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Abstract
We prove lower bounds on the density of regular minimal cones of dimension less than seven provided the
complements of the cones are topologically nontrivial.
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1. Introduction

In this paper, we prove nearly sharp lower bounds on the density of certain minimal cones of dimension
less than 7. Recall, a regular minimal cone in R"™! js a cone, C, with vertex at the origin 0 such that
C \ {0} is a nonempty smooth minimal hypersurface — that is, its mean curvature is equal to O at all
points. When n > 2, a regular cone is minimal if and only if its associated varifold is stationary for area
but this is not necessarily the case when n = 1. The density, ©(C), of C at 0 is defined to be

n n+l n n+l
HUCABYIO) _HCOBRIO) oo (1)

0(C) =

wy w, R"

where B%*l(O) is the open ball in R"*! centered at 0 with radius R, w, = |B}(0)| is the volume of
the unit n-ball in R", and ‘H" is the n-dimensional Hausdorff measure. The upper semi-continuity of
density for stationary varifolds implies that when C is associated to a stationary varifold (e.g., n > 2),
O(C) = 1 and standard dimension reduction arguments ensure equality occurs only when C is trivial
(i.e., a hyperplane). Allard’s regularity theorem [ 1] implies that there exist constants () > 0 so that if
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2 J. Bernstein and L. Wang

C is a non-flat regular minimal cone, then ®(C) > 1+ e(n). In [15], Cheng—Li—Yau give an explicit, but
very rough, lower bound for €(n) — see Appendix A.
Following Colding—Minicozzi [16], the entropy of a hypersurface ¥ ¢ R™*! is

n _xxpl?
AX) = sup (47rto)’7/e W AN (1.2)
z

Xo R 15>0

Because a regular stationary cone, C, may be thought of as an eternal weak mean curvature flow,
Huisken’s monotonicity formula [24, 30] implies that 1(C) = ®(C). Likewise, the entropy of a round
k-sphere, S¥ ¢ R¥*! equals the Gaussian density of the self-similarly shrinking S¥ at its center [16].
Thus, by Stone’s computation [37, Appendix A],

2=2(8%) > A(SH > A(SH) > A(S?) > -+ > V2. (1.3)

In [32, Theorem 1*], Ilmanen—White used mean curvature flow and the existence of the Hardt—Simon
foliation [19] to show that if C is a regular area-minimizing cone that is topologically nontrivial, then
O(C) > A(S"™") > V2. There are no non-flat area-minimizing cones when n < 6, and so their theorem
does not apply in these dimensions. However, using a different argument inspired by [9], we obtain
the same lower bound for any topologically nontrivial regular minimal cones in precisely this range of
dimensions.

Theorem 1.1. For n < 6, let C be a regular minimal cone in R™'. If at least one of the components of
R™1\ C is not contractible, then

e(C) > A(S™" > V2.

This partially answers a question raised in [32, §5, Problem 1]. Using the same method together with
work of White [4 1], we also show that under stronger topological hypotheses one obtains a better lower
bound.

Theorem 1.2. For2 < n < 6, let C be a regular minimal cone in R™*'. If at least one of the components
of R™1'\ C is not a homology ball, then

0(C) > A(S"?) > V2.

In very low dimensions, these bounds are trivial. Indeed, a regular minimal cone in RZ is the union
of ¢ of rays based at 0 and has density g; however, the associated varifold is not stationary unless a
balancing condition is satisfied. In particular, every component of the complement of a regular minimal
cone is contractible, and so Theorem 1.1 is vacuous. We observe that when such a cone is stationary
its entropy is g, but may be higher in general. In particular, the lowest density of a nontrivial stationary
cone in R? is % Moreover, ¢ is even if and only if the associated varifold is cyclic mod 2 — a condition
automatically satisfied by any regular minimal cone in higher dimensions. Hence, the lowest entropy of
a nontrivial stationary and cyclic mod 2 cone in R? is A(S?) = 2.

Likewise, in R?, the only regular minimal cones are planes because great circles are the only closed
geodesics in S2. Thus, Theorems 1.1 and 1.2 are again both vacuous. Within the larger class of nontrivial
stationary cones in R?, one readily sees that the density is bounded below by %, which is given by the
union of three half-planes and by 2 when the cones are also cyclic mod 2. In addition, the cone over
the edges of a regular tetrahedron is a stationary cone with density lying in (% 2). In fact, there are no
other nontrivial stationary cones with density below 2 — see [35, Lemma A.2] where the authors also
compute the densities of the cones over all the geodesic nets in S2? —see [21, 38].

In the first nontrivial dimension, R*, the classification of surfaces and Alexander’s theorem ensure
that the hypotheses of Theorems 1.1 and 1.2 are both equivalent to the hypothesis that the link of the
cone has positive genus, and so, in this dimension, Theorem 1.2 implies Theorem 1.1. When n > 4,

https://doi.org/10.1017/fms.2025.10080 Published online by Cambridge University Press



Forum of Mathematics, Sigma 3

there exist homology balls that are not contractible, and so the hypotheses of Theorem 1.1 are genuinely
weaker than those of Theorem 1.2. In [25, 26, 27, 28], there are many examples of nontrivial regular
minimal cones whose links are topological spheres. However, the authors are unaware of any example
of a regular minimal cone whose link bounds a homology ball but not a homotopy ball.

IImanen—White [32, Theorem 2] also proved that given a regular area-minimizing cone, if one of the
components of the complement of the cone has nontrivial k-th homotopy group, then the density of the
cone at 0 is greater than or equal to A(S¥). By Theorem 1.2, this result is also true for regular minimal
cones in R, but is stronger than what we are able to show when 4 < n < 6, and it seems that extending
this result to non-area minimizing cones remains an open problem. We remark that, in his thesis [43],
Zhu was able to obtain nontrivial bounds under the weakest possible topological hypotheses. Namely,
it is a simple consequence of [43, Corollary 2.2] that if C is a n-dimensional regular minimal cone
whose link is not isotopic to the standard sphere, then ©(C) > flg—:j; > 1. When n > 4, the topological
hypotheses of Theorem 1.2 are only enough to ensure the link is not a homology sphere. However, the
weaker topological hypothesis in Zhu’s work leads to a worse lower bound on density — see Appendix A.

The density bounds of Theorems 1.1 and 1.2 are probably not sharp for cones of a given dimension
but cannot be improved by much. For positive integers / and m, let

Cm,l — {(y, Z) c Rm+1 % RHI: l|y|2 — m|z|2} c Rm+l+2

be the family of generalized Simons’ cones. One readily computes — see Appendix A — that ®(C; ;) =
/2 ~ 1.57. In fact, by Marques—Neves’ proof of the Willmore conjecture, that is, [33, Theorem B],
and Almgren’s theorem [2] this is the sharp lower bound for any non-flat regular minimal cones in R*.
By comparison, the bound coming from Theorem 1.2 is A(S') = V27 /e ~ 1.52. Thus, the lower bound
from Theorem 1.2 is only about 3% lower than the sharp bound. Likewise, for4 < n < 6 and g = "T‘l,
the cone C|, | 4] maximizes density among the C,, ; with [ +m = n — 1, and its complement contains a
component that is not a homology ball and so also not contractible. It is readily checked that the density
of C lgl.Tq] at 0 is about 3%—5% higher than the lower bounds from Theorems 1.1 and 1.2. Indeed,
since ©(Cp.;) — A(S™) as [ — oo, the bounds A(S"~") and A(S"~2) of Theorems 1.1 and 1.2 may be
the best possible that are independent of dimension. Similarly, ®(C,, ;) — V2asl,m — . According
to [32], V2 was conjectured by B. Solomon to be the optimal lower bound on the density of nontrivial
regular area-minimizing cones. In [42, pg. 288], S. T. Yau asked the more ambitious question of whether
appropriate C,,; minimize area among non-totally geodesic minimal hypersurfaces in the sphere —
in [42], this question is attributed to B. Solomon as a conjecture; see also [32, Section 5]. In [14], this
stronger question is answered in the affirmative among highly symmetric minimal hypersurfaces.

To prove Theorems 1.1 and 1.2, we use properties of self-expanders — that is, solutions to (2.1). This
is because the existence of the Hardt—Simon foliation [19], one of the key ingredients in the approach
of [32], requires the cone to be area-minimizing and not just minimal. Instead, for a regular minimal cone
that is not area-minimizing, it follows from [9] and [17] that there are two self-expanders asymptotic to
the cone with the property that any other self-expander asymptotic to the cone is trapped between them.
Furthermore, the complement of each of these self-expanders is the union of two components, one star-
shaped relative to 0 and the other homotopy equivalent to a component of the complement of the link.
By combining ideas from [9] and [5], we can then show, in low dimensions and in a certain generic
sense, that there is a finite collection of gradient flows for the expander functional (see (2.3)) whose
union essentially connects the two self-expanders above — here, the dimension restriction is related to
regularity properties of minimizing hypersurfaces that simplify things but do not seem to be essential
to the argument. These flows evolve in a monotone manner and exhibit good regularity properties.
This allows us to use work of White [41] to establish a relationship between the topologies of the self-
expanders and the entropy of the cone. To complete the proof, we show it is possible to reduce to the
generic situation by a suitable perturbation of the two self-expanders and their asymptotic cones.

‘We point out that while [lmanen—White’s argument uses properties special to area-minimizing cones,
our argument uses properties that are special to regular minimal cones that are not area-minimizing.
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Another key difference between our argument and that of [32], and one that explains why we cannot
prove as strong a result as [32, Theorem 2], is that in their paper, the authors are able to apply [41] to a
single monotone flow, while in our paper, we apply it to a sequence of monotone flows whose directions
alternate.

This paper is organized as follows. In Section 2, we give necessary background on monotone gradient
flow for the expander functional. In Section 3, we use the results of White [41] to study the relationship
between topologies of self-expanders asymptotic to a given cone of low entropy. In Section 4, we prove
topological properties for self-expanders asymptotic to a regular minimal cone of low entropy. The main
results about densities of minimal cones then follow from this.

Notation and conventions

Throughout the paper, Bf (p) and Ef (p) are respectively the open and closed ball of center p and radius
rin R¥. We omit the superscript k when its value is clear from context. We also omit the center when it
is the origin. Denote by int(A), cl(A), and d A, respectively, the interior, closure, and boundary of a set
A CRF

Unless otherwise specified, the vertex of a cone will always be assumed to be the origin. A cone
C c R™! is C”-regular if the link £(C) of C is an (n — 1)-dimensional embedded C?-submanifold of
S". Here, when 1y is not an integer, C? is understood as the usual Holder regularity CL¥}- {7},

A hypersurface ¢ R™! is CY-asymptotically conical if there is a C”-regular cone C ¢ R™*! such
that lim, o+ pX = C in C, (R™"\ {0}); that is, there is a smooth hypersurface I' ¢ R**! \ {0} so
that in each annulus Bg \ Bg-1, for sufficiently small p > 0, the p¥ and C can be written as the normal
graphs of functions u; and u, respectively, over I" so u; — u in the C? topology. In this case, C is called
the asymptotic cone of X and is denoted by C(Z).

2. Monotone expander flows

In this section, we give background on monotone expander flows that are asymptotic to a cone. These
play an important technical role in the proof of the main results.
A hypersurface £ ¢ R"*! is a self-expander if it satisfies the equation
1
X
Hy - — =0, 2.1
2
where x is the position vector, the superscript L denotes the projection to the unit normal ny of X, and
Hjy is the mean curvature given by

HZ = —Hzllz = —diVZ(Ilz)llz.

A hypersurface X is a self-expander if and only if the family of homothetic hypersurfaces, {Z;};~0 =
{VIZ},>0, is a mean curvature flow — that is, a solution to the equation

ax\*
(E) =Hsy,. 2.2)

Self-expanders model the behavior of a mean curvature flow when it emerges from a conical singularity
(see [3] and [10]), so it is natural to study self-expanders X asymptotic to cones C in the sense that
lim; 0 H"LVtZ = H".C. By [8, Proposition 3.3], if the cone C is C”-regular for some y > 2, then
has quadratic curvature decay and is CY -asymptotic to C for any y’ € (0, y).

Variationally, self-expanders are critical points for the functional

E(Y) =/e¢ dn". 2.3)
z
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The associated negative gradient flow is then called an expander flow — that is, a family {X,} of
hypersurfaces in R"*! satisfying the equation

Ix\* x*
(E) = HE: - 7 (24)

In general, an expander flow may become singular in finite time. However, various notions of weak
solutions to (2.4) are at our disposal which allow us to continue the flow through singularities. For
the purposes of this paper, we mention two of them: expander weak flow of closed sets in R"*! — see
[22, §11] for vector field —%; expander Brakke flow of Radon measures associated to n-dimensional
varifolds in R™*! — see [22, §13]. We omit the precise definitions for these weak flows because they are
not needed in what follows.

Of particular interest is the following special class of weak expander flows whose existence was
shown in [5]:

Definition 2.1. Given T € R and a C3-regular cone C ¢ R™!, a strongly regular strictly monotone
expander weak flow asymptotic to C with starting time T is a family S = {Q;};>7 of closed sets in R"*!
with M, = 0Q; satisfying the following:

1. The spacetime track of S, J,>7 €, X {t} is an expander weak flow with starting time T';

2. Q, Cint(Qy,) fortr >t > T;

3. Given e > 0, there is aradius Ry > 1 so that forr € [T, c0), there is a C? function u(-, 1) : C\Bg, — R
satisfying

2
sup > X)) Viu(p, )] < €
PEC\BRy =0

and

M; \ Bar, € {x(p) +u(p,t)nc(p): p € C\ Bg,} C My;

4. For [a,b] C [T, ), {M;}+e[a,p] is a partition of Q, \ int(€2p);
. {H"_M,};>7 is a unit-regular’ expander Brakke flow;
6. If S; is a blow-up sequence to S at a point Xy € R™! x (T, c0)? that converges to a limit flow
S’ = {Q;}/cr, then Q; is convex for each ¢, and there is a 7’ € [—oo, 00] so that
(a) int(€2;) # 0ifr < T’, while int(2;) =0 if t = T";
(b) The spacetime tracks of the S; converge, in C; (R™! x (—00,T")), to the spacetime track of S,
and {0Q7};.r’ is a smooth mean curvature flow;
() Q =0fort>T'.
Furthermore, if S’ is a tangent flow (i.e., the blow-ups of S are all centered at Xy), then {0€Q; };er
is either a static R” or a self-similarly shrinking S¢ x R"~¢ for some 1 < £ < n.

9,1

We will need the following result of [5].

Proposition 2.2. Forn < 6, let Q be a closed subset of R"*! such that dQ is a C3-asymptotically conical
hypersurface with asymptotic cone C. Assume that Q is strictly expander mean convex; that is,

2Hpa(p) +x(p) -noa(p) > 0 forp € 49,

'We say a flow is unit-regular if near every spacetime point of Gaussian density 1, the flow is regular in a ball in spacetime —
see [40].

2The S; are obtained by translating S by —X; and then parabolically dilating by p;; that is, (x,7) — (piX,pizt) for X; — Xp
in spacetime and p; — oo.
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6 J. Bernstein and L. Wang

where ngq is the outward unit normal to Q. Then there exists a strongly regular strictly monotone
expander weak flow S = {Q;};>0 asymptotic to C which starts with Qo = Q, and such that the Q,
converge, in C; (R™1), 10 Q" = N,50 Q: and 0Q' is a stable self-expander asymptotic to C.

In addition, if there is a closed set Q" C Q such that 0Q" is a smooth self-expander asymptotic to C,
then one can ensure that Q" C Q.

3. Topological change of monotone expander flows and entropy

In this section, we observe how the results of White [4 1] can be used to understand the relationship be-
tween the topologies of asymptotically conical self-expanders when the asymptotic cone has sufficiently
small entropy.

Throughout this section, C ¢ R™*! will be a cone of at least C? regularity. Denote its link by £(C).
It is always possible to find an open subset w; C S™ \ L£(C) with boundary £(C) — see [9, Section 4]
where the pair (w4, £(C)) is called a boundary link. There is then a unique choice of unit normal, v,
on L(C) c S" so that v is the outward normal to w,. We remark that —v is the outward normal to
w- = 8"\ cl(w,) and (w-, L(C)) is the only other boundary link associated to L(C).

Given a C3-asymptotically conical hypersurface ¥ ¢ R™*! with C(X) = C, define Q,(X) c R"! to
be the closed set with boundary X such that as p — 0%, the pQ,(X) N S” converge as closed sets to
cl(w4). In this case, one may orient X so that the outward normal points out of . (X), and this choice
is compatible with the choice of v in the obvious manner. Likewise, let Q_(Z) = R™*! \ int(Q,(X)).

For two C3-asymptotically conical hypersurfaces %o, %; ¢ R"*! with the same asymptotic cone C,
we say Xy < X if Q. (%)) C Q. (). Let £(C) be the set of self-expanders asymptotic to C, and
thus, (£(C), x) is a partially ordered set. Observe that by swapping w, with w_, which is the same as
swapping v with —v, one reverses the role of Q, (%) and Q_(X) and reverses the partial order.

We first study the case of a nondegenerate cone — that is, a cone, C for which there are no nontrivial
Jacobi fields that fix infinity on any element of £(C). For such C, all stable self-expanders in £(C) are
strictly stable.

Theorem 3.1. For 2 < n < 6, let C be a nondegenerate C*-regular cone in R such that L£(C) is
connected and, for some m € [1,n — 1],

AC) < A(S™ x R,

If Ty and T_ are two elements of £(C) withT_ < Ty, then the inclusions i*: Q. (T'.) — Q. (T's) induce
homomorphisms

i1 Hi(Qu(Ty)) — Hip(Q:(T5))

such that

1. Whenn —m < k < m, the maps if are bijective;
2. Whenn—m — 1 = k < m, the maps it are injective;
3. Whenn—m < k =m+ 1, the maps it are surjective.

Remark 3.2. It is an immediate consequence of the main result of [9] that, for 2 < n < 6, if C is any
C3-regular cone in R™*! with 1(C) < A(S"! x R), then given I';,I"_ € £(C) with T < T, the
inclusions i*: Q. (I'x) — Q. (') are homotopy equivalences, and so if are all isomorphisms.

To prove Theorem 3.1, we need several auxiliary lemmas/propositions. If M = {u,},>7 is a family
of Radon measures on R"*! and Xy = (xq, t9) is a spacetime point, then the Gaussian density of M
at Xy, denoted (M, Xp), is defined to be

Ix=xg|2

6(M. X0) = lim / (4n(to — 1))~ e 70 dy, 3.1
0

whenever the limit exists and is finite. Otherwise, we set (M, Xj) = oo.
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Lemma 3.3. Given T € R and a C3-regular cone C ¢ R™!, let S = {Q;};>1 be a strongly regular
strictly monotone expander weak flow asymptotic to C with starting time T. If M, = 0Q; and for some
me[l,n-1],

A(M7) < A(S™ xR™™™)
then for M = {H"_M,};s7 and every point Xy € R"™! x (T, ),
6(M, Xo) < A(S™! xR,

Proof. First, without loss of generality, we may assume 7' = 0. Observe that if N, = e’ / 2Mt with T = €f,
then A(N;) = A(Mjog7) for 7 > 1 and {H"LN+}»1 is an integral Brakke flow. Thus, by the Huisken
monotonicity (see [24] and [30]), one has that 1(M,) is decreasing in z. In particular, A(M;) < A(My) for
all # > 0. By a variant of Huisken’s monotonicity formula (see [39, §11]), as our hypotheses ensure that
every tangent flow to M at a point X € R™! x (0, o) is null, a static R” or a self-similarly shrinking
S x R"¢, one has either (M, Xp) = 0, 8(M, Xp) = 1, or

A(SE xR = (M, Xo) < A(Mp) < A(S™ x R"™™™).

Combined with (1.3), it follows that 6(M, Xp) < A(S™*! x R»™~1), O

Let Q be a closed subset of R”*! with smooth boundary, and let K be a closed subset of Q. Following
White [4 1, Definition 5.1], a point p € K is a regular point of K provided that either p is an interior point
of K; or p € Q\ dQ and Q has a neighborhood, U, of p such that K N U is diffeomorphic to a closed
half-space in R™*!; or p € dQ and Q has a neighborhood U of p for which there is a diffeomorphism
that maps U onto the closed half-space {x; > 0} C R™! and that maps K N U onto {x; > 0,x; > 0}.
Points in K that are not regular points are singular points of K. We say K has smooth boundary if every
point in the boundary 0K of K C Q is a regular point of K.

The following quantity is introduced by White [4 1, Definition 4.2].

Definition 3.4. Let Q be a closed subset of R™*! with smooth boundary. For a closed set K C Q, we
define Q(K) to be the largest integer [ with the following properties:

1. The singular set sing(K) has Hausdorff dimension < n —[;

2. Let p; be a sequence of points in the interior of K converging to a point p in K. Translate K by —p;
and dilate by 1/dist(p;, dK) to get K;. Then a subsequence of the K; converges to a convex set K’
(in R™*! or in a closed half-space in R"*!) with smooth boundary, and the convergence is smooth on
bounded sets;

3. If K’ is as in (2), then K" has trivial j-th homotopy group for every j < /.

If no such integer exists, let Q(K) = —co.

It is shown in [4 1, Proposition 4.3] that for mean convex mean curvature flow of compact hypersur-
faces, lower bounds on the quantity Q are closely related to upper bounds on the Gaussian density. We
adapt the arguments of [41] to establish an analogous relationship between these bounds for strongly
regular strictly monotone expander weak flows asymptotic to a cone.

Lemma 3.5. Given T € R and a C3-regular cone C ¢ R™!, let S = {Q;};s7 be a strongly reg-
ular strictly monotone expander weak flow asymptotic to C with starting time T. Assume that for
M ={H" 0Q;};>1 and somem € [1,n — 1],

O(M, Xg) < A(S™! x R

at every point Xo € R™! x (T, ). There is an Ry > 1 so that for each R > Ry, if one sets K; = Q, N Bg,
then Q(K;) = m+ 1 foreacht > T.

https://doi.org/10.1017/fms.2025.10080 Published online by Cambridge University Press



8 J. Bernstein and L. Wang

Proof. Fix € = 10719 and let Ry be the radius given by Definition 2.1. We choose R; = 4R and so,
for R > Ry, the closed ball Bg has a collared neighborhood U of By so that the restriction {K;};>r
of S to Bg is regular in U. By our hypotheses and (1.3), every tangent flow at a given singularity is a
self-similarly shrinking S¢ x R"~¢ with £ > m + 1. It follows from a dimension reduction argument (see
[39, §11]) that, for ¢ > T, the singular set of K; has Hausdorff dimension at most n — m — 1.

For ¢t > T fixed, let p; be a sequence of points in the interior of K; converging to a point p € dK;, and
let p; = 1/dist(p;, 0K;) so p; — co. Translate K; by —p; and dilate by p; to get K; Then a subsequence
of the K! converges to aset K’. If p € dBg, then p is a regular point of K;. Thus, modulo a rigid motion,
K' ={x; >0} cR"™ or K’ = {x-v>0,x; >0} c {x; >0} for some v € S, and the convergence
is smooth on bounded sets. In particular, K’ has trivial homotopy groups. So we may assume p € Bg.
Since the K! are part of a blow-up sequence of S and contain By, our hypotheses ensure K’ is a convex
subset of R"*! with smooth boundary and the convergence is smooth on bounded sets.

It remains only to show that K’ has trivial j-th homotopy group for j < m + 1. By convexity, either
0K’ is homeomorphic to R”, thus having trivial homotopy groups, or K’ is isometric to 0K x R""4
for some compact, convex set K ¢ R?*! —see [13, p. 3]. As 0K is part of a limit flow at P = (p, t), one
appeals to a variant of Huisken’s monotonicity formula (see [39, §11]) and the Gaussian density bound
to get

AOK’) < 0(M, P) < A(S™ ! x R™ 1) < 2. (3.2)
In particular, this gives ¢ > 1, as otherwise, dK’ is the union of two parallel planes with entropy 2.
Thus, by results of Huisken [23], the mean curvature flow starting from 0K’ is given by the product of

R4 and the flow K starting from K c R?*!, where K is smooth until it disappears in a round point.
Thus, 0K’ is diffeomorphic to S¢ x R"~4, and so, by Huisken monotonicity (see [24]) and (3.2),

A(S? xR"9) < A(K') < A(S™! x R,
Combined with (1.3), it follows that ¢ > m + 1 and so 71;(0K") = {0} for j < m + 1. O

Next, we use results of White [41] together with facts about algebraic topology to study topological
properties of the expander flow as in Lemma 3.5.

Proposition 3.6. Given T € R and a C3-regular cone C ¢ R™!, let S = {Q,};s1 be a strongly

regular strictly monotone expander weak flow asymptotic to C with starting time T. Assume that for
M = {H"L0Q: }r>T and somem € [1,n— 1],

6(M, Xo) < A(S™! xR

at every point Xy € R"! x (T, ). If [a,b] C (T, o) and both QS and Qj are path-connected, then
the inclusion j: Qg — Qf induces homomorphisms

fer Hi(Qg) — Hi(Q)

which are bijective when k < m + 1 and surjective when k = m + 1.
If, in addition, both 092, and 0y, are smooth hypersurfaces, then the above remains true for the
closures of Qi and Q;, and the inclusion i: Qp — Q, induces homomorphisms

i Hi(Qp) = Hi(S24)

which are bijective when k > n —m — 1 and injective when k =n —m — 1.

Proof. Fix e = 107'% and let R be the radius given by Definition 2.1. Let R be the constant given by
Lemma 3.5. For R > 4 max{Rg, R} fixed, we think of Bg as a manifold with boundary Sg. Forz > T,
let K, = Q; N Bg. In what follows, denote by

K7 ,int(K,), and 0K,
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the relative (in Bg) complement, interior, and boundary, respectively, of K,. Observe K; and K/
are deformation retracts of Q, and Qf, respectively. Thus, by homotopy equivalence, if the maps
it K — KZ and i’: K; — K, are the inclusion maps, then it suffices to show the following:

(i) The induced homomorphisms j.: Hy (K) — Hy(K}) are bijective when k < m + 1 and surjective
when kK = m + 1; and;

(ii) Suppose both K, and 0K}, are smooth, embedded manifolds with boundary and their boundaries
meet Sg transversally — this last condition means 0K, and 0K} are manifolds with boundary in the
sense of [20, pg. 252]. Then the statement of (i) is still true for the relative (in BR) closures of K§
and K, and the induced homomorphisms i;: Hy(Kp) — Hy(K,) are bijective when k > n—m — 1
and injective when k =n —m — 1.

To see (i), observe that, by Lemma 3.5, Q(K;) = m+1fort € [a, b). Combined with our hypotheses,
it follows from [41, Theorem 5.2] that (K¢, KS) is (m + 1)-connected. Thus, by the relative Hurewicz
theorem (e.g., [20, Theorem 4.37]), as Kg and K§ are both path-connected,

He(KS,KS) = {0} for € < m + 1. (3.3)

The claim follows from the long exact sequence for H, (K¢, KS) —see [20, pp. 115-117].

To see (ii), as 0K, and K}, are smooth, embedded manifolds with boundary that meet Sg transver-
sally, it follows from homotopy equivalence that (i) holds for the relative (in Bg) closures of K§ and
K, . As arguing in [41, Theorem 6.2], by the excision theorem (see [20, Theorem 2.20]) and (3.3), if
£ <m+1,then

H/(K, \int(Kp),0K,) = He (K, Ky) = {0}.
Combined with the universal coefficients theorem (see [20, Theorem 3.2]), one has
H (K4 \ int(Kp), 0K,) = {0}.

The hypotheses on K, and K}, ensure that K, \ int(K}p) is an orientable compact manifold with boundary
of dimension # + 1 in the sense of [20, pg. 252] — we emphasize this is in a topological sense and not a
smooth sense. Moreover, the boundary is M U N where

M = 3K, and N = 8K}, U U 9K, N Sk |.
tela,b)

Thus, by Poincaré—Lefschetz duality (see [20, Theorem 3.43]), it follows that
Hyii-¢(Ka \ int(Kp), N) = H' (Ko \ int(Kp), M) = {0}.
As (K, \ int(Kp), N) is homotopy equivalent to (K, \ int(Kp), dKp), it follows that
Hyi1-¢(Ka \ Kp, 0Kp) = {0}

Hence, one may use the excision theorem and the long exact sequence for H.(K,, K3 ) as before to get
the claim. |

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose without loss of generality, ' # I'y, as otherwise, the inclusion of
Q. (T:) in Q. (T's) is equal to the identity map and so induces isomorphisms on the homologies (that
is, the theorem is trivially true). We first show there is a finite number of elements I'1,1%,...,I'r of
&(C) such that
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ol_ =TI <--- T =Ty

o The I'y alternate between being (strictly) stable and unstable;

o If Ty is unstable, then there exist two perturbations by normal graphs of I’y to its either side,
I'; < Ty < I’} such that Q. (T;) is strictly expander mean convex, and there is a strongly regular
strictly monotone expander weak flow Sy asymptotic to C that starts from Q. (I';') and converges, in
CfZC(R"“), to Q. (['px1) ast — oo provided 1 < £+ 1 < L.

To see this, first observe that every element of £(C) is connected because £(C) is connected and
there are no closed expanders. By [9, Proposition 6.3] and [11, Proposition 3.2], if I';. is unstable, then
there is a C3-asymptotically conical hypersurface I', given by a normal graph of I'; that is trapped
between I'_ and I'y, and so that Q4 (I"}) is strictly expander mean convex. Thus, by Proposition 2.2,
there is a strongly regular strictly monotone expander weak flow asymptotic to C that starts from Q< (I"})
and, as 1 — oo, converges smoothly to Qz(I";) for stable I'y € £(C). And the construction ensures
. <[, <T,. Thus, we may assume both I'; and I'_ are stable. In what follows, we prove the claim by
extending the arguments of [9] for m = 1 to general m.

Let E¢(T'_,T;) be the set of elements I" of £(C) that are stable and such that I < I" < I'y. The
compactness properties of the space of stable expanders — that is, [9, Proposition 4.4 and Proposition 7.2]
— imply there are finitely many topological types for the elements of Eg(I'_, I';). The nondegeneracy
hypothesis on C implies every element of g (I"_, I'y) is strictly stable. Combining this with properties of
the manifold structure of the space of expanders from [7], one concludes that Eg(I"_, T'}) is a finite set —
see [9, Lemma 8.1]. We use induction on the number of elements J = |Eg(I"—, I';)|. There are at least two
elements by hypothesis and, when J = 2, as 'y, I'_ € £(C) are (strictly) stable and I'_ < I';, a min-max
construction (see [11]) yieldsa " € £(C) \ {I'y,I_} with I'_ < I" < T',. Indeed, our hypotheses ensure
that I" is connected and unstable, and so a straightforward modification of the arguments in the previous
paragraph gives the claim for J = 2. Next, suppose I, is a maximal element of £g(I'_,T') \ {T'y}; that
is, there are no I € Eg(I'_, T}) \ {I4, T} such that I, < T < T,; such an element exists as we are
considering a finite ordered set. For J > 3, one has |Eg(I,,T,)| = 2 and |Es(T'_,T,)| < J — 1. The
claim follows from the induction hypothesis.

Forl <{<L-1,let i;; be the inclusion of Q. (I'z+1) in Q. (I'z) and i, the inclusion of Q_(I) in
Q_(T'¢41). If Ty is unstable, one can ensure, by [8, Lemma 3.5],

A7) <A(Tp) +e=A(C) +€ < A(S™ xR"™).

By Lemma 3.3, if M is the measure flow associated with Sy — see Item (5) of Definition 2.1 — one
has (Mg, Xo) < A(S™! x R"1) at every spacetime point Xo. Thus, Proposition 3.6 together with
homotopy equivalence implies that the induced homomorphisms (i).: Hy (€2+(T'+1)) — Hy(24+(T¢))
are bijective when n — m < k < m, are injective when n —m — 1 = k < m, and are surjective when
n—m < k =m+ 1. The same is true for the induced maps (i,).: Hx(Q-(I¢)) — Hi(Q-(T'¢41)). As
i*=io---0i] andi” =i, , o---oi], the claim follows. o

Next, we aim to extend Theorem 3.1 by dropping the nondegeneracy hypothesis. Because nondegen-
erate cones are generic in an appropriate space of cones, one would like to perturb the pair Iy, I'_ € £(C)
with I'_ < Ty and cone C in order to self-expanders I'}, I'” asymptotic to C’ where C’ is nondegenerate
—see [7, Corollary 1.2] — and then apply Theorem 3.1 to the perturbed pair.

In general, it may not be possible to perturb both elements in the pair to self-expanders — see Figure 1
for an illustration. However, one can always ensure that I';,I'” are either self-expanders or expander
mean convex hypersurfaces. For exapnder mean convex perturbations, invoking Propositions 2.2 and
3.6 yields self-expanders Iy, I'_ € £(C’) along with relationships between the topologies of I, and .
However, to complete this argument, one must be able to control the relationship between the partial
orders and direction of the expander mean curvature vectors of the initial perturbations which is a subtle
issue. Specifically, one must know that I + T T2 < f‘_, andT_ < T +» which do not, in general, hold.
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Figure 1. A schematic illustration of the situation in case (2) together with case (c). The horizontal axis
is space of cones, the vertical axis the space of hypersurfaces asymptotic to the given cone where height
corresponds to the order, <. The arrows represent directions of flow lines.

To overcome this, we prove a restricted result by requiring I'; and I'_ to be the greatest and least element
of £(C) — whose existence is shown in [9, Theorem 4.1].

Proposition 3.7. For 2 < n < 6, let C be a degenerate C>-regular cone in R™' such that L(C) is
connected and, for some m € [1,n— 1],

A(C) < A(S™ x R™™),

If Ty and T'_ are respectively the greatest and least element of £(C), thatis, T < T < Ty forT € £(C),
then the inclusions i*: Q. (I'y) — Q. (T's) induce homomorphisms

i Hi(Q:(T2)) = Hi(Q4(T3))

such that

1. Whenn —m < k < m, the maps i} are bijective;
2. Whenn—m — 1 =k < m, the maps it are injective;
3. Whenn—m < k =m+ 1, the maps i¥ are surjective.

Proof. First we show there is a sequence of nondegenerate C*-regular cones C, ¢ R"*! with link £(C;)
so that £(Cr) — L(C) in C*(S") and TY — T, in Cre (R™1), where T is the greatest element of
E(Cp). In particular, for sufficiently large ¢,

ACp) < A(C) +€ < A(S" xR"™™). (3.4)
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To see this, first observe by [9, Theorem 4.1], one has I'; is a stable self-expander. Let /C denote the
space of Jacobi fields on I'; that fix the infinity. Using standard spectral theory and the results of [4] —
see also [7, Lemma 6.1] and [1 1, Proposition 3.2] — together with the connectedness of I';, it follows
that dim /C < 1 and every element of K either is identically 0 or has a sign and an asymptotic expansion
with leading order term of the form ar‘"‘le‘r2/4, where r = |x| and « is a function on £L(C).

We now appeal to results of [7] to perturb the asymptotic cone and the self-expander I';. First, recall
that ACH* (T,) denotes the space of C*-asymptotically conical embeddings of I, into R"*!, equipped
with the weighted C* norm with weight r — see [7, §3.2] for the precise definition. Following [7], say a
C3-regular cone C’ is nondegenerate if no self-expander asymptotic to C’ admits a nontrivial Jacobi field
— as shown in [7], such cones are generic in a suitable sense. With this in mind, we use [7, Theorem 7.1]
to choose a sequence of C*-regular cones C, along with C*-asymptotically conical hypersurfaces Iy
with nondegenerate asymptotic cone so that the C, converge to C and the I'; converge I'; in AC’Hi (Iy).
Here, we understand the convergence by identifying the I', with the parameterizations given by the
inverse of the nearest point projections onto I'y which are elements of .AC’H,‘,‘l (Ty).

It follows from [7, Theorem 7.1] that the cones C, and hypersurfaces I'; can be chosen so that either:

1. If K = {0}, then I'; € £(C¢) for each ¢; or;
2. If K # {0}, then 2H, — x* is nowhere vanishing and the pushforward of it by the nearest projection
onto I'; is a nonzero element of /.

If case (2) occurs, then one can modify the choice of cones in order to ensure that 2Hp, — x* points
into Q, (I'z) — here, one chooses the boundary link of £(C;) in the obvious way compatible with that
of £(C). This ensures that for the choice of unit normal nr, on I'y that is compatible with the boundary
link — that is, that points out of Q. (I's) — one has 2Hr, + X - nr, > 0. That is, we may either choose
the Iy to all be self-expanders or to all be expander mean convex with expander mean curvature vector
pointing into Q, (I'¢).

In case (1), it is readily seen that the construction and the compactness properties of spaces of
expanders [9, Proposition 4.4] ensure that the I' converge smoothly on compact sets to I';. In case (2),
by Proposition 2.2, the expander flow starting from I'; is contained in Q. (I'y) and is asymptotic at time
oo to a stable self-expander Iy e £(Cp). AsTy <y and Ty — T, invoking compactness again gives
that the I, converge, in Cp. (R™1), to a limit expander I' € £(C) that satisfies I, < I". As T, is the
greatest element one must have I', = I". The same reasoning ensures that, up to passing to a further
subsequence, the greatest elements, T', of £(C;) also converge to I'y. This verifies the initial claim that
we may find a sequence of cones C, so that the greatest elements, I'Y, of £(C) converge to T';.

Using the sequence of cones, Cy, from the previous step and making the same argument with I'_ in
place of T, yields a sequence of C*-asymptotically conical hypersurfaces Y, with asymptotic cone C,
that converges to I'_ in ACH?,(F_) and such that, up to passing to a subsequence, one of the following
holds:

(a) Yy € £(Cp) for each ¢;
(b) 2Hy, +x - ny, < 0 for each ¢;
(¢) 2Hy, +x-ny, > 0 for each ¢.

Here, ny, is the outward normal to Q,(Y,). Case (b) means the expander mean curvature vector points
into Q. (Y,) and out of Q_(Y,) and case (c) means it points out of Q,(Y,) and into Q_(Y,). Observe
that three cases may occur rather than two as in the previous step, as we have already fixed the sequence
of cones so we cannot specify whether the nowhere zero expander mean curvature vector points out of
or into Q. (Y,) only that one of the two situations holds for all ¢.

When case (a) or (b) occurs, one argues as before to see the least elements I'Y of £(C;) converge
smoothly on compact sets to I'_. By [8, Proposition 3.3], there is a radius R > 1 so that Q. (I'Y) N By is
a deformation retract of Q. (I'?) for each £. The nature of convergence ensures that Q. (I'Y) is homotopy
equivalent to Q. (I"_) for sufficiently large ¢. Likewise, Q. (I"?) is homotopy equivalent to Q. (T';) for
large €. The claim follows from this and Theorem 3.1 for rt < l"f (in view of (3.4)).
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It remains only to deal with case (c). We refer to Figure 1. Fix a large £ so that Q. (I'Y) and
Q. (Y;) are homotopy equivalent to Q. (T;) and Q. ("), respectively. Observing Y, < I'{, we then
let if: Q. (T'Y) — Q.(Y) and i, : Q_(Y,) — Q_(I'Y) be the inclusion maps. Hence, it suffices to
show the induced maps (i}).: Hy (Q(TY)) — Hi(Q4(Ye)) and (i) Hi(Q-(Y)) — Hi (Q_(TY))
are bijective when n —m < k < m, are injective when n —m — 1 = k < m, and are surjective when
n-m<k=m+1.

By Proposition 2.2, there is a strongly regular strictly monotone expander weak flow S, asymptotic
to Cp with initial data Q. (Y,), and the flow converges smoothly to a closed set with smooth boundary
Y, € £(Cp) satistying Y, < Y, < I'{. In particular, for large ¢, the time-f slice of the flow line is
smoothly isotopic to Y,. By construction,

AXy) < AT)+e=A(C) +€ < A(S™ xR"™),
and so the Huisken monotonicity [24] implies, for X, € R x (0, 00), that
(M, Xo) < A(S™ x R,

where M, is the measure flow associated with Sy — see Item (5) of Definition 2.1. The result follows
by combining Proposition 3.6 applied to S, which yields relations between the topologies of Y, < Y,
together with Theorem 3.1 which gives relationships between the topologies of Y, < I'{. Observe that
Theorem 3.1 applies to Y, < I'; because of (3.4) and because the C; were chosen to be nondegenerate.

]

4. Density of minimal cones

In this section, we prove the main results about densities of minimal cones. We continue to use the
conventions of Section 3. We will repeatedly invoke the following auxiliary lemma about properties of
the greatest and least element of £(C) for a minimal cone C — see [9, Theorem 4.1] for the existence of
those elements.

Lemma 4.1. For 3 < n < 6, let C ¢ R"™! be a non-flat regular minimal cone. If X, and X_ are
respectively the greatest and least element of £(C), then the following is true:

1. L(C) is connected;
2. 2, cint(QL(C));
3. The projections TT1*: £, — S" given by

x(p)
[x(p)|

are diffeomorphisms onto their images int(Q.(C)) N S";
4. The sets Qz(X.) are star-shaped relative to 0;
5. The inclusions of L. into int(Q(C)) are deformation retracts.

I1*(p) =

Proof. First of all, because £(C) is a smooth minimal hypersurface in S”, the Frankel theorem [18]
ensures it has only one connected component.

As C is a non-flat regular minimal cone, it is E-stationary and singular. It follows from the regularity
theory for area-minimizing hypersurfaces that C cannot be E-minimizing. Thus, £, C int(Q.(C)), as
otherwise, one may use a minimization procedure (see [31, pp. 13—-14] and [17, §6] or [9, §4]) to
construct a £, € £(C) so that X/, is contained in the interior of Q. (2.) N Q. (C), either contradicting
X, being the greatest element or X_ being the least.

Next, we show Vi1 2, < ViZ, for 0 < 1 < 1, which implies Hy, vanishes nowhere and points
into Q. (X,). To see this, we let § = ¢, — #; and consider two mean curvature flows M = {ViZ,};~0
and M’ = {V1 + 6%, }150. As Q. (V6Z,) C int(Q,(C)), the continuity of flows ensures that, for 1 > 0
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small, Q, (Vt +6%;) N dBag is contained in the interior of Q,(V7Z;) N dBag. Suppose s is the first
time in (0,#] such that this fails. As X, is C2-asymptotic to C, there is a radius R > 1 so that
Vt + 62X, \ Bog can be written as an almost flat normal graph of a function u(¢, -) over (a subset of) V¢,
for 0 <t < ;. A straightforward, but tedious, computation gives that u satisfies a uniformly parabolic
equation with bounded coefficients. As # < 0 on the parabolic boundary, the strict maximum principle
on noncompact regions — for example, Theorem 10 and Theorem 7 in [34, Chapter 3]° — implies u < 0
in the interior. That is, the restriction of M to (R"*! \ Bag) x (0, s] is disjoint from M. Thus, there
is a time s’ € (0, s] so that the restriction of M to (0, s”) lies on one side of M’ and M touches M’
at a point in Bog at time s/, which violates the strict maximum principle on compact regions. That is,
Vt+ 6%, NVIZ, NOByg =0 for t € (0,¢]. The claim follows from the strict maximum principle.
Swapping the orientation, the arguments above imply Hy,_ vanishes nowhere and points into Q_(2_).
The expander equation (2.1) implies x - ny, > 0 and x - ny_ < 0, where ny, is the outward normal to
Q. (X.). It follows from [6, Proposition 5.1] that the projection I[T*: . — S" is a diffeomorphism onto
its image, and the image is int(Q.(C)) N S™. This also implies that Q(X.) is star-shaped relative to 0
and that the inclusions of X.. into int(Q.(C)) are deformation retracts and so completes the proof. O

Theorem 1.1 follows from the proposition below.
Proposition 4.2. For 3 < n < 6, let C be a regular minimal cone in R"™*" with
AC) < A(S" ' xR).
Then, for ¥ € £(C), both Q. (X) and Q_(X) are contractible. This means X and both components of
S™\ L(C) are contractible.

Remark 4.3. The fact that the two components of S \ £(C) are contractible implies £(C) is a homology
sphere, but cannot rule out the presence of torsion elements in the fundamental group when n > 4.

Proof of Proposition 4.2. By the maximum principle, if C is flat, then the only self-expander asymptotic
to C is ahyperplane and the claim holds trivially. Otherwise, let X, and X_ be respectively the greatest and
least element of £(C). By Lemma 4.1, £(C) is connected, and both Q_(X,) and Q. (X_) are star-shaped
relative to 0 and so are contractible. Combined with [9, Theorem 1.1], it follows that, for £ € £(C), both
Q_(Z) and Q. (X) are contractible. Furthermore, by Lemma 4.1, if w, = int(Q.(C)) N S", then both
¥, and w. are homotopy equivalent to Q. (X.), and thus, both ¥, and w. are contractible. Finally, by
[9, Theorem 1.1], every X € £(C) is diffeomorphic to X, and so is contractible. O

Theorem 1.2 follows from the proposition below.

Proposition 4.4. For 3 < n < 6, let C be a regular minimal cone in R"™*! with
A(C) < A(S" 2 xR?).
If 2, and X_ are respectively the greatest and least element of £(C), then, for k > 0,
Hi(Q5(24)) = Hi(Qe () = {0}

This means X, X_, and the two components of S™ \ L(C) are all homology balls. In particular, L(C) is
a homology sphere, and when n = 3, the cone C is flat.

Proof. If C is flat, then so is .. Otherwise, by Lemma 4.1, £(C) is connected and Qx(Z.) are star-
shaped relative to 0. In particular, it follows that Qz (X.) are homotopy equivalent to B{’“ and so have
trivial reduced homology groups.

30Observe the domains of u(z, -) may be parametrized as a differentiable family of embeddings from C \ B;g into R"™*!. One
then applies the referenced results to the composition of u# with the parametrization.

https://doi.org/10.1017/fms.2025.10080 Published online by Cambridge University Press



Forum of Mathematics, Sigma 15

Likewise, if w. = int(Q+(C)) N S", then Q. (X.) is homotopy equivalent to w., and so, for k > 0,
Hi(Q:(Z4)) = Hi(ws).
In particular, by the Alexander duality theorem — for example, [20, Theorem 3.44] — one immediately has
Hpi1(Q4(22)) = Hy(Q4(22)) = Hy1 (Q:(22)) = {0}

By Theorem 3.1 and Proposition 3.7, for 2 < k < n — 2, one has H;(Q.(X.)) is isomorphic
to Hy(Q+(2Z%)) and so is trivial (this is vacuous for n = 3). Moreover, for 1 = k < n — 2, one has
H | (Q.(X.)) is isomorphic to a subgroup of H; (Q.(25)). As H; (Q+(Z¢)) is trivial, sois H; (Q.(Z.)).
It follows that Q. (X.) is a homology ball. Furthermore, by Lemma 4.1, both . and w. are homotopy
equivalent to Q. (X.) and so are homology balls.

To complete the proof, observe that, by the Mayer—Vietoris sequence (e.g., [20, p. 149]), as both w,
and w_ are homology balls, £(C) is a homology sphere. When n = 3, the link £(C) is a surface that is
a homology sphere and so, by the classification of surfaces, must be a topological S2. That is, £(C) is a
minimal two-sphere in S and so, by results of Almgren [2], must be totally geodesic; in this case, C is
flat. O

We also obtain a weaker topological restriction under weaker entropy bounds.

Proposition 4.5. For 5 < n < 6, let C be a regular minimal cone in R"™" with
A(C) < A(S" xRY).

If 3, and Z_ are respectively the greatest and least elements of £(C), then the following is true:

1. Q(Z.) is a homology ball;
2. When k # 1,n -2, one has Hi(Q.(Z.)) = {0}. Otherwise, Hi (Q.(Z.)) is a torsion-free group.

This means that when k # 1,n — 2, one has Hy(Z.) = {0}, and otherwise, Hy(X.) is a torsion-free
group. The same is true for the two components of S™ \ L(C). In particular, Hi,(L(C)) = {0} when
2 <k <n-3andboth H (L(C)) and H,—>(L(C)) are torsion-free groups.

Remark 4.6. Observe that this result applies to Co, ¢ R® and gives the nearly optimal lower bound
0O(C2.2) = A(S?). Indeed, this estimate is sharp for any method that compares to the entropy of spheres
because @(Cs2) < A(S') —see Appendix A. However, it does not give any information about the density
of C13 C RS even though direct computations give O(C13) > A(SYH > 0(Ca.2). Moreover, even if one
were able to strengthen the topological conclusions so that it gave information about C; 3, the result
would still not recover the bound A(S') and so would not be sharp in that regard. This is in contrast to
Proposition 4.4 which applies to all generalized Simons’ cones.

Proof of Proposition 4.5. Arguing as in the proof of Proposition 4.4 gives that Qz(XZ.) has trivial
reduced homology groups and when 2 < k < n — 3, Hp(Q.(X.)) is trivial. By Lemma 4.1, if
ws = int(Q4(C)) N S", then Q. (X.) and w. are homotopy equivalent and so have the same homol-
ogy groups. Thus, combined with the Alexander duality (see [20, Theorem 3.44]), it follows that, for
k > n—1,all H(Q+(Z:)) are trivial. Likewise, by the universal coefficient theorem — for exam-
ple, [20, Theorem 3.2] — both H;(Q.(X.)) and H,_»(Q.(X.)) are torsion-free. Hence, the claim on
the homology of Q. (X.) holds. To complete the proof, observe that by Lemma 4.1, both X and w.
are homotopy equivalent to Q. (X.) and so have the same homology groups as Q. (X.). The descrip-
tion of the homology of £(C) follows immediately from this and the Mayer—Vietoris sequence (see
[20, p. 149])). m]
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A. Explicit densities and entropies

We give the explicit value of the densities of the generalized Simons’ cones as well as the entropies of
spheres. We first remark that it follows from a computation of Stone [37, Appendix A] that

AS™) = 2\/5(%)F(;) = (1) o

where o0, is the area of S" and is given by
n+l
T2

On = (}’l+ 1)"4)rt+l = (l’l + 1)@

Likewise, [lmanen—White [32] compute that for C,, ; ¢ R™++2 = R+,

OC) = ACu) = P2 () )

el N+ [ m+1

As observed in [32],
Jim ©(Cp1) = A(S™), lim = O(Cp.1) = A(S")
and
i 0Cn) = Jim (5" = 2.

The densities of generalized Simons’ cones in low dimensions is recorded in Table 1.
It is also convenient to set

which is the density lower bounds proved by Zhu in [43]. We compare the densities of generalized
Simons’ cones, Cx k-1 € R™! for3 < nm < 7and 1 < k < 5] with the bounds provided by

Propositions 4.2, 4.4 and 4.5 and Z(n) in Table 2.
Finally, we compare the bounds using entropy of spheres with the universal bounds provided by [15].

Table 1. Densities of generalized Simons’ cones.

lim ©(Cn.1)
n—oo

=A(shH
I=1 ~1.57 ~154 =~1530 =~1.526 - ~1.52
1=2 ~ 1.54 L5 ~1.487 ~1481 .- ~ 147
1=3 ~1.530 =~1.487 ~1473 =~1466 - ~ 1.453
1=4 ~1.526 ~1.481 ~1.466 2=~146 - ~ 1.444

lim ®-C .
Cmt) 152 c147 1453 ~lam - V2~ 1.414
=A(s™)
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Table 2. Densities of generalized Simons’ cones and theoretical bounds.

O(Ck n—k-1) n=3 n=4 n=>5 n==6 n— o
k=1 ~1.57 ~154 =~1530 =~1526 - ~1.52
k=2 * * 1.5 ~1.487 .- ~ 1.47

: * * * E ) :
k — oo * * * * S V2~ 1414
A(S"3) * * ~147 ~1453 .. V2=x1414
A(S"2) ~152 =147 =~1453 =~1444 ... 2=x1.414
A(smh ~1.47 ~1.453 =~1444 ~1438 - V2~1.414
Z(n) ~1.03 ~101 ~1.007 ~1.004 --- 1

Let
’ _ n2el’ ( % ’ 1 )
n = 2 ’
where I'(s, x) is the incomplete Gamma function and consider the explicit constants

1
> 0.
2n+ 3 +2exp(2nC;,)

ecry (n) =

Cheng-Li—Yau [15] show that if C ¢ R™*! is a non-flat regular minimal cone, then
O(C) > 1 +ecLy(n).
These numbers are very small. Indeed, for n > 3,

23%x10710 ~ ecry (3) > ecry (n).
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