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Abstract—This paper proposes a novel method rooted in dif-
ferential geometry to approximate the voltage stability boundary
of power systems under high variability of renewable generation.
We extract intrinsic geometric information of the power flow solu-
tion manifold at a given operating point. Specifically, coefficients
of the Levi-Civita connection are constructed to approximate the
geodesics of the manifold starting at an operating point along
any interested directions that represent possible fluctuations in
generation and load. Then, based on the geodesic approximation,
we further predict the voltage collapse point by solving a few
univariate quadratic equations. Conventional methods mostly
rely on either expensive numerical continuation at specified direc-
tions or numerical optimization. Instead, the proposed approach
constructs the Christoffel symbols of the second kind from the
Riemannian metric tensors to characterize the complete local
geometry which is then extended to the proximity of the stability
boundary with efficient computations. As a result, this approach
is suitable to handle high-dimensional variability in operating
points due to the large-scale integration of renewable resources.
Using various case studies, we demonstrate the advantages of the
proposed method and provide additional insights and discussions
on voltage stability in renewable-rich power systems.

Index Terms—Voltage stability, renewable energy fluctuation,
differential geometry, Levi-Civita connection, Christoffel symbols

I. INTRODUCTION

Renewable generation plays an important role in achieving

carbon neutrality by replacing conventional fossil-fuel-based

synchronous generation. However, numerous technical chal-

lenges need to be solved to maintain the stability and normal

operation of the future renewable-rich power systems [1].

This paper focuses on the voltage stability problem for

power systems that have a very high penetration level of

renewable generation. Such systems will experience significant

variations in operating points that are larger in magnitude,

faster in timescale, and higher in dimension [2]. Tradition-

ally, the voltage instability results from load change that

exceeds the maximum power transfer limit (i.e., maximum

loadability point). At that point, the Jacobian of the power

flow equation becomes singular [3], [4], and we refer to
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such points to be on the power flow singular solution space

boundary (SSB), or the voltage stability boundary. Conven-

tional analysis methods aim to find the maximum loadability

point by directly computing the parameter that achieves the

singularity condition. That is, consider power flow equations

f(x;λ) = 0, allow a scalar parameter to vary, and find the

parameter value when det ∂f/∂x(x;λ) = 0. The maximum

loadability point further implies the stability margin from the

current operating point. Another commonly adopted approach

is the continuation power flow (CPF) method, which frees up

one parameter, for example, representing a single direction

of change for the load and generation profile, and seeks the

trajectory of solutions of the power flow equation along the

direction of varying [5]–[10]. Compared to directly computing

the maximum loadability point, the CPF method provides

the shape of the solution manifold (albeit along the single

parameter variation direction). Since each continuation process

takes one parameter varying direction, the applicability of the

CPF method relies on the predictability of load and generation

and a strong engineering understanding of the system in

identifying prevalent operation patterns. Such an assumption

may no longer hold in renewable-rich power systems that

feature numerous possible directions of change within a short

period of time [11]. To address such a limitation of the

CPF method, another line of research focuses on finding the

locally closest point (to the nominal parameter) in parameter

space that achieves singularity. Optimization techniques were

applied in [12] to solve for the smallest margin. Thorough

analysis and computation methods were provided in [13]–[15]

to compute the locally nearest point in power space. It is worth

mentioning that previous research has studied instability due

to limit-induced bifurcation, for example, caused by the limit

of reactive power supplied by generators [16]–[18]. This is out

of the scope of the current paper. In this paper, we focus our

discussion on saddle-node bifurcations, i.e., when the Jacobian

matrix of the power flow equation encounters singularity [4],

[19]. Recent developments have extended the analysis to the

Riemannian metric [11], [20] to compute the shortest manifold

distance. Although they have the potential to address the

challenge of handling numerous power-changing directions,

searching for the global stability margin corresponding to all

possible power-changing directions is computationally inten-
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sive. Computational Riemannian geometry has been used as

well for treating a closely related problem, i.e., computing

local approximations of the SSB manifold [21]. The methods

in [21] give numerically precise presentations of the SSB

by geodesic coordinates (i.e., families of geodesics) up to

dimension 200 but are computationally costly.

Revealing the global geometry of the power flow mani-

fold and the singularity-induced voltage stability boundary

is beneficial to guiding system operation. In this paper, we

propose a completely novel method rooted in mathematical

tools from differential geometry. It can replicate the geometry

of the power flow manifold in a global manner, that is,

along all possible parameter-varying directions, merely from

local measurements and efficient computations. Specifically,

coefficients of the Levi-Civita connection [22] are constructed

to approximate the geodesics of the manifold starting at the

operating point along any interested directions that represent

possible adjustments in generation and load. The geodesics

per se provide valuable information on the shape of the

solution manifold. Then, based on the geodesic approximation,

we further predict the voltage collapse point by solving the

extrema of a few univariate quadratic equations. The proposed

approach is suitable to handle high-dimensional variability in

operating points (potentially due to the large-scale integration

of renewable resources), because once the coefficients of

the Levi-Civita connection are constructed, the geodesics can

be approximated for arbitrary direction. We demonstrate the

advantages of the proposed method and provide additional

insights and discussions on voltage stability in renewable-

based power systems using various case studies.

II. PROBLEM STATEMENT

A. Power Flow Model

Consider a connected power grid with in total Nb nodes.

Without loss of generality, assume that the first node is the

slack bus, the second to the Ng-th buses are the PV buses

(where the active power and voltage magnitude are specified),

and the rest nodes are the PQ buses (where the active and

reactive power are specified).

For the i-th PV bus, we have

U i

Ng
∑

m=1
m ̸=i

Um
[

Gim cos(θim) +Bim sin(θim)
]

+ (U i)2Gii

+U i

Nb
∑

Ng+1

V n
[

Gin cos(θ
in) +Bin sin(θ

in)
]

= P i, (1)

where U ’s are the voltage magnitudes at PV nodes that are

given as constants; V ’s are the voltage magnitudes at PQ nodes

(unknown); Gim and Bim are parameters of the network,

denoting the (i,m)-th elements of the bus conductance matrix

and bus susceptance matrix, respectively; θim := θi−θm is the

nodal voltage angle difference and θ1 = 0; P i is the specified

active power injections at the i-th PV bus [23].

Similarly, for the j-th PQ bus, we have

V j

Ng
∑

m=1

Um
[

Gjm cos(θjm) +Bjm sin(θjm)
]

+ (V j)2Gjj

+ V j

Nb
∑

Ng+1

n ̸=j

V n
[

Gjn cos(θ
jn) +Bjn sin(θ

jn)
]

= P j , (2a)

V j

Ng
∑

m=1

Um
[

Gjm sin(θjm)−Bjm cos(θjm)
]

− (V j)2Bjj

+ V j

Nb
∑

Ng+1

n ̸=j

V n
[

Gjn sin(θ
jn)−Bjn cos(θ

jn)
]

= Qj , (2b)

where P j and Qj are the specified active power and reactive

power injections at the j-th PQ bus.

B. Power Flow Manifold

Equations (1) and (2) define the power flow map F that

sends nodal voltage magnitudes and angles to the nodal active

and reactive power injections.

F : RN → R
N , F(V, θ) = (P,Q), (3)

where N = 2Nb − Ng − 1, V ∈ R
Nb−Ng , θ ∈ R

Nb−1, P ∈
R

Nb−1, Q ∈ R
Nb−Ng .

In the traditional power flow problem we assume that the

nodal power injections P and Q are fixed due to the high

predictability of conventional generation and load. So, the

voltage variables that admit the given power injection comprise

a 0-dimensional point set (the power flow solutions). However,

with more renewable generation penetrating into the grid, such

an assumption may not be valid in the future. If we relax all the

nodal power injections P and Q as free variables, the point set

that follows the power flow map F yields an N -dimensional

surface which defines our power flow manifold φ. Note that

conventional continuation methods only free one parameter up

in a single continuation process.

C. Singularity-Induced Voltage Stability Boundary

Voltage instability is strongly related to the power flow

Jacobian matrix reaching singularity [24]. Thus, the voltage

stability boundary ∂φ is defined by the point set,

∂φ = {(P,Q,V, θ)|F(V, θ) = (P,Q), det(∂F) = 0}. (4)

In this paper, we aim to develop a method that can estimate

the voltage stability boundary in a global manner, namely, for

all possible power variations. We achieve this by constructing

the geometric information of the power flow manifold.

D. Geometric Interpretation of Voltage Stability Region

By the Whitney Embedding Theorem [25], the N -

dimensional power flow manifold φ can be embedded in

R
2N which is naturally selected as the power-voltage space

P ·Q ·V · θ. The corresponding parameterization map r
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is constructed by stacking the power flow map F with the

identity map I,

r : RN → R
2N , r(V, θ) =

(

F , I
)

(V, θ). (5)

Since the Jacobian matrix of r has the full rank of N , r is

regular.

Define a projection map P from the power-voltage space to

the power subspace,

P : P·Q·V · θ → P·Q. (6)

If we further restrict P on φ, denoted as Pϕ, then Pϕ : φ →
P·Q is a map from the N -dimensional manifold φ to R

N .

Let’s consider a given operating point z0 ∈ φ. For any open

neighborhood U of z0 in φ, if Pϕ is a homeomorphism on U ,

then (U,Pϕ) composes a so-called chart on φ and the image

of Pϕ, denoted as W (in the power space), defines a local

coordinate system of U .

Note that Pϕ fails to be a homeomorphism on U if there

exists some point y ∈ U such that the Jacobian matrix of the

power flow map F at y is singular. From differential geometry

point of view, this submanifold of singular points defines the

boundary of a particular coordinate system W in the power

subspace for the largest chart (Umax,Pϕ). This Umax is exactly

the voltage stability region enclosed by the singular boundary.

III. METRIC TENSORS AND GEODESIC EQUATION

In this section, we briefly summarize the differential geom-

etry tools that are used in the paper for self-completeness.

Interested readers can refer to [22], [26], [27] for a more

comprehensive exposition. Throughout the paper, we adopt

the notational convention from differential geometry unless

otherwise clarified. In general, we use superscripts to represent

indices and subscripts to represent partial derivatives for

multivariable vector-valued functions.

A. Tangent Space, Basis and Dual Basis

Consider a smooth map r : Rn → R
n+m, where r(s) =

[

r1(s), . . . , rn+m(s)
]

, s = [s1, . . . , sn], n > 0 and m g 0.

The point set φ :=
{

r(s) ∈ R
n+m | s ∈ R

n
}

defines an n-

dimensional surface where s is referred to as curvilinear coor-

dinates on φ. The vector-valued function r(s) is a parametric

representation for φ.

Define the i-th basic tangent vector ri ∈ R
n+m by

ri :=
∂r

∂si
. (7)

Let Tφp be the tangent space of φ at some point p ∈ φ. Then,

Tφp is spanned by the basis {ri}. We say φ is regular if the

rank of the matrix (∂ri/∂sj) is n. If φ is further Hausdorff

and second countable topological space, it is an n-manifold.

Consider a hypersurface φi :=
{

r(s) ∈ R
n+m | si = c

}

of

the n-dimensional surface φ for a fixed index i and a constant

c. Define ▽si ∈ R
n+m as the basic normal vector to the

hypersurface φi in Tφp, given by1

▽si :=

(

∂si

∂r1
, . . . ,

∂si

∂rn+m

)

. (8)

Then, {▽si} forms the dual basis of tangent space Tφp.

Hence, we have

ïri,▽sjð = δji , (9)

where δji is the Kronecker delta.

B. Metric Tensors

The covariant metric tensor (gij) of the surface φ is a 2-

dimensional symmetric matrix whose entries gij are given by

the inner products of the tangent vectors,

gij := ïri, rjð. (10)

Similarly, define the contravariant metric tensor (gij) of the

surface φ by the normal vectors,

gij := ï▽si,▽sjð. (11)

By (9) we have,

n
∑

k=1

gikg
kj = δji , (12)

which indicates that the contravariant metric tensor is the

inverse matrix of the covariant metric tensor, namely,
(

gij
)

= (gij)
−1. (13)

We will implement (13) when evaluating the voltage stability

boundary in Section IV.

C. Levi-Civita Connection

The metrics discussed above are naturally Riemannian met-

rics. Equipped with these metrics, we can further discuss

“straight lines” on the smooth manifold φ. In order to do so,

we need an appropriate tool to preserve the Riemannian metric,

which, in Riemannian geometry, is the Levi-Civita connection.

The coefficients of the Levi-Civita connection are locally

characterized by the Christoffel symbols of the second kind,

denoted by Γ k
ij . In what follows, we shall first compute the

Christoffel symbols of the first kind Γij,k,

Γij,k =
1

2

(

∂gjk
∂si

+
∂gik
∂sj

−
∂gij
∂sk

)

(14a)

= ïrij , rkð, (14b)

where rij := ∂ri/∂s
j . Then, the second kind Γ k

ij is derived

as,

Γ k
ij =

1

2

n
∑

l=1

gkl
(

∂gjl
∂si

+
∂gil
∂sj

−
∂gij
∂sl

)

(15a)

=
n
∑

l=1

gklΓij,l. (15b)

1To have a proper inverse map for r(s) when m > 0, one must restrict
the inversion to the embedded submanifold r(Rn) contained in R

n+m.
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Fig. 1: Illustration of the Levi-Civita Connection.

Geometrically speaking, if we project the rate of change of

tangent vectors, rij , to the tangent space Tφp, the representa-

tion under the basis of the tangent vectors are the coefficients

of the Levi-Civita connection.

P(rij) =

n
∑

k=1

Γ k
ijrk (16)

where P is the projection operator.

That is, Γ k
ij is the k-th projected component of the second

order derivative rij onto the tangent space. For a constant |rij |,
if Γ k

ij is small, it means the component of rij along the normal

direction is large, and this suggests a more curved surface. For

example, Fig. 1(a) shows a less curved surface (the blue curve)

with a large Γ k
ij value. On the contrary, Fig. 1(b) shows a more

curved surface with a small Γ k
ij value.

D. Geodesic Equation

Consider a smooth curve γ on the manifold φ. It can be

described by the canonical parametric representation in the

local coordinate system r
(

s(τ)
)

: R → R
n+m. For a curve

to be a geodesic curve, that is, the shortest path between two

points on a Riemannian manifold, γ must satisfy the following

geodesic equation that represents zero acceleration,

∂2sk

∂τ2
+

n
∑

i,j

Γ k
ij

∂si

∂τ

∂sj

∂τ
= 0, ∀k, (17)

where τ is a canonical parameterization which is proportional

to the arc length of γ. Equation (17) serves as the core

formula for us to approximate the voltage stability boundary

in Section IV.

IV. APPROXIMATE VOLTAGE STABILITY BOUNDARY

In this section, we propose a novel method to approximate

the voltage stability boundary based on geometric quantities

discussed in Section III.

A. Approximating Voltage Stability Boundary

The interpretation in Section II-D implies that by examining

certain geometric properties of the chart Umax we might be able

to predict its boundary. Among different geometric objects, we

pay special attention to the geodesic curve because it inherits

the intrinsic geometry of the manifold and can be naturally

expanded to the neighborhood of the operating point and the

proximity of the singular boundary.

First, consider any curve in the chart Umax starting from

the origin z0 of the local coordinate system. Given the canon-

ical parameterization, we can expand the voltage magnitude

variable V k by the Taylor series,

V k(τ) = V k(0) +

∞
∑

n=1

τn

n!

dnV k(0)

dτn
, (18)

where V k(0) is at the origin z0, τn denotes τ to the n-th

power.

Let’s further assume that the curve is geodesic. The higher

order derivatives dnV k(0)/dτn in (18) can be evaluated by

taking higher order derivatives of the Christoffel symbols

from (17),

V k(τ) = V k(0) + V̇ k(0)τ−
∞
∑

n=2

τn

n!

N
∑

i1,··· ,in

Γ k
i1···in

Ẋi1(0) · · · Ẋin(0), (19)

where X includes both voltage magnitude V and angle θ, Xi

is the i-th entry of X, Ẋi is the derivative of Xi with respect

to τ , and Γ k
i1···in

represents generalized connections [28].

To simplify the model and improve computational effi-

ciency, we truncate (19) to the second order, namely,

V k(τ) ≈ V k(0) + V̇ k(0)τ −
τ2

2

N
∑

i,j

Γ k
ijẊ

i(0)Ẋj(0). (20)

As an implication of Taylor’s theorem, (20) closely matches

the behavior of the geodesic curve in the vicinity of the origin.

We extend the approximation for estimating the boundary

of the chart. In particular, (20) admits a unique τ⋆ (that is

independent of the origin V k(0)) which yields the extremum

of the univariate linear and quadratic parts of (20). Therefore,

by substituting τ⋆ into (20) and enforcing the sign of the slope

V̇ k(0) on the first and second order terms, we provide the

approximated voltage stability boundary V k
appx for the k-th

PQ bus as follows,

V k
appx = V k(0) +

V̇ k(0)3

|V̇ k(0)|

(

2
N
∑

i,j

Γ k
ijẊ

i(0)Ẋj(0)

)−1

. (21)

Note that the above approximation formula is based purely

on a single operating point. For example, according to (15b),

the Christoffel symbols Γ k
ij are computed from the first and

second-order derivatives of the power flow map, which are

locally evaluated at the given point. Extensive numerical

simulations in Section V will show that the approximated

boundary from (21) can follow the shape of the true boundary
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consistently and conservatively. Although rigorous proof of

this result is under investigation, we provide a geometric

interpretation for this phenomenon here. Recall Fig. 1 and

Section III-C, a smaller Christoffel symbol Γ k
ij implies that

the manifold is more curved in direction-k. If the geodesic

path is strongly inclined to direction-k, it should also be more

curved in this direction. So, the voltage magnitude V k at bus-

k should experience a deeper drop on the stability boundary.

Meanwhile, with a smaller Γ k
ij the quadratic approximation

(20) has a smaller coefficient for the quadratic term. Hence,

(21) predicts a deeper voltage decline at bus-k. By this means,

(21) can consistently follow the shape of the true boundary.

In summary, the general procedure of the proposed method

is given as follows:

1) Generate the covariant metric tensor (gij) from the first-

order derivatives using (10).

2) Obtain the contravariant metric tensor (gij) by taking

the inverse matrix of (gij) using (13).

3) Compute the Christoffel symbols of the first kind Γ k
ij

using (14b).

4) Compute the Christoffel symbols of the second kind

using (15b).

5) Approximate voltage stability boundary on each bus

using (21).

B. Reducing Conservativeness

We further provide a heuristic to improve the performance

of the above estimation. This heuristic is motivated by the

consistent approximation gap (c.f. Section V) that is nearly

uniform on the same bus for all power-varying directions. This

insightful observation motivates the following modification

of our method. Since (21) consistently yields a conservative

estimation of the voltage stability boundary, instead of working

on (21), let us consider,

V k
appx = V k(0) + αk V̇

k(0)3

|V̇ k(0)|

(

2

N
∑

i,j

Γ k
ijẊ

i(0)Ẋj(0)

)−1

,

(22)

where αk ∈ R is a scaling factor that can be estimated by, for

example, running a continuation for a specific power-varying

direction. When αk = 1, (22) reverts back to the original

form in (21). This modification will substantially improve the

conservativeness of the original approximation which shall be

seen in Section V.

V. NUMERICAL SIMULATIONS

This section presents extensive numerical results to demon-

strate the performance of the proposed method under various

settings and scenarios. We implement continuation power flow

(CPF) as the benchmark method to identify a collection of nose

points as the true voltage stability boundary.

In Subsection V-A, we highlight the capability of the

original model (21) to reveal the global geometry (in a

conservative manner) of the voltage stability boundary based

on a single operating point. Subsection V-B further illustrates

how the modified approach (22) reduces the conservativeness

and improves the accuracy of the voltage stability boundary

estimation. In Subsection V-C, we highlight the computational

efficiency of the proposed method. All the simulations are

performed using Matlab 2017b on a PC with a 4-core 2.8
GHz CPU.

A. Simulation Results of the Original Method

This subsection demonstrates the capability of the origi-

nal model (21) to capture the global shape of the voltage

stability boundary using both 2D and 3D visualizations of

two benchmark systems, i.e., the IEEE 14-Bus and 39-Bus

systems. Note that the proposed methods are suitable for any

dimensional problems, but visualization can only be realized in

at most 3 dimensions. In what follows, blue curves represent

the true voltage stability boundary obtained from the CPF,

green curves are the approximated voltage stability boundary

from the proposed methods, and black lines are the starting

points.

To mimic the high variability of renewable generation, we

superimpose faster renewable variations on top of slower load

changes in all possible directions. The time-varying power

injection model is given by

P i(t) = P i
0 + cos(β)t, (23a)

P j(t) = P j
0 + sin(β)t, (23b)

where P i
0 and P j

0 are the initial power injections at node i
and j, respectively. Parameter β is distributed evenly in the

range [0, 2π], representing different power-varying directions.

We simulate load change and renewable variation in the same

way. When considering three different changing directions,

two independent angle variables β and δ are needed.

P i(t) = P i
0 + cos(β) cos(δ)t, (24a)

P j(t) = P j
0 + sin(β) cos(δ)t, (24b)

P k(t) = P k
0 + sin(δ)t. (24c)

For the IEEE 14-Bus example, we select Bus-4 and Bus-9

as the load-varying nodes with a constant power factor at 0.95
and select Bus-3 and Bus-6 as the renewable fluctuating nodes

with a 4× faster-changing rate than the load changing rate.

Figure 2 shows where the voltage magnitude reaches its

stability boundary at different buses. From a given operating

point, the original model can replicate the global shape of the

voltage stability boundary at each bus in a conservative and

uniform manner. The approximated boundaries (green curves)

follow the true boundaries (blue curves) consistently.

Figure 3 presents the approximated boundaries using the

original model at different initial points (i.e., different loading

conditions). In the light loading condition (c.f. Fig. 3(a)), the

starting voltage magnitude at Bus-4, as shown by the black

curve, is around 0.95 p.u. In the heavy loading condition, (c.f.

Fig. 3(b)), the starting voltage magnitude at Bus-4 is below 0.9
p.u. In both loading conditions, the approximated boundaries

follow the true boundary consistently.
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Fig. 2: IEEE 14-bus voltage stability boundary at different buses.
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Fig. 3: IEEE 14-bus voltage stability boundary in different
conditions.
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Fig. 4: IEEE 14-bus voltage stability boundary in 3D.

To further illustrate the capability of the proposed method

in a higher dimensional space, we add one more load-varying

node at Bus-11 and one more renewable varying node at

Bus-2. Figure 4 shows the corresponding voltage stability

boundary in 3D. One can observe that the high-dimensional

approximation still captures the essential shape of the true

voltage stability boundary.

For the IEEE 39-Bus example, we select Bus-4 and Bus-8 as

the load-varying nodes with a constant power factor at 0.95
and select Bus-33 and Bus-36 as the renewable fluctuating

nodes with a 4× faster-changing rate than the load changing

rate.

Figure 5 shows the approximated boundaries of the IEEE-

39 example at Bus-4 and Bus-8, from a given operating point.
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Fig. 5: IEEE 39-bus voltage stability boundary at different buses.
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Fig. 6: IEEE 39-bus voltage stability boundary in different
conditions.
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Fig. 7: IEEE 39-bus voltage stability boundary in 3D.

Figure 6 depicts the approximated boundaries at different

initial loading conditions. We further add Bus-21 as the

third load-varying bus and plot the corresponding 3D voltage

stability boundaries in Fig. 7.

All the results obtained for the IEEE 39-Bus system share

the same properties as those of the IEEE 14-Bus system. It

suggests that the proposed model (21) can capture the global

shape of the true voltage stability boundary in a consistent and

conservative manner.

B. Simulation Results of the Modified Method

This subsection presents the simulation results from the

modified model (22) with the scaling factor αk for Bus-k to

demonstrate the improved performance.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



0 0.5 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1
V

4

(a) Bus-4 voltage at α4 = 1

0 0.5 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

V
4

(b) Bus-4 voltage at α4 = 3.4

0 0.5 1.5 2 2.5 3

0.7

0.8

0.9

1

V
5

(c) Bus-5 voltage at α5 = 1

0 0.5 1.5 2 2.5 3

0.7

0.8

0.9

1

V
5

(d) Bus-5 voltage at α5 = 3.4

Fig. 8: IEEE 14-Bus system with different scaling factors α
k.

Figures 8 and 9 compare the modified approximation results

with αk ̸= 1 (the right column) to the original approximation

(the left column) for the 14-Bus and 39-Bus systems, respec-

tively. The plots demonstrate that a uniform scaling factor

αk can greatly improve the conservativeness of the original

approximation for all power-varying directions β at the same

bus. In practice, to determine the value of this scaling factor

αk, one can compute a single voltage collapse point through

the CPF method to find a specific αk. Then, use this αk for

other power-varying directions.

Lastly, a 3-bus system with a slack bus (Bus 1) and two PQ

buses (Buses 2 and 3) is thoroughly examined. The nominal

parameters are chosen as r12 = r13 = r23 = 0.01 p.u.,

x12 = x13 = x23 = 0.09 p.u., b1 = b2 = b3 = 0.1 p.u.,

P 0
2 = P 0

3 = 0.8 p.u., and Q0
2 = Q0

3 = 0.2 p.u. We vary

the active power injections at the two PQ buses and keep

track of their voltage magnitudes. The corresponding 2D P-V

manifolds live in 3D subspaces, as shown by the blue curves

in Fig. 10. The ending dots in heavy blue are the true singular

boundary points given by CPF. Then, we apply (22) with

a uniform scaling factor αk = 4 to compute the estimated

voltage boundary, and plotted them as pink diamonds. As can

be seen from Fig. 10, the approximated boundary points match

the shape of the true singular boundary with small deviations.

Recall that this approximation was done at a single operating

point and was used for long-range predictions (6 p.u. in power

space) for many parameter-varying directions. It is reasonable

to conclude that the proposed estimation method performed

well.
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Fig. 9: IEEE 39-Bus system with different scaling factors α
k.
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Fig. 10: Modified 3-bus system power-voltage space.

C. Computational Efficiency

We summarize the execution time for different IEEE bench-

mark systems in Table I. The first row reports the results

from a CPF method in [29] (without the holomorphic part)

and the second row reports the CPF method implemented

by the MATPOWER module. The next row reports the one-

time computation time for obtaining the Christoffel symbols.

The computing time for the proposed estimation method is

given in the next row. Each system is evaluated under 180
different power-varying directions on a circle for a fixed initial

condition. The speedup of the proposed estimation method

compared to the customized CPF [29] is collected in the last

line, and it is around 1000× in our implementation. Further

efficiency improvement is promised when the tensor sparsity

is explored. It suggests that the proposed method can be

used for online voltage stability boundary analysis under high

variability of renewable.
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TABLE I: Execution time for IEEE benchmark systems.

System 9-Bus 14-Bus 39-Bus

CPF [29] (sec) 10.4 17.5 42.5

CPF MATPOWER [30] (sec) 14.1 38 69.7

Christoffel computation (sec) 0.0009 0.00146 0.0136

Proposed estimation (sec) 0.0141 0.0191 0.0441

Speedup 739 916 964

VI. DISCUSSIONS

One of the most intriguing results is that the proposed

method can reconstruct the basic geometry of the voltage

stability boundary from a single operating point. Geometrically

speaking, the Christoffel symbols are evaluated at a given

point. Then, the geodesic equation (17) extends the local

information to the neighborhood of the given point (which

is still in the local sense). However, the collection of the

extrema obtained from the truncated quadratic approximation

(21) shows its capability of replicating the global shape of

the true voltage stability boundary in a conservative way.

Understanding such resemblance may inspire completely new

mathematical tools for analyzing global behaviors of future

complex power grids based on local measurements and com-

putations.

VII. CONCLUSION

This paper discusses how to use local geometry to ap-

proximate the shape of voltage stability boundary for future

renewable-rich power grids with large spatial-temporal distur-

bances. Instead of evaluating voltage stability in 1D predefined

directions, we first extracted intrinsic geometric information,

i.e., the Christoffel symbols for the Levi-Civita connection,

of the power flow solution manifold at a given operating

point. Then, the geodesic equation was further evaluated

to approximate the voltage magnitude on each bus in the

univariate quadratic form. The extrema of these univariate

quadratic equations were used to approximate the voltage

stability boundary and a further modification was proposed

to substantially improve the conservativeness. Extensive nu-

merical simulations under different scenarios were carried

out on the IEEE 14-Bus and 39-Bus systems to show the

accuracy of the proposed method in replicating the true shape

of the stability boundary in the global sense. It also showed a

1000× speedup of computational efficiency compared to the

continuation power flow method. Thus, the proposed method

is particularly suitable to handle high-dimensional wide-range

variability in renewable-rich power grids.

One of the future research directions will be focused on

exploring the sparsity of the proposed method to further

enhance the computational efficiency. Another interesting topic

is to show why the global geometry of the voltage stability

boundary is embedded in the local Levi-Civita connections.
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