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Abstract—Complex systems frequently exhibit multi-way,
rather than pairwise, interactions. These group interactions can-
not be faithfully modeled as collections of pairwise interactions
using graphs and instead require hypergraphs. However, methods
that analyze hypergraphs directly, rather than via lossy graph
reductions, remain limited. Hypergraph motifs hold promise in
this regard, as motif patterns serve as building blocks for larger
group interactions which are inexpressible by graphs. Recent
work has focused on categorizing and counting hypergraph
motifs based on the existence of nodes in hyperedge intersection
regions. Here, we argue that the relative sizes of hyperedge inter-
sections within motifs contain varied and valuable information.
We propose a suite of efficient algorithms for finding top-k triplets
of hyperedges based on optimizing the sizes of these intersection
patterns. This formulation uncovers interesting local patterns of
interaction, finding hyperedge triplets that either (1) are the least
similar with each other, (2) have the highest pairwise but not
groupwise correlation, or (3) are the most similar with each other.
We formalize this as a combinatorial optimization problem and
design efficient algorithms based on filtering hyperedges. Our
comprehensive experimental evaluation shows that the resulting
hyperedge triplets yield insightful information on real-world
hypergraphs. Our approach is also orders of magnitude faster
than a naive baseline implementation.

I. INTRODUCTION

Many complex systems contain higher-order interactions

which are groupwise rather than pairwise. These systems may

suffer from significant information loss when modeled as

a graph [1]. For example, graph representations of author-

paper [2], company-board member [3], and actor-movie [4]

networks link entities within one of these classes based on their

group membership within the other. Once such networks are

modeled as graphs, groupwise relationships amongst entities

cannot be distinguished from pairwise ones. Finding dominant

patterns within these groupwise relationships is an important

part of categorizing today’s web ecosystem.

Hypergraphs precisely capture these group relationships in-

visible in ordinary graphs. A hypergraph consists of nodes and

hyperedges, where each hyperedge can contain any number

of nodes. Hypergraphs can also be represented as a bipartite

graph where nodes represent hypergraph nodes in one partition

and hyperedges in the other; bipartite edges link nodes across

partitions if the corresponding hyperedge contains that node.

Despite their broad applicability and expressivity, hypergraph

algorithms are limited when compared to their graph coun-

terparts. Furthermore, as shown in [5], [6], a number of

existing hypergraph algorithms only consider pairwise (rather

than groupwise) relationships, thereby effectively treating the

hypergraph as a graph. Consequently, there is significant

demand for efficient, hypergraph-native methods which utilize

the higher-order relationships hypergraphs encode.

One promising avenue for hypergraph-native analysis is

motif discovery. Motif discovery is effective in a myriad of

graph mining tasks, such as controversy identification [7],

DNA analysis [8], and dense subgraph discovery [9]. In

graphs, it is common for motifs to be based on triangles, which

are cycles of length three and hence the smallest nontrivial

dense subgraph. While there is no consensus as to what

constitutes a “hypergraph triangle,” a natural approach is to

consider three hyperedges as the smallest nontrivial building

blocks of hypergraph structure. Since hyperedges can contain

more than two nodes, they can intersect in a wide variety of

different ways that are impossible with three graph edges.

Focusing precisely on these intersection patterns, recent

work has aimed to classify and enumerate hypergraph motifs.

Most relevant to our work, Lee et al. [10] define 30 h-

motifs which exhaustively cover all ways three hyperedges

can intersect, up to symmetries. Crucially, these h-motifs are

defined based on whether nodes exist within certain inter-

section regions between hyperedges. However, in practice,

the sizes of intersection regions carry important information

about the strength of overlap between hyperedge groups [11].

Consequently, h-motifs ignore key distinguishing qualities: the

majority of motifs may belong to the same h-motif class and

the intersection sizes within each motif may vary between

being uniform and highly skewed. This problem is exacer-

bated in the presence of large hyperedges, as high cardinality

hyperedges increase the probability of having at least one node

in intersection regions, thereby allowing a single type of h-

motif’s counts to dominate all the others.

For these reasons, we propose a quantitative approach to

hypergraph motifs. We focus on sets of three hyperedges, or

hyperedge triplets, and the sizes of their connectivity patterns.

We call the nodes in one hyperedge but not the other two

the triplet’s independent regions, those in two but not the

third the disjoint regions, and those in all three the common



region. We formulate finding top hyperedge triplets as an

optimization problem where we want to maximize the size of a

specific region compared to the others. This yields three related

problems: finding hyperedge triplets that (1) are the least

correlated with one another, (2) have the highest pairwise but

not groupwise correlation, and (3) are the most correlated with

one another as a group. Our approach not only finds the global

maxima for each of these three problems but also readily

adapts to discover local maximum triplets—those maxima

containing a given hyperedge—and can be extended to find

larger subgraphs as well. This local procedure can be used to

give insight on behavioral patterns and the larger subgraphs

formed from these triplets may represent larger, cohesive

communities connected by a similar interest. In this work,

we focus on finding the top-k hyperedge triplets where k is a

user-inputted positive integer. Finding top-k motifs has been

previously studied with weighted triangles [12], [13], [14],

[15] and flow motifs [16]. To the best of our knowledge, there

is no prior work on finding size-aware motifs in hypergraphs.

To study this problem, we first consider a naive approach

which either iterates over all triplets or cyclic-connected

triplets of hyperedges. We show that this approach has pro-

hibitive time and space costs and is therefore not scalable

for large hypergraphs. As a remedy, we propose a hyperedge

avoidance scheme which skips over hyperedges based on their

cardinalities and intersection sizes. We also make use of a

preprocessing routine which filters out inapplicable nodes and

hyperedges and ranks hyperedges based on their cardinalities.

In an extensive experimental evaluation, we investigate the

applicability of our algorithms on real-world networks through

several case studies and application scenarios. We also exam-

ine the runtime performance of our algorithms.

Our contributions are summarized as follows:

• Novel problem formulation. We formulate three maximiza-

tion problems for finding top-k hyperedge triplets which

capture new relationships in hypergraph data. To the best of

our knowledge, this is the first proposal for discovering the

top-k size-aware hypergraph motifs.

• Efficient algorithms. We introduce algorithms for solving

the three aforementioned maximization problems. Our algo-

rithms, which iteratively update to-be-processed hyperedges

based on the current maximum hyperedge triplet, improve

upon a naive approach based on iterating over all candidate

hyperedge triplets.

• Experimental evaluation. We evaluate our algorithms on

several real-world hypergraphs to demonstrate practical run-

times. We also perform numerous case studies to illustrate

the informative insights afforded by the top-k hyperedge

triplets in practice.

II. PRELIMINARIES

A hypergraph is denoted as H = (V,E) where V is a set

of elements called nodes and E = (e1, . . . , em) is an indexed

family of sets where each ei ⊆ V is called an hyperedge. For

v ∈ V , E(v) is the set of hyperedges containing v and |E(v)|
is the degree of node v. For each hyperedge ei ∈ E, i is the

label for ei and |ei| is the size of ei. We call a set of three

hyperedges T = {a, b, c} a triplet. Hyperedges within a triplet

may be equivalent as sets but are always distinguishable by

index. We use
(

X

k

)

to denote the set of k-element subsets of

X . Lastly, we define n = |V |+ |E| and m =
∑

v∈V |E(v)| =
∑

e∈E |e|.

III. RELATED WORK

Here, we review prior work on bipartite and hypergraph

motifs.

Butterflies. Butterfly is a 2 x 2 biclique and represents

the smallest unit of cohesion in bipartite graphs [17], [18].

There have been many works on butterfly counting [19], [20]

along with efficient parallel approaches [21]. Butterflies are

commonly used as a basic motif for defining the community

structure in bipartite networks, clustering coefficients [22],

[3], and generative bipartite models [23]. Sarıyüce and Pinar

developed peeling algorithms based on butterflies for dense

subgraph discovery [9]. The main drawback of the butterfly is

its small size; it is restricted to two nodes and two hyperedges

and has limited ability in capturing higher-order relations.

6-cycles. A 6-cycle is formed by two connected wedges (2-

paths) which are closed by an additional wedge [24]. 6-cycles

are effectively used as an alternative to butterflies in clustering

coefficient definitions for bipartite graphs [25], [26]. One issue

with a 6-cycle is that it does not account for the presence

or lack of other possible edges among the 6 nodes. As a

remedy, an induced 6-cycle, which contains exactly 6 edges,

is proposed as it forms a triangle in the unipartite projection

with the minimal number of edges [27]. However, (induced)

6-cycles, like butterflies, offer a limited view on local structure

as it has a restricted number of nodes and hyperedges.

Higher-order motifs. Proposed by Lotito et al. [28], [29],

higher-order motifs provide an interesting approach for mod-

eling higher-order relations in hypergraphs. Given k num-

ber of nodes, higher-order motifs are all the possible non-

isomorphic connected hypergraphs (e.g., 6 motifs for k = 3)

where hyperedges can be overlapping. The authors provided

a combinatorial characterization of higher-order motifs by

giving upper and lower bounds for all possible motifs of

nodes. Significance profiles using motifs of size 3 and 4,

with respect to the configuration model in [30], show that

networks from the same domain exhibit similar trends. Higher-

order motifs are based on a set number of nodes which can

involve any number of hyperedges whereas our hyperedge

triplets can consider any number of nodes but are limited

to three hyperedges. In addition, we are interested in finding

specific motif instances that optimize our measures rather than

providing a global graph property.

s-walks. Initially proposed by Aksoy et al. as a framework for

hypergraph walks [11], s-walk is a sequence of hyperedges

where each consecutive pair of hyperedges share at least s
nodes. Aksoy et al. used s-walks as a basis for connected

component analysis, closeness-centrality, and clustering coef-

ficients in hypergraphs. s-walks can be further classified as s-

traces, s-meanders, and s-paths. A closed s-walk of size three



(a) h-motif 4 (b) h-motif 8 (c) h-motif 14 (d) h-motif 20

Fig. 1: A few examples of h-motifs, as denoted in [10]. Each circle
denotes an hyperedge and intersections represent the set of common
nodes. Colored-regions are non-empty.

connects three hyperedges in a cyclic manner. A closed s-walk

is an s-trace if all hyperedges are unique as sets; an s-meander

if it is an s-trace where no two hyperedge intersections are the

same; and an s-path if it is an s-meander where no hyperedge

intersection is a subset of another.

h-motifs. Lee et al. introduced h-motifs to describe the con-

nectivity patterns of three connected hyperedges [10]. Three

hyperedges are defined to be connected if 1 of them is adjacent

to 2 of the others. Given a set of 3 connected hyperedges

{e, f, g}, there exists 7 regions that describe the connectivity

relations: e\(f∪g), f \(e∪g), g\(e∪f), (e∩f)\g, (f∩g)\e,

(e∩g)\f , and e∩f∩g (see Figure 1). Based on these regions,

h-motifs describe all possible combinations of whether nodes

exist in them, up to symmetry. There are 24 closed h-motifs

where all three hyperedges are overlapping with each other. We

show four high frequency closed h-motifs in Figure 1. Lee et

al. observed that h-motif distributions can be used effectively

for evolution analysis of author-paper networks and hyperedge

prediction models. The aforementioned s-walk definition is

related to h-motif in that an h-motif can be categorized more

coarsely as a 1-trace, 1-meander, and/or 1-path of length three.

We stress that h-motifs do not consider size information,

unlike our work, as they only take into account the existence

or lack of nodes in each region. In a journal extension [31],

Lee et al. expanded upon h-motifs with kh-motifs by further

classifying them into k categories based on their region sizes

c, e.g., 3h-motifs have three categories for each region: (1)

c = 0, (2) c = 1, and (3) c ¿ 1. This again has the same

h-motif problem of larger hyperedges where all regions fall

into category (3). The authors motivate h-motifs and kh-motifs

through the avenue of hypergraph classification, unlike our

work which targets community detection.

IV. MOTIVATION

Before formalizing our problem statements, we first go over

the motivation in light of our preceding discussion of related

work.

The motivation behind Lee et al’s h-motif [10] and Aksoy

et al.’s s-walk [11] works (and by extension, ours) is in the

analysis of the structure of hypergraphs. These higher-order

methods operate directly on the hyperedges and reveal struc-

tures that cannot be detected by graph-based measures. Our hy-

peredge triplet approach is more related to h-motifs [10] and s-

walk [11] based motifs than bipartite cycle-based motifs [24],

[27] or higher-order motifs [28]. Butterflies and 6-cycles

constrain the number of hyperedges and nodes in a motif to

two or three, whereas our study considers three hyperedges

containing any number of nodes. Like our approach, h-motifs

also contain exactly three hyperedges and an unconstrained

number of nodes. Since the intersection relationships in h-

motifs are more refined than those in s-walks, we focus on

motivating our method in comparison to the existing h-motif

approach. However, note that the authors in [10] use h-motifs

in hypergraph classification (of small hypergraphs) while our

work is based on community detection (where the hypergraph

may be large).

Unlike h-motifs which analyze all structures, of which

many are trivial, our work provides a framework for finding

the best structures and relationships in a hypergraph. The

key difference between our work and h-motifs is that we

explicitly take the sizes of intersecting regions into account.

As we are the first work to find these interesting structures

using the intersection sizes of hyperedges, our work discovers

new insights unable to be uncovered by previous methods.

Factoring in the sizes of intersections has strong ramifications

when applying these methods to real-world hypergraphs. For

example, it is noteworthy that when testing the applicability

of h-motifs on real-world datasets, Lee et al. [10] only

tested on hypergraphs which filter their hypergraph data to

keep the maximum hyperedge size as 25. While in some

contexts removing hyperedges of certain cardinalities might

be justifiable [32] or part of data cleaning, ignoring large

hyperedges does lead to information loss, especially in con-

texts where large hyperedges are prevalent such as diseases

that connect thousands of genes or products with a large

number of reviews. To make it concrete, we offer a preliminary

study on how such filterings impact the occurrence of h-

motifs. We give the h-motif distribution for the raw unfiltered

GENE-DISEASE [33] dataset (see Table I) against a filtered

GENE-DISEASE with hyperedges of cardinality at most 25 in

Figure 2. Removal of higher cardinality hyperedges causes

the h-motif distribution to be relatively flat compared to the

original version—note that motif counts reduce from billions

to thousands. Furthermore, in the unfiltered version, it is

striking that four specific h-motif counts dominate the whole

distribution—namely motifs 4, 8, 14, and 20 where at least five

of seven regions are non-empty (shown in Figure 1). In our

evaluation, we found this occurrence to be common in real-

world hypergraphs when there are a significant number of high

cardinality hyperedges. This suggests that larger hyperedges—

a common occurrence guaranteed by the heavy-tailed degree

distributions—may skew the h-motif distributions, posing a

challenge for the expressivity of the h-motif framework.

To investigate this further, we generate synthetic versions

of GENE-DISEASE and examined the h-motif distribution.

We use the Erdős-Rényi and Chung-Lu hypergraph models

developed by Aksoy et al. [23] based on the work of Miller

and Hagberg [34]. Since Erdős-Rényi randomizes based on

the probability of a vertex-hyperedge membership, it often

generates hypergraphs of lower variance in terms of its

degree distribution. Chung-Lu, however, tries to match the



Fig. 2: Closed h-motif counts for GENE-DISEASE. The x-axis
contains arbitrary motif numberings for the closed h-motifs in [10].
Figure 1 shows the top four h-motifs in the original network.

degree distribution of a real-world hypergraph, which keeps

hyperedge cardinalities and vertex degrees in line with the

original network. Results suggest that the Erdős-Rényi version

typically does not have any significant disparity in its h-

motif counts, unlike the original network and similar to the

results from filtering high cardinality hyperedges. However,

the Chung-Lu model, which matches the degree distribution

in expectation, had a similar h-motif distribution compared to

the original GENE-DISEASE network. The reasoning for this is

clear: higher cardinality hyperedges often participate in more

h-motifs compared to hyperedges with lower cardinalities. Due

to the large number of nodes, these h-motifs also frequently

have at least one node in each of their regions. Thus, the

evaluation on synthetic data also suggests that the large

hyperedges may obscure and confound h-motif distribution

patterns.

For our model, we work on hyperedge triplets ranked by

the custom weights (function of sizes) of their intersection

patterns. This is similar to the concept of weighted triangle in

edge-weighted graphs [35]. Weighted triangles are 3-cliques

which are commonly measured by either the mean or the sum

of the triangle’s edge weights. Benson et al. studied using

weighted triangles for higher-order link prediction where the

goal is to predict which groups of nodes are most likely

form a new simplex (a group interaction) [36]. As such, these

simplexes essentially represent new hyperedges. Their analysis

suggests that triples of nodes with strong ties are most likely to

form new simplexes in the future. Inspired by Benson et al.’s

work, Kumar et al. proposed fast algorithms for finding the

top-k weighted triangles [12]. There are also many other works

which study top-k weighted triangles in recent years [13], [14],

[15]. In our work, we find the top-k hyperedge triplets which

adapts the concept of a weighted triangle for hypergraphs.

V. PROBLEM STATEMENT

Our approach focuses on the sizes of the different “region

types” defined by the intersection relations within a triplet. To

define these regions formally, let X ⊆ T denote a subset of

hyperedges within a triplet T . Then N := NT is defined by

N(X) =

(

⋂

x∈X

x

)

\





⋃

x∈T\X

x



 .

Put equivalently, N(X) picks out the elements shared across

every hyperedge within X that are not in other hyperedges

(in T ). Applying this function to all subsets of T yields a

partition, as visualized in Figure 3a. These regions fall into

three categories which we call the independent (R1), disjoint

(R2), and common (R3) regions:

• R1 = {N(a), N(b), N(c)}
• R2 = {N(a, b), N(a, c), N(b, c)}
• R3 = {N(a, b, c)}

We subsequently use these 3 region types to formulate 3

notions of hyperedge triplet weights. Namely, for a hyperedge

triplet T , its independent W1, disjoint W2, and common

weight W3 is given by:

Wj(T ) =
min

X∈(Tj )
|N(X)|

1 +
∑

i>j

∑

X∈(Ti )
|N(X)|

(1)

We take the minimum size of the target regions in the numer-

ator to prevent the misrepresentation of hyperedge triplets if

one region dominates the others. This is based on the concept

that a group is only as strong as its weakest link. We force

all three hyperedges to have high cardinalities which leads

to insightful relationships, unlike other aggregation functions

such as sum and mean. To avoid an undefined value when all

antagonistic regions are empty, we increment the denominator

by one. Division is used to reward a significant proportion

of nodes in the desired regions with the possibility of a

few outliers. Each weight definition (W1, W2, W3) considers

only the regions involving the number of hyperedges in their

subscript. For W1, we consider any region involving any single

hyperedge, which is all 7 regions. For W2, we consider any

region involving any two hyperedges, which includes both

R2 and R3. For W3, we consider any region involving all

(a) Region labels. (b) A toy triplet.

Fig. 3: Hyperedge triplet regions. Figure 3a depicts the independent
(R1), disjoint (R2), and common (R3) regions for the hyperedge
triplet {A,B,C}. Figure 3b shows a toy triplet where the in-

dependent weight is W1(T ) = min(7,5,6)
1+(2+2+3+1)

= 5
9

, the disjoint

weight is W2(T ) = min(2,2,3)
1+1

= 1, and the common weight is

W3(T ) =
min(1)

1
= 1.



three hyperedges, which is only R3. Lastly, while we focus

on triplets in this work, we note the above definition may be

applied to k-tuples of hyperedges for k > 3, yielding k-many

different region types. Figure 3b gives a toy example where

W1(T ) = min(7,5,6)
1+(2+2+3+1) = 5

9 , W2(T ) = min(2,2,3)
1+1 = 1, and

W3(T ) =
min(1)

1 = 1.

To account for the role that size plays in hypergraph motifs,

we consider the independent, disjoint and common weights to

define “good” hyperedge triplets. As we do not constrain the

number of nodes in a given region, we focus not on enumer-

ating motifs with a given intersection region size distribution

but rather on finding the “optimal” motifs with regard to their

size patterns. We thus cast this as a maximization problem

where we seek hyperedge triplets with the highest weights in

Equation 1. Our weight definition ensures that in the optimal

triplets a significant proportion of nodes are evenly distributed

across the corresponding region types. Our problem is defined

as follows:

Problem 1. For a hypergraph with hyperedge set E, the

maximum {independent, disjoint, common} problem is to find

the T ∈
(

E

3

)

that maximizes {W1(T ),W2(T ),W3(T )}.

In our implementation, we find the top-k hyperedge triplets

where k is a user-inputted positive integer. These hyperedge

triplets can then be used as building blocks for larger con-

nected structures.

Remark. We want to emphasize that a few other alternative,

and intuitive, weight definitions have significant flaws that

may lead to misleading results. One such formulation would

be the proportion of nodes in a specific region compared to

all regions. However, such an objective function would be

misleading as the weight definition would be normalized and

unable to adequately address the cardinalities of hyperedges—

a triplet with millions of nodes could be ranked the same as

a trivial triplet with only a few nodes. Another formulation

that divides by the sum of all other regions would be too

strict in sparse hypergraphs where the sizes in R1 frequently

dominates those in R2 and R3. This would result in only a

few, if any, significant disjoint and common hyperedge triplets.

Using min() in the denominator would also lead to misleading

results as three hyperedges may be labeled as independent even

though two of the three have significant overlap. Other aggre-

gation functions such as sum() and mean() in the numerator

may result in an empty hyperedge participating in a triplet

with two large hyperedges, which is a trivial relationship. Our

formulation involves a layered approach with R1 → R2 →
R3 where we take the minimum size of all regions in the

current layer and divide by the sum of the sizes of all deeper

layers. We also believe that this formulation can naturally be

extended to any number of hyperedges. For example, with four

hyperedges, we can incorporate another layer R4 for four-way

relationships which results in an additional layer after R3.

VI. ALGORITHMS

We start by introducing a naive approach in Section VI-A

which iterates over the set of candidate hyperedge triplets

Algorithm 1: BASIC (H , k, α)

Input: H = (V,E): hypergraph, k ∈ [1,∞),
α ∈ {1, 2, 3}: algorithm type, corresponding to

INDEPENDENT, DISJOINT, COMMON, respectively

Output: 4k: top-k hyperedge triplets

1 4k ← ∅; 4w ← 0
2 rename hyperedges in E by decreasing degrees

3 sort neighbor lists in H in ascending order

4 S ← ∅ // hashmap of hyperedge pairs to

node sets

5 foreach ex ∈ E do

6 foreach u ∈ ex do

7 foreach ey ∈ E(u) s.t. y > x do

8 S[x, y]← S[x, y] ∪ u
9 // C(α) is candidate set; which is all

triplets for INDEPENDENT and closed

triplets for DISJOINT/COMMON

foreach ex, ey, ez ∈ C(α) s.t. x < y < z and

|ez| > 4w do

10 w ← weight of {ex, ey, ez}
11 if w > 4w then

12 if |4k| < k then 4← 4∪ {ex, ey, ez}
13 if |4k| = k then

14 4min ← minimum weight triplet in 4k

15 replace 4min in 4k with {ex, ey, ez}
16 4w ← minimum weight in 4k

17 return 4k

for each maximization problem. Then, we propose a new

technique which filters future hyperedge triplets based on the

previously visited maximum ones in Section VI-B. Lastly, we

show how our algorithms can be adapted for local search

and introduce a merging approach to find larger subgraphs

of triplets in Section VI-C.

A. Enumerating through Candidate Sets

Here, we introduce a common framework for the three

baseline algorithms in Algorithm 1, BASIC. It has three

variants—INDEPENDENT, DISJOINT, COMMON—and all scan

through all the triplets in their candidate sets. The candidate

set for each problem is the minimal set of hyperedge triplets

that contains the desired maximum triplet.

The input is a hypergraph H = (V,E), a positive integer k,

and an algorithm type α, which is equal to 1, 2, or 3, for INDE-

PENDENT, DISJOINT, and COMMON variants, respectively. We

begin by modifying hyperedge ids and sorting neighbor lists

such that hyperedges with lower ids have higher cardinalities

than those with higher ids (lines 2 and 3). By organizing

hyperedges based on their cardinalities, we can process higher

cardinality hyperedges first, increasing the chance of finding

the maximum hyperedge triplet at an earlier iteration. After-

wards, we store all non-empty pairwise intersections between

two hyperedges in a container S (line 4). Then, we iterate

through all candidate hyperedge triplets where the lowest

cardinality hyperedge is greater than the current maximum

weight (line 9). The candidate set for the INDEPENDENT



variant (C(1)) is simply all
(

E

3

)

hyperedge triplets. For the

other variants, the candidate set (C(2) and C(3)) is all the

closed hyperedge triplets: ex, ey, ez ∈
(

E

3

)

s.t. |ea ∩ eb| > 0 ∀

ea, eb ∈
(

{ex,ey,ez}
2

)

. We find closed hyperedge triplets in O(1)
time by performing a lookup on S for overlapping hyperedges.

To speed up the weight computation on line 10, we use the

pairwise intersections stored in S to limit duplicate common

neighbor operations. Finally, the hyperedge triplets with the

highest weights are returned.

Time Complexity. Lines 5-8 traverses through all paths of

length 2 which contain two hyperedges and takes O(m · |E|)
time. Lines 9-16 compute the weight for all hyperedge triplets

and takes O(
(

|E|
3

)

· |V |) time, which is equivalent to the total

time complexity.

Space Complexity. In addition to the O(m) space required

for the graph, we store the intersection between every pair of

intersecting hyperedges in a container S (line 4). Therefore,

the space complexity is at most O(m · |E|). Since real-world

hypergraphs are typically very sparse, the required space is

usually much less than this maximum.

B. Avoiding Irrelevant Triplets

In this section, we introduce our main algorithms, MAX-

INDEPENDENT, MAX-DISJOINT, and MAX-COMMON. These

algorithms skip the processing of irrelevant hyperedges with

low cardinalities.

Given a hyperedge triplet {ex, ey, ez}, let x = |ex|, y =
|ey|, z = |ez|, xy = |ex ∩ ey|, xz = |ex ∩ ez|, yz = |ey ∩ ez|,
and xyz = |ex∩ey∩ez|. We can then represent the independent

(W1), disjoint (W2), and common weight (W3) formulations

in Equation 1 as:

W1 =
min(x− xy − xz, y − xy − yz, z − xz − yz) + xyz

xy + xz + yz − 2 · xyz + 1
(2)

W2 =
min(xy, xz, yz)− xyz

xyz + 1
(3)

W3 = xyz (4)

To speed up computation, we can skip over hyperedges

based on the upper bounds of their weights. Unlike the O(1)
time it takes to find the sizes of the independent regions

{x, y, z}, the disjoint {xy, xz, yz} and common regions {xyz}
take O(|V |) time for their set intersection operations. We

can achieve speedup by avoiding unnecessary set intersection

operations for hyperedge triplets with insufficient weight upper

bounds. This upper bound then becomes tighter as additional

region sizes are computed. Without loss of generality, we

have the following inequalities for {x, y, z}, which give us

new upper bounds: xyz ≤ min(xy, xz, yz) and
⌊

x
2

⌋

≥

min(xy/z, xz/y, yz/x). Let Ŵ1 be equal to the substitution

of min(xy, xz, yz) for xyz in W1. Then we have the following

inequalities which provide new upper bounds:

• Independent. x ≥ min(x,y)−xy

xy+1 ≥ Ŵ1 ≥W1

• Disjoint.
⌊

x
2

⌋

≥W2, xy ≥ min(xy, xz, yz) ≥W2

Algorithm 2: MAX (H , k, α)

Input: H = (V,E): hypergraph, k ∈ [1,∞),
α ∈ {2, 3}: algorithm type, corresponding to

DISJOINT, COMMON, resp.

Output: 4k: top-k hyperedge triplets

1 4k ← ∅; 4w ← 0
2 rename hyperedges in E by decreasing degrees

3 sort neighbor lists in H in ascending order

4 S ← ∅ // hashmap of hyperedge pairs to

node sets

5 // bool. expression depending on alg. type

θ(e,4w, α)←
⌊

|e|
2

⌋

> 4w if α = 2 else |e| > 4w

6 foreach ey ∈ E s.t. θ(ey,4w, α) do

7 T ← ∅ // hashmap of hyperedges to node

sets

8 foreach u ∈ ey do

9 foreach ez ∈ E(u) s.t. z > y and θ(ez,4w, α)
do

10 T [z]← T [z] ∪ u
11 foreach z,Nyz ∈ T s.t. |Nyz| > 4w do

12 // skip pair based on pairwise upper

bound

if |Nyz| > 4w then continue
13 foreach x,Nxy ∈ S[y] s.t. x ∈ S[z] do

14 v ← min(|Nxy|, |S[z][x]|, |Nyz|)
15 // skip common region calculation

based on triplet upper bound

if v > 4w then continue
16 w ← |ex ∩ ey ∩ ez|
17 if α = 2 then w ← v−w

w+1

18 if w ≤ 4w then continue

19 if |4k| < k then 4← 4∪ {ex, ey, ez}
20 if |4k| = k then

21 4min ← minimum weight triplet in 4k

22 replace 4min in 4k with {ex, ey, ez}
23 4w ← minimum weight in 4k

24 if θ(ey,4w, α) then

25 foreach z,Nyz ∈ T s.t. θ(ez,4w, α) do

26 S[z][y]← Nyz // limit duplicate

set ops

27 return 4k

• Common. x ≥ xy ≥ min(xy, xz, yz) ≥W3

Algorithm 2, MAX, presents our improved framework for

the DISJOINT and COMMON variants—pseudocode for the

INDEPENDENT variant is similar. We use the new upper

bounds above as part of an “early stopping” scheme. For

all of our algorithms, we start by renaming hyperedge ids

by decreasing degrees (higher cardinality hyperedges have

a lower id) and sorting neighbor lists in ascending order.

Then, we iterate through all pairs of hyperedges with at least

one common node. Note that we skip any hyperedge whose

upper bound is not greater than the current maximum weight.

Next, we store all non-empty hyperedge pairwise intersections

in a local container T . Afterwards, we iteratively traverse



through candidate hyperedge triplets and compute their weight.

Throughout this process, we update the upper bound criteria

accordingly and prematurely stop weight computation if the

upper bound does not exceed the target weight 4w. Our final

step is storing the global set intersections in a container S to

limit duplicate set intersection computations.

Our algorithms can be adapted to find hyperedge triplets

with a weight above a desired threshold. We can fix 4w to a

set threshold and return all hyperedge triplets whose weight

exceeds 4w.

Time Complexity. All three of our variants have the same

time complexity. In the worst-case, there exists no maximum

hyperedge triplets with a positive weight and hence the time

complexity is the same as Algorithm 1, which is O(
(

|E|
3

)

·|V |).
However, due to this being a rare scenario in real-world

hypergraphs, this is a very loose bound and our new algorithms

are typically much faster than Algorithm 1, as shown in

Section VII-E.

Space Complexity. For all three variants of the new al-

gorithm, global container S (Line 4) dominates the space

complexity of container T (Line 7). The space complexity

here is the same as Algorithm 1, which is O(m · |E|).

C. Applications

We consider two higher-level applications for our hyperedge

triplets.

Local search. Our algorithms can be adapted to find top-k
hyperedge triplets containing a given hyperedge query. We can

iterate over hyperedge triplets containing a queried hyperedge

and output those with the highest weights. This provides a way

of exploring maximal hypergraph motifs in the context of a

chosen hyperedge of interest. Local search can also give an

insight about the nature of the query hyperedge by comparing

the weights of its top-k independent, disjoint, and common

triplets. For example, a hyperedge associated with relatively

high common weights compared to its independent weights is

typically bundled with other hyperedges.

Large subgraphs of triplets. Although maximal hyperedge

triplets are informative, they only describe the relationships

between 3 hyperedges. We can obtain subgraphs with more

than 3 hyperedges by combining hyperedge triplets into larger

clusters of closely-related hyperedges. The idea is to merge

overlapping hyperedge triplets with high weights to find

groups of similar hyperedges. We can create an edge-weighted

graph where nodes represent hyperedges, edges connect nodes

which are in a hyperedge triplet, and edge weights reflect the

number of shared triplets to which that pair of hyperedges

belong. The connected components of this graph then represent

larger groups of hyperedges that are closely related.

VII. RESULTS

In this section, we evaluate our algorithms on several real-

world hypergraphs. We first explore the distribution of nodes

in our maximum hyperedge triplets through a study on entropy

in Section VII-A. Then, we present an in-depth case study on

the YELP dataset in Section VII-B. Next, in Sections VII-C

TABLE I: Dataset details. |V | is the number of nodes, |E| is the
number of hyperedges, m is the sum of node degrees (or hyperedge
sizes), and d∗E is the maximum hyperedge size.

Dataset |V | |E| m d∗E
GD 17,549 24,444 628,566 5,053

FO 25,076 178,265 718,379 1,091

DB 258,769 7,783 463,497 24,821

YE 1,987,929 150,346 6,745,760 7,568

AT 1,775,852 559,775 5,727,435 5,730

AB 15,362,619 2,930,451 51,062,224 58,147

and VII-D, we discuss the results of the applications built on

hyperedge triplets, as discussed in Section VI-C. Lastly, we

give the runtime results in Section VII-E.

Table I presents the statistics of our real-world hyper-

graphs used in experiments up to Section VII-E. GENE-

DISEASE (GD) is a network of gene-disease associations

from DisGeNET [33]. FOOD (FO) contains recipe reviews

covering 18 years of user interactions on food.com [37].

DBPEDIA (DB) connects artistic works or artists with genres

from DBpedia [38]. YELP (YE) features user business re-

views from Yelp [39]. AMAZON-TOOLS (AT) and AMAZON-

BOOKS (AB) contain user ratings on the tools/home improve-

ment and books categories of Amazon, respectively [40].

All experiments are performed on a Linux operating system

with an Intel Xeon Gold processor at 2.1 GHz and 256GB

memory. We implemented our algorithms in C++ and com-

piled using GCC 7.1.0 at the -O3 level. Our code is available at

https://anonymous.4open.science/r/hyperedge-triplets-blinded.

A. Node Distributions with Entropy

We first evaluate the goodness of our weight formulation

(Equation 1) from an information theoretical perspective in

Figure 4. We consider the relative entropies (i.e. Shannon en-

tropies) of the top 1M hyperedge triplets w.r.t. the independent

and disjoint variants in YELP. Relative entropy is defined as

−
∑

x∈X

px · log(px) where px is the probability of the event

x ∈ X . For the independent variant (Figure 4a), we compute

two entropy values for each triplet: (1) entropy of the three

independent regions (R1s in Figure 3a), denoted by green

circles, and (2) entropy of the sum of independent regions

(sum of R1s), sum of disjoint regions (sum of R2s), and

triple of the common region (3*R3), denoted by red circles.

The green circles, which are close to 1, imply that nodes

tend to be evenly distributed across the independent regions

whereas the red circles, which are close to 0, suggest that

almost all nodes are in the independent regions. This shows

that the numerator of Equation 1 is effective at establishing

parity among independent regions and that the denominator

ensures disparity among all region types. Similarly, for the

disjoint variant (Figures 4b), we compute two entropy values

for each triplet: (1) entropy of the three disjoint regions

(R2s in Figure 3a), denoted by green circles, and (2) entropy

of the sum of disjoint regions (sum of R2s) and triple of

the common region (3*R3), denoted by red circles. Again,

triplets with larger disjoint weights have higher parity w.r.t. the



(a) Independent: YELP (b) Disjoint: YELP

Fig. 4: Relative entropies of the independent and disjoint regions for
the top 1M independent and disjoint triplets, respectively. Entropies
are between the colored regions in the legend.

Fig. 5: The maximum disjoint hyperedge triplet in YELP: Ruby
Slipper Cafe, Coop’s Place, and The Original Pierre Maspero’s in
New Orleans.

disjoint regions and higher disparity w.r.t. regions of different

types. Our problem formulations can thus be viewed through

an information theoretical perspective: we target hyperedge

triplets which maximize the disparity among region types.

B. Case Study: YELP

In this section, we present the top hyperedge triplets

for each objective—independent, disjoint, and common—

on YELP [39].

Independent. The maximum hyperedge triplet has The Eagle,

Palace Café, and Mesa Verde restaurants with a weight of

1796. All three are highly reviewed restaurants in different

cities across the United States (Indianapolis with 2233 reviews,

New Orleans with 1822 reviews, and Santa Barbara with 1796

reviews, respectively) and serve different cuisines.

Disjoint. The maximum hyperedge triplet contains three

restaurants in New Orleans with a weight of 68. Ruby Slip-

per Cafe (A), Coop’s Place (B), and The Original Pierre

Maspero’s (C) are all within walking distance, as shown in

Figure 5. Ruby Slipper Cafe is a breakfast and brunch restau-

rant while others serve Cajun/Creole food with the Coop’s

Place being a bar and the The Original Pierre Maspero’s being

a sit-down restaurant. Interestingly, although many users have

reviewed two of the three restaurants, no users have reviewed

all three. Checking the keywords in the reviews, we observe

a division of users who go out to eat breakfast with around

35% of the reviews mentioning breakfast for AB and AC
but only about 6% for BC, where lunch and dinner are more

common. With an approximately 25% higher proportion of

reviews describing the bar experience for AB compared to

AC, the difference between AB and AC seems to rely upon

the preference for bars or restaurants.

From these findings, the management of A now know that

many of its interested customers often go to B or C based on

their bar or traditional restaurant preference, respectively. If

B is closed for a certain period of time, the management of

A can feature its bar offerings to improve business during this

period. As such, hyperedge triplets are an effective building

block for sites such as Y elp to help businesses make more

informed decisions.

Common. With a weight of 244, Reading Terminal Market,

Pat’s King of Steaks, and Geno’s Steaks are three businesses

in Philadelphia within 2 miles from each other with 5,721,

4,250, and 3,401 total reviews, respectively. Reading Terminal

Market is a popular farmers market while Pat’s King of Steaks

and Geno’s Steaks are cheesesteak stalls right next to each

other. The rivalry between Pat’s and Geno’s cheesesteaks

has sparked a well-known, contested debate. Along with the

historic tourist destination of Reading Terminal Market, three

of Philadelphia’s most popular tourist spots are captured here

thanks to the users who predominantly review all three places.

C. Local Hyperedge Triplets

Here, we provide a case study for the local search around a

query hyperedge, described in Section VI-C. We select the

Really Good Vegetarian Meatloaf (Really!) recipe, a niche

vegetarian meal, in the FOOD dataset and find the top-10

maximum triplets for all three variants around it.

Independent. All of the top-10 independent triplets (best

weight: 128) contain a meat option, such as ”fabulous beef

stew” or ”tortured chicken - beer can”, reflecting an opposite

taste for vegetarians. The third option is typically a healthy

meat option such as ”zesty low fat chicken breasts” or ”potato

salad with chipotle peppers (a man’s salad)” which contains

bacon. Note that the recipes with meat options also offer

distinct features of being healthy or not.

Disjoint. The top-10 disjoint triplets (best weight: 12) often

include a dessert like ”thick chocolate pudding” and ”oatmeal

cottage cheese pancakes” along with a chicken meal such as

”creamy cajun chicken pasta” and ”amazing chicken mari-

nade”. Note that the top disjoint weight (12) is much smaller

than the top independent weight (128).

Common. The top common weight (9) is even lower than

disjoint’s, suggesting that there is not much correlation with

other recipes.



Fig. 6: AMAZON-BOOKS’s largest connected component for common
weights of at least 500. The edge thickness in the visualization is
proportional to the number of triplets containing the connecting book
products. There are 6 Harry Potter books, one Harry Potter box set,
2 Harry Potter audiobooks, and a Casual Vacancy novel.

TABLE II: Runtime results (in seconds). ”−” denotes timed-out runs
that took more than 24 hours.

INDEPENDENT DISJOINT COMMON

Net. BASIC MAX BASIC MAX BASIC MAX

GD 4.72K 18.78 452.28 5.97 15.30 0.18

DB 14.39 0.24 0.32 0.24 0.30 0.22

YE 20.51K 2.93 2.46K 4.82 1.18K 3.41

AT - 2.72 145.94 3.41 43.47 2.86

AB - 32.61 68.75K 42.58 1.93K 24.19

D. Larger Patterns Via Triplet Merging

We now consider the hyperedge triplet merging approach

described in Section VI-C on AMAZON-BOOKS using hy-

peredge triplets with a common weight of at least 500. The

largest connected component in the results consists of ten J.K.

Rowling novels with nine related to the Harry Potter series

and one The Casual Vacancy edition. Figure 6 shows the

graph of this connected component with triangles representing

hyperedge triplets and edge thickness denoting the number of

triplets containing the book pair. The first two Harry Potter

novels along with the two audiobooks participate in many

triplets and form a central cluster. This follows the trend that

the first books in a series are typically more popular than later

books and that many readers prefer to own both a physical

copy and the corresponding audiobook. In regards to multiple

physical copies, readers typically do not purchase and review

multiple physical copies of the same book, as shown with the

Harry Potter box set lacking significant connectivity with its

individual novels.

E. Runtime Experiments

We compare our improved algorithms against the naive

baseline for finding the top-1 triplet for each variant. Ta-

ble II gives the results. BASIC-INDEPENDENT is not able

to finish computation in under 24 hours for AT and AB.

MAX-INDEPENDENT, MAX-DISJOINT, and MAX-COMMON

significantly outperform Algorithm 1 variants (BASIC-

Fig. 7: Runtimes (left) and number of processed triplets (right) for
MAX when varying k on AB.
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INDEPENDENT, BASIC-DISJOINT, and BASIC-COMMON).

Speedups vary between 1.3x and 1,615x.

When considering the top-k triplets, Figure 7 shows the

runtimes and number of processed triplets for our largest

network, AB, when varying k. Our best algorithms are able to

find and rank the top 1 million hyperedge triplets in about 1.9,

4.4, and 0.9 hours for our independent, disjoint, and common

formulations, respectively. We achieve this by processing only

a small proportion of all |E|3 hyperedge triplets. Real-world

hypergraphs typically have skewed degree distributions where

there are a few hyperedges with very large cardinality and

many with low cardinality. It is expected that hyperedges of

larger cardinalities tend to participate in higher weight triplets.

As a result, our “early stopping” considerations in Algorithm 2

have a significant impact on the runtime even though its time

complexity is the same as its corresponding BASIC variants.

VIII. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel problem formulation

for finding different types of top-k hyperedge triplets. The

connection patterns we formulate take advantage of the quality

offered by the intersection sizes in the ranking and discovery

of hypergraph motifs. We proposed efficient algorithms to

materialize each of those formulations in real-world data.

Experiments and case studies on real-world hypergraphs show

practical benefit and efficient computation on networks with

millions of nodes and edges.

Although h-motifs are designed to classify (small) hyper-

graphs, they are trivial for large hypergraphs, unlike hyperedge

triplets. It is well known that many graph neural network

architectures also have difficulty classifying large hypergraphs

due to their memory and runtime constraints. Hyperedge

triplets provide a building block for fast and memory-efficient

large hypergraph classification models, which we will address

as future work. Despite the strong performance exhibited by

our algorithms, we are yet to process hypergraphs with billions

of edges in a reasonable amount of time, which is another

interesting future direction to explore. Hyperedge triplets can

also be used to study hyperedge prediction as the hyperedges

with the strongest ties (or weights) are more likely to involve

nodes in new hyperedges.
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