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Abstract The scattering of electromagnetic radiation by a layered periodic
diffraction grating is an important model in engineering and the sciences. The
numerical simulation of this experiment has been widely explored in the liter-
ature and we advocate for a novel interfacial method which is perturbative in
nature. More specifically, we extend a recently developed High–Order Pertur-
bation of Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) algorithm
to utilize a stabilized numerical scheme which also suggests a rigorous conver-
gence result. An implementation of this algorithm is described, validated, and
utilized in a sequence of challenging and physically relevant numerical exper-
iments.
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1 Introduction

The scattering of linear waves by a periodic layered structure is a central model
in many problems of scientific and engineering interest. Examples arise in areas
such as geophysics [61,6], imaging [42], materials science [25], nanoplasmonics
[55,39,24], and oceanography [8]. In the particular case of nanoplasmonics,
there are many important topics such as extraordinary optical transmission
[23], surface enhanced spectroscopy [40], and surface plasmon resonance (SPR)
biosensing [28,41,30,33].

Due to their technological importance, the numerical simulation of these
diffraction gratings has generated a huge amount of interest including the
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application of all of the classical approaches, e.g., Finite Differences [37], Fi-
nite Elements [31], Discontinuous Galerkin [27], Spectral Elements [22], and
Spectral Methods [26,7,59]. For general geometries these specify extremely
useful and accurate tools (e.g., COMSOL Multiphysics [19]) for engineers and
scientists alike. However, for structures with simplifying features, such as ho-
mogeneous layering, these can be needlessly expensive due to the unneces-
sary discretization of layer interiors. To address this, a whole class of inter-
facial methods have been developed of which Boundary Integral/Boundary
Element Methods (BIM/BEM) are the most widely used [18,36,58]. These
posit unknowns at the layer interfaces thereby reducing the number of degrees
of freedom by an order of magnitude. While these schemes require particu-
lar care in their implementation (e.g., the design of special quadrature rules
to achieve high–order accuracy, sophisticated algorithms to rapidly sum the
quasi–periodized Green function, and appropriate preconditioning strategies
for the iterative solution of the Non–Symmetric Positive Definite linear sys-
tem of equations) there are well–known implementations that deliver results
of surpassing accuracy and stability, see, e.g., [10–12].

In this paper we focus upon a very particular Quantity of Interest (QoI)
in the study of diffraction gratings, the Reflectivity Map, which is represen-
tative of a group of performance metrics for which we develop a special class
of interfacial numerical algorithms. The Reflectivity Map, R, measures the re-
sponse (reflected energy) of a periodically corrugated grating structure as a
function of illumination frequency, ω, and corrugation amplitude, h. For each
of the algorithms listed above, the response at any given (ω, h) pair requires
a new simulation restarted from scratch. A High–Order Perturbation of Sur-
faces (HOPS) method [50,51] takes a perturbative view towards the geometric
dependence of R on h = ε by seeking the terms in the expansion about ε = 0,

R = R(ε) =
∞∑
n=0

Rnε
n.

With this one can realize an enormous savings in computational effort by
conducting a new computation only for each choice of ω and simply summing
the formula above for any desired value of ε. We point out that we have
demonstrated in [49,52], for a closely related problem concerning Laplace’s
equation, that the domain of analyticity in ε is not merely a small disk centered
at the origin in the complex plane, but rather a neighborhood of the entire real
axis. Therefore, provided one utilizes a suitable method of (numerical) analytic
continuation (e.g., Padé approximation [3]), one can simulate configurations
with interface deformations of arbitrary size (see, e.g., [49,29]). We suspect
that the analogous result can be discovered for the Helmholtz equation which
is relevant here and we intend to verify this in future work.

Taking this philosophy to its natural conclusion, in [44] we considered ω =
(1 + δ)ω = ω + δω and performed a joint expansion of this map about (ε =
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0, ω = ω)

R = R(ε, δ) =
∞∑
n=0

∞∑
m=0

Rn,mε
nδm.

It seems that a single computation, recovering all of the Rn,m, should be
sufficient to discover the entire Reflectivity Map. In fact, as demonstrated
by Kirsch [35], the situation is not so simple as these expansions are not
valid for all values of (ε, δ) and it was found in [44] that the Rayleigh sin-
gularities (often called the Wood anomalies) enforced finite–size domains of
convergence in δ. However, the results were so encouraging that we now un-
dertake a more in–depth investigation featuring a new formulation in terms
of Dirichlet–Neumann Operators computed via an application of the stable,
accurate, and rapid Transformed Field Expansions (TFE) algorithm [51] ap-
propriate for a joint perturbation expansion. Not only does this deliver an
implementation with greatly enhanced stability properties [51], but it also de-
scribes an algorithm that can be rigorously justified to be convergent as we
recently demonstrated in [34]. In this contribution we focus upon the scalar
two–dimensional problem of electromagnetic waves in Transverse Magnetic
polarization where current computing power may be sufficient to produce an
adequate estimation of R using any of the methods we have discussed, in a
reasonable amount of time. However, none of our developments are specific
to this two–dimensional scalar case and apply equally well to the full three–
dimensional vector Maxwell equations where the computational challenges can
be prohibitive for established methods.

The paper is organized as follows. In Section 2 we summarize the equa-
tions which govern the propagation of linear electromagnetic waves in a two–
dimensional periodic structure. In Section 2.1 we discuss the Transparent
Boundary Conditions we utilize to enforce the outgoing wave conditions rig-
orously, while in Section 2.2 we define the object of our study, the Reflectivity
Map. In Section 3 we restate our governing equations in terms of interfacial
quantities via a Non–Overlapping Domain Decomposition phrased in terms of
Dirichlet–Neumann Operators (DNOs). We discuss our HOPS/AWE approach
in Section 4 and our novel approach to computing the DNOs in Section 5 (sup-
plemented with a discussion of expansions of the surface data in Section 5.1).
In Section 6 we present our numerical results with a description of implemen-
tation details in Section 6.1, our Fourier–Chebyshev method in Section 6.2,
and our use of Padé approximation in Section 6.3. We comment on issues of
the bounded domains of analyticity in our expansions in Section 6.4. In Sec-
tion 6.5 we validate our code with the Method of Manufactured Solutions,
while in Section 6.6 we present results of multiple numerical simulations of the
Reflectivity Map which we conducted. In Section 6.7 we discuss the superior
computational complexity our algorithm enjoys for computing objects like the
Reflectivity Map. Concluding remarks are given in Section 7.
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2 The Governing Equations

In this paper we consider a y–invariant, doubly layered structure with a peri-
odic interface separating the two materials; see Figure 1. The d–periodic inter-

Fig. 1: A two-layer structure with a periodic interface, z = g(x), separating
two material layers, S(u) and S(w), illuminated by plane–wave incidence.

face shape is specified by the graph of the function z = g(x), g(x+ d) = g(x).
A dielectric (with refractive index nu) occupies the domain above the interface

S(u) := {z > g(x)},

while a material of refractive index nw is in the lower layer

S(w) := {z < g(x)}.

The superscripts are chosen to conform to the notation of the authors in previ-
ous work [43,46]. The structure is illuminated from above by monochromatic
plane–wave incident radiation of frequency ω and wavenumber ku = nuω/c0 =
ω/cu (c0 is the speed of light) aligned with the grooves

Ei(x, z, t) = Ae−iωt+iαx−iγ
uz, Hi(x, z, t) = Be−iωt+iαx−iγ

uz,

α := ku sin(θ), γu := ku cos(θ).

We consider the reduced incident fields

Ei(x, z) = eiωtEi(x, z, t), Hi(x, z) = eiωtHi(x, z, t),
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where the time dependence exp(−iωt) has been factored out. As Bao & Li [4]
point out in their survey text, due to considerations of solution uniqueness,
the reduced electric and magnetic fields {E,H} are α–quasiperiodic like the
incident radiation. To close the problem we specify that the scattered radiation
is “outgoing,” upward propagating in S(u) and downward propagating in S(w).

It is well known (see, e.g., Petit [53,4]) that in this two–dimensional set-
ting, the time–harmonic Maxwell equations decouple into two scalar Helmholtz
problems which govern the Transverse Electric (TE) and Transverse Magnetic
(TM) polarizations. We define the invariant (y) direction of the scattered (elec-
tric or magnetic) field by ũ = ũ(x, z) and w̃ = w̃(x, z) in S(u) and S(w),
respectively. The incident radiation in the upper field is defined as ũi(x, z).

Following our previous work [44] we further factor out the phase exp(iαx)
from the fields ũ and w̃

u(x, z) = e−iαxũ(x, z), w(x, z) = e−iαxw̃(x, z),

which, we note, are d–periodic. In light of all of this, we are led to seek outgoing,
d-periodic solutions of

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x), (1a)

∆w + 2iα∂xw + (γw)2w = 0, z < g(x), (1b)

u− w = ζ, z = g(x), (1c)

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x), (1d)

where N := (−∂xg, 1)T . The Dirichlet and Neumann data are

ζ(x) := −e−iγ
ug(x), (1e)

ψ(x) := (iγu + iα(∂xg))e−iγ
ug(x), (1f)

and

τ2 =

{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where kw = nwω/c0 = ω/cw and γw = kw cos(θ). Due to its importance in the
classical study of SPRs we will focus on TM polarization [55].

2.1 Transparent Boundary Conditions

The Upward Propagating Condition (UPC) and Downward Propagating Con-
dition (DPC) [1] rigorously enforce the outgoing wave conditions which we
mentioned earlier. Following Bao & Li [4], we now demonstrate how these can
be stated in terms of Transparent Boundary Conditions which also truncate
the bi–infinite problem domain to one of finite size. For this we choose values
a and b such that

a > |g|L∞ , −b < − |g|L∞ ,
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and define the artificial boundaries {z = a} and {z = −b}. In {z > a} the
Rayleigh expansions [53] tell us that upward propagating solutions of (1a) are

u(x, z) =
∞∑

p=−∞
âpe

ip̃x+iγu
p z, (2)

where, for p ∈ Z and q ∈ {u,w},

p̃ :=
2πp

d
, αp := α+ p̃, γqp :=

√
(kq)2 − α2

p, Im
{
γqp
}
≥ 0. (3)

In a similar fashion, downward propagating solutions of (1b) in {z < −b} can
be expressed as

w(x, z) =
∞∑

p=−∞
d̂pe

ip̃x−iγw
p z.

With these we can define the Transparent Boundary Conditions in the follow-
ing way: Focusing on the UPC (the DPC is similar) we rewrite (2) as

u(x, z) =
∞∑

p=−∞

(
âpe

iγu
p a
)
eip̃x+iγ

u
p (z−a) =

∞∑
p=−∞

ξ̂pe
ip̃x+iγu

p (z−a),

and note that,

u(x, a) =
∞∑

p=−∞
ξ̂pe

ip̃x =: ξ(x),

and

∂zu(x, a) =
∞∑

p=−∞
(iγup )ξ̂pe

ip̃x =: Tu[ξ(x)],

which defines the order–one Fourier multiplier Tu. From this we state that
upward–propagating solutions of (1a) satisfy the Transparent Boundary Con-
dition at z = a

∂zu(x, a)− Tu[u(x, a)] = 0, z = a. (4)

We note that a similar calculation leads to the Transparent Boundary Condi-
tion at z = −b

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b, (5)

where

Tw[ψ(x)] :=
∞∑

p=−∞
(−iγwp )ψ̂pe

ip̃x.

We also point out that solutions which satisfy (4) and (5) equivalently satisfy
the UPC and DPC, respectively [1].
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With these we now state the full set of governing equations as

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x), (6a)

∆w + 2iα∂xw + (γw)2w = 0, z < g(x), (6b)

u− w = ζ, z = g(x), (6c)

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x), (6d)

∂zu(x, a)− Tu[u(x, a)] = 0, z = a, (6e)

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b, (6f)

u(x+ d, z) = u(x, z), (6g)

w(x+ d, z) = w(x, z). (6h)

2.2 The Reflectivity Map

Building upon the developments in the previous section we can now define
our QoI, the Reflectivity Map. Regarding the solution (2) we note the very
different character of the solution for wavenumbers p in the set

Uu :=
{
p ∈ Z | α2

p < (ku)2
}
,

and those that are not. From our choice of the branch of the square root,
components of u(x, z) corresponding to p ∈ Uu propagate away from the layer
interface, while those not in this set decay exponentially from z = g(x). The
latter are called evanescent waves while the former are propagating (defining
the set of propagating modes Uu) and carry energy away from the grating.
With this in mind one defines the efficiencies [53]

eup := (γup /γ
u) |âp|2 , p ∈ Uu,

and the Reflectivity Map

R :=
∑
p∈Uu

eup . (7)

Similar quantities can be defined in the lower layer [53], and with these the
principle of conservation of energy can be stated for structures composed en-
tirely of dielectrics ∑

p∈Uu

eup + τ2
∑
p∈Uw

ewp = 1.

In this situation a useful diagnostic of convergence for a numerical scheme
(which we will utilize later) is the “energy defect”

D := 1−
∑
p∈Uu

eup − τ2
∑
p∈Uw

ewp , (8)

which should be zero for a purely dielectric structure.
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3 A Non–Overlapping Domain Decomposition Method

We now restate our governing equations (6) in terms of surface quantities via
a Non–Overlapping Domain Decomposition Method [38,21,20]. In particular,
if we define

U(x) := u(x, g(x)), Ũ(x) := −∂Nu(x, g(x)),

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),

where u is a d–periodic solution of (6a) and (6e), and w is a d–periodic so-
lution of (6b) and (6f). In terms of these our full governing equations (6) are
equivalent to the pair of boundary conditions, (6c) & (6d),

U −W = ζ, −Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ.

This set of two equations for four unknowns can be closed by noting that the
pairs {U, Ũ} and {W, W̃} are connected, e.g., by DNOs

G : U → Ũ , J : W → W̃ .

These are well–defined operators for sufficiently smooth g (e.g., g ∈ C2 [51])
thus we focus on this interfacial reformulation of our governing equations

AV = R, (9)

where

A =

(
I −I

G+ (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
, V =

(
U
W

)
, R =

(
ζ
−ψ

)
,

(10)
c.f., [43].

4 A High–Order Perturbation of Surfaces/Asymptotic Waveform
Evaluation (HOPS/AWE)

At this point there are many approaches to simulate (9) numerically. We take
up a perturbative approach under two assumptions:

1. Boundary Perturbation: g(x) = εf(x), ε ∈ R,
2. Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R.

As we stated in the Introduction, we believe that real values of ε which are
arbitrarily large can be simulated [48,49,52,29] while the values of δ are only
limited by the Rayleigh singularities [35,45]. The second assumption has the
following important consequences

kq = ω/cq = (1 + δ)ω/cq =: (1 + δ)kq = kq + δkq, q ∈ {u,w},
α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα,

γq = kq cos(θ) = (1 + δ)kq cos(θ) =: (1 + δ)γq = γq + δγq, q ∈ {u,w}.
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This, in turn, delivers

αp = α+ p̃ = α+ δα+ p̃ =: αp + δα.

In [34] we established that the joint analyticity of the operator A and
function R with respect to ε and δ induce a jointly analytic solution, V, of
(9). Thus, we can expand

{A,V,R}(ε, δ) =
∞∑
n=0

∞∑
m=0

{An,m,Vn,m,Rn,m}εnδm, (11)

and a straightforward calculation reveals that, at each perturbation order
(n,m), we must solve

A0,0Vn,m = Rn,m −
n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r

−
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r, (12)

c.f., [44]. At this point all that remains to be specified are the forms for the
An,m and Rn,m, and a method to invert A0,0.

A brief inspection of the formulas for A and R, (10), reveals that

A0,0 =

(
I −I

G0,0 τ
2J0,0

)
, (13a)

An,m =

(
0 0

Gn,m τ2Jn,m

)
+ δn,1 {1 + δm,1} (∂xf)(iα)

(
0 0
1 −τ2

)
, n 6= 0 or m 6= 0, (13b)

Rn,m =

(
ζn,m
−ψn,m

)
, (13c)

where δn,m is the Kronecker delta function. The forms for ζn,m and ψn,m,
which depend upon the incident radiation (e.g., we will investigate both a
non–physical illumination to validate our code, see Section 6.5, and plane–
wave incidence, see Section 6.6) can typically be stated explicitly. By contrast,
formulas for the (n,m)–th corrections of the Taylor expansions of the DNOs,
G and J , must be simulated numerically. For this we advocate the Method of
Transformed Field Expansions (TFE) [51] which we review in the following
section.
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5 Simulation of Dirichlet–Neumann Operators

As we mentioned in the previous section, the only remaining specification for
our algorithm is the computation of the (n,m)–th term in the Taylor expansion
of the DNOs, G and J . For brevity we restrict our attention to the DNO in
the upper layer, {g(x) < z < a}, and note that the considerations for the
lower layer are largely the same. For a complete discussion of HOPS methods
(without frequency expansion) for simulating DNOs in this setting of linear
scattering we refer the interested reader to [50,51]. For a related treatment of
this problem by the HOPS/AWE approach, which does not utilize DNOs or
the TFE approach, we point out the previous work of the author [44].

We recall the precise definition of the upper layer DNO [45]: Given an
integer s ≥ 0 and any θ > 0, if g ∈ Cs+3/2+θ the unique d–periodic solution
of

∆u+ 2iα∂xu+ (γu)2u = 0, g(x) < z < a, (14a)

u(x, g(x)) = U(x), z = g(x), (14b)

∂zu(x, a)− Tu[u(x, a)] = 0, z = a, (14c)

defines the Upper Layer Dirichlet–Neumann Operator

G(g) : U → Ũ := −(∂Nu)(x, g(x)). (15)

To simulate the DNO numerically we appeal to the TFE method [47,51]
which begins with a domain–flattening change of variables (the σ–coordinates
of oceanography [54] and the C–method of the dynamical theory of gratings
[17,16])

x′ = x, z′ = a

(
z − g(x)

a− g(x)

)
.

With this we can rewrite the DNO problem, (14), in terms of the transformed
field

u′(x′, z′) := u

(
x′,

(
a− g(x′)

a

)
z′ + g(x′)

)
,

as (upon dropping primes)

∆u+ 2iα∂xu+ (γu)2u = F (x, z), 0 < z < a, (16a)

u(x, 0) = U(x), z = 0, (16b)

∂zu(x, a)− Tu[u(x, a)] = J(x), z = a, (16c)

and (15) as
G(g)[U ] = −∂zu(x, 0) +H(x). (17)

The forms for {F, J,H} have been derived and reported in [51] and, for brevity,
we do not repeat them here.

Following our HOPS/AWE philosophy we assume the joint boundary/frequency
perturbation

g(x) = εf(x), ω = ω + δω,
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and study the effect of this on (16) and (17). These become

∆u+ 2iα∂xu+ (γu)2u = F̃ (x, z), 0 < z < a, (18a)

u(x, 0) = U(x), z = 0, (18b)

∂zu(x, a)− Tu0 [u(x, a)] = J̃(x), z = a, (18c)

and

G(εf)[U ] = −∂zu(x, 0) + H̃(x). (19)

In these

Tu0 [ξ(x)] :=
∞∑

p=−∞
(iγu

p
)ξ̂pe

ip̃x,

and

F̃ = −εdiv [A1(f)∇u]− ε2div [A2(f)∇u]− εB1(f)∇u− ε2B2(f)∇u
− 2iαδ∂xu− δ2(γu)2u− 2δ(γu)2u

− 2iεS1(f)α∂xu− 2iεS1(f)αδ∂xu− εS1(f)δ2(γu)2u

− 2εS1(f)δ(γu)2u− εS1(f)(γu)2u

− 2iε2S2(f)α∂xu− 2iε2S2(f)αδ∂xu− ε2S2(f)δ2(γu)2u

− 2ε2S2(f)δ(γu)2u− ε2S2(f)(γu)2u, (20)

and

J̃ = −1

a
(εf(x))Tu [u(x, a)] + (Tu − Tu0 ) [u(x, a)] , (21)

and

H̃ = ε(∂xf)∂xu(x, 0) + ε
f

a
G(εf)[U ]− ε2 f(∂xf)

a
∂xu(x, 0)− ε2(∂xf)2∂zu(x, 0).

(22)
It is not difficult to see that the forms for the Aj , Bj , and Sj are

A0 =

(
1 0
0 1

)
,

A1(f) =
1

a

(
−2f −(a− z)(∂xf)

−(a− z)(∂xf) 0

)
,

A2(f) =
1

a2

(
f2 (a− z)f(∂xf)

(a− z)f(∂xf) (a− z)2(∂xf)2

)
,

and

B1(f) =
1

a

(
∂xf

0

)
, B2(f) =

1

a2

(
−f(∂xf)

−(a− z)(∂xf)2

)
,

and

S0 = 1, S1(f) = −2

a
f, S2(f) =

1

a2
f2.
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At this point we posit the expansions

u(x, z; ε, δ) =
∞∑
n=0

∞∑
m=0

un,m(x, z)εnδm, G(ε, δ) =
∞∑
n=0

∞∑
m=0

Gn,mε
nδm,

and, upon insertion into (18) and (19), we find

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m(x, z), 0 < z < a, (23a)

un,m(x, 0) = δn,0δm,0U(x), z = 0, (23b)

∂zun,m(x, a)− Tu0 [un,m(x, a)] = J̃n,m(x), z = a, (23c)

and
Gn,m(f) = −∂zun,m(x, 0) + H̃n,m(x). (24)

The formulas for F̃n,m, J̃n,m and H̃n,m can be readily derived from (20), (21),
and (22) above (see [34]).

Remark 1 In [34] we used the recursions (23) and (24) to establish the joint
analyticity of the DNO with respect to both interfacial and frequency defor-
mations.

5.1 Joint Expansion of Surface Data

In order to specify forms for the surface data, {ζn,m, ψn,m}, we require some
results from [44]. First we recall the Taylor series expansion of the quantity
γqp , (3), with respect to δ away from a Rayleigh singularity (Wood anomaly)
γq
p

= 0.

Lemma 1 [44] The quantity γqp has Taylor series expansion

γqp(δ) =
∞∑
m=0

γqp,mδ
m, q ∈ {u,w},

where
γqp,0 = ±γq

p
,

which we assume to be non–zero, giving rise to

γqp,1 =
2((kq)2 − α αp)

2γqp,0
, γqp,2 =

(γq)2 − (γqp,1)2

2γqp,0
,

γqp,m =
−
∑m−1
r=1 γqp,m−rγ

q
p,r

2γqp,0
, m > 2.

Remark 2 As we noted in [44] we must be away from a Rayleigh singularity,
γq
p

= 0, for all p in order for our expansion to be valid. See the final section of

[44] for a discussion of the behavior of the function γqp(δ) in the neighborhood
of a Rayleigh singularity.
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Next we require the expansion of the composition of the exponential func-
tion with the product of a function of ε and a function of δ jointly in ε and
δ.

Lemma 2 [44] Let E(g, V ) := exp(g(x)V (δ)) for a function g(x) and an an-
alytic function

V = V (δ) =
∞∑
m=0

Vmδ
m.

The composite function E(g, V ) = E(εf, V (δ)) is jointly analytic and has the
Taylor series expansion

E(ε, δ) =
∞∑
n=0

∞∑
m=0

En,mεnδm,

where

En,m =


1, n = m = 0,

0, n = 0,m > 0,

(V0)n f
n

n! , n > 0,m = 0,
f
n+1

∑m
r=0 En,m−rVr, n,m > 0.

Remark 3 We note that this latter lemma can be effectively used to compute
the expansions of the functions

e±iγ
q
p(δ)εf = Ep(εf,±iγqp(δ)) = Eq,±p (ε, δ) =

∞∑
n=0

∞∑
m=0

Eq,±p,n,mεnδm, q ∈ {u,w},

which we presently require.

Using this lemma we find Taylor expansions for the data generated by
plane–wave incidence (1e) and (1f). More specifically, for

ζ =

∞∑
n=0

∞∑
m=0

ζn,mε
nδm, ψ =

∞∑
n=0

∞∑
m=0

ψn,mε
nδm,

we have

ζn,m = −Eu,−0,n,m,

ψn,m =
m∑
r=0

(iγup,m−r)E
u,−
0,n,r + (∂xf)(iα)Eu,−0,n−1,m + (∂xf)(iα)Eu,−0,n−1,m−1.
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6 Numerical Results

We are now in a position to test a numerical implementation of our method
and demonstrate its advantageous computational complexity. Regarding the
algorithm, our HOPS/AWE scheme is a High–Order Spectral method [26,7,
59] in the same spirit as our related TFE algorithm [51], where nonlinearities
are approximated with convolutions implemented via the fast Fourier trans-
form (FFT) algorithm. To test its validity we compare simulations from our
implementation of this HOPS/AWE method to exact solutions constructed
from the Method of Manufactured Solutions.

6.1 Implementation

As we mentioned above, our formulation of the scattering problem is

A(ε, δ)V(ε, δ) = R(ε, δ),

c.f. (9), and our HOPS/AWE approach asks for the joint expansion of the
{A,V,R} in Taylor series, c.f. (11), where the {Vn,m} satisfy equation (12).
In our approximation we begin by truncating the Taylor series

{A,V,R}(ε, δ) ≈ {AN,M ,VN,M ,RN,M}(ε, δ)

:=
N∑
n=0

M∑
m=0

{An,m,Vn,m,Rn,m}εnδm, (25)

and all that remains is to specify (i.) how the forms An,m and Rn,m in (13)
are simulated, and (ii.) how the operator A0,0 is to be inverted.

For the latter we note that A0,0 is diagonalized by the Fourier transform
so that A0,0Vn,m = Rn,m can be expressed as

∞∑
p=−∞

Â0,0(p)V̂n,m(p)eip̃x =
∞∑

p=−∞
R̂n,m(p)eip̃x,

which implies

V̂n,m(p) =
[
Â0,0(p)

]−1
R̂n,m(p).

It is not difficult to see [43] that

Â0,0(p) =

(
1 −1

(−iγup ) τ2(−iγwp )

)
,

c.f. (13), implying that[
Â0,0(p)

]−1
=

1

∆p

(
τ2(−iγwp ) 1

(iγup ) 1

)
, ∆p := −(iγup + τ2(iγwp )).
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Remark 4 From these formulas it becomes obvious that the operator A0,0 is
always invertible and our algorithm is well–defined. Recalling that we assume
a dielectric in the upper layer (so that the incident radiation propagates) we
have that γup is either real and positive or purely imaginary (with positive
imaginary part). If a dielectric fills the lower layer then we have the same
state of affairs for γwp so that, given that τ2 will be positive and real, ∆p 6= 0.
Alternatively, if a metal fills the lower layer then γwp will be complex with
positive imaginary part. While it is less obvious, this ensures that, once again,
∆p 6= 0.

Regarding the forms An,m and Rn,m, these boil down to the simulation
of the terms Gn,m and Jn,m in Taylor series approximations of the DNOs,
G and J . There is a large literature on the simulation of these operators in
the case of a boundary perturbation alone (see, e.g., [48]), however, a novelty
of our current work is the approximation of these DNOs jointly in interface
and frequency deformation from the recursions found in Section 5. As we
presently describe, the method is very similar to that presented in [48] save
that additional elliptic solves are required.

6.2 A Fourier/Chebyshev Collocation Discretization

Focusing on the upper layer DNO, G, we begin by approximating

u(x, z; ε, δ) ≈ uN,M (x, z; ε, δ) :=

N∑
n=0

M∑
m=0

un,m(x, z)εnδm.

Each of these un,m(x, z) are then simulated by a Fourier–Chebyshev approach
which posits the form

un,m(x, z) ≈ uNx,Nz
n,m (x, z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
`=0

ûn,m,p,`e
ip̃xT`

(
2z − a
a

)
,

where T` is the `–th Cheybshev polynomial. The unknowns, ûn,m,p,` are re-
covered from (23) by the collocation approach [26,15,7,59,60]. With this we
can simulate the upper layer DNO from (24), giving

G(x; ε, δ) ≈ GN,M (x; ε, δ) :=

N∑
n=0

M∑
m=0

Gn,m(x)εnδm,

where

Gn,m(x) ≈ GNx
n,m(x) :=

Nx/2−1∑
p=−Nx/2

Ĝn,m,pe
ip̃x, (26)

and the Ĝn,m,p are recovered from the ûn,m,p,`.
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6.3 Padé Approximation

We conclude our discussion of implementation with consideration of how the
Taylor series in (ε, δ) are summed. For example, regarding the DNO, G, the
approximation of Ĝp(ε, δ) by

ĜN,Mp (ε, δ) :=
N∑
n=0

M∑
m=0

Ĝn,m,pε
nδm,

c.f. (26). The technique of Padé approximation [3] has been used with HOPS
methods to great advantage in the past [9,49] and we advocate its use here.
Classically, this approach seeks to estimate the truncated Taylor series of a
single variable

QN (ρ) :=
N∑
n=0

Qnρ
n ≈ Q(ρ),

by the rational function

[L/M ](ρ) :=
aL(ρ)

bM (ρ)
=

∑L
`=0 a`ρ

`

1 +
∑M
m=1 bmρ

m
, L+M = N,

and
[L/M ](ρ) = QN (ρ) +O(ρL+M+1);

well–known formulas for the coefficients {a`, bm} can be found in [3]. Padé
approximation enjoys greatly enhanced convergence properties and we refer
the interested reader to § 2.2 of Baker & Graves–Morris [3] and the insightful
calculations of § 8.3 of Bender & Orszag [5] for a thorough discussion of the
capabilities and limitations of Padé approximants.

In the current context of functions analytic with respect to two perturba-
tion variables we utilize the polar coordinates

ε = ρ cos(θ), δ = ρ sin(θ),

and write the function

Ĝp(ε, δ) =
∞∑
n=0

∞∑
m=0

Ĝn,m,pε
nδm

=
∞∑
n=0

∞∑
m=0

(
Ĝn,m,p cosn(θ) sinm(θ)

)
ρn+m.

Setting ` = n+m and s = m we can write this as

Ĝp(ε, δ) =
∞∑
`=0

{∑̀
s=0

Ĝ`−s,s,p cos`−s(θ) sins(θ)

}
ρ` =:

∞∑
`=0

G̃`,p(θ)ρ
`.

We then chose particular values of θ = θj between 0 and 2π and used classical

Padé approximation on the resulting {G̃`,p(θj)} as a function of ρ alone.
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6.4 The Domain of Analyticity

In [34] we rigorously demonstrated the joint analyticity of the fields, {u,w},
DNOs, {G, J}, and solutions, {U,W}, with respect to both boundary, ε, and
frequency perturbations, δ. As we have mentioned on several occasions, the
implicit smallness assumption on ε may be safely dropped upon consideration
of our previous work [48,49,52,29]. However, it is clear that no such extension
exists for δ as we have already seen how the expansion for γqp(δ) fails at a
Rayleigh Singularity, γq

p
= 0, c.f. Lemma 1. Therefore the permissible values

of δ must be constrained by this.

To guide our computations we explore this restriction on δ in more detail.
For instance, in the upper layer, Rayleigh singularities occur when α2

p = (ku)2

which implies

ω = ± c0
nu

{
α+

2πp

d

}
, for any p ∈ Z. (27)

In the interest of maximizing our choice of δ we select a “mid–point” value of
ω which is as far away as possible from consecutive Rayleigh singularities

ωq :=
c0
nu

{
α+

2π(q + 1/2)

d

}
. (28)

About this value the nearest singularities are

ω−q :=
c0
nu

{
α+

2πq

d

}
= ωq −

πc0
nud

,

ω+
q :=

c0
nu

{
α+

2π(q + 1)

d

}
= ωq +

πc0
nud

,

so to maximize our range of ω we choose, for some filling fraction 0 < σ < 1,

ωq − σ
( πc0
nud

)
< ω < ωq + σ

( πc0
nud

)
. (29)

To express this in terms of δ we recall that ω = (1 + δ)ωq which gives

−σ
(

πc0
ωqn

ud

)
< δ < σ

(
πc0
ωqn

ud

)
.

Simplifying gives

−
(

σ

(αd/π) + 2q + 1

)
< δ <

(
σ

(αd/π) + 2q + 1

)
. (30)
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6.5 Validation by the Method of Manufactured Solutions

To validate our scheme we utilized the Method of Manufactured Solutions
[14,56,57]. To summarize, consider the general system of partial differential
equations subject to generic boundary conditions

Pv = 0, in Ω,

Bv = 0, at ∂Ω.

It is typically easy to implement a numerical algorithm to solve the nonhomo-
geneous version of this set of equations

Pv = F , in Ω,

Bv = J , at ∂Ω.

To test an implementation we began with the “manufactured solution,” ṽ, and
set

Fv := P ṽ, Jv := J ṽ.

Thus, given the pair {Fv,Jv} we had an exact solution of the nonhomogeneous
problem, namely ṽ. While this does not prove an implementation to be correct,
if the function ṽ is chosen to imitate the behavior of anticipated solutions (e.g.,
satisfying the boundary conditions exactly) then this gives us confidence in our
algorithm.

We considered the periodic, outgoing solutions of the Helmholtz equation
(6a)

ur(x, z) := Are
ir̃x+iγu

r z, r ∈ Z, Ar ∈ C,

and their counterparts for (6b)

wr(x, z) := Bre
ir̃x−iγw

r z, r ∈ Z, Br ∈ C.

We selected the simple sinusoidal profile

g(x) = εf(x) = ε

(
cos(4x)

4

)
, (31)

and defined the Dirichlet and Neumann traces

Ur(x) := ur(x, g(x)), Ũr(x) := −∂Nur(x, g(x)), (32a)

Wr(x) := wr(x, g(x)), W̃r(x) := ∂Nwr(x, g(x)). (32b)

From these we defined the two–layer data to be provided to our algorithm

ζr := Ur −Wr, ψr := −Ũr − τ2W̃r. (32c)

We chose the following physical parameters

d = 2π, α = 0, εu = 1, εw = 1.1, r = 4, Ar = 5, Br = 3, (33)
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in TM polarization, and the numerical parameters

Nx = 32, Nz = 32, a = 1, b = −1. (34)

With a rescaling of the frequency (e.g., via a change of the time variable,
t′ = t/c0) we arrange for c0 = 1 and considered the base frequency

ω1 = 3/2,

and filling fraction σ = 0.99.
To illuminate the behavior of our scheme we studied four choices of the

numerical parameter

N = M = 4, 8, 12, 16,

and the physical quantities

ε = 10−2, 10−4, 10−6, 10−8,

in (31). For this we supplied the “exact” input data, {ζr, ψr}, from (32)
to our HOPS/AWE algorithm to simulate solutions of the two–layer prob-
lem giving {Uapprox

r ,W approx
r }. We compared this with the “exact” solutions

{U exact
r ,W exact

r } and computed the relative error

Errorrel :=
|U exact
r − Uapprox

r |L∞

|U exact
r |L∞

.

We point out that measuring the defect in the upper–layer Dirichlet data was
arbitrary and we noticed similar behavior for the lower–layer analogue.

We report our results of these simulations in Figures 2 and 3. More specif-
ically, Figure 2 displays both the rapid and stable decay of the relative error
for fixed N and M , and how this rate of decay improves as (ε, δ) decrease.
Figure 3 shows both how the error shrinks as (ε, δ) become smaller, and that
this rate is enhanced as both N and M are increased. To demonstrate that our
HOPS/AWE algorithm can address a larger contrast in permittivity between
the two layers, we revisited these calculations under identical circumstances
save that we increased εw from 1.1 to 10.1, resulting in the following set of
physical parameters

d = 2π, α = 0, εu = 1, εw = 10.1, r = 4, Ar = 5, Br = 3. (35)

In Figures 4 and 5 we see that we achieve comparable results with this larger
value of εw which induces far more propagating modes than the smaller per-
mittivty value from before.

To further explore the capabilities and limitations of our numerical scheme
we conducted simulations for boundary deformations of large size and low
smoothness following the guidance of our previous work in [48] on HOPS al-
gorithms. For this we considered the first frequency/wavelength range in (29),



20 Matthew Kehoe and David P. Nicholls

(a) N = M = 4, ε = 10−2 (b) N = M = 4, ε = 10−4

(c) N = M = 4, ε = 10−6 (d) N = M = 4, ε = 10−8

Fig. 2: Plot of relative error with fixed N = M = 4 and four choices of
ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were
(33) and numerical discretization was (34).

q = 1, TM polarization, and two–dimensional domains whose upper/lower
boundaries are shaped by the profiles

fs(x) =
cos(4x)

4
, (36a)

fr(x) =
(
2× 10−4

)
x4
(
2π − x4

)
− c0, (36b)

fL(x) =

{
−2x/π + 1, 0 ≤ x ≤ π,
2x/π − 3, π ≤ x ≤ 2π,

(36c)

where fs, fr, and fL represent boundaries which are smooth (C∞), rough (fi-
nite smoothness, C4), and Lipschitz, respectively. Following [48], the constant
c0 in (36b) is chosen so that (like fs and fL) fr has zero mean. As shown in
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(a) N = M = 4, ε = 10−2 (b) N = M = 8, ε = 10−4

(c) N = M = 12, ε = 10−6 (d) N = M = 16, ε = 10−8

Fig. 3: Plot of relative error with four choices of N = M = 4, 8, 12, 16 and
four choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical
parameters were (33) and numerical discretization was (34).

[48] the Fourier series representations of fr and fL are

fr(x) =
∞∑
k=1

96
(
2k2π2 − 21

)
125k8

cos(kx), (37a)

fL(x) =
∞∑
k=1

8

π2(2k − 1)2
cos
(
(2k − 1)x

)
, (37b)
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(a) N = M = 4, ε = 10−2 (b) N = M = 4, ε = 10−4

(c) N = M = 4, ε = 10−6 (d) N = M = 4, ε = 10−8

Fig. 4: Plot of relative error with fixed N = M = 4 and four choices of
ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were
(35) and numerical discretization was (34).

respectively. To minimize the effect of aliasing errors we approximated fr and
fL by the truncated Fourier series

fr,P (x) =
P∑
k=1

96
(
2k2π2 − 21

)
125k8

cos(kx), (38a)

fL,P (x) =

P/2∑
k=1

8

π2(2k − 1)2
cos
(
(2k − 1)x

)
. (38b)

If P � Nx/2 then the effects of aliasing are minimal and we chose P = 120
for all of our simulations.

In order to test the capabilities of our algorithm we performed simulations
with these profiles for large values of ε and report our findings for the maximum
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(a) N = M = 4, ε = 10−2 (b) N = M = 8, ε = 10−4

(c) N = M = 12, ε = 10−6 (d) N = M = 16, ε = 10−8

Fig. 5: Plot of relative error with four choices of N = M = 4, 8, 12, 16 and
four choices of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical
parameters were (35) and numerical discretization was (34).

value which produced reliable results. For the smooth profile, we selected

εmax = 2.0, a = 4, b = −4,

α = 0, σ = 0.99, nu = 1, nw ∈ {1.1, 10.1},
Nx = 256, Nz = 128, N = M = 20, (39)

and for the rough and Lipschitz profiles, we chose

εmax = 2.0, a = 4, b = −4,

α = 0, σ = 0.99, nu = 1, nw ∈ {1.1, 10.1},
Nx = 1024, Nz = 128, N = M = 20. (40)

We report the results of these simulations in Figures 6, 7, and 8. Here we
notice how, with a modest number of perturbation orders (N = M = 20)
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we can very accurately simulate the upper layer Dirichlet data (with relative
errors at most 10−5) with a quite reasonable number of unknowns, Nx = 256
(fs) or Nx = 1024 (fr,P and fL,P ) and Nz = 128. As the period in this case
is 2π we see how our algorithm can handle profiles of slope above 30% whose
smoothness is nearly the minimum required for our analyticity results, merely
Lipschitz.

(a) N = M = 20, ε = 2 (b) N = M = 20, ε = 2

Fig. 6: The relative error for fs computed with our HOPS/AWE algorithm with
Padé summation. We set N = M = 20 with a granularity of Nε = Nδ = 100
per invocation. Parameter choices were α = 0, σ = 0.99, nu = 1, (Left)
nw = 1.1 (Right) nw = 10.1, Nx = 256, and Nz = 128.

6.6 Simulations of the Reflectivity Maps

In Section 2.2 we defined the Reflectivity Map R = R(ε, δ), c.f. (7). Using our
novel HOPS/AWE approach we computed

RN,M,Nx,Nz

HOPS/AWE ≈ R,

for a range of ε and δ. As in our previous work [44], we show the kind of
simulations this HOPS/AWE method can produce with modest computational
effort. For this we selected ωq, c.f. (28), for 1 ≤ q ≤ 6 and simulated R in the
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(a) N = M = 20, ε = 2 (b) N = M = 20, ε = 2

Fig. 7: The relative error for fr,P computed with our HOPS/AWE algorithm
with Padé summation. We set N = M = 20 with a granularity of Nε = Nδ =
100 per invocation. Parameter choices were α = 0, σ = 0.99, nu = 1, (Left)
nw = 1.1 (Right) nw = 10.1, Nx = 1024, and Nz = 128.

(a) N = M = 20, ε = 2 (b) N = M = 20, ε = 2

Fig. 8: The relative error for fL,P computed with our HOPS/AWE algorithm
with Padé summation. We set N = M = 20 with a granularity of Nε = Nδ =
100 per invocation. Parameter choices were α = 0, σ = 0.99, nu = 1, (Left)
nw = 1.1 (Right) nw = 10.1, Nx = 1024, and Nz = 128.

following frequency/wavelength ranges

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091],

q = 4 : ω ∈ [4.005, 4.995] =⇒ λ ∈ [1.25789, 1.56884],

q = 5 : ω ∈ [5.005, 5.995] =⇒ λ ∈ [1.04807, 1.25538],

q = 6 : ω ∈ [6.005, 6.995] =⇒ λ ∈ [0.89824, 1.04633],
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c.f. (30). In addition, we selected

g(x) = εf(x), f(x) = cos(x), εmax = 0.2,

with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N = M = 16.

In Figure 9(a) we plot all six of these subsets of the Reflectivity Map on one
set of coordinate axes, and in Figure 9(b) we plot the energy defect, D, (8),
to verify the accuracy of our expansions.

(a) Reflectivity Map (b) Energy Defect

Fig. 9: The Reflectivity Map, R(ε, δ), and energy defect, D(ε, δ), for cos(x)
computed with our HOPS/AWE algorithm with Taylor summation. We set
N = M = 16 with a granularity of Nε = Nδ = 100 per invocation. Parameter
choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, and Nx = Nz = 32.

We then changed the lower index of refraction nw to match representative
values of silver and gold as reported by Johnson & Christy [32], in particular

nAg = 0.05 + 2.275i, nAu = 1.48 + 1.883i.

Using the same frequency and wavelength ranges, we studied

f(x) = cos(4x), εmax = 0.2,

with the parameters

α = 0, σ = 0.99, nu = 1, Nx = Nz = 32, N = M = 15.

In Figure 10(a) we plot six different subsets of the reflectivity map where the
lower index of refraction is selected to model the optical constant of silver. In
Figure 10(b) we plot six different subsets of the Reflectivity Map where the
lower index of refraction is changed to the optical constant for gold.
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(a) Reflectivity Map for Silver (b) Reflectivity Map for Gold

Fig. 10: The Reflectivity Map, R(ε, δ), where f(x) = cos(4x) for silver (left)
and gold (right) with Padé summation. We set N = M = 15 with a granularity
of Nε = Nδ = 100 per invocation. Parameter choices were α = 0, σ = 0.99,
nu = 1, nw = nAg (left) and nw = nAu (right), Nx = Nz = 32, and the
periodicity of the grating was selected as d = 2π.

We now turn to simulations featuring our large smooth, rough, and Lips-
chitz profiles defined in (36) and approximated by (38) (with P = 120 in this
contribution). As before, we worked in the first frequency/wavelength range,
q = 1, in TM polarization with parameter choices (39) for the smooth inter-
face and (40) for the rough and Lipschitz surfaces. We report the results of
these simulations in Figures 11, 12 and 13 for the smooth, rough, and Lipschitz
profiles, respectively. More specifically, Figure 11 displays the reflectivity map
and energy defect for the smooth profile, while Figures 12 and 13 make the
same comparison for the rough and Lipschitz profiles.

We conclude with computations of the same configuration but with in-
creased granularity, Nε = Nδ = 1000 per invocation. In the next section we
discuss the advantageous computational complexity our HOPS/AWE algo-
rithm enjoys in this situation of large Nε and Nδ. We selected

f(x) = cos(x), εmax = 0.2,

with the parameters

α = 0.01, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N = M = 16.

In Figure 14(a) we plot six different subsets of the Reflectivity Map on a
single coordinate axis, and in Figure 14(b) we plot the energy defect, (8), to
demonstrate the accuracy of our scheme with a nonzero value of α.
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(a) Reflectivity Map (b) Energy Defect

Fig. 11: The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fs
computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter
choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 256, and Nz = 128.

(a) Reflectivity Map (b) Energy Defect

Fig. 12: The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fr,P
computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter
choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 1024, and Nz = 128.

6.7 Computational Complexity

One of the primary motivations for our HOPS/AWE algorithm is its supe-
rior computational complexity for problems within its domain of applicability.
In comparison with classical BIE methods, for instance, the HOPS/AWE ap-
proach has several advantages for computing QoIs like the Reflectivity Map,
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(a) Reflectivity Map (b) Energy Defect

Fig. 13: The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fL,P
computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter
choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 1024, and Nz = 128.

(a) Reflectivity Map (b) Energy Defect

Fig. 14: The Reflectivity Map, R(ε, δ), and energy defect, D(ε, δ), for cos(x)
computed with our HOPS/AWE algorithm with Taylor summation. We set
N = M = 16 with a granularity of Nε = Nδ = 1000 per invocation. Parameter
choices were α = 0.01, σ = 0.99, nu = 1, nw = 1.1, and Nx = Nz = 32.

R = R(ε, δ). To demonstrate this we begin by fixing the problem of computing
R for Nε many values of ε and Nδ many values of δ.

We recall from Section 6.2 that our HOPS/AWE algorithm requires Nx ×
Nz unknowns at every perturbation order, (n,m), corresponding to the Nx
equally–spaced gridpoints in the lateral direction and the Nz collocation points
in the vertical dimension. A careful study of the HOPS/AWE recursions (12)
reveals that the computational complexity of forming the right–hand side at
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order (n,m) (the most costly step) is

O(nmNx log(Nx)Nz log(Nz)).

Inverting the operator A0,0 has complexity O(Nx log(Nx)Nz log(Nz)) so the
full cost of computing the {Un,m,Wn,m}, {0 ≤ n ≤ N, 0 ≤ m ≤M}, is

O(N2M2Nx log(Nx)Nz log(Nz)).

Once these coefficients are recovered, the cost of summing the series in (ε, δ)
is minimal, provided it is done in an efficient manner (e.g., by Horner’s rule
[13,2]). Our algorithm then requires an additional O(NεNδ) steps to sum over
every value of (ε, δ), therefore the full cost of computing the Reflectivity Map
by our HOPS/AWE method is

O(N2M2Nx log(Nx)Nz log(Nz) +NεNδ).

In contrast, for a single (ε, δ) pair, a BIM solver with Nx lateral gridpoints
requires time proportional to O(N3

x) for Gaussian elimination to solve the
resulting dense system of Nx equations in Nx unknowns [13,2,18]. Applying
this Nε ×Nδ times results in a total computational complexity of

O(N3
xNεNδ).

Thus, once Nε and Nδ become large, e.g.,

NεNδ >
N2M2Nx log(Nx)Nz log(Nz)

N3
x

,

our new algorithm becomes far more efficient.

7 Conclusions

In this paper we have described a novel, High–Order Spectral [26,15] High–
Order Perturbation of Surfaces (HOPS)/Asymptotic Waveform Evaluation
(AWE) method [44] which employs a perturbation approach to address the
geometric and frequency deviations from a base configuration. For quantities
which depend upon both of these variables, such as the Reflectivity Map, this
method enjoys extremely favorable computational complexity as compared
with standard numerical methods such as Finite Differences, Finite Elements,
and even Integral Equations. Our HOPS/AWE algorithm has been shown to
be rapid, robust, and highly accurate.
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