ) be the (1, 2) tensor field

C(X , Y ) = ∇h
XY − ∇g

XY .

Using the Koszul formula we compute that

h(C(X , Y ), Z) = g(C(X , Y ), Z) + ατ(C(X , Y ))τ (Z) = c(X , Y , Z)

where c(X , Y , Z) satisfies

c(X , Y , Z) = 1

2
(∇g

Xατ)(Y )τ (Z) + 1

2
(∇g

Yατ)(X)τ (Z) + 1

2
α∇X τ(Z)τ (Y )

+ 1

2
α∇Y τ(Z)τ (X) − 1

2
(∇g

Zατ)(X)τ (Y ) − 1

2
α∇g

Z τ(Y )τ (X).

Let T be the vector field satisfying

g(T, Z) = τ(Z).

Choose orthonormal vectors E1, . . . , En orthogonal to T so {E1, . . . , En,T} spans TpM . It
follows that

C(X , Y ) = |T|−2
g

1 + α|T|2g
c(X , Y ,T)T +

n∑
i=1

c(X , Y , Ei )Ei

where c is a (0, 3) tensor field symmetric in the first two entries given by

c(X , Y ,T) = 1

2

(
g(∇g

XαT, Y )|T|2g + g(∇g
YαT, X)|T|2g + αg(∇g

XT,T)g(T, Y )
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+ αg(∇g
YT,T)g(T, X) − g(∇g

TαT, X)g(T, Y ) − αg(∇g
TT, Y )g(T, X)

)
and

c(X , Y , Ei ) = 1

2
αg(∇g

XT, Ei )g(T, Y ) + 1

2
αg(∇g

YT, Ei )g(T, X)

− 1

2
g(∇g

Ei
αT, X)g(T, Y ) − 1

2
g(∇g

Ei
αT, Y )g(T, X).

B.2. Second fundamental form

We compare the second fundamental forms computed for certain metrics, g and h, that are
related by a rank one deformation. Let � ⊂ M be a submanifold. Observe that for X and Y
tangent to � one has

h(X , Y ) = g(X , Y ) + τ(X)τ (Y ) = g(X , Y ) + g(T, X)g(T, Y ),

h�(X , Y ) = g�(X , Y ) + g�(T�, X)g�(T�, Y )

where T� is the g-tangential component of T. In particular, h� is a rank one deformation of
g� . Denote by ∇�,g and ∇�,h the induced connections on �.

Let TN be the g-normal component of T to � and let TN̂ be the h-normal component.
We have

TN̂ = TN − |TN |2g
1 + |T�|2g

T� = T − 1 + |T|2g
1 + |T�|2g

T�.

Now choose N1, . . . , Nl to be g-unit length tangent vectors that are g-orthogonal to T and
�. These are also of h-unit length and are h-orthogonal toT and�. Likewise, let E1, . . . , Ek

be g-unit length vectors tangent to � and g-orthogonal to T. For a vector V ∈ TpM with
p ∈ �, let us denote

VÑ = VN − g(VN ,T)
TN

|TN |2g
=

l∑
i=1

g(V, Ni )Ni .

So VÑ is both h and g-orthogonal to � and T. In particular,

g(VÑ ,TN̂ ) = g(VN ,TN̂ ) = g(VÑ ,T) = 0.

Proposition B.1 Let (M, g) be a Riemannian manifold and τ = g(T, ·) a smooth one form.
Suppose that there is a (1, 1)-tensor field, a, satisfying

∇g
ZT = −a(Z) and g(a(X), Y ) = −g(X , a(Y )).

If h is the rank one deformation of g by τ and � ⊂ M a submanifold, then one has the
following relationship between the second fundamental forms of �,

(Ah
�(X , Y ))Ñ = (Ag

�(X , Y ))Ñ − g(T, Y )(a(X))Ñ − g(T, X)(a(Y ))Ñ and

g(Ah
�(X , Y ),TN̂ ) = g(Ag

�(X , Y ),T)

− 1 + |T�|2g
1 + |T|2g

(
g(TN̂ , a(X))g(T, Y ) + g(TN̂ , a(Y ))g(T, X)

)
.
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Proof The computations of Section B.1 yield, for X and Y tangent to�, and N j g-orthogonal
to � and T,

h(∇h
XY , N j ) = g(∇g

XY , N j ) + c(X , Y , N j )

= g(Ag
�(X , Y ), N j ) + 1

2
g(∇g

XT, N j )g(T, Y ) + 1

2
g(∇g

YT, N j )g(T, X)

− 1

2
g(∇g

N j
T, X)g(T, Y ) − 1

2
g(∇g

N j
T, Y )g(T, X).

The additional hypothesis on T and a imply

h(∇h
XY , N j ) = g(Ag

�(X , Y ), N j ) − g(a(X), N j )g(T, Y ) − g(a(Y ), N j )g(T, X).

This immediately yields the first formula.
It directly follows from Section B.1 that

h(∇h
XY ,T) = (1 + |T|2g)g(∇g

XY ,T) + c(X , Y ,T)

= (1 + |T|2g)
(
g(∇�,g

X Y ,T�) + g(Ag
�(X , Y ),T

) + c(X , Y ,T)

where, the properties of a and T, yield

c(X , Y ,T) = 1

2

(
g(∇g

XT, Y )|T|2g + g(∇g
YT, X)|T|2g + g(∇g

XT,T)g(T, Y )

+ g(∇g
YT,T)g(T, X) − g(∇g

TT, X)g(T, Y ) − g(∇g
TT, Y )g(T, X)

)
= g(a(X),T)g(T, Y ) + g(a(Y ),T)g(T, X).

Likewise, treating h� as a rank one deformation of g� one has

h(∇�,h
X Y ,T�) = (1 + |T�|2g)g(∇�,g

X Y ,T�) + c�(X , Y ,T�)

= (1 + |T�|2g)g(∇�,g
X Y ,T) + c�(X , Y ,T�).

As (∇g
V W )� = ∇g,�

V W , for tangential V ,W , the definition of c� gives

c�(X , Y ,T�) = 1

2

((
g(∇g

XT
�, Y ) + g(∇g

YT
�, X)

)|T�|2g + g(∇g
XT

�,T�)g(T�, Y )

+ g(∇g
YT

�,T�)g(T�, X)

− g(∇g
T�T

�, X)g(T�, Y ) − g(∇g
T�T

�, Y )g(T�, X)
)
.

For tangent vectors V ,W one has

g(∇g
VT

�,W ) = g(∇g
V (T − TN ),W ) = g(∇g

VT,W ) + g(T,Ag
�(V ,W )).

Hence, the properties of a and T, yield

c�(X , Y ,T�) = 1

2

((
g(∇g

XT, Y ) + g(∇g
YT, X)

)|T�|2g + g(∇g
XT,T�)g(T, Y )

+ g(∇g
YT,T�)g(T, X) − g(∇g

T�T, X)g(T, Y ) − g(∇g
T�T, Y )g(T, X)

)
+ g(T,Ag

�(X , Y ))|T�|2g
= g(a(X),T�)g(T, Y ) + g(a(Y ),T�)g(T, X) + g(T,Ag

�(X , Y ))|T�|2g.

123



61 Page 30 of 32 Geometriae Dedicata (2024) 218 :61

Hence, the definition of TN̂ yields

h(∇h
XY ,TN̂ ) = h(∇h

XY ,T) − 1 + |T|2g
1 + |T�|2g

h(∇�,h
X Y ,T�)

= 1+|T|2g
1 + |T�|2g

g(T,Ag
�(X , Y ))−g(a(X),TN̂ )g(T, Y )−g(a(Y ),TN̂ )g(T, X).

As TN̂ is h-orthogonal to �, the formula for h in terms of g yields

h(∇h
XY ,TN̂ ) = h(Ah

�(X , Y ),TN̂ ) = 1 + |T|2g
1 + |T�|2g

g(Ah
�(X , Y ),TN̂ ).

Combining this with the previous computation yields the second formula. ��
Corollary B.2 The relationship between the mean curvatures is given by

(Hh
�)Ñ = (Hg

�)Ñ − (Ag
�(T�,T�))Ñ + 2(a(T�))Ñ

1 + |T�|2g
and

g(Hh
�,TN̂ ) = g(Hg

�,T) − g(Ag
�(T�,T�),T)

1 + |T�|2g
− 2g(a(T�),T)

1 + |T|2g
.

Proof At a point, p ∈ �, where T�(p) = 0, we immediately see that Hh
�(p) = Hg

�(p).
This verifies both equations in this case.

When T�(p) 
= 0, we may choose a g-orthonormal basis of Tp� of the form E ′
1 =

|T�|−1
g T�, E2, . . . , Ek . Clearly, g(T, E j ) = 0 for 2 ≤ j ≤ k. Set

β = 1

1 + |T�|2g +
√
1 + |T�|2g

and observe 2β − |T�|2gβ2 = 1

1 + |T�|2g
.

We obtain an h-orthonormal basis, E1, . . . , Ek by taking

E1 = T�

|T�|g
√
1 + |T�|2g

= (1 − β|T�|2g)E ′
1.

Using this h-orthonormal basis and Proposition B.1 one obtains

(Hh
�)Ñ = (Hg

�)Ñ − (2β − |T�|2gβ2)(Ag
�(T�,T�))Ñ − 2(a(T�))Ñ

1 + |T�|2g

= (Hg
�)Ñ − (Ag

�(T�,T�))Ñ

1 + |T�|2g
− 2(a(T�))Ñ

1 + |T�|2 .

This gives the first equation.
In the same manner, one obtains

g(Hh
�,TN̂ ) = g(Hh

�,T) − (2β − |T�|2gβ2)g(Ag
�(T�,T�),T) − 2g(TN̂ , a(T�))

1 + |T|2g
= g(Hg

�,T) − g(Ag
�(T�,T�),T)

1 + |T�|2g
− 2g(T, a(T�))

1 + |T|2g
.
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Here the second equality used the anti-symmetry of a to see that

g(TN̂ , a(T�)) = g(T, a(T�)) − 1 + |T|2g
1 + |T�|2g

g(T�, a(T�)) = g(T, a(T�)).

��
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