
SPICEPilot: Navigating SPICE Code Generation
and Simulation with AI Guidance

Deepak Vungarala, Sakila Alam, Arnob Ghosh, Shaahin Angizi
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

E-mail: {dv336, sa3229, arnob.ghosh, shaahin.angizi}@njit.edu

Abstract—Large Language Models (LLMs) have shown great
potential in automating code generation; however, their ability to
generate accurate circuit-level SPICE code remains limited due to
a lack of hardware-specific knowledge. In this paper, we analyze
and identify the typical limitations of existing LLMs in SPICE
code generation. To address these limitations, we present SPI-
CEPilot—a novel Python-based dataset generated using PySpice,
along with its accompanying framework. This marks a significant
step forward in automating SPICE code generation across vari-
ous circuit configurations. Our framework automates the creation
of SPICE simulation scripts, introduces standardized bench-
marking metrics to evaluate LLM’s ability for circuit generation,
and outlines a roadmap for integrating LLMs into the hardware
design process. SPICEPilot is open-sourced under the permissive
MIT license at https://github.com/ACADLab/SPICEPilot.git.

Index Terms—SPICE, LLM-powered code generation, circuit
design

I. INTRODUCTION

The escalating complexity of modern software and the

rapid advancements in hardware technologies present signif-

icant challenges in developing innovative circuit solutions.

As software systems grow more intricate, the hardware that

supports them must also evolve, leading to an intertwined

cycle of increasing complexity in both domains. Traditional

methods of circuit design and simulation struggle to keep

pace with these developments, necessitating new approaches

that can efficiently handle the growing demands [1], [2], [3],

[4]. Recently, Large Language Models (LLMs) or Language

Models (LMs) have demonstrated remarkable capabilities in

generating Python code, offering potential avenues for au-

tomating aspects of software development. However, their

application in hardware design remains limited due to a lack

of inherent hardware domain knowledge. This gap poses

a significant obstacle, as hardware design requires a deep

understanding of architectural, micro-architectural, and logic

levels as well as electronic components, circuit behaviors, and

simulation processes that LLMs are not typically trained on

[1], [3].

LLMs have recently shown promising solutions for gen-

erating digital and micro-architectural designs, e.g., MEV-

LLM [5] proposes multi-expert LLM architecture for Verilog

code generation. RTLLM [2], GPT4AIGChip [6], and SA-

DS [7] enhance design efficiency, showcasing LLMs’ ability

to manage complex design tasks and broaden access to AI

accelerator design. Nevertheless, the application of LLM in

analog circuit design has been limited to a few works. To the

best of our knowledge, AnalogCoder [3] is among the first

Analog circuit generators.

The research presented here opens up a vast array of intrigu-

ing research questions that are yet to be explored. Our aim is

to address the most pressing of these and propose a structured

path for future works. Key questions include: (RQ1): How

reliable are LLMs in the context of analog circuit design,

and what are their foundational limitations in this domain?

(RQ2): What steps are required to develop a specialized LLM

tailored specifically for analog circuit design? (RQ3): How

can the challenge of data scarcity be addressed in the niche

field of analog circuit design? (RQ4): Are there methodologies

that would enable LLMs to autonomously generate or enhance

datasets needed for analog circuit design? (RQ5): How can

LLMs be equipped with logical reasoning capabilities specific

to circuit design to ensure effective interpretation and solution

of hardware-specific problems? (RQ6): What new metrics and

benchmarks should be established to accurately assess the

performance, accuracy, and reliability of LLMs in executing

hardware design tasks? These research questions form the

basis of our investigation, with the ultimate goal of advancing

LLM-driven hardware design solutions.

In this paper, we propose a novel framework that leverages

the strengths of LLMs in Python code generation to assist

in analog circuit design creation and simulation. By utilizing

PySpice1, a Python library for SPICE simulation, we generate

a comprehensive dataset of Python-based SPICE codes that

correspond to various transistor models and circuit config-

urations. This approach effectively bridges the gap between

software and hardware domains, enabling the use of LLMs to

facilitate SPICE simulations and accelerate the design process.

Moreover, we introduce standardized benchmarking criteria

to evaluate the performance and accuracy of the generated

circuits. This standardization is crucial for comparing different

designs and ensuring that the innovations meet the required

specifications and industry standards. Our framework lays the

groundwork for future research directions, highlighting the

potential for integrating LLMs more deeply into hardware de-

sign workflows and paving the way for automated, intelligent

circuit generation and optimization. This research addresses

many of the key questions outlined earlier, as we explore

the capabilities of LLM’s in the analog domain. Noteworthy

contributions include:

• We evaluate LLM performance in SPICE code genera-

tion, where both open-source and proprietary models are

1PySpice is an open source Python module which provides a Python
interface to the Ngspice and Xyce circuit simulators.

979-8-3315-4127-9/24/$31.00 © 2024 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF THE SELECTED LLM-BASED HDL/HLS GENERATORS.

Property Ours [8] [6] [9] [10] [11] [12] [13] [14] [15] [2] [3] [16] [4]

Function Analog Verilog AI Accel. Verilog Verilog Verilog Hardware Hardware Verilog NA† RTL Spice Schematic Layout
ckt. Gen. Gen. Gen. Gen. Gen. Verf. Verf. Gen. Gen. Gen. Desg. Desg.

Dataset 6 6(Verilog) : NA NA NA : : 6 6 6(Verilog) : : :

Output format Python Verilog HLS Verilog Verilog Verilog Verilog HDL Verilog Verilog Verilog Python Schematic Layout
Auto. Verif. 6 : : : : 6 6 : 6 : 6 : : :

Human in Loop Low Medium Medium Medium High Low Low Low Low Low Low High Low Low
Fine tuning : 6 6 : : : : : : 6 : : : :

∗A user interface featuring Prompt template generation for the input of LLM. † Not applicable.

analyzed to examine their ability to generate fundamental

circuits;

• We propose a framework to overcome data scarcity by

utilizing LLMs to generate open-source datasets for ana-

log circuits. A reliable benchmarking metric is introduced

to assess the performance of LLMs in hardware design;

• We present a comprehensive road map, outlining potential

future advancements to further optimize LLMs for analog

circuit design.

II. BACKGROUND

LLM for Hardware Design. LLMs show promise in gener-

ating Hardware Description Language (HDL) and High-Level

Synthesis (HLS) code. VeriGen [8] and ChatEDA [17] refine

hardware design workflows, automating the RTL to GDSII

process with fine-tuned LLMs. AssertLLM incorporates three

customized LLM and finally generate multiple system ver-

ilog assertions each performing different functionalities [13].

ChipGPT [9] and Autochip [11] integrate LLMs to generate

and optimize hardware designs, with Autochip producing

precise Verilog code through simulation feedback. MG-Verilog

[1] created a hardware dataset with over 11,000 verilog code.

Chip-Chat [10] demonstrates interactive LLMs like ChatGPT-

4 in accelerating design space exploration. MEV-LLM [5]

proposes multi-expert LLM architecture for Verilog code gen-

eration. RTLLM [2] and GPT4AIGChip [6] enhance design

efficiency, showcasing LLMs’ ability to manage complex

design tasks and broaden access to AI accelerator design. In

VerilogReader [18] the LLM accurately grasp the code logic

and generate stimuli to reach the unexplored code branches.

To the best of our knowledge, GPT4AIGChip [6] and SA-DS

[7] are a few initial works focus on an extensive framework

specifically aimed at the generation of domain-specific AI

accelerator designs where SA-DS focus on creating a dataset

in HLS and employ fine-tuning free methods such as single-

shot and multi-shot inputs to LLM. LLMCompass [19] is able

to describe and evaluate different hardware design. However,

the absence of prompt optimization, tailored datasets, model

fine-tuning, and LLM hallucination pose a barrier to fully

harnessing the potential of LLMs in such frameworks [17],

[7]. This limitation confines their application to standard LLMs

without fine-tuning or In-Context Learning (ICL) [17], which

are among the most promising methods for optimizing LLMs

[20]. AnalogCoder [3] to our knowledge is among the first

Analog circuit generator and generated the circuit through

prompt engineering ICL. AmpAgent [16] is designed for

multi-stage amplifier schematic design as well as process and

performance porting.

SPICE. SPICE is a computer-based tool widely used by

engineers for simulating and modeling electronic circuits. By

performing mathematical analysis, it allows for the prediction

of circuit behavior. SPICE can simulate a variety of compo-

nents, from basic passive elements like resistors and capacitors

to more advanced semiconductor devices like MOSFETs,

making it essential for circuit design and optimization. Compo-

nents are defined by their names, the nodes they are connected

to, and their values, including resistors (R), capacitors (C),

inductors (L), and transistors (M for MOSFETs, Q for BJTs).

The netlist describes the interconnections of these components

across the circuit’s nodes.

III. HOW TALL DOES LLM STAND IN SPICE CODE

GENERATION?

While LLMs demonstrate exceptional performance across

various generative tasks, such as question answering, language

translation, and conversational agents, these applications pri-

marily involve natural language processing, an area in which

LLMs receive extensive training. In contrast, their proficiency

in managing specialized languages and tasks that are less

frequently encountered during pretraining, such as generating

SPICE code for hardware design, remains uncertain. There-

fore, to effectively employ LLMs in automating hardware

design tasks like SPICE code generation, it is essential to

develop a comprehensive understanding of the capabilities

and limitations of state-of-the-art LLMs. This understanding

can prevent both undue optimism and unwarranted pessimism

regarding their application. Our evaluation aims to provide

this insight, establishing a foundation for future advancements

in LLM-driven automated hardware design. To achieve this

objective, we conducted an in-depth exploration and identified

the common limitations of existing LLMs in the context of

SPICE code generation. Ultimately, by addressing the identi-

fied shortcomings, we can reevaluate the potential of LLMs

for practical automation in SPICE-based hardware design.

A. Misconception of Gate Width and Length

In SPICE code simulation, the precise definition and se-

lection of gate lengths and widths are paramount to accurate

circuit simulation and analysis. However, LLMs exhibit no-

table misconceptions in this area, and these misconceptions

have a direct impact on circuit performance. Specifically,

LLMs need a more foundational understanding of critical

circuit design principles, such as the 2:1 PMOS to NMOS

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Illustration of the errors generated by LLM for hardware in SPICE.
(a) Incorrect W:L ratio, (b) Inability to perform circuit analysis, (c) incorrect
input signals.

gate width ratio in many standard design practices to balance

the drive strength (or current-carrying capability) between the

two types of transistors, as NMOS transistors generally have

higher electron mobility compared to the hole mobility in

PMOS transistors. Fig. 1(a) shows that a novice or expert in

SPICE coding is aware of the 2:1 gate width ratio basics, and

on the other hand, the LLM fails. Failure to respect design

norms can result in improperly balanced circuits that deviate

from intended performance characteristics. The inability of

LLMs to recognize and apply these conventions suggests a

gap in their comprehension of circuit domain knowledge. It

concerns their efficacy in generating accurate SPICE codes

for circuit designs. We reported the results of our zero-shot

prompting to generate SPICE codes for basic digital circuits

(i.e., inverter, NAND, NOR) in Table II analyzing LLMs’

power in generating the correct W:L ratio. We observe that

plain implementation of under-test LLMs fail.

B. Inability to Perform Circuit Analysis

SPICE simulations are a powerful tool for various forms of

circuit analysis, such as transient, DC, and AC analysis, each

tailored to reveal specific characteristics of the circuit under

study. However, a significant shortfall observed with LLMs,

as shown in Fig. 1(b), is their failure to autonomously select

and perform the appropriate type of analysis based on the

circuit’s operational requirements. Effective circuit simulation

often depends on the proper application of these analyses:

transient analysis for time-domain response, DC analysis for

steady-state behavior, and AC analysis for frequency response

characteristics. LLMs have demonstrated an inability to grasp

these distinctions, often leading to inappropriate or irrelevant

analyses in response to user requests. This limitation highlights

a deficiency in logical reasoning within the context of circuit

simulation and an inadequate understanding of how these

analyses contribute to evaluating circuit performance. Table II

TABLE II
ANALYSIS OF LLM’S ABILITY IN SPICE GENERATION.

W/L ratio Input signal Analysis
LLM

Plain Pilot Prompt Plain Pilot Prompt Plain Pilot Prompt

GPT-4o : 6 : 6 : 6

GPT-3.5 : 6 : 6 : 6

Gemini-Adv : 6 : 6 : 6

Claude-3.5 sonnet : 6 : 6 : 6

Codestral : 6 : 6 : 6

Mistral Large 2 : 6 : 6 : 6

Mistral Nemo : 6 : 6 : 6

Fig. 2. SPICEPilot Framework.

highlights that plain implementation of under-test LLMs fail

to perform proper circuit analysis.

C. Incorrect Input Signal Assignment and Device Parameter

Configuration

Accurate input signal assignment and device parameter

configuration are essential for circuit testing within SPICE

simulations. However, as shown in Fig. 1(c), LLMs fre-

quently fail to assign input signals in a manner consistent

with the circuit’s functional requirements, such as setting

correct voltage levels, signal frequencies, or waveform types.

Furthermore, fundamental parameters, including the device’s

operating temperature, should be considered or correctly set by

LLMs. The temperature, which influences carrier mobility and,

consequently, the overall behavior of semiconductor devices,

must be carefully controlled to ensure realistic simulation

results. The oversight of such basic parameters undermines

the reliability of simulation outputs and reflects a need for a

more nuanced understanding of device-specific considerations

essential for precise SPICE simulations.

IV. SPICEPILOT

In this section, we address RQ3, RQ4, and RQ5 posed in

the introduction. The proposed SPICEPilot framework focuses

on leveraging the capabilities of LLM to generate hardware

SPICE code within a Python environment using PySpice,

while avoiding the costly process of fine-tuning. Given the

scarcity of data, the goal is to enable the LLM to reason and

creatively contribute to the development of intelligent models

in circuit design. This is achieved by embedding fundamental

circuit logic, reasoning, and error identification mechanisms.

In the SPICEPilot framework, we introduce a computation-

friendly method that leverages a reference containing step-by-

step guidelines for code generation. This reference minimizes

trivial errors and limits the need for extensive hardware knowl-

edge, helping to avoid common mistakes that we discussed

in Section III. The reference is used to validate every output

generated by the LLM, significantly reducing errors. This

approach is akin to ICL2.

2Dai et al. [20] suggest that ICL can be viewed as implicit fine-tuning,
where ICL produces meta-gradients through forward computation similarly
to explicit fine-tuning, which updates model parameters through back-
propagation.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

A. Framework

Fig. 2 illustrates the initial methodology designed for data

augmentation in circuit generation using LLMs. The process

begins with the 1 User Input, where the user provides spec-

ifications for the desired circuit. This input is then processed

through the Pilot Prompt (2), which integrates hardware

knowledge to help the LLM mitigate common errors and offer

insights into PySpice modules and coding styles. Leveraging

this refined prompt, the LLM generates the corresponding

PySpice code (3). The generated code undergoes a Valida-

tion process (4) to ensure the netlist correctness, where a hu-

man expert reviews and corrects trivial errors such as keyword

mismatches in Python with PySpice. Successfully validated

code is added to the Dataset (5). If the netlist is improp-

erly constructed, the code is deemed invalid, and additional

comments detailing the errors are sent back to the LLM (6),

prompting a revision. This iterative cycle (3 → 4 → 6 → 3)

continues until valid code is produced (5). Concurrently,

the identified errors contribute to the ongoing optimization

of the Pilot Prompt (7), which is updated either manually

by a human expert or automatically via scripting based on

the errors encountered. The valid PySpice in step 3 also

allows us to generate the SPICE netlist, which is processed

to extract key parameters such as the number of transistors

after code verification step 4 . From the analysis, we obtain

metrics such as gain while maintaining associated metadata as

data points. The curated dataset will then be effectively utilized

in our future works to enhance the LLM through ICL or fine-

tuning, aiming to generate more robust designs in PySpice and

SPICE (step 8). The enhanced model continues to produce

code that is subjected to functional validation, adhering to

the valid and invalid classifications (step 9). In cases of

invalid code generation, the model receives specific error

feedback to facilitate continuous improvement. The ultimate

goal of this methodology is to iteratively refine the LLM’s

capability to generate accurate and functional circuit designs

based on user inputs, leveraging continuous validation and

prompt optimization to enhance performance and reliability.

Ultimately, the framework outputs the functional SPICE (.sp)

and PySpice (.py) codes.

B. Dataset Generation and Benchmarking

The data points currently are stored with each point repre-

senting both the Pyspice model and its corresponding SPICE

representation. This dual representation enables our dataset to

be utilized to generate SPICE models using conventional meth-

ods or for rapid simulations within a Python environment. To

address RQ6, we aim to establish a baseline evaluation for the

community. Our selection criteria for benchmarking are based

on the transistor count within the circuit. This benchmark

consists of both Digital and Analog circuits as depicted in

Table III. We classify circuits as follows: those with a transistor

count of 10 or fewer are categorized as “easy”; those ranging

from 11 to 25 as “medium”; circuits with 26 to 45 transistors

are deemed “hard”; and circuits exceeding 45 transistors are

classified as “extreme”. This initial benchmarking framework

TABLE III
BENCHMARK DESCRIPTIONS INCLUDE SELECTED DIGITAL AND ANALOG

CIRCUIT DESIGN TASKS. THE TASKS ARE CATEGORIZED BY DIFFICULTY

LEVELS—EASY, MEDIUM, HARD, AND EXTREME USING DIFFERENT

BACKGROUND COLORS FOR DISTINCTION.
ID Name #T Explanation ID Name #T Explanation

5 SR Latch 8
Two CMOS NOR gates;
each NOR uses 4 T

3 Operational Amplifier 30 Common-source op-amp

6 Buffer 4
Two inverters in series;
each inverter uses 2 T

9 Voltage Regulator 25 with Overcurrent Protection

18 Half-Adder 12
XOR gate: 8 T,
AND gate: 4 T

17 Switched-Capacitor Filter 45

20 T Op-Amp
12 T switches
8 T Ctrl and clock
5 T biasing

9
CMOS Multiplexer

(4:1)
20

Transmission gates
and control logic

7 Delta-Sigma Modulator 60

20 T integrator
10 T comparator
15 T DAC
10 T for clock
5 T for biasing

20
Flash Analog-to-Digital

Converter (ADC)
35

For 3-bit resolution; 7
comparators at 5 T each

12 4-bit Synchronous Counter 88 4 D-flip-flops × 22 T

29 3-bit Ripple Carry Adder 60
3 full adders;
each uses 20 T

15
Successive Approximation

Register (SAR) ADC
80

10 T differential compar.
20 T resistor-ladder DAC
30 T SAR Logic
20 T Ctrl and clock

can be further refined and expanded by considering additional

factors, such as the number of nodes, which would enhance

the understanding of circuit complexity and improve overall

benchmarking for the community.

Previous studies in this domain, such as [3], have dis-

cussed benchmarking with a limited set of circuits. For our

benchmark, we conducted a meticulous search and selected

60 unique circuits, which is 150% larger than the Analogcoder

benchmark [3], over 7.5× the number of circuits included in

the ChipChat benchmark [10], and offers 250% more circuits

compared to the VeriGen benchmark [8].

V. EXPERIMENTAL ANALYSIS

This section presents the SPICEPilot implementation and

evaluation in two key aspects: (i) Demonstrating the frame-

work’s ability to generate results that surpass current stan-

dards, and (ii) Establishing a comprehensive benchmark for

robust evaluation. The above experiments are conducted to

critically evaluate and gain insights necessary for establishing

more concrete standardization for the LLMs. The identified

capabilities and limitations are further discussed in Section VI.

We extensively evaluate the capability of LLMs in circuit

design, including CodeLlama-70B-Instruct [21], Wizardcoder-

33B-V1.1 [22], Llama3-70B [23], GPT-3.5 [24], and GPT-

4o. CodeLlama and WizardCoder are code generation LLMs,

fine-tuned on Llama2 [25] and StarCoder [26], respectively.

Llama-3 is the newest open-source general LLM. WizardCoder

and Llama-3 are LLMs that outperformed GPT-3.5 on the

HumanEval [27] coding tasks [28]. We adopt the ‘Pass@k’

metric [29] (k=1, 5) as our main evaluation standard, a

widely used approach in code generation tasks [21], [22].

This metric quantifies the proportion of correct generations

within k independent attempts, where higher values denote

better performance. We conduct n trials (n ≥ k) and compute

Pass@k using the formula 1 −
(n−c

k)
(nk)

, where c denotes the

number of successful attempts.

In our experiment, we utilize the setup illustrated in Fig. 2,

employing Claude-3.5 Sonnet as the backbone LLM. The

Pilot prompt is provided as an initial reference for learning.

Subsequently, we prompt the LLM to generate solutions for

each task in the Analogcoder Benchmark (ACB) [3]. Since

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PERFORMANCE COMPARISON ACROSS SPICEPILOT TO ACB FOR DIFFERENT MODELS.

CodeLlama-70B WizardCoder-33B Llama3-70B GPT3.5 GPT4 AnalogCoder SPICEPilot (w/ Claude)

Task Level Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5
Easy (1-8) 9.15 36.7 21.2 50.7 75 92.5 54.6 82.2 100 100 100 100 100 100

Medium (9-13) 0 0 0 0 16.7 20 15.3 36.5 82.7 91.5 22.7 91.4 91.7 94.3

Hard (14-24) 0 0 0 0 0.3 3.03 0 0 7.9 14.2 33.9 60.3 47.7 62.3

Avg 3 12 7 16.9 30.6 38.5 23.3 39.6 63.5 68.6 52.2 83.9 79.8 85.5

Solved 7 7 7 7 11 11 6 6 10 10 20 20 21 24

TABLE V
SPICEPILOT PERFORMANCE ON OUR ENHANCED BENCHMARK.

SPICEPilot (w/ GPT-4o) SPICEPilot (w/ Claude)

Task Level Pass@1 Pass@3 Pass@1 Pass@3
Easy (10) 100.0 100.0 90.0 100.0

Medium (10) 90.0 100.0 80.0 100.0
Hard (5) 20.0 40.0 20.0 60.0

Avg 80.0 88.0 72.0 92.0
Solved 20 22 18 23

our framework emphasizes prompt engineering, we adapted

the ACB prompts to include more detailed verbal descriptions

of the circuit design, as outlined in Table III. Table IV

demonstrates the superior performance of our framework, with

notable improvement of 52.90% in Pass@1 scores and im-

provement of 1.91% at pass@5 and generating all 24 circuits

in the benchmark, validating the efficacy of fine-tuning free

approach with our prompt-engineered to augment the data in

enhancing circuit design automation

In the second experiment, we employed two closed-source

models, integrating the Pilot prompt to infer circuits from their

internal knowledge. We randomly selected 10 circuits from our

versatile benchmarking in varying levels of complexity, rang-

ing from simple to challenging, to evaluate the performance

of the LLM. The results in Table V indicate a high pass ratio,

with the models successfully generating circuits with different

transistor counts. The initial percentage for hard circuits in

benchmarking V is low, and our observation revealed it is

due to various factors, such as module definition in Python,

which is not supported by Spice, and the tuning of the circuit,

which can be later resolved by either using Chain-of-Thought

(CoT) or simple repetitive asking. Additionally, our framework

automates waveform generation in PySpice and SPICE code

generation, facilitating easy validation of the circuits. The

model outputs are further subjected to verification, ensuring

the correct creation of circuit netlists. It is important to note

that numerous parameters must be fine-tuned for functional

verification of analog circuits, including the adjustment of

resistors and coupling capacitors, which play a critical role

in analog domain performance.

VI. DISCUSSIONS AND FUTURE WORKS

The research delves into the functionality of LLMs, reveal-

ing that while the framework generates accurate netlists in our

experiments, achieving functional efficiency and meeting key

parameters such as gain requires further knowledge instilla-

tion. This need arises due to the LLM’s limited circuit-specific

intelligence. To address this, we plan to enhance the LLM by

providing it with high-definition circuit knowledge, enabling it

to better integrate and resonate with detailed circuit behavior

and design requirements. Figure 2 presents the proposed

framework aimed at addressing the significant data bottleneck

in circuit generation through automated data augmentation,

and extension of its applicability. This framework offers the

community an initial methodology to streamline data gener-

ation processes. The approach can be extended to leverage

multi-modal LLM by incorporating circuit images as inputs.

Utilizing Python packages, the framework can be enhanced to

draw the drawing of circuit and waveform representations for

better decoding, thereby facilitating reasoning based on visual

inputs. The use of Python also allows for the implementation

of class functions to construct circuits that can be integrated

into more extensive design projects seamlessly. Additionally,

the SPICE code generation dataset can be enhanced by in-

corporating detailed descriptions, similar to the methodology

proposed in [1]. This enhancement assists LLMs in generat-

ing more sophisticated and accurate SPICE models, thereby

advancing the capabilities of SPICE generation in LLMs.

VII. CONCLUSION

This paper presents SPICEPilot, an innovative approach

to bridging the gap between software automation and hard-

ware design in the realm of analog and digital circuits. By

leveraging LLMs and PySpice, SPICEPilot automates the

generation of SPICE code and introduces a reliable framework

for benchmarking circuit performance. Our evaluation of both

open-source and proprietary LLMs underscores the current

limitations and future potential of AI-driven code generation in

hardware design. Moreover, our proposed framework offers a

solution to data scarcity through the generation of open-source

datasets, paving the way for further advancements in the field.

This work lays the foundation for future research aimed at

optimizing LLMs for analog circuit applications, accelerating

innovation in circuit design and automation

ACKNOWLEDGMENT

This work is supported in part by Semiconductor Research

Corporation (SRC) and the National Science Foundation

(NSF) under grant no. 2216772, 2228028.

REFERENCES

[1] Y. Zhang, Z. Yu, Y. Fu, C. Wan, and Y. C. Lin, “MG-Verilog: Multi-
grained Dataset Towards Enhanced LLM-assisted Verilog Generation,”
2024 IEEE LLM Aided Design Workshop (LAD), 2024.

[2] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark
for design rtl generation with large language model,” in 2024 29th Asia

and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2024, pp. 722–727.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

[3] Y. Lai, S. Lee, G. Chen, S. Poddar, M. Hu, D. Z. Pan, and P. Luo,
“Analogcoder: Analog circuit design via training-free code generation,”
arXiv preprint arXiv:2405.14918, 2024.

[4] B. Liu, H. Zhang, X. Gao, Z. Kong, X. Tang, Y. Lin, R. Wang,
and R. Huang, “Layoutcopilot: An llm-powered multi-agent collabo-
rative framework for interactive analog layout design,” arXiv preprint

arXiv:2406.18873, 2024.
[5] B. Nadimi and H. Zheng, “A multi-expert large language model archi-

tecture for verilog code generation,” arXiv preprint arXiv:2404.08029,
2024.

[6] Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. C. Lin,
“Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models,” in 2023 IEEE/ACM International Confer-

ence on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.
[7] D. Vungarala, M. Nazzal, M. Morsali, C. Zhang, A. Ghosh,

A. Khreishah, and S. Angizi, “Sa-ds: A dataset for large language model-
driven ai accelerator design generation,” arXiv e-prints, pp. arXiv–2404,
2024.

[8] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, “Verigen: A large language model for verilog code generation,”
ACM Transactions on Design Automation of Electronic Systems, vol. 29,
no. 3, pp. 1–31, 2024.

[9] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li,
and X. Li, “Chipgpt: How far are we from natural language hardware
design,” arXiv preprint arXiv:2305.14019, 2023.

[10] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat: Chal-
lenges and opportunities in conversational hardware design,” in 2023

ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD).
IEEE, 2023, pp. 1–6.

[11] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri, “Au-
tochip: Automating hdl generation using llm feedback,” arXiv preprint

arXiv:2311.04887, 2023.
[12] R. Ma, Y. Yang, Z. Liu, J. Zhang, M. Li, J. Huang, and G. Luo, “Ver-

ilogreader: Llm-aided hardware test generation,” arXiv:2406.04373v1,
2024.

[13] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and Z. Xie, “Assertllm:
Generating and evaluating hardware verification assertions from design
specifications via multi-llms,” arXiv:2402.00386v1, 2024.

[14] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval:
Evaluating large language models for verilog code generation,”
arXiv:2309.07544v2, 2024.

[15] Y. Zhang, Z. Yu, Y. Fu, C. Wan, and Y. C. Lin, “Mg-verilog: Multi-
grained dataset towards enhanced llm-assisted verilog generation,” arXiv

preprint arXiv:2407.01910, 2024.
[16] C. Liu, W. Chen, A. Peng, Y. Du, L. Du, and J. Yang, “Ampagent: An

llm-based multi-agent system for multi-stage amplifier schematic design
from literature for process and performance porting,” arXiv preprint

arXiv:2409.14739, 2024.
[17] H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu,

“Chateda: A large language model powered autonomous agent for eda,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2024.
[18] R. Ma, Y. Yang, Z. Liu, J. Zhang, M. Li, J. Huang, and G. Luo,

“VerilogReader: LLM-Aided Hardware Test Generation,” School of

Computer Science, Peking University; School of Information, Renmin

University of China; Noah’s Ark Lab, Huawei, 2024.
[19] H. Zhang, A. Ning, R. B. Prabhakar, and D. Wentzlaff, “Llmcompass:

Enabling efficient hardware design for large language model inference,”
in 2024 ACM/IEEE 51st Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2024, pp. 1080–1096.
[20] D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei, “Why

can gpt learn in-context? language models implicitly perform gradient
descent as meta-optimizers,” arXiv preprint arXiv:2212.10559, 2022.

[21] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[22] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “Wizardcoder: Empowering code large language models
with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.

[23] AI@Meta, “Llama 3 model card,” 2024.
[24] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” in Advances in neural information processing

systems (NeurIPS), vol. 33, 2020, pp. 1877–1901.

[25] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint

arXiv:2307.09288, 2023.
[26] R. Li, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone,

C. Akiki, L. Jia, J. Chim, Q. Liu et al., “Starcoder: May the source
be with you!” Transactions on Machine Learning Research (TMLR),
2023.

[27] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[28] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” in Advances in Neural Information Processing Systems

(NeurIPS), vol. 36, 2024.
[29] S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken, and P. S.

Liang, “Spoc: Search-based pseudocode to code,” in Advances in Neural

Information Processing Systems (NeurIPS), vol. 32, 2019.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 06,2025 at 02:11:35 UTC from IEEE Xplore. Restrictions apply.

