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Introduction

Intuitively, a sea urchin is more complicated than a
billiard ball. However, it is not so easy to see how
to formalize and quantify this distinction, i.e., what
constitute good measures of the complexity of geo-
metric objects. There are many different approaches,
but on a high level, satisfactory answers should all
involve something with the following properties:

1. Respects the geometric symmetries;

2. Collections of objects, taken together, should be
more complex than the constituent elements;

3. The geometrically “simplest” elements in natu-
ral subclasses should be extrema of the quantity.
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In addition to these general properties, it proves help-
ful to add a more technical and specific property:

4. Monotonic along a geometric heat flow.

This is justified by the fact that such flows tend to
simplify the geometry of the objects being evolved.
In this article we focus on the geometry of subman-
ifolds of Euclidean space and the measure of complex-
ity we introduce will be associated with the mean cur-
vature flow. One aspect we highlight is topological.
On the one hand, mean curvature flow, like many geo-
metric flows, should simplify the topology along with
the geometry. On the other hand, we observe that,
in many cases submanifolds with low complexity in
the sense we discuss must be topologically simple.

Mean Curvature Flow

Surface tension is the force that causes the surface of
a liquid to behave like a stretched elastic membrane
and drives the interface to minimize its surface area.
The force induced by surface tension on the interface



is mathematically characterized by its mean curva-
ture, which is the sum of the principle curvatures of
the geometric surface corresponding to the interface.
This force also gives rise to a potent method for
studying geometric and topological properties of sub-
manifolds, especially embedded hypersurfaces. In-
deed, by considering the (negative) gradient flow for
area one obtains a dynamical process in which sub-
manifolds of Euclidean space, e.g., curves or surfaces,
continuously reduce their areas by deforming in the
direction of steepest descent. A consequence of the
first variation of area formula is that this gradient
flow corresponds to the mean curvature flow. This is
the flow in which points of the evolving submanifolds
move with (normal) velocity determined by the mean
curvature of the submanifold they lie in. That is,
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where H is the mean curvature of the appropriate
submanifold in the flow and x is the position vector.
In general, when e; is an orthonormal frame of the
tangent space of a submanifold, its mean curvature
satisfies H = Y, (D, e;)* where L means the com-
ponent orthogonal to the submanifold. For instance,
the sphere of radius R in R™*! centered at the origin
satisfies H = —nR?x.

There are several equivalent characterizations of
mean curvature flow. For example, a one-parameter
family of n-dimensional submanifolds t — %, ¢ RV
is a mean curvature flow if and only if the coordinate
functions, x*, of RY, i = 1,..., N, restricted to the
submanifolds ¥;, satisfy the heat equation
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Despite appearances, these equations are nonlinear
as both the x* and Laplacian, Ay, depend on ¥;.

A direct computation shows that the function @ =
|x|? + 2nt satisfies the same heat equation on the
evolving submanifolds as the x*. If Q) is bounded ini-
tially, then, by the parabolic maximum principle, it
remains bounded with the same bound as long as the
flow exists. Moreover, this is only a finite amount of
time because @@ > 2nt would otherwise grow with-
out bound. Thus, the flow of an initially closed, i.e.,
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Figure 1: The evolution of a simple closed curve un-
der curve shortening flow, i.e., mean curvature flow
of curves in the plane. Here a non-convex region be-
comes convex before disappearing in a round point.



Figure 2: A smooth flow that disappears at t =T

compact and without boundary, submanifold must
become singular in finite time, either by becoming
extinct or by forming other singularities.

When the initial submanifold is a hypersurface
bounding a compact convex region, a more sophis-
ticated application of the maximum principle shows
this condition is preserved. Moreover, the cele-
brated results of Gage-Hamilton [GH86] and Huisken
[Hui84] imply that the shapes of the evolving hyper-
surfaces approach the shape of a round sphere rapidly
as the flow shrinks to a point. When n > 2 and the
initial hypersurface is not convex, it is possible for
the flow to form a singularity without disappearing
— the prototypical example of this is the formation
of a neck-pinch. In the latter case, it is possible to
continue the flow using a weak formulation of the
evolution.

Colding-Minicozzi Entropy

We now introduce a quantity that quantifies the sim-
plifying process provided by the mean curvature flow
of closed convex hypersurfaces. As we will see, this
quantity also satisfies the properties laid out in the
introduction and so provides a plausible measure of
complexity of submanifolds. It was introduced by

Colding-Minicozzi in [CM12] where they named it en-
tropy. Its monotonicity relies on a property of mean
curvature flow first observed by Huisken [Hui90].

Recall that the heat kernel of R™ has the profile of
a time-varying Gaussian
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K,(t,x) = (471'15)_ge_|xT for t > 0.

Let t — ¥, € RY be an n-dimensional mean curva-
ture flow with starting time ¢ = 0 and extend K, to
RY by the same formula. For xo € RY and to > 0,
the time derivative of the integral of K, (tg—t, - —Xo)
over ¥; is nonpositive. This is a consequence of the
Huisken monotonicity formula [Hui90] whose proof
uses the fact that the restriction of the coordinate
functions of the ambient Euclidean space satisfy the
heat equation on the evolving submanifolds as well
as convexity properties of K,.

Translating the flow ¢ — X; by a vector in space-
time, (sp,¥o0), produces a new mean curvature flow
t — X;_s, + yo of the same shape. The same
holds for parabolic rescalings of the flow, i.e., the
flow t > p¥,-2; for p > 0. Integrating the kernels
K, (ty — t,- — xp) over these transformed flows es-
sentially corresponds to changing ¢y and xy in the
integrals over the original flow. Here for a subman-
ifold, ¥, p¥ 4+ x¢ denotes the submanifold obtained
by dilating ¥ by factor p followed by translation by
vector Xg.

One way to unify this family of quantities and
also account for the symmetries of the mean curva-
ture flow is the approach taken by Colding-Minicozzi
[CM12]. They define the entropy, A[X], of an n-
dimensional submanifold ¥ c RY by

AX] = sup / K, (to,x — X¢) dvolg(x).
Xo0,l0 J B

Thus, A is invariant under rigid motions and dilations

of 3 and, by the Huisken monotonicity formula, is

monotone decreasing along the mean curvature flow.

It is convenient at times to express the entropy in
terms of the Gaussian integral centered at the origin
with scale 1
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Figure 3: A plot of the integrals of Kj(tg,- — Xo)
over the unit circle. The horizontal axis is ty and the
vertical axis represents xo = yes. Note A[S!] ~ 1.52.

Namely, by a change of variables,

A[X] = sup F[pX +y]

Yp

as (y, p) ranges over all points of R x (0, 00).

Fix a singularity of a mean curvature flow. Rescal-
ing the flow parabolically about the singularity, which
we may assume, by translation, is at the space-time
origin, and simultaneously reparametrizing time gives
a new flow, called the rescaled mean curvature flow,
which satisfies the equation

The static solutions of this flow satisfy H — % =0
and describe the limiting behavior of the flow. A
submanifold, ¥, satisfying this limiting equation is
called a self-shrinker, because t — /—t% is a solu-
tion of mean curvature flow. The simplest non-trivial
example of a self-shrinker is the round sphere of ra-

dius v2n in R*+1,

VonS" = {af +... + 2}, =2n}.

For the flow of convex hypersurfaces discussed in the
previous section, this is exactly the self-shrinker one
obtains at the unique terminal singularity.

As entropy is invariant under translations and di-
lations, it is also monotone decreasing along the
rescaled mean curvature flow. Thus, the entropy of
the initial submanifold bounds the entropy of the lim-
iting self-shrinkers associated to the singularity.

Starting from a hypersurface that bounds a com-
pact convex region, the flow becomes round as it
reaches its extinction time. Monotonicity implies the
entropy of the initial hypersurface is larger than or
equal to that of a round hypersphere. Hence, round
hyperspheres minimize entropy among all closed con-
vex hypersurfaces. In the following sections, we study
the minimizers of entropy in more general settings.

Entropy Minimizers

We now explore the extrema of entropy in two differ-
ent classes of submanifolds.

General submanifolds

For ¥ ¢ RY an n-dimensional submanifold, one char-
acterization of the tangent space at p € X is via

li Y—p)=T,%

Jim p(E-p) =T,

where the convergence may be interpreted in various
senses. Geometrically this means that if we zoom in
on smaller and smaller scales about p € X, then the
zoomed in surface becomes closer and closer to the

tangent plane.
An immediate consequence of this is that

A[E] = limsup Fp(X — p)] = F[T,X].

p—>00

A straightforward calculus exercise shows us that
F[T,Y] = 1. Likewise, for any n-plane, P C R,

where ¢ is a point on P. In other words,

A[B] > AP =1



where P is an n-plane. That is, planes are both the
geometrically simplest elements and absolute minima
of A within the class of submanifolds. A related ob-
servation is that in the larger class of immersed sub-
manifolds, any submanifold that is not embedded has
entropy at least 2.

Closed hypersurfaces

When restricting to the smaller class of closed hy-
persurfaces, i.e., those that are compact and without
boundary and of codimension one, the geometrically
simplest elements become the round hyperspheres. In
this case, one may, with more work, verify that

A[S"] = F[v2nS").

It was computed by Stone that A[S'] = /2%

A[S?] = 2 and, more generally,

ASY > AS?] > A[S?] > --- > lim A[S*] = V2.
k—o0
With this in mind, Colding-Ilmanan-Minicozzi-White
conjectured in [CIMWI13] that round hyperspheres
minimize entropy among closed hypersurfaces. Pre-
cisely, if ¥ C R™*! is a closed hypersurface, then
AZ] > A[S".

Some immediate evidence for the conjecture was
provided by earlier work of Gage-Hamilton [GH86]
and Grayson [Gra87]. Specifically, they showed that
curve shortening flow — i.e., one dimensional mean
curvature flow — evolves a closed simple curve into a
round point in finite time. Thus, the reasoning used
for convex hypersurfaces also shows the conjecture of
Colding et al., [CIMW13], for simple closed curves.
If one tries to reproduce this argument in higher di-
mensions one encounters several difficulties. The first
is that there are many more singularity models. An-
other, more subtle, issue is that unlike what happens
with curve shortening flow, a singularity may form
before the flow disappears.

Additional evidence for the general conjecture was
provided by work of White [Whi05], which in turn
built on earlier work of Brakke and Allard. In par-
ticular, one may conclude from these results that
any singularity model has entropy a definite amount
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Figure 4: A schematic picture of a non-terminal sin-
gularity at ¢ = t;. The (weak) flow becomes extinct
att="1T.

above 1 and, because the flow of any closed hyper-
surface forms a singularity in finite time, the same is
true of any closed hypersurface. Hence, there is an
€ = ¢e(n) > 0, so that when ¥ C R"! is closed,

AZ] > 1+e

This shows that a quantitative difference in the prop-
erties of entropy appears when restricting to the the
class of closed hypersurfaces.

The singularity models of mean curvature flow are
the non-flat self-shrinkers. Hence, the optimal in-
equality is a consequence of the following more ambi-
tious conjecture of Colding et al., [CIMWI13]: If ¥ C
R"*1 is a non-flat self-shrinker, then A[X] > A[S"].
In the same paper, they prove this is true for closed
self-shrinkers. This stronger conjecture was resolved
in [BW17] for n = 2, but remains open for n > 3.

At first glance, one may think that the result of
Colding et al., [CIMW13], on the entropy of closed
self-shrinkers suffices to prove their initial conjec-
ture. However, there is, a priori, no reason for flow
of closed hypersurfaces to develop a closed singular-



Figure 5: A numerical example of an exotic self-
shrinker of positive genus and one end. Used with
permission of Mario Schulz.

ity model. The example of a neck-pinch — where
the first singularity is the non-compact cylinder — il-
lustrates one possible complication. There are even
more bizarre possibilities. For instance, the first sin-
gularity could be non-compact and asymptotic to a
cone. Such exotic singularities can exist — we re-
fer to the paper of Chopp [Cho94] which contains
pictures of many numerically computed examples —
and there are now several rigorous constructions; for
instance, by Kapouleas-Kleene-Mgller, X.H. Nguyen
and Buzano-H. Nguyen-Schulz.

Nevertheless, restricting attention to singularities
where the flow disappears rules out some of least
well understood behavior. Crucially, the class of ter-
minal singularities are more stable in a dynamical
sense than general singularities and stable singular-
ities tend to be more rigid as observed in [CM12].
Terminal singularities may be hidden behind earlier
exotic singularities and so one must genuinely work
with a weak flow that exists through singularities.
This is technically quite challenging and involves deep
results in PDEs and geometric measure theory.

With careful work, the authors established in
[BW16] the conjecture in low dimensions

Theorem. If2 <n <6, and X C Rt s a closed
hypersurface, then A[¥] > A[S™].

The bound n < 6 comes from the use of the regu-

larity theory for stable minimal hypersurfaces. J. Zhu
[Zhu20] later relaxed this requirement and extended
our argument to prove the result for n > 7.

Rigidity of Minimizers

For a sharp inequality, it is natural to study when it
is saturated, i.e., when equality is achieved. This is
the question of rigidity of an inequality. Within the
two classes considered above there is rigidity for the
corresponding optimal inequalities.

For closed hypersurfaces, the proof of the sharp in-
equality also shows the corresponding rigidity: If ¥ C
R+ is a closed hypersurface with A[X] = A[S"], then
> is a round hypersphere. Somewhat surprisingly,
rigidity in the general case proved slightly tricky. Us-
ing a rather subtle mean curvature flow construction,
L. Chen [Che21] showed that if ¥ C R¥ is a properly
embedded n-dimensional submanifold with A[¥] = 1,
then ¥ is an n-dimensional plane. A more elementary
argument was later given by the first-named author
when n = 2. One should also be able to use the
rigidity properties of the Gaussian isoperimetric in-
equality of Sudakov-Tsirel’son and Borell to obtain
this result for hypersurfaces.

Stability of Entropy Minimizers

A more robust form of rigidity is the question of sta-
bility, that is, whether almost minimizers are close
to minimizers. This is particularly relevant, because
well-behaved measures of complexity should have the
feature that when the measured value of an object is
near a minimum, the object is simple in a qualita-
tive or quantitative sense. We discuss two different
perspectives on this question for closed hypersurfaces
with entropy near that of the round sphere.

Topological stability

One qualitative measurement of the complexity of a
submanifold is in terms of its topology. It is now
known that, in many dimensions, closed hypersur-
faces with entropy below a certain threshold must
be, topologically, as simple as possible — i.e., isotopic
to the standard sphere. Of course all closed simple



curves in the plane are isotopic to the round circle
without additional assumptions; this can be proven
in many ways, though an appealing approach is to
use curve shortening flow.

For surfaces in R®, the authors showed the only
singularity models with entropy below that of the
round circle is the shrinking round sphere [BW17]
— note that an elementary calculation shows that the
entropy of the round circle is the same as that of the
corresponding cylinder in R3. Combining this with
the monotonicity of entropy shows that any closed
surface with entropy less than that of a circle evolves
smoothly under mean curvature flow until it disap-
pears in a round point — mirroring the behavior of
the curve shortening flow. Hence, the flow provides
a smooth isotopy between the initial surface and the
round two-sphere and so:

Theorem. IfY is a closed surface in R® with \[X] <
A[SY] = A[St x R], then ¥ has genus 0.

That is, the entropy provides some measure of the
topological complexity of closed surfaces.

In higher dimensions, the classification of low-
entropy singularity models is highly incomplete, and
a major challenge is to understand cone-like singu-
larities. Nevertheless, the above theorem may be ex-
tended up to dimension five.

Theorem. For 3 <n <5, if X C R™tL s o closed
hypersurface with \[X] < A[S"1], then X is smoothly
isotopic to S™.

When n = 3, the authors utilized the theory of
self-expanders to show that all regular time slices
of the weak mean curvature flow starting from
such an initial hypersurface are in the same iso-
topy class [BW22]. The n = 3 case was also inde-
pendently established by Chodosh-Choi-Mantoulidis-
Schulze [CCMS21], who showed that generic one-
sided perturbations of the initial hypersurface evolve
smoothly under mean curvature flow until disap-
pearing in a round point. Very recently, this sec-
ond approach was extended by Chodosh-Mantoulidis-
Schulze [CMS23] to dimensions n = 4, 5.

Finally, one may wonder if entropy can detect the
presence of more complex topological structure. The

Figure 6: The in- and outradius of Q.

expectations in this direction are quite modest. In-
deed, consider a collection of distant unit spheres
joined by very thin necks. These configurations can
have arbitrary positive genus, but still have entropy
a little bit above that of the circle. The fact that
the increase is small comes from the fact that the
Gaussian decays rapidly at large distances.

Stability as sets

More quantitatively, one may study the stability in
terms of closeness as sets. This is inspired by the clas-
sical Bonnesen inequality which relates the isoperi-
metric defect of a region in the plane to the differ-
ence between its inradius and outradius. Here, for a
compact set 2 C R"*1 the inradius, R;,(f2), is the
radius of the largest ball contained in € and outra-
dius, Ryut(£2), is the radius of the smallest ball con-
taining Q. Clearly, balls are the only sets where these
are equal and the difference of Ry, (€2) and R;,(Q)
is small precisely when 2 is close as a set to a ball.
Unlike the Bonnesen inequality, which is a purely
two-dimensional phenomenon, there is stability as
sets in all dimensions for compact regions whose



boundaries nearly minimize entropy:

Theorem. For any a > 0, there is § = B(a) > 0
such that, if @ C R"*L is a compact region with ¥ =
O a closed hypersurface and A[X] < A[S"] + 8, then

Rout(Q)

1< —F<1 .

= Rin(Q) +

Using mean curvature flow, the result was proved

by the authors in dimension 2 in [BW18] and gener-
alized to all dimensions by S. Wang [Wan20].

Further Developments and Questions

Finally, we discuss various generalizations of the
Colding-Minicozzi entropy and their use as measures
of geometric complexity.

Higher codimension

As we previously observed, for the class of n-
dimensional submanifolds of R, the entropy mini-
mizers are the affine n-planes. However, the situation
for other interesting classes of submanifolds remains
largely unexplored.

As in the codimension-one case, it is a conse-
quence of the Brakke regularity theorem, that non-
flat n-dimensional self-shrinkers in RV have entropy
at least 1 4+ e(n, N). Moreover, properties of mean
curvature flow of submanifolds imply that the flow
of closed submanifolds must form a finite time sin-
gularity. Hence, any closed submanifold must have
entropy at least 1 4+ €. It is very plausible that the
least entropy is achieved by a round n-sphere lying in
an affine (n+ 1)-plane. However, there has been very
little progress towards proving this. This is due, in
part, to our limited understanding of stable minimal
submanifolds in higher codimension.

Some compelling evidence that entropy measures
complexity in this setting is provided by work of
Colding-Minicozzi [CM20]. They show that bounds
on a self-shrinker’s entropy provide effective bounds
on its codimension. This means there is an estimate
for € depending only on the dimension n of the sub-
manifold and not on the ambient dimension N.

Another interesting direction is to analyze closed
entropy minimizers in other classes of higher codi-
mension submanifolds. Of particular interest is the
study of the question for closed Lagrangian subman-
ifolds. This is because this condition interacts well
with the mean curvature flow and spheres cannot be
minimizers in this class.

Other ambient spaces

It is also desirable to generalize Colding-Minicozzi en-
tropy to submanifolds of other ambient Riemannian
manifolds.

One extension, to n-dimensional submanifolds of
the round sphere, SV, was obtained by J. Zhu in
his thesis. Essentially, he observed that the Colding-
Minicozzi entropy of a submanifold of SV, thought of
as a submanifold in RN¥*! via the usual embedding of
SV into RN*! remained monotone under mean cur-
vature flow in SV. He concluded from this explicit
lower bounds on the areas of topologically non-trivial
minimal hypersurfaces in S**+1.

In another direction, the first-named author used
the heat kernel on hyperbolic space, HY, to define
a notion of entropy for submanifolds of hyperbolic
space [Ber21]. This has subsequently been extended
to the more general setting of Cartan-Hadamard
manifolds — i.e., complete simply connected mani-
folds of non-positive sectional curvature. Many of the
existing results in Euclidean space discussed above
carry over in some fashion to this setting. However,
some new phenomena appear. For instance, rigidity
of the ambient geometry holds inside certain entropy
minimizers. There is also an interesting connection
between the entropy of minimal submanifolds of HY
and a quantity associated to the asymptotic geometry
of the submanifold.

In addition to finding further applications, it would
be appealing to find a broader framework for these
measures of complexity. At present the proposed gen-
eralizations are largely ad hoc.
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