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Abstract—With the increasing adoption of inverter-based re-
sources (IBRs) in power systems, oscillations have become a
significant challenge for system operators worldwide. This paper
investigates the oscillatory instability of grid-following (GFL)
inverters using Hopf bifurcation theory. We focus on examining
how parameter variations affect the stability margin with respect
to Hopf bifurcation. An analytical expression for the sensitivity of
the stability margin is derived using the normal vector to the Hopf
bifurcation hypersurface. Upon restructuring the differential-
algebraic equation (DAE) model of the GFL inverter into an
ordinary differential equation (ODE) form, we identify the most
effective control parameters for enhancing stability under varying
operating conditions. It is shown that the normal vector method
is efficient in estimating the stability margin in regard to both
computational speed and accuracy. Results indicate that the
proportional gain in the current control loop is the most effective
parameter in improving the stability margin.

Index Terms—Hopf bifurcation, stability margin, grid-
following inverter, oscillations, normal vectors, parameter sen-
sitivity

I. INTRODUCTION

Oscillations have received significant attention in the power
system community since the late 20th century [1], mainly
concerning the dynamics and stability of power systems dom-
inated by conventional synchronous machines (SMs). How-
ever, with the increasing adoption of renewable energy and
inverter-based resources (IBRs), it is becoming an alarming
challenge for system operators to maintain system stability. For
example, numerous sub-synchronous oscillation events that are
attributed to IBRs have been observed worldwide [2], [3].

System and control parameters play a crucial role to prevent
oscillatory instabilities in power systems. Most of the existing
work in this domain investigates the issues from a linear
systems perspective. Traditionally, this has been achieved by
simplifying the model around a specific operating point and
then adjusting the parameters of the linearized system to
prevent instabilities. One of the key techniques the power
systems engineers adopt is modal analysis which is based
on eigenvalue and eigenvector computation [4]. Although
useful in practice, only case-by-case results specific to the
selected parameter and operating point can be obtained. An
approach to address the challenge of numerous operating
conditions is to develop robust stability criteria for a range of
operating points, for example, in [5], [6]. Another idea is to
characterize the stability boundary directly [7], [8]. Operating
or designing a system to maintain stability across various
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operating conditions can be seen as a geometric problem in
a multidimensional parameter space [9]. It involves finding
where the nominal parameters, λ0, are located with respect
to the hypersurfaces where stability is lost (i.e., bifurcations).
Identifying the bifurcations closest to λ0 in the parameter
space gives the stability margin. The parameter sensitivity of
the stability margin guides the optimal parameter tuning to
enhance stability robustness [10].

Table I summarizes a few works on bifurcations in power
systems. [11] first proposed static bifurcation theory for volt-
age collapses arising in synchronous machine-driven systems.
[12] posited a more complex nature of voltage crisis through
the route of dynamic bifurcations. Later, the concept of chaos
in power systems was analyzed in-depth using Lyapunov-
Floquet theory by [13]–[16]. At the same time, the strate-
gies for eliminating and controlling the undesirable nonlinear
behaviors were proposed in [17]–[19]. Another line of work

TABLE I
KEY FEATURES OF THE PRIOR ART AND THIS WORK

References Method System Bif’n Control Parameter
Scope Sensitivity

[11] Numerical SM Static ✗ ✗

[12] Numerical SM Static,
✗ ✗Dynamic

[13]–[16] Lyapunov- SM Static,
✗ ✗Floquet Dynamic

[17]–[19] Numerical SM Static,
✓ ✗Dynamic

[20]–[22] Normal- SM Static ✓ ✓Vector

[23] Numerical IBR Static,
✓ ✗Dynamic

[24], [25] Numerical SM-IBR Static ✗ ✗

This paper Normal- IBR Static ✓ ✓Vector

involves analyzing parameter sensitivity towards bifurcations
using the normal vector method [20]. Later, using the same
idea, [21], [22] studied oscillatory instabilities in conventional
power systems. The influence of parameters on the different
bifurcations of grid-following (GFL) IBRs has been analyzed
in [23] qualitatively. [24] studies the static voltage collapse
in a mixed-sources system while [25] analyzes the static
bifurcation phenomena in IBRs.

In this paper, we systematically analyze the parameter sen-
sitivity to oscillation instability in GFL inverters with detailed
modeling and control blocks. We tackle this problem using the
normal vectors to Hopf bifurcation hypersurface and derive an
analytical expression of the sensitivity of the stability margin
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to parameter variation. We also investigate how the parameter
sensitivities can be used to design efficient controls to restore
system stability.

II. PRELIMINARIES

This section provides notational conventions used in the
paper and preliminaries on power system modeling.

A. Notations

Let Rn and Cn be the space of n-dimensional real and
complex vectors, respectively, and Rn×n be the space of real
square matrices of order n. Let Sn be a hypersphere of unit
length in Rn. Let In be the n × n identity matrix. For a
matrix A ∈ Rn×n, µi(A) denotes its ith eigenvalue. For a
vector x ∈ Cn, xi denotes its ith element, x̄ denotes its
conjugate, xT and xH denotes its transpose and conjugate
transpose (i.e. x̄T ), respectively, and ∥x∥ denotes its 2-norm
unless stated otherwise. For a scalar x, |x| denotes its absolute
value. ℜ(x) denotes the real part of a complex number. For
function f(x, y), Dxf denotes the partial derivative of f with
respect to x.

B. Reference Frames

Global reference frame: The widely used approach of
creating a global rotating DQ-frame is adopted for converting
sinusoidal quantities into approximately constant values. The
rotational velocity (frequency) of this reference frame is given
by ωDQωb rad/s, with ωDQ representing the per unit frequency
of the DQ-frame and ωb the base frequency, e.g., 2π50
rad/s in Europe and most of Asia and 2π60 rad/s in North
America. Although it is common for ωDQ to be chosen as the
nominal frequency ω0 = 1, it might have some related issues
[26], [27]. For simplicity, we adopt the nominal value in our
further analysis. Voltages and currents across the network are
expressed in the global DQ-frame as,

vt = vt,D + jvt,Q,

it = it,D + jit,Q.
(1)

Local reference : Each inverter uses a local dq-frame rotating
at an angular frequency of (ω + ω0)ωb rad/s, where the per
unit frequency deviation ω is determined by the inverter’s
internal mechanism, such as PLL or droop control. Voltages
and currents at the inverter terminals are expressed in the local
dq-frame as,

vt = vt,d + jvt,q,

it = it,d + jit,q.
(2)

Reference frame transformation: To establish a uniform rep-
resentation of the power system, it is necessary to convert the
local dq-frame variables into the global DQ-frame. We define
the rotation matrix R(θ),

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (3)

where the parameter θ denotes the angle of the local dq-frame
with respect to the global DQ-frame. The final transformation

can be expressed as,[
vt,D
vt,Q

]
= R(θ)

[
vt,d
vt,q

]
,[

it,D
it,Q

]
= R(θ)

[
it,d
it,q

]
.

(4)

III. PROBLEM FORMULATION

Our primary objective is to analyze the stability boundary
and parameter sensitivity associated with the oscillatory in-
stability of IBRs. In this context, we first present the normal
vector method and then derive an analytical expression for
the parameter sensitivity of the stability margin to Hopf
bifurcation.

A. Bifurcation

Consider a system modeled by differential equations with
parameters λ,

ẋ = f(x, λ), (5)

where f : Rn×Rm → Rn is nonlinear and smooth, x ∈ Rn are
state variables and λ ∈ Rm are the parameters. For parameter
vector λ0 ∈ Rm, where λ0 represents the system’s nominal
or current parameters, we denote an equilibrium of (5) as
x0 and assume it is asymptotically stable. As λ varies in the
parameter space Rm, the equilibrium x0 changes within the
state space Rn and might disappear or become unstable due to
a bifurcation. If system (5) is assumed to have no special re-
strictions or structure, then saddle-node and Hopf bifurcations
are the only bifurcations generic in curves of parameters, i.e.,
1-d parameter variation in Rm [28]. In this paper, we restrict
to the study of Hopf bifurcations considering our focus on
oscillation instability. This is due to the fact that, in general,
sub-synchronous oscillations (SSO) arising in power systems
are usually accompanied by strange nonlinear attractors born
from the onset of Hopf bifurcations [29]. Hence, designing
measures to prevent the system from approaching to the Hopf
boundary becomes crucial for intercepting SSO. The formal
definition of Hopf bifurcation is given below.

Definition 1: ( [30], Hopf Bifurcation) Assume that f is a
twice continuously differentiable function, and,

1) f(x∗, λ∗) = 0,
2) fx(x∗, λ∗) possess a simple pair of purely imaginary

eigenvalues µ(λ∗) = ±jω∗, ω∗ > 0, and does not have
any other eigenvalues with zero real part,

3) Dλ(ℜ{µ(λ)})|∗ ̸= 0.
Then, limit cycles bifurcate from the steady-state solution at
the equilibrium point (x∗, λ∗). This phenomenon is termed as
Hopf bifurcation.

For the following analysis, we write x∗ and λ∗ for the
equilibrium and parameters, respectively, at a (Hopf) bifur-
cation, and fx|∗ = fx|(x∗,λ∗) for the Jacobian fx evaluated at
the bifurcation. The hypersurfaces of the Hopf bifurcation, as
denoted by ΣH ⊆ Rm, correspond to the set of λ∗ for which
equation (5) has a Hopf bifurcation at (x∗, λ∗).

Given the parameter value λ0, a key question is how close
λ0 is to the set ΣH . Since describing the shape of complex,
multidimensional surfaces like ΣH is very difficult, finding
the points on ΣH that are closest to λ0 is a practical way to



understand how λ0 relates to ΣH without needing to describe
the entire set. The directions from λ0 to these nearest points
are the “worst case” scenarios for parameter changes that could
make the system unstable. The distance from λ0 to the nearest
points on ΣH shows how stable the system is when operating
at λ0. If this distance is minimal, it indicates that the system is
at risk, and the parameters should be adjusted to increase this
distance. The optimal direction for making these adjustments
can be determined by analyzing how sensitive the distance to
the closest bifurcation is to parameter changes around λ0.

B. Normal Vectors to Hopf Bifurcation Hypersurfaces

Consider an eigenvalue jω∗ of fx|(x∗,λ∗). By definition,
since fx|∗ is invertible, the implicit function theorem implies
that there exists a smooth function u and a scalar constant
δ > 0, defined in the neighbourhood of z∗ := (x∗, λ∗) such
that, x = u(λ) and f(u(λ), λ) = 0, ∀ ∥z − z∗∥ ≤ δ.

We can deduce an expression for uλ as shown below. At
an equilibrium,

ẋ = f(x, λ) = f(u(λ), λ) = 0. (6)
We can write the total derivative,
Dλ{f(u(λ), λ)} = fx

(
u(λ), λ

)
uλ(λ) + fλ

(
u(λ), λ

)
= 0,

(7)
and solve for,

uλ = −f−1
x fλ. (8)

Based on Kato’s perturbation theorem [31, pp. 118], there
exists a smooth function µ defined in a neighbourhood of λ∗,
such that µ(λ) ∈ C is an eigenvalue of fx, with µ(λ∗) = jω∗.
As such, for eigenvalue µ(λ) of fx, we have fxv = µ(λ)v
and wHfx = wHµ(λ), where v ∈ Cn and w ∈ Cn are the
right and left eigenvectors, respectively. Normalizing v and w
such that ∥v∥ = 1 and wHv = 1, and pre-multiplying the right
eigenvector equation by wH yields an expression for µ(λ),

wHfxv = µ(λ)wHv = µ(λ). (9)
We write v∗ and w∗ for the right and left complex eigenvector
of fx|∗ corresponding to jω∗, and normalize them accordingly.
Furthermore, using Wedin’s theorem [32] to correlate pertur-
bation of matrices with their invariant eigenspaces, it can be
deduced from (9) that v and w are smooth functions of λ in
a neighbourhood of λ∗. Thus, we can write v∗ = v(λ∗) and
w∗ = w(λ∗).

The non-degeneracy and transversality conditions that
should be satisfied by λ∗ ∈ ΣH [33, pp. 352], are,

c1|∗ ̸= 0,

Dλ(ℜ{µ(λ)})|∗ ̸= 0,
(10)

where c1 is a coefficient for the cubic terms in the flow
reduced to the center manifold, which is proportional to the
first Lyapunov coefficient and is a function of triple derivatives
of f (c.f. [34, Sec 3.4] for more information). Non-degeneracy
guarantees that ΣH is locally a smooth hypersurface near λ∗
and the transversality conditions ensure that the parameter
variation crosses through the hypersurface transversally at λ∗.
It follows that ΣH has a normal vector N (λ∗) ∈ Rm at
λ∗ ∈ ΣH and the Gauss map N : ΣH → Sm is smooth.
Moreover, using the definition of transversality condition in
(10), we can derive an expression for the normal vector to

Hopf bifurcation as,
N (λ∗) := βDλ

(
ℜ{µ(λ)}

)
∗

= βDλ

(
ℜ{wHfxv}

)
∗

= βℜ
{
µ(λ)

[
vHwλ + wHvλ

]
+ wHDλ

[
fx(u(λ), λ)

]
v
}
∗

= βℜ
{
µ(λ)Dλ(w

Hv) + wH
[
fxxuλ + fxλ

]
v
}
∗

= βℜ
{
wH

(
− fxxf

−1
x fλ + fxλ

)
v
}
∗

(11)

where β ̸= 0 is a real scaling factor. |β| is chosen so that
∥N (λ∗)∥ = 1 and the sign of β is chosen so that changing
λ in the direction of N (λ∗) leads to the instability of the
equilibrium. Define T := (T1 . . .Tn ), Ti ∈ Rn×m, as,

T := −fxxf
−1
x fλ + fxλ.

T is a rank-3 tensor of order n × n × m. Upon contraction
with w using mode-2 and with v via mode-1 tensor product
[35], it yields a vector in Rm.

C. Parameter Sensitivity of the Distance to Bifurcation

The distance to the closest bifurcation from a nominal
parameter λ0, denoted as ∆(λ0) = ∥λ∗ − λ0∥, is termed the
stability margin. If ∆ is small, adjusting λ0 to increase ∆ is
beneficial. The optimal direction of first-order changes in λ0 to
maximize ∆ is determined by the sensitivity ∆λ0

= ∂∆(λ0)
∂λ0

.
That is, we regard the margin ∆ as a function of the parameters
λ and aim to find the largest sensitivity ∆λ0

∈ Rm so that
the margin may be improved by changing parameters in that
direction.

Consider a parameter variation from λ0 along the direction
k ∈ Rm. The sensitivity ∆λ0

is a scaled projection of the
normal vector along the direction of k, as depicted in Fig (1).

Fig. 1. Geometry of the bifurcation hypersurface, normal vectors, and the
stability margin.

Utilizing the condition of encountering the first Hopf bifur-
cation as the parameters are varied in the direction k,

ℜ{µ(λ∗)} = 0, (12)
we can write,

d

dλ
ℜ{µ(λ∗)} =

d

dλ
ℜ
{
µ
(
λ0 + k∆(λ0)

)}
= 0. (13)

This gives,
N (λ∗)

T
(
Im + k∆T

λ0

)
= 0, (14)

which solves for an expression for the sensitivity as,
∆λ0

= −
[
kTN (λ∗)

]−1N (λ∗). (15)



The parameters λ can often be divided into two types,
λ = (λuc, λc), where λuc represent uncontrollable parameters
and λc are the controllable parameters. Typically, the variation
of parameters λuc are not controllable by the operators or
designers and may cause bifurcation, whereas λc contains
design or control parameters that can be held constant or
tuned. We aim to change the controllable parameters λc to
ensure sufficient robustness concerning the variations of the
uncontrollable parameters λuc. Towards this end, the normal
vector may be partitioned as,

N = (N uc,N c). (16)
The parameter variation direction k = {(kuc, kc) | kc = 0}
has no components corresponding to λc so that kTN (λ∗) =
(kuc)TN uc(λ∗). The sensitivity of the margin 1 with respect
to the controllable parameters λc is,

∆λc
0
= −

[
(kuc)TN uc(λ∗)

]−1N c(λ∗). (17)
The sensitivities (17) can be used to identify the optimal
controllable parameter in λc to adjust to increase the margin
∆. More generally, optimization methods can be applied to
maximize ∆; at the optimum, the sensitivity (17) becomes
zero.

IV. MODEL OF GRID FOLLOWING INVERTERS

Most inverter-based resources currently deployed on the
grid are of the grid-following (GFL) type. These inverters
are typically synchronized with the grid using phase-locked
loops (PLLs) and inject a designated amount of active and
reactive power. The analysis of this paper is carried out for
a single-inverter-infinite-bus system as depicted in Fig. (2).
We present a common GFL control for a PWM-based voltage
source converter (VSC). Since our focus is on the system-level
dynamics of IBRs, we make the following assumptions.

Assumption 1: The DC-side dynamics of the source are
ignored. That is, the DC voltage udc remains fixed, while the
DC current idc is an algebraic variable ensuring the required
power supply to the inverter.

Assumption 2: The PWM switching dynamics are “fast
enough" to be ignored, i.e., the inverter outputs voltage as
the computed setpoints vt,d and vt,q instantaneously.

As shown in Fig. (2), the grid is represented as a rigid
voltage source and the GFL inverter is connected to it through
a transmission line as described in (42)-(43). The GFL inverter
comprises a VSC with an output RLC filter described by (18)-
(19) and (22)-(23). The controller has a hierarchical structure
with an outer power-control loop and an inner current-control
loop, as depicted in Fig. (3). The outer loop comprises the
active (APC) (26) and reactive (RPC) (27) power controllers
which are fed with power measurements (34)-(35). The refer-
ence signals produced by the outer control loops via (39)-(40),
are sent to the inner current control (CC) loops as described
by (20)-(21) and (30)-(31). The DC power balance equation is
given in (41). The control loops are implemented in a local dq-
reference frame. A phase-locked loop (PLL) (24) generates the
angle (25) and frequency (36) that are required to transform

1Note that the margin here refers to the margin corresponding to the
uncontrollable parameters.

PWM

Current Controller Power Controller

PLL

Power Calculation

Fig. 2. GFL inverter connected to the grid.

three-phase voltage and current signals into dq quantities.
The conversion of local quantities to the global DQ-frame is
observed in (28)-(29), (32)-(33) and (37)-(38). The differential
and algebraic equations for the system in Fig. (2) are given
below and the nomenclature is provided in Appendix A.

(1) Differential equations

˙it,d = −Rf

Lf
it,d + ωit,q +

1

Lf
(vt,d − vc,d) (18)

˙it,q = −Rf

Lf
it,q − ωit,d +

1

Lf
(vt,q − vc,q) (19)

γ̇d = i∗t,d − it,d (20)

γ̇q = i∗t,q − it,q (21)

v̇c,D = ωgvc,Q +
1

Cf
(it,D − ig,D) (22)

v̇c,Q = −ωgvc,D +
1

Cf
(it,Q − ig,Q) (23)

γ̇PLL = vc,q (24)
˙θPLL = KP

PLLvc,q +KI
PLLγPLL + ωs − ωg (25)

ϕ̇d = p∗ − p (26)

ϕ̇q = q∗ − q (27)
(2) Algebraic equations
vc,d − vc,D cos(θPLL)− vc,Q sin(θPLL) = 0 (28)
vc,q + vc,D sin(θPLL)− vc,Q cos(θPLL) = 0 (29)

vt,d −KP
CC(i

∗
t,d−it,d)−KI

CCγd + ωLf it,q −KF
CCvc,d = 0

(30)

vt,q −KP
CC(i

∗
t,q−it,q)−KI

CCγq − ωLf it,d −KF
CCvc,q = 0

(31)
it,D − it,d cos(θPLL) + it,q sin(θPLL) = 0 (32)
it,Q − it,d sin(θPLL)− it,q cos(θPLL) = 0 (33)
p− vc,dig,d − vc,qig,q = 0 (34)
q − vc,qig,d + vc,dig,q = 0 (35)

ω − ωs −KP
PLLvc,q −KI

PLLγPLL = 0 (36)
ig,d − ig,D cos(θPLL)− ig,Q sin(θPLL) = 0 (37)
ig,q + ig,D sin(θPLL)− ig,Q cos(θPLL) = 0 (38)

i∗t,d −KP
APC(p

∗ − p)−KI
APCϕd = 0 (39)
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Fig. 3. Detailed control architecture of the GFL inverter.

i∗t,q −KP
RPC(q

∗ − q)−KI
RPCϕq = 0 (40)

udcidc − vt,dit,d − vt,qit,q = 0 (41)

ig,D − R

Z2
(vc,D − vg,D)− X

Z2
(vc,Q − vg,Q) = 0 (42)

ig,Q − R

Z2
(vc,Q − vg,Q) +

X

Z2
(vc,D − vg,D) = 0 (43)

Z2 −R2 −X2 = 0 (44)

Power system models are typically of the form of
differential-algebraic equations (DAEs), such as the one given
above for the single-inverter-infinite-bus system. One of the
issues of the normal vector method is that it requires differ-
ential equations of index zero, that is, ODEs [36]. Hence,
it is not directly applicable to positive index systems (i.e.,
DAEs) as is the case in our system. However, notice that
the complex nonlinearity only appears in one state variable,
θPLL, while the rest are in bilinear form. We can explicitly
solve the algebraic constraint equations to obtain the form
y = f(x), and convert the set of DAEs into ODEs analytically.
This leads to the restructured state equations in ODE form
as given in the Appendix B. The transformation step eases
the computation of the Jacobians and Hessians required for
obtaining the normal vector, and a closed-form expression is
obtained for the sensitivity in (17).

V. NUMERICAL RESULTS

This section demonstrates the computation of parameter
sensitivities to Hopf bifurcation using normal vectors and
presents results for control tuning for GFL IBRs.

A. System Setup

We consider base values of 20KVA and 400V for the system
in Fig. 2. All the system variables and parameters are con-
verted into per-unit quantities. In the IBR-based system, there
are both controllable and uncontrollable parameters. Moreover,
certain parameters may have larger impacts than the rest on the
stability margin. In this work, we are interested in identifying

the most influential controllable parameters that will mitigate
the impacts of the variation of uncontrollable parameters in
order to design real-time actions to enhance system stability.
The controllable and uncontrollable parameters of the GFL
inverter-based system are identified as,

λuc :=
(
Rf , Lf , Cf , ωg, ωs, vg,D, vg,Q, X,R

)
∈ R9,

λc :=
(
KP,I

PLL,K
P,I,F
CC ,KP,I

APC ,K
P,I
RPC , p

∗, q∗
)
∈ R11.

The nominal values of parameters are given in Table (II).
When allowing a single parameter to vary, the parameter value
when Hopf bifurcation occurs is provided in the table, where
“-” denotes the parameters not analyzed for bifurcations (due
to engineering consideration) and “✗” denotes no bifurcation
induced by the corresponding parameter.

TABLE II
SYSTEM AND CONTROL PARAMETERS FOR GFL

Parameter Nominal Value at Hopf Margin
value (in p.u.) bifurcation (in p.u.) (in p.u.)

Rf 0.0072 - -
Lf 0.2724 - -
Cf 0.2612 - -

KP
PLL 2.65 0.0043 2.6457

KI
PLL 6.5 1254.4 1247.9

KP
CC 1.443 1.943 0.5

KI
CC 14.43 35.845 21.415

KF
CC 1 22.2125 21.2125

KP
APC 1 2.0857 1.0857

KI
APC 3 98.267 95.267

KP
RPC -3 0.26032 2.7397

KI
RPC -4 -77.671 73.671
ωg 1 - -
p∗ 0.8 ✗ ✗
q∗ 0.3 4.0707 3.7707
X 0.07 0.07826 0.0083
R 0.02 0.01552 0.0045

From Table (II), it is clear that there is a large margin, i.e.,
the difference of the bifurcating value and the nominal value,
in most of the integral gain parameters, especially KI

PLL,
towards inducing Hopf bifurcation. On the other hand, the



proportional gains exhibit the least robustness towards Hopf
bifurcation. In the following sections, we will see how these
observations are validated when the system is analyzed using
normal vectors.

B. Prediction of Stability Margin Using Normal Vectors

The undesirable bifurcation can be mitigated using the
sensitivity information obtained through the normal vector
method. We use a particular example to demonstrate the effi-
ciency in estimating the stability margin using normal vectors.
For example, consider an increase in the grid impedance X
(i.e., weakening grid strength), and consider the parameter
KP

CC as the controllable parameter to alleviate the destabiliz-
ing effect of X . The sensitivity formula is given by (17), upon
selecting the two parameters and the direction k (of increasing
X). Using the sensitivity information, the predicted margin
∆̂I

new, under the adjustment in the controllable parameter, is
given by,

∆̂I
new = ∆I

old +∆
C|I
λ0

(
λC
new − λC

old

)
, (45)

where, I and C denote the indices of, the parameter causing
instability (X) and the control parameter (KP

CC), respectively.
The true margin is obtained through numerical simulation, as,

∆I
new = ∆I

old +
(
λI
∗,new − λI

∗,old
)

=
(
λI
∗,old − λI

0

)
+
(
λI
∗,new − λI

∗,old
)

= λI
∗,new − λI

0. (46)
Note that the calculation of the predicted margin in (45) does
not involve any simulations, contrary to that of the true margin
in (46), which requires finding λI

∗,new through simulation.

TABLE III
EFFECT OF PARAMETER VARIATION ON STABILITY MARGIN

KP
CC ↓ Predicted Margin True Margin Errorin X ↑ in X

1.443 (Nominal) - 0.00826 -
1.343 0.01028 0.010378 9.8e-05

1 0.017208 0.019439 2.23e-03
0.7 0.023268 0.030846 7.57e-03

Table (III) compares the true margin with the predicted
margin using the normal vector method. The first row gives the
nominal value of KP

CC and the true nominal margin in X . The
later rows show the reduction in KP

CC and the corresponding
increases in the margin in X , for the ground truth and
the prediction, respectively. From Table (III), it is evident
that the normal vector method is effective in predicting the
sensitivity margins. Besides, the accuracy slightly decreases
as the parameter values deviate from the nominal one. This
is consistent with the fact that the prediction formula (45)
is linear approximation whereas nonlinearities become more
significant as conditions diverge from the nominal value.

C. Control Parameter Sensitivity

We generate a normalized heatmap for the parameter sen-
sitivities to Hopf bifurcation as depicted in Fig. (4). The
parameters displayed on the y-axis of the map are responsible
for causing Hopf bifurcation, whereas those on the x-axis
represent the parameters to adjust to improve the margin.
For example, based on the map, if the system encounters
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Fig. 4. Normalized heatmap of parameter sensitivities to Hopf bifurcation in
GFL IBRs using min-max feature scaling.

instability due to increasing KP
RPC , the most influential con-

trollable parameter to go for would be increasing KP
CC . It

is worth mentioning that the entries with the same x and
y indices hold no significance because it is always −1. In
other words, if information is known on which parameter is
inducing instability, the most effective remedy is always to
alter that parameter in the opposite direction. Besides, the
positive (negative) sensitivity values for control parameters
may not necessarily indicate that increasing (decreasing) their
values will increase the margin because it also depends on
the direction in which the corresponding instability-inducing
parameter is varied.

The most influential parameters that can be used in alleviat-
ing the instabilities induced by other parameters are summa-
rized in Table (IV). The coloured up and down arrows indicate
the direction in which the variation of parameters leads to
instabilities. “✗” implies an absence of Hopf bifurcation. The
sensitivity ∆

C|I
λ0

is given in per unit.

TABLE IV
MOST INFLUENTIAL CONTROL PARAMETERS FOR GFL

Cause of Hopf Bifurcation

instability (I) Control (C) Sensitivity (∆C|I
λ0

)
KP

PLL ↓ q∗ 0.03422
KI

PLL ↑ p∗ -746.706
KP

CC ↑ KP
APC -0.63706

KI
CC ↑ KP

CC -34.2752
KF

CC ↑ KP
CC -35.031

KP
APC ↑ KP

CC -2.9466
KI

APC ↑ KP
CC -188.442

KP
RPC ↑ KP

CC 0.388007
KI

RPC ↓ KP
CC 162.034

p∗ ✗ ✗

q∗ ↑ KP
CC -11.7163

X ↑ KP
CC -0.0202

R ↓ KP
CC 0.009611

It can be observed from Table (IV) that for Hopf bi-



furcations, KP
CC turns out to be the most effective control

parameter for steering away from oscillatory instability that
is induced by variation of most of the parameters. The only
exceptions are the parameter variations of the PLL control
loop, for which the most effective control action is to tune
the power setpoints. This consistency in the effectiveness of
KP

CC makes sense intuitively because the current controller
in GFL is the last line of action towards establishing a grid-
following nature. This observation is useful in the sense that,
no matter which parameter’s variation is causing the reduction
in stability margin or even bifurcation, the most effective
control action is to tune the KP

CC (under the considered
operating point). Another interesting observation is that the
active power setpoint p∗ is not inducing Hopf bifurcation in
the standard GFL model considered in this work.

VI. CONCLUSION

This paper studied the impacts of parameter variations on
the stability margin of grid-following inverters to Hopf bifurca-
tion. Normal vectors to the Hopf bifurcation hypersurface were
employed to derive an analytical expression for the sensitivity
of the stability margin, which is then used to conduct a
systematic investigation spanning the entire parameter space
of the GFL inverter-based system. The analysis identified a
consistent control parameter, that is, the proportional gain of
the current control loop, in steering the system away from
Hopf bifurcation, regardless of which parameter is inducing
instability. Note that, upon the construction of the normal
vector, the complete information on the parameter sensitivity
can be obtained, which is much more computationally efficient
than conducting numerical simulations to find the stability
margin for all the parameter variations. Ongoing and future
work aims to improve the scalability of the method to larger
networks and extend the method to hybrid dynamical systems
with switching algebraic equations.

APPENDIX

A. Nomenclature

The indexing of the variables and parameters used in the
differential and algebraic equations is described below.
Dynamic states (10):
x1 : it,d → (Local) d-axis IBR output current it
x2 : it,q → (Local) q-axis IBR output current it
x3 : γd → d-axis current controller state
x4 : γq → q-axis current controller state
x5 : vc,D → (Global) D-axis filter output voltage vc
x6 : vc,Q → (Global) Q-axis filter output voltage vc
x7 : γPLL → PLL integrator state
x8 : θPLL → PLL phase angle
x9 : ϕd → d-axis (active) power controller state
x10 : ϕq → q-axis (reactive) power controller state

Algebraic states (17):
y1 : vt,d → d-axis IBR output voltage vt
y2 : vt,q → q-axis IBR output voltage vt
y3 : ω → IBR angular frequency determined by PLL
y4 : i∗t,d → d-axis current setpoint i∗t

y5 : i∗t,q → q-axis current setpoint i∗t
y6 : it,D → D-axis IBR output current it
y7 : it,Q → Q-axis IBR output current it
y8 : vc,d → d-axis filter output voltage vc
y9 : vc,q → q-axis filter output voltage vc
y10 : p → Active power output from filter
y11 : q → Reactive power output from filter
y12 : ig,d → d-axis filter output current ig
y13 : ig,q → q-axis filter output current ig
y14 : ig,D → D-axis filter output current ig
y15 : ig,Q → Q-axis filter output current ig
y16 : udc → DC-link voltage
y17 : idc → DC-link current

Parameters (19):
p1 : Rf → Filter resistance
p2 : Lf → Filter inductance
p3 : Cf → Filter capacitance
p4 : KP

PLL → Proportional gain of PLL
p5 : KI

PLL → Integral gain of PLL
p6 : ωs → Synchronous angular frequency for IBR
p7 : KP

CC → Proportional gain of current controller
p8 : KI

CC → Integral gain of current controller
p9 : KF

CC → Feed-forward gain of current controller
p10 : KP

APC → Proportional gain of active power controller
p11 : KI

APC → Integral gain of active power controller
p12 : KP

RPC → Proportional gain of reactive power controller
p13 : KI

RPC → Integral gain of reactive power controller
p14 : ωg → Grid angular frequency
p15 : p∗ → Active power setpoint
p16 : q∗ → Reactive power setpoint
p17 : vg,D → D-axis Grid voltage vg
p18 : vg,Q → Q-axis Grid voltage vg
p19 : R → Transmission line resistance
p20 : X → Transmission line reactance

B. Restructured System Equations

We analytically eliminate the algebraic variables from the
DAEs in Sec. (IV) to obtain the following ODEs for the GFL-
based system.

˙it,d = − 1

Lf
(Rf +KP

CC)it,d +
KI

CC

Lf
γd +

KP
CCK

I
APC

Lf
ϕd

+
KP

CCK
P
APC

Lf

(
p∗ − R

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]
−

X

Z2
vc,Qvg,D

)
+

KF
CC − 1

Lf

[
vc,D cos(θPLL) +

vc,Q sin(θPLL)
]

˙it,q = − 1

Lf
(Rf +KP

CC)it,q +
KI

CC

Lf
γq +

KP
CCK

I
RPC

Lf
ϕq

+
KP

CCK
P
RPC

Lf

(
q∗ − X

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]
+

R

Z2
vc,Qvg,D

)
− KF

CC − 1

Lf

[
vc,D sin(θPLL) −

vc,Q cos(θPLL)
]

γ̇d = KP
APC p∗ −KP

APC

( R

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]



+
X

Z2
vc,Qvg,D

)
+KI

APC ϕd − it,d

γ̇q = KP
RPC q∗ −KP

RPC

( X

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]
− R

Z2
vc,Qvg,D

)
+KI

RPC ϕq − it,q

˙vc,D = ωgvc,Q +
1

Cf

(
it,d cos(θPLL)− it,q sin(θPLL) −

R

Z2

[
vc,D − vg,D

]
− X

Z2
vc,Q

)
˙vc,Q = −ωgvc,D +

1

Cf

(
it,d sin(θPLL) + it,q cos(θPLL) +

X

Z2

[
vc,D − vg,D

]
− R

Z2
vc,Q

)
˙γPLL = −vc,D sin(θPLL) + vc,Q cos(θPLL)

˙θPLL = KP
PLL(−vc,D sin(θPLL) + vc,Q cos(θPLL)) +

KI
PLLγPLL + ωs − ωg

ϕ̇d = p∗ −
( R

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]
+

X

Z2
vc,Qvg,D

)
ϕ̇q = q∗ −

( X

Z2

[
v2c,D + v2c,Q − vc,Dvg,D

]
− R

Z2
vc,Qvg,D

)
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