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Abstract

Flying insects are thought to achieve energy-efficient flapping flight by storing and releasing elastic
energy in their muscles, tendons, and thorax. However, ‘spring-wing’ flight systems consisting of
elastic elements coupled to nonlinear, unsteady aerodynamic forces present possible challenges to
generating stable and responsive wing motion. The energetic efficiency from resonance in insect
flight is tied to the Weis-Fogh number (NN), which is the ratio of peak inertial force to aerodynamic

force. In this paper, we present experiments and modeling to study how resonance efficiency
(which increases with N) influences the control responsiveness and perturbation resistance of
flapping wingbeats. In our first experiments, we provide a step change in the input forcing
amplitude to a series-elastic spring-wing system and observe the response time of the wing
amplitude increase. In our second experiments we provide an external fluid flow directed at the
flapping wing and study the perturbed steady-state wing motion. We evaluate both experiments
across Weis-Fogh numbers from 1 < N < 10. The results indicate that spring-wing systems
designed for maximum energetic efficiency also experience trade-offs in agility and stability as the
Weis-Fogh number increases. Our results demonstrate that energetic efficiency and wing
maneuverability are in conflict in resonant spring-wing systems, suggesting that mechanical
resonance presents tradeoffs in insect flight control and stability.

1. Introduction

Flapping flight is an extremely power-intensive mode
of locomotion, requiring both high frequency wing-
beats and large forces to produce lift and perform
agile maneuvers. Flying insects achieve efficient flight
through a combination of specialized flight muscles
[1] and elastic energy storage in the thorax [2—4]. The
insect flight system can thus be described as muscle
actuation of an elastic structure which oscillates wings
to generate aerodynamic forces. We call this combina-
tion of elastic, inertial, and aerodynamic mechanisms
a ‘spring-wing’ system [5]. While significant research
focus has been devoted to the aerodynamic force gen-
eration of flapping wings (see review in [6]), relat-
ively fewer studies have focused on understanding the

implications of elastic energy storage and return for
flight dynamics and control [3, 4, 7-10].

In the classic spring-mass-damper model, there
exists a particular actuation frequency which results
in the largest amplitude oscillation of a mass, the so-
called resonance frequency. In the performance con-
siderations for a ‘spring-wing’ system, there exist sev-
eral different resonant wingbeat frequencies at which
different forms of optimality (maximum amplitude,
lift, or efficiency, for example) are achieved [11].
Operating at a resonant frequency that maximizes
lift can enable significant performance advantage,
allowing insects to use smaller muscle force/power to
generate lift for flight. Indeed, roboticists designing
insect-scale flapping robots have found that incorpor-
ating elasticity and operating near resonance enables
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higher lift and greater payloads using the same actu-
ator design [8, 12—-15].

To classify the relative importance of resonance in
spring-wing systems we have previously introduced
[5] the Weis-Fogh number (N), a dimensionless para-
meter that describes the ratio between peak iner-
tial and aerodynamic torques. The Weis-Fogh num-
ber joins other important dimensionless parameters
for flapping flight dynamics including the Reynolds
number, Rossby number, Strouhal number, Cauchy
number, and advance ratio [16-18]. The Weis-Fogh
number has a mutual relationship with the Cauchy
number, which in fluid-structure interaction prob-
lems represents the ratio of aerodynamic forces to
elastic forces acting on a system. In the discussion we
provide an analysis of how the Weis-Fogh and Cauchy
numbers are related. Previous work has demonstrated
that N governs how much energy can be recovered
into the elastic system of insects and robots on each
wingstroke, and thus is a measure of resonant effi-
ciency for flapping wing systems [5]. However, stable
and agile flight requires much more than just steady-
amplitude wing oscillations, prompting the ques-
tion at hand: how do spring-wing resonant dynamics
impact other aspects of flight such as wingbeat con-
trol and stability?

A spring-wing system flapping at a resonance fre-
quency is advantageous because the required power
for flight is reduced. However, there are other trade-
offs inherent in operating at resonance that become
important for wingbeat control and stability that have
not been fully considered in insect flight [19]. For
example, when actuated at the resonant frequency of
maximum wingstroke amplitude, any control change
to the wingbeat frequency will result in a decrease
in the wing amplitude and thus would require more
energy input per wingstroke to achieve lift [8, 20].
Thus, while resonance can aid in energetic efficiency
it can also limit the flapper’s ability to quickly change
wingstroke kinematics.

We hypothesize that the resonant behavior of a
spring-wing system influences the insect’s flapping
dynamics in response to internal control changes and
external perturbations. We motivate this a simple
thought experiment: Consider two insects with sim-
ilar wing shapes, but different total wing inertia. The
insect with the larger wing inertia would have to put
more energy in to driving its wing to full amplitude
flapping motion. Thus, for a fixed amount of muscle
force an insect with larger wing inertia—and thus
larger Weis-Fogh number N—would respond more
sluggishly to an amplitude control change than an
insect with lower N. On the other hand, consider if the
insect is flying in a crosswind and needs to maintain
its wingbeat amplitude to maintain stable hovering.
The crosswind is an aerodynamic perturbation that
acts on the wing and may cause the wing motion to
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deviate from steady-state if the aerodynamic perturb-
ation significantly overcomes the momentum of the
wing motion. In the case of aerodynamic perturba-
tions, a higher N (where inertia dominates over aero-
dynamic forces) would be less susceptible to wing-
stroke deviation. We hypothesize that the Weis-Fogh
number is a governing parameter of both wingbeat
response timescale (increases with N), and of suscept-
ibility to aerodynamic perturbations (decreases with
N). These two performance metrics impact man-
euverability and stability in competing ways, and thus
present a potential trade-off for spring-wing resonant
flight.

In this study, we examine the effect that varying
the Weis-Fogh number has on: (1) the responsiveness
of a flapping system to a step-change in control input,
i.e. starting from stop or changing amplitude, and (2)
the oscillatory stability of a flapping wing subjected
to an asymmetrical aerodynamic perturbation. In the
first section of this work we describe the background
and motivation of these hypotheses using an analytic-
ally tractable (linear) version of the spring-wing sys-
tem with a viscous damper in place of aerodynamic
drag. We present the results from two experiments on
a dynamically-scaled spring-wing robot that measure,
respectively, the time it takes for systems with dif-
ferent N to flap up to full amplitude and the ability
of those systems to maintain sinusoidal flapping kin-
ematics in the presence of a constant flow perturba-
tion. In the last section we discuss the implications of
these and prior results for the biomechanics of insect
flight systems and the design of flapping-wing micro
aerial vehicles.

2. A motivating example

In the following section, we introduce the Weis-Fogh
number as a classification of spring-wing resonance.
We next motivate our study’s hypotheses by studying
alinear spring-mass system that is subjected to a step-
response change in control force amplitude, or a step-
response perturbation to the damping force. Lastly,
we provide a comparison between the linear spring-
mass system and the nonlinear spring-wing system.

2.1. The Weis-Fogh number governs spring-wing
resonance dynamics

The Weis-Fogh number is named for Torkel Weis-
Fogh, a pioneer in insect flight biomechanics and
discoverer of the elastic protein resilin [2, 10]. It
is defined as the ratio between maximum inertial
and maximum aerodynamic torque during flapping.
Inertial torques are due to the acceleration of the mass
of the wing and the surrounding air (added mass or
‘virtual’ inertia [21]) as the wing flaps, and the aero-
dynamic torques are due to drag on the wing in the
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wing stroke plane:

_ maxX(Tinertia) N

max (Taero)
If a spring-wing system has inertia I, aerodynamic
drag coefficient I', and oscillates sinusoidally with
peak-to-peak amplitude 6,, we can express the Weis-
Fogh number as

N=_—. )

Weis-Fogh introduced this term as a part of an
argument about the necessity of elastic energy stor-
age and return in the flight system of insects [3]. It
expresses the relative influence of inertial and aero-
dynamic effects on the dynamics of a flapping wing;
N < 1 means aerodynamic forces dominate, whereas
N > 1 means that inertial forces are dominant.

We found, through dimensional analysis and
dynamically-scaled robotic experiments, that N
also has a significant relationship to the resonant
characteristics of spring-wing systems. Consider
the equation of motion of a spring-wing system
with structural (frequency-independent) damping
as defined in [5]:

Ité+ke+k19'+r|é|é=m 3)
w

where 6 is the wing angle, I, is the total inertia of
the wing plus added mass inertia, k is the average
spring stiffness across the wing stroke, +y is the struc-
tural damping loss modulus [22], w is the forcing fre-
quency, and T, is the input torque, which is assumed
to be sinusoidal for analysis purposes, The system
constitutes a forced harmonic oscillator with non-
linear aerodynamic damping torque coefficient T,
which is typically much larger than the frequency-
independent structural damping term [23]. Note that
this model uses bulk stiffness, inertia, damping, and
torque terms that are related to multiple complex
anatomical components. For example, the sinusoidal
torque expression on the right hand side of the
equality is a simplification of the effect of antagon-
istic muscles driven electrochemical signals and act-
ing through a flexible thorax to create angular wing
motion. Throughout this paper, we will focus on the
bulk motion of the wing due to sinusoidal forcing and
using stroke-averaged parameters to enable the reader
to build intuition about these complex systems.

The expression can also be written in non-
dimensional form in terms of the dimensionless
angular wing displacement g, the non-dimensional
stiffness K= w?/w? (which is 1 when the system
is driven at its natural frequency w, = \/k/I,), the
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structural damping factor -y, and the Weis-Fogh num-
ber N:

i+ Kq+Kyqg+N""|glq = Fin. (4)

Full derivations and further discussion can be found
in [5]. Previously, we found that when flapping at
resonance, the dynamic efficiency, a measure of the
amount of muscle work that goes directly to produ-
cing lift/overcoming drag, n = %, decreases as N
increases in systems with any internal damping losses,
i.e. from friction or viscoelastic effects [5]. Therefore,
while it is beneficial to have an N > 1 for elastic energy
exchange and resonance, higher values of N have

diminishing returns in terms of peak efficiency.

2.2. Linear system analysis highlights stability and
maneuverability trade-offs in resonant
spring-wing flight

To gain insight into how we should expect the spring-
wing to behave in our start up and constant aerody-
namic perturbation experiments, we start by study-
ing the behavior of a linear spring-mass-damper.
We choose to use the linear equations because the
quadratic aerodynamic damping in the spring-wing
equations prohibit closed-form solutions. However,
we will show that features of the linear system are ana-
logous to the nonlinear version and draw conclusions
based on that.

2.2.1. Normalized linear spring-mass-damper
Consider the normalized linear spring-mass-damper
equation:

% + 26 wpk + wix = F,,sin (wt) (5)

where wy, is the natural frequency of the system and
¢ is the damping ratio. Another way to write 5 is by
defining the quality factor

1 mwy

= — = 6
Q=3 £~ D (6)
and substituting into the dynamics equation
.. wn . 2 .
X+ Eerwnx:Fmsm (wt). (7)

The quality factor represents the effectiveness of
energy storage and return in the spring-wing system
during oscillations, and it can be visually represen-
ted by the ‘sharpness’ of the resonance peak when
plotting oscillation amplitude versus frequency. Low
quality factors (Q < 0.5) result in overdamped sys-
tems with no resonance peak and no energy sav-
ings from the spring, whereas higher Q results in a
sharp resonance curve and indicates efficient energy-
exchange between the spring and the oscillating mass.
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Figure 1. Rise time in simulated linear spring-mass-damper. Time to full amplitude is proportional to Q. a and b show startup to
45° degree amplitude and an amplitude change from 45° to 90° for Q =2 and Q = 8 respectively. The rise time is slower with
higher Q, as shown in ¢ for several values of full amplitude percentage, p.

2.2.2. The time to full amplitude varies linearly with Q
The solution to the equation
(equation (7)) for Q> 0.5 and starting from rest is
an oscillatory motion that has a transient exponential
amplitude growth that saturates at the full oscillatory
amplitude. The growth rate of the transient amp-
litude is determined from the standard methods as

spring-mass

Wn
A= — 8
5 ®)
which is inversely related to Q. Thus, we can solve
for the time it would take a forced linear oscillator to
reach € =95% of full amplitude as

_ —Ine
b =X
_ —2lne
— =2heq )

or, expressed in terms of the natural period T, =
27 fwn

t e —Ine
T, s

Q. (10)

This analysis tells us that transient changes in amp-
litude from a change in oscillator forcing will decay
in a number of wingbeats directly proportional to
the quality factor Q. We illustrate this phenomena in
figure 1.

Thus, a spring-wing system with large quality
factor will be more ‘sluggish’ in response to control
input changes, because the response timescale is large.

2.2.3. The relative influence of aerodynamic
perturbations is inversely proportional to Q
Consider a wing flapping in a viscous flow such that
the effective velocity at the wing is x — v. Ignoring

added mass effects that may be present in the aero-
dynamic system, equation (7) can be rewritten

i o (% —v) + wx = F,,sin (wt)

Q

kg %ijrwﬁx:Fmsin(wt) + %v. (11)

The effect of the perturbation after the transient has
decayed is to introduce a torque that biases the spring
in the direction of the external flow. The magnitude of
the spring deflection is proportional to the flow velo-
city and is inversely proportional to Q. Thus the influ-
ence of an external flow on a linear flapping system is
smaller in a spring-wing system with higher Q.

2.3. Resonance presents competing influences on
wing maneuverability and perturbation rejection
The previous two sections illustrated how the control
timescale and susceptibility to aerodynamic perturb-
ations are influenced by the resonant properties of a
linear spring-mass-damper. The quality factor (Q) is
an important metric in determining properties of a
resonant system, and highlights potential trade-offs
in wing maneuverability and stability. Higher Q will
result in a slower control response from actuation, yet
external fluid forces acting on the wing will result in
smaller disruption to wing motion. Lower Q will res-
ult in fast control response from actuation, however
external fluid forces will cause disruption to the wing-
beat kinematics. This linear systems analysis provides
motivation for examining the role of spring-wing res-
onance in the timescales of control and susceptib-
ility to aerodynamic perturbations in flapping wing
systems.
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2.4. The Weis-Fogh number N is the quality factor
of a spring-wing system

One method of comparing the nonlinear spring-wing
and linear spring-mass equations is to approximate
the linear damping coefficient b with the aerodynamic
damping coefficient I' multiplied by the maximum
velocity of the wing max(f) = fow. Defined as such,
the damping terms for both spring-mass and spring-
wing equations are equivalent at mid-stroke where
the wing velocity is highest. This is called the secant
approximation and has been used in previous analysis
of flapping wing systems [24]. We can define the fol-
lowing relationship for the linear damping coefficient
that models the spring-wing

bsw = Fﬁow (12)

Substituting this expression into the equation for the
damping ratio yields the following

£ = bsw

2mwy
TOyw
2mwy

_ 1
_ﬁi' (13)

Thus, we see that the Weis-Fogh number has a natural
connection to the damping ratio of a linear spring-
mass system under the secant approximation. If we
make the assumption that the system is on resonance
(w = wy) then the relationship is as follows

£=—. (14)

We can push this analogy one step further if we con-
sider how the quality-factor relates to the damping
coefficient, and by extension the Weis-Fogh number

Q =13
2N
2
—N. (15)

We have demonstrated that the Weis-Fogh number is
equal to the quality factor of a linearized spring-wing
system using the secant approximation. This corres-
ponds to our measurements in [5].

We test the scaling relationship between Weis-
Fogh number N and the dynamic behavior of spring-
wings via two experiments in a robophysical model.
The first measures response to control inputs by
measuring time to peak amplitude from rest, and the
second measures the effect of environmental perturb-
ations via measuring the effect of constant cross-flow
on symmetry of flapping dynamics. The results sug-
gest that in addition to its effect on peak dynamic effi-
ciency, N illustrates the scaling of agility and perturb-
ation rejection among insects and other small-scale
flapping systems.

J Lynch et al

3. Experimental methods

To demonstrate the relationship between N and the
tradeoffs in stability and agility of flapping in spring-
wing systems, we perform a series of experiments
on a dynamically-scaled robotic spring-wing system.
The robotic system is subject to real fluid forces at
Reynolds numbers that are scaled to those experi-
enced by insects and insect-scale robots.

3.1. Dynamically-scaled, series elastic robophysical
model

The robotic spring-wing system used in this paper
was described in detail in [5] and is shown in figure 2.
It consists of a high-torque servo motor (Teknic
ClearPath) connected to a rigid, fixed pitch acrylic
wing in a large tank of water. The elasticity comes
from a molded silicone torsion spring in series with
the wing 2. We created three springs from Dragon
Skin 30 silicone (SmoothOn) cast in 3D printed
molds, varying the geometry so that they each had a
different stiffness. We vary the overall inertia of the
system by attaching mass to the main shaft of the flap-
per (above the water) in the form of acrylic and alu-
minum plates (figure 2(c)). We minimize friction by
integrating radial air bearings and a thrust ball bear-
ing, and we assume that drag from rotation through
the air is much smaller than from the motion of the
wing in water. See table 1 for a list of the inertia and
stiffness values.

3.2. Controlling N, an emergent property of
spring-wing flapping systems

We sought to compare the transient behavior of the
flapper when it flaps with different values of N.
However, due to the dependence on flapping amp-
litude 6y, N is an emergent quality of a system, and
therefore is difficult to prescribe directly. The fol-
lowing section describes the process of determining
robotic system configurations for a range of N = 1-10
that are used for robustness and agility experiments.
In all cases, we refer to a value of N computed using
the steady-state flapping amplitude, 6, and the mean
drag torque coefficient I at steady state.

3.2.1. Determine constraints

Based on the range of N seen in insects and flapping
robots [3, 5], we sought to test 10 integer values of N,
from N =1 to N = 10. Since we are interested in res-
onant flapping performance, we require the forcing
frequency be at the damped resonant frequency,

w? = 7(})1% (16)

T V1H4NT?
derived using the method from [5]. Additionally, we
seek to minimize the range of Reynolds number (Re)
across tests. The roboflapper is designed to operate
within a range of Re that is similar to insects and small

birds (Re € [10?-10*]), as significant deviations out
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Figure 2. The series-elastic spring-wing system. (a) Conceptual diagram indicating the angle input, linear spring with structural
damping, and rigid fixed-pitch wing. (b) Corresponding photo of the roboflapper indicating the ClearPath servo motor, silicone
torsion spring, and acrylic wing in a large tank of water. (c) Diagram of the whole electromechanical system. Reproduced from

[5]. CC BY 4.0.

Table 1. Inertia and spring stiffness values for the roboflapper.

Inertia (kg m?) Springs (Nm rad™!)

IA 0.00 105 K1 0.164
IB 0.00 149 K2 0.416
IC 0.00233 K3 0.632

ID 0.00476

of that range introduce aerodynamic phenomena that
may not be relevant to flapping flight at that scale.

Beyond those considerations, we are limited by
constraints on the robotic system. Mechanically, we
must use one of three silicone springs, one of four dis-
crete inertial configurations, and the same wing with
T =1.07 x 1073 Nm. On the control side, we found
that our system works best when the flapping amp-
litude is between ~30° and 120° peak-to-peak and the
flapping frequency is between 0.5 and 3 Hz.

3.2.2. Choosing configurations for values of N

With three springs and four inertia configurations, we
have a total of 12 combinations of springs and iner-
tia plates that are possible. We have continuous con-
trol of the amplitude and frequency within functional
bounds. The process of choosing a configuration for
each value of N is as follows:

(i) Given a particular value of N, compute 6, = %\]
for each of the four inertias. Exclude any config-
uration where 6, >60°.

(i) Compute the resonant frequency f, based on
the remaining inertias and the three available
springs. Exclude any configurations where f; is
greater than 3 Hz or less than 1 Hz.

(iii) Compute the Reynolds number, Re = U;:"C of

flapping based on that amplitude and fre-

quency as well as wing length and chord,

10 cm and 3.6 cm, respectively. Exclude con-

figurations with Re >~ 15000, which is near

6

upper limit of Reynolds number for insects and
hummingbirds [18].

(iv) Select a configuration for each value of N from
the non-excluded configurations

The final selections are given in table 2.

3.3. Experiment 1: starting from rest and changing
amplitude
We sought to measure the effect of a system’s N on
the time it takes for the system to respond to a change
in input forcing amplitude. A straightforward way of
doing so is to measure the time it takes for flapping
oscillations to reach a steady-state amplitude after
startup. Furthermore, we measured the time it takes
to reach a new amplitude after a change in the input.
For each test, the spring stiffness and inertia were
set based on the configurations above. The system
was driven by a sine wave position signal to the servo
through Simulink Desktop Real-Time (Mathworks)
and a PCle 6343 interface (National Instruments).
The frequency was set based on the configuration
table, but the wing amplitude is not set explicitly
because of the series-elasticity of the roboflapper. We
found previously that modeling does not fully predict
the kinematic gain between angular motor amplitude
and wing amplitude [5]. Therefore, for each configur-
ation, we found the proper input amplitude to achieve
the desired wingbeat amplitude iteratively using a
separate Simulink Desktop Real-Time program, prior
to the tests, and recorded the input amplitudes. When
we performed each experiment, we used the input
amplitudes to drive the system in open-loop, which
was a fairly reliable way to dictate N (see table 2).
Each test was performed by starting the sinus-
oidal position signal and running for 15 flapping
periods, long enough for the amplitude to stabilize
(figure 3(a)). After 15 periods, the sinusoidal amp-
litude of the motor position command signal was
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Table 2. Spring, inertia, target amplitude, and frequency configurations for each experiment. Amplitude is given as half of the
peak-to-peak stroke. The rightmost column lists the mean and standard deviation of the emergent value of Weis-Fogh number, N, for
each configuration based on the flapping amplitude measured via a sine curve fit.

Exp.  Spring Inertia  Amplitude (deg)  Frequency (Hz) N

1 K1 1A 56.2 1.33 1.0 £ 0.01
2 K1 IB 40.0 1.40 2.0 £0.01
3 K2 IA 18.7 2.89 3.0 £0.01
4 K2 IB 20.0 2.51 4.0 £0.01
5 K2 IC 25.0 2.05 5.0 £ 0.04
6 K3 ID 42.5 1.45 6.0 +0.01
7 K3 ID 36.8 1.45 6.9 +0.02
8 K3 ID 31.8 1.80 8.0 £0.02
9 K3 ID 28.3 1.81 9.0 +0.03
10 K3 ID 25.5 1.82 10.0 £ 0.03

increased by 50%, and the experiment continued for
a further 15 periods before ending the experiment.
This process was repeated five times for each value
of N and sampled at a rate of 1000 samples per
period. Note that we refer to the number of periods
and that each experiment was run at a different fre-
quency (table 2), so the total runtime varied. The final
amplitude 6, was determined by fitting a sine curve
to the last 5 periods of the each portion of the test
using a bounded nonlinear least squares method in
MATLAB (Mathworks). Then an exponential curve
(f(t) = 0y(1 — e~ was fit to the peaks of absolute
value of the wing angle in the start and step portions
of the data, and the time to 95% of 6, was computed
using fgs = —In (0.05) A\~ 'f; (figures 3(b) and (c)). To
create the plots in figures 3(b) and (c), N was recalcu-
lated based on actual experimental amplitude meas-
urements using equation (2). The actual amplitude
from fitting the sine curve varied slightly from the
prescribed amplitude, resulting in a small amount of
horizontal spread of effective N for each experiment.
The means and standard deviations of both N and o5
are plotted in appendix B, and the values for N can be
found in table 2.

3.4. Experiment 2: effect of constant cross-flow

For the second experiment, we wanted to see how N
relates to the flapping wing’s ability to reject envir-
onmental disturbances. We did this by subjecting the
flapping wing to a constant crossflow and measur-
ing its deviation from a symmetrical sine wave. The
flow was provided by a submerged aquarium pump
(Simple Deluxe LGPUMP400G 400 GPH) fitted with
a 1/2” diameter rubber tube. The outlet of the tube
was positioned such that it was aligned with the
acrylic wing in the tank and created the maximal pass-
ive deflection (see figure 4(a) against the spring, but
did not interfere with flapping, i.e. there was no dif-
ference between flapping trajectory whether the tube
was in place or not. We measured the torque on the
wing when the pump was on and the flow was perpen-
dicular with the wing. We found that the torque was
approximately 0.01 Nm, only enough to deflect the

softest spring about 3.5°. The maximum peak aero-
dynamic torque across the experiments is for N =1
and is Tymax = L'(6p)?(27f)? = 0.072 mNm. Thus the
magnitude of the perturbation is significantly lower
than the maximum drag induced by flapping motion,
but is still enough to induce asymmetry in flapping.

We ran the flapper with a constant sinusoidal
input that produced a wing amplitude consistent with
the proper configuration at each value of N. We recor-
ded the wing trajectory with the pump off to set a
baseline at each value of N, then turned the pump on.
We analyzed the impact of aerodynamic perturbation
on the flapping kinematics by fitting a sine function
to the wing trajectory at steady state using MATLAB
functions (Mathworks) and recording the fit error
(RMSE). The fit error was normalized to the flap-
ping amplitude at that configuration so that it rep-
resents the fraction of flapping amplitude and is unit-
less. Additionally, we noted a change in steady flap-
ping amplitude with the pump on, and plotted the
relative change in amplitude from the no flow case to
the constant flow case.

4, Results

4.1. Start time and step time increase linearly with
N
We measured the time interval from initiation of flap-
ping to reaching 95% of the steady-state flapping
wing amplitude from an exponential fit. To normal-
ize this time period across different resonance fre-
quencies we multiplied the start-up time by the fre-
quency of flapping, resulting in a measurement of
the number of wing strokes to reach steady-state. The
results across N are shown in figure 3(b). We see
that there is a clear relationship between increasing N
and increasing time to full amplitude (dashed lines).
Configurations with N =1 or 2 are at full amplitude
within a single wingstroke, whereas N = 8—10 systems
take four or more wingstrokes.

The relationship is linear (fg, = 0.486N —
0.243), but there is a small amount of variance
(appendix, figure B1) for each prescribed value of
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Figure 3. Responsiveness Experiments. (a) We drive the series-elastic system via servo (blue) and measure the emergent flapping
kinematics (orange). We fit exponential curves to the flapping peaks during start up (yellow) and after an input step (purple) 15
cycles after start. The measured time (in wing strokes) to full amplitude is linearly related to N (b & (c). However, the effective
value for N is less than prescribed after the step due to an increase in flapping amplitude (c).

N. The vertical spread is to be expected due to fitting
in the presence of noise, but we also found that the
rise time was sensitive to whether or not the system
was at exactly the resonant frequency, maximizing
the kinematic gain (G = 0, /0input). This was a more
significant issue at higher N because of the steeper res-
onant curve, and the added mass of the system would
have made it susceptible to small asymmetries and
potentially larger friction, though that was mediated
by thrust ball bearings. The horizontal spread indic-
ates that we were not always exactly at the desired
value of N. The means and standard deviations of N
from 1 to 10 are shown in table 2, and the standard
deviations are illustrated by the horizontal bars in
figure B1.

The response time after a step increase in
input also has a clear linear relationship with N
(figure 3(c)). The linear fit is slightly different from
the startup data (fgare = 0.503N — 0.376), but they
largely fall upon the same line. The major difference
between the two is that because of the change in amp-
litude after the step, the effective value of N is lower
than it was before the step due to the inverse rela-
tionship between 6y and N (equation 2). The effect is
a compression of the datapoints along the diagonal,
since the response time decreases along with N, as
shown in figure 5.

4.2. Resistance to perturbations increases with
increasing N

We subjected a flapping wing at steady-state amp-
litude to a transverse flow, and we measured the
change in wingstroke kinematics after flow onset.
We observed that spring-wing configurations with
larger Weis-Fogh number sustained sinusoidal
flapping wing kinematics in the presence of flow
perturbations, whereas lower N systems exhibited

a distortion in the sinusoidal wing motion (figure 4).
This asymmetrical warping of the wing trajectory at
low N was observed as non-sinusoidal wing kinemat-
ics (4(a)) and a corresponding non-circular phase
portrait (figures 4(a) and (b)). Note that the traject-
ories are ‘lumpier’ when N is small, but also that
there’s a decrease in flapping amplitude overall at
higher N.

We fit a sine wave to each trajectory and calcu-
lated the root mean squared error (RMSE) relative to
the flapping amplitude, which quantifies how well a
sine wave fits to the data. This error will never reach
zero, but for the no-flow case, it is small—just 0.76%
of the flapping amplitude. We find that the sinusoidal
fit error at N =1 is approximately ten times larger
than for N ~ 10 with a maximum error near 8% of
the flapping amplitude.

Based on equation (11) and our association of
Q and N, we expect that the influence of asymmet-
ric flow should be inversely proportional to N. We
fit an inverse curve AN~! + C to the error data, fix-
ing the offset C =0.0076 to be equal to the measured
baseline no-flow error. The optimal curve (P, (N) =
0.053N~! 4 0.0076) based on the linear analysis does
a fairly poor job of fitting the data (R* = 0.80). Thus
we relaxed the constraint on the power of N and fit the
curve AN~8 4 C, which produced a curve (Pji,(N) =
0.073N~17% 1.0.0076) that fit the data much more
closely (R?> = 0.97). We also measured the final amp-
litude while the flow was turned on for each exper-
imental configuration and compared to the initial
amplitude at that value of N. We found that the amp-
litude was reduced by an average of 16.4%, regard-
less of N. This is unlike the expectation from the lin-
ear damping case, where we would not expect to see
a decrease in amplitude, just a shift in the center of
oscillation.
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and mean at 84% of full amplitude.

5. Discussion

5.1. Lower N provides faster responsiveness to
wingbeat amplitude control changes

We have shown that the time it takes for a spring-wing
system to respond to a control input change is lin-
early related to Weis-Fogh number, N. Thus a flyer
with a greater Weis-Fogh number—determined by
their wing mass, wing shape, wing-stroke kinemat-
ics, and wing pitch kinematics—will have reduced

control authority when it comes to starting, mod-
ulating, or stopping wing motion. In order to per-
form high-speed agile maneuvers, insects need to
be able to quickly modulate lift and drag forces.
They can do so by modulating both amplitude and
frequency [19], but more often at higher frequen-
cies it is accomplished by modulating wing rotation
[25, 26]. The modulation of wing angle of attack or
joint characteristics via steering muscles [27] may be
more effective at high N since they can modulate both
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Data points are shown in color, and gray arrows indicate the movement due to increased control input. The arrows are all roughly

aligned with the trendline.

amplitude and Weis-Fogh number by changing the
aerodynamic characteristics of the wing. Our input
step experiments demonstrate that, since N is a func-
tion of flapping amplitude, changes to amplitude
also change the control authority. Figure 5 shows the
degree to which N and transient time shift due to
the increase in amplitude. The arrows start at the
points corresponding to the startup time and point
to the location in the plane where the step time is
located. The arrows follow the linear trendline, and
the length of the arrow is greater for larger starting
values of N. In engineering, control authority is crit-
ical for ensuring that a system can meet perform-
ance objectives like stabilization in the presence of dis-
turbances or trajectory following. The loss of control
authority—stalling in an airplane, for example—can
lead to catastrophic failure if control is not regained
in time. In insects, the ability to quickly maneuver
through an array of obstacles or out of the grasp of
a predator is similarly important. Since N is relat-
ively easy to measure for a particular species of insect,
requiring just estimates of wing mass, wing shape,
and wing kinematic data, it may serve as a useful
metric for an insect’s relative ability to perform agile
maneuvers. Additionally, it suggests an opportunity
for new designs of flapping robots that incorporate
control via wing pitch modulation that could enable
dynamic modulation of control authority based on
control objectives.
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5.2. Higher N provides greater stability in
unpredictable natural environments

An insect or flying robot that needs to be more agile
may benefit from a lower N, but there is a tradeoff
of wing stroke stability. At lower N, the inertia of the
wing during flapping is of the same order as the aero-
dynamic forces, so variations in aerodynamic forces
from the environment (turbulence, wind gusts, etc)
will have a larger effect on the flapping wing kinemat-
ics. This can pose issues for an insect, since steady
wingbeats are necessary to produce consistent lift.
Our flow experiments show that an insect or flap-
ping wing robot with body elasticity is less suscept-
ible to disruptions from the environment when it has
a high Weis-Fogh number. This means that a flapper
that needs to fly in a windy environment may benefit
from lower amplitude flapping, more massive wings,
and/or wing shapes or stroke profiles that minimize
drag.

5.3. Weis-Fogh number as the quality factor of
spring-wing systems

The series of analyses we performed in the first
section of this paper looking at the transient beha-
vior of a linear spring-mass-damper as an analogue
to the spring-wing system illustrate that the qual-
ity factor Q is linearly related to the startup time of
the system and inversely related to the relative effect
of external perturbations. Our experimental results
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with the nonlinear spring-wing system show similar
trends.

5.3.1. Changing amplitude changes the transient time
constant
As shown in figure 5, the response time of the spring-
wing to a control input depends not just on the mag-
nitude of the input, but also on the amplitude of flap-
ping. This is an inherently nonlinear phenomenon
due to aerodynamic damping, and is not the case for
the linear system. However, since the shift induced by
the amplitude change (gray arrows, figure 5) follows
the trendline fairly closely, it does seem that the rela-
tionship between N and response time is maintained
despite the transient changes in N.

The actual relationship we expect between
response time (defined at 95% of the full amplitude)
and Q based on equation (10) is

. —In0.05
fs = — 2002 0.9536Q~ Q. (17)
Vs

If we inspect the trendline for the response time of the
spring-wing system we find the relationship

o N
to5 = 0.486N ~ 3 (18)

Thus, we find that the response time of an oscillator
to control commands scales linearly with the Weis-
Fogh number in the case of flapping wings and with
the quality factor in the case of a linear spring-mass-
damper.

This finding agrees qualitatively with the relation-
ship shown in equation (16), but notably, other meth-
ods of linearizing the aerodynamic force will produce
different proportionality relationships. For example
linearization can be done by equating the energy dis-
sipation between an aerodynamic and a viscous force.
However, prior comparisons between quality factor
and Weis-Fogh number are consistent with our find-
ings of a proportional (linear) relationship between
Q and N, with differing proportionality constants
depending on the assumptions [10, 11, 28].

5.3.2. Nonlinear aerodynamics results in more stability
at higher N
In section 2, we argued that an external flow should
affect alinear spring-mass-damper less as Q increases,
i.e.
Wn

Faow Q V. (19)
Thus we expected an inverse relationship between
N and flapping non-sinusoidality. Additionally, we
expected that a flow should cause a consistent off-
center stretch in the spring, i.e. a steady-state offset in
the positive x direction (equation (11)), but maintain
the same flapping amplitude.
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In fact, we found that an inverse (N ') relation-
ship did not fit the data well. Instead, a function
with N717% fit better, suggesting that the quadratic
relationship between the system and the flow asym-
metry, I'|x — v|(x — v), introduces dynamics that res-
ult in greater passive stabilization of the sinusoidal
wing kinematics. Additionally, we see that the flap-
ping amplitude is affected by the asymmetry, causing
a decrease in overall amplitude. This would be det-
rimental to a high-N flapping flyer’s ability to pro-
duce lift, but as long as it is not using maximum
muscle strength during normal flapping, it should be
able to increase the force it uses to drive the wings to
achieve the necessary amplitude. The situation would
be worse for a low-N flyer which would need to
control amplitude variations within a single wing-
stroke to maintain smooth flapping, regardless of the
strength of the muscle

5.4. Weis-Fogh number as a performance metric
for flapping fliers—living or engineered
In this and previous experimental and theoretical
work [5, 10], we have shown that the Weis-Fogh num-
ber is a metric that encompasses important perform-
ance characteristics for flapping flight: dynamic effi-
ciency, responsiveness/agility, and stability. When we
plot the distribution of Weis-Fogh Number across a
wide range of insects, large and small, we notice that
they seem to exist in the range of N= 1-8. There
are some exceptions, of course, but they are char-
acterized by the extremely small flying insects [29]
who fly at very low Reynolds numbers, and butter-
flies, whose especially large wings and stuttering wing
stroke dynamics distinguish them from the more
controlled hovering of flies, bees, and hawkmoths.
Small insects like those studied in [29] likely have
values of N << 1 (Paratuposa placentis, N ~0.14,
see appendix) due to the presence of bristled wings
that significantly decrease wing inertia, and therefore
drive N to be smaller; butterflies, like Pieris Brassicae,
N 0.4, also have N < 1, but via large aerodynamic
drag from large wings. Since the benefits of elastic
energy storage drop off when N < 1, we would expect
that such insects need to develop adaptations other
than thorax elasticity to maintain flight. However,
thorax elasticity is critical when flight requires wings
with significant inertia and high frequency wingbeats.
The fact that other insects who rely on fast wingbeats
exist in this constrained range of Weis-Fogh number
suggests that the variation in N may reflect a balance
of different performance trade-offs (figure 6).
Similarly, mechanical system parameters can
reflect trade-offs between agility and stability. Fighter
aircraft with adjustable wings are one example of a
system that can shift from a more stable shape (wings
extended) to a faster, more agile, but less stable con-
figuration (wings folded). This has been taken to an
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Figure 6. Flapping system performance trade-offs. (a) Higher N means greater flapping amplitude for a given actuator. (b) Lower
N leads to faster response times, but (c) more vulnerability to aerodynamic perturbations. (d) This may point to an explanation
for the number of insects and flapping micro-aerial vehicles [30] across orders of magnitude of size that remain within the range
of N = 1-8. Low-N exceptions like Paratuposa placentis[29] and Pieris brassicae [3] may point to unique adaptations for efficient

flight.

extreme with fighter jets with forward-swept wings,
like the Grumman X-29, which trades off high man-
euverability for increased instability. Indeed, there is
even some evidence that wing morphing in birds sim-
ilarly leverages aerodynamic instability to improve
flight performance [31].

Thus it makes sense that the evolutionary devel-
opment of flapping flight should also balance ener-
getics, agility, and stability. Perhaps the restriction
of flapping animals to a moderate region of Weis-
Fogh number (N = 1-8) is due to tradeoffs that
occur between 1) energetic efficiency (increases with
N), 2) wing stroke responsiveness to control inputs
(decreases with N), and 3) passive wingstroke stability
when subjected to external perturbations (increases
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with N). Those, combined with the necessity of elastic
energy exchange to maintain efficient flight, may
constitute a driver of evolutionary change.

6. Conclusions

The evidence presented in this manuscript and our
prior work [5] suggests that the Weis-Fogh num-
ber, an underappreciated non-dimensional para-
meter first identified by Torkel Weis-Fogh in the
1970’s, is an indicator of several important aspects
of flapping flight [2, 10]. Determining the Weis-Fogh
number of a flapping wing system—be it biological or
robotic—can provide insight into the system’s ability
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to benefit from elastic energy storage and release, per-
form agile maneuvers by modulating their wingstroke
kinematics, and deal with aerodynamic perturbations
while maintaining a stable hover. However, this is just
the first step to understanding ‘spring-wing’ system
dynamics. Further work is necessary to understand
how insects leverage resonant dynamics and better
understand how to design high-performance flapping
robots.

For example, while this work has focused on
flapping at or near resonance, recent studies have
complicated the picture of resonant flapping flight
in insects. In two studies, Pons and Beatus [11, 28]
found that, in systems with both parallel and series
elasticity such as the flight anatomy of flies, mul-
tiple separate resonance frequencies may exist, creat-
ing ‘band’ resonance where resonance benefits may
occur over a broad range of flapping wing frequencies.
In biological measurements of the flight anatomy of
10 species of Bombycoid moths, Wold found that each
species flapped its wings not at its resonant frequency,
but at a significantly higher frequency [9, 10]. That
study found that insects with Weis-Fogh numbers
that would enable efficient flight at resonance seem
not to leverage that energetic benefit, instead flap-
ping at higher frequencies, for reasons that are not yet
fully understood. Additionally, the dynamics of many
insects are heavily influenced by self-excited asyn-
chronous flight muscle, blurring the definition of ‘res-
onance’ and complicating the spring-mass-damper
analogy. Flapping frequency in these self-excited sys-
tems is an emergent property that depends on not
only the mechanical aspects of the anatomy, but also
the timing and strength of myogenic force production
in the muscles [32].

Another aspect of resonant flight that begs more
study is the influence of wing pitch and wing flexibil-
ity. Here, we have used a rigid plate to emulate a wing,
and we do not vary the pitch angle during flapping.
However, studies have found that wing flexibility can
lead to improved flight efficiency via elastic energy
storage [33] and beneficial fluid-structure interac-
tions. The aeroelastic interactions between a wing
membrane and the fluid are far more complicated
than the single degree of freedom presented here,
and today many studies of flexible wing structures
lean on computational fluid dynamics methods or
dynamical scaling approaches. Dynamically scaling a
continuum fluid-structure interaction problem like a
bending flexible wing can be complicated because it
requires matching several dimensionless parameters
like the Reynolds number, the Cauchy number, the
mass number, and the Strouhal number [16, 17]. The
Cauchy number represents the ratio of fluid dynamic
forces to elastic forces exerted on a structure. In the
context of our one-dimensional spring-wing system
it is interesting to examine the Cauchy number (Ch).
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In our experiments we drive the wing at resonance
and thus the maximum inertial forces at resonance
are equal to the maximum elastic forces and thus by
inserting this into the Cauchy number definition we
find that

on = X (Taero) 1 (20)

max (Tinertia) N

Thus, by scaling our experiment to match the range
of calculated Weis-Fogh numbers for insects and
scaling Reynolds number appropriately we are able
to dynamically match the spring-wing dynamics of
insects.

This work has the potential to impact future bio-
logical and robotics studies of flapping wing flight.
Future robophysical and robotic experiments could
investigate the interactions between body and wing
elasticity or seek to understand how sub-wingstroke
modulation of wing pitch or stroke plane may enable
agile maneuvers despite average wingstroke dynam-
ics that have a high Weis-Fogh number. Such stud-
ies would further deepen our understanding of the
environmental and evolutionary pressures that drive
morphology and also drive innovation in the design
of flapping wing robots. Furthermore, the control
of flapping wing motion is challenging, and stud-
ies could seek better understanding of how to incor-
porate beneficial system elasticity not just for effi-
ciency gains but also for control and stability pur-
poses. Overall, elasticity is present and important in
the insect flight system and future investigations will
benefit from a focus on understanding the interaction
between actuators, elastic elements, and aerodynamic
forces.
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Appendix A. Computing N using
measures of flapping power

When the maximum aerodynamic and inertial
torques are not available to compute the Weis-Fogh
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number, it is also possible to approximate using the
aerodynamic and inertial power. Note, this approx-
imation assumes sinusoidal wingstrokes, which is far
from guaranteed; however, this gives a first-order
approximation that can be improved through deeper
analysis.

Given a sinusoidal wing trajectory ¢ =
¢osin(wt), the inertial and aerodynamic torques on
the wing, according to 3, are

T, = Ié = —Ip,w?sin (wt) (A.1)
T, =T)|¢|¢ =T|¢p2w?| cos(wt)|cos(wt). (A.2)

The respective inertia and aerodynamic powers are
therefore

Pi=Tip= (—Igow? sin (wt)) gow cos (wt)

= —0.5I¢%w’ sin (2wt) (A.3)
P, =T,p= [Cow?| cos (wt) | cos (wt) ] pow cos (wt)
=I'¢pw’| cos (wt) | cos? (wt). (A.4)

The maximum magnitudes are |P;|yax = 0.51¢%w?
and |P,|max = D'¢w?. Therefore,

|Pilmax  0.5I03w> I N (A5)
|Palmax ~ Td3w? 2T, 2 ‘
and
N=2x [Pilmax (A.6)
Py | max
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We use this estimate of N to plot the featherwing
beetle Paratuposa placentis alongside the reported val-
ues of N from Weis-Fogh [3]. Based on this relation-
ship, we can inspect figure 3(e) from [29] and see
that there is a maximum (mass specific) aerodynamic
power of ~110 W kg~ ! and inertial power of ~7.8 W
kg~!. Thus N a2 0.14. We were able to place it on the
chart in figure 6(e) using the fact that the reported
body mass is 2.43 + 0.19 ug [29].

It is also possible to compute N from mean values
of P; and P,, as opposed to maxima. In that case, we
integrate the expressions for P; and P, over the por-
tion of the wingstroke where they are both positive
(the first half of the half-stroke):

i

B 2w 1
g:/'qyﬁwgmh@wziw%Z(Aﬂ
0

o

s

_ 2w 2

P, :/ L'¢2w?| cos (wt) | cos? (wt) = quﬁng.(A.S)
0

We can then relate N to the ratio of these values:

2?3 1 3

2+%o0

Ty = =ZN. (A.9)
3 0

P
P, 4T¢y 4

Thus we can take measurements of mean inertial
and aerodynamic power, such as that reported by
Ellington [34], and compute N using the relationship
N= %r%‘ We have included data from [34] calculated
in this way in figure 6.
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