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MEAN CURVATURE FLOWS OF TWO-CONVEX

LAGRANGIANS

Chung-Jun Tsai, Mao-Pei Tsui & Mu-Tao Wang

Abstract

We prove regularity, global existence, and convergence of La-
grangian mean curvature flows in the two-convex case (1.6). Such
results were previously only known in the convex case, of which
the current work represents a significant improvement. The proof
relies on a newly discovered monotone quantity (2.6) that controls
two-convexity. Through a unitary transformation, same result for
the mean curvature flow of area-decreasing Lagrangian submani-
folds (1.10) were established.

1. Introduction

Let M be a 2n dimensional Kähler manifold. Throughout this paper,
the Riemannian metric onM is assumed to be flat. The symplectic form
ω on M is given by ω( · , · ) = 〈J( · ), · 〉 where J is the (almost) complex
structure and 〈 · , · 〉 is the Riemannian metric. We also assume that
there exist parallel bundle maps π1 : TM → TM and π2 : TM → TM
such that the following conditions are satisfied.

(i) Both π1 and π2 are orthogonal projections on each fiber.
(ii) π1 + π2 is the identity map on TM .
(iii) The kernels of π1 and π2 on each fiber are Lagrangian subspaces.

It follows that kerπ1 and kerπ2 are everywhere orthogonal, and J maps
one to the other. Moreover, Jπ1 = π2J and Jπ2 = π1J . A typical
example is M = C

n (or any quotient of Cn such as a complex torus) on
which π1 is projection from C

n onto R
n and π2 is the projection from

C
n onto J(Rn) where J is the standard complex structure on C

n.
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Given such a splitting structure on TM , one can define the following
parallel 2-tensor S (see [19]):

S(X,Y ) = 〈Jπ1(X), π2(Y )〉(1.1)

for any X,Y ∈ TpM at any p ∈ M .
Suppose Lp is a Lagrangian subspace of TpM , it is not hard to check

that the restriction of S to Lp is symmetric, i.e. S(X,Y ) = S(Y,X) if
X,Y ∈ Lp. Moreover, if π1 : Lp → TpM is injective, one can apply the
singular value decomposition theorem to find an orthonormal basis {ai}
for π1(TpM) and real numbers {λi} such that







ei =
1

√

1 + λ2
i

(ai + λiJ(ai))







n

i=1

(1.2)

forms an orthonormal basis for Lp. Note that {J(ai)} constitutes an
orthonormal basis for π2(TpM). In terms of this basis,

Sij = S(ei, ej) =
λi

1 + λ2
i

δij .(1.3)

1.1. Two-convex Lagrangians. For a Lagrangian submanifold F :
L ↪→ M , we consider several geometric conditions that are characterized
by the projection map π1 and the tensor S defined in (1.1).

Definition 1.1. A Lagrangian submanifold L ⊂ M is said to be
graphical if π1 : TpL → TpM is injective for any p ∈ L;

A typical example is when M = C
n and L is the graph of ∇u for

a function u defined on R
n, λ′

is in (1.2) are exactly the eigenvalues of
D2u, the Hessian of u, see [22, Section 2].

The graphical condition can be characterized by the positivity of a
geometric quantity introduced in [26]. Fix an orientation for π1(TM).
Under π∗

1, the volume form of π1(TM) gives a parallel n-form onM , and
denote it by Ω. It is clear that a Lagrangian submanifold L is graphical
if and only if ∗Ω is nowhere zero, where ∗Ω denotes the Hodge star of
the restriction of the n-form Ω to L. If so, orient the Lagrangian so that
∗Ω > 0. With respect to (1.2),

∗Ω =
1

√

∏n
i=1(1 + λ2

i )
.(1.4)

We also consider the restriction of S (1.1) to L, F ∗S, as a symmetric
2-tensor on L. By (1.3), if the sum of any two eigenvalues of F ∗S is
positive, then

Sii + Sjj =
(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
> 0(1.5)



MEAN CURVATURE FLOWS OF TWO-CONVEX LAGRANGIANS 1271

for any i 6= j, or equivalently, (λi+λj)(1+λiλj) > 0 for any i 6= j. The
region is not a connected region, and we always focus on the connected
component where

λi + λj > 0 and 1 + λiλj > 0 for any i 6= j.(1.6)

Definition 1.2. A graphical Lagrangian submanifold L ⊂ M is said
to be

(i) convex if λi > 0 for each i on L.
(ii) two-convex if λi + λj > 0 and 1 + λiλj > 0 for any i 6= j, or (1.6)

holds, on L

It is known that the Lagrangian condition is preserved by the mean
curvature flow [17]. The main theorem of this paper is that (1.6) im-
plies the long-time existence and convergence of the Lagrangian mean
curvature flow.

Theorem 1.3. Let L ⊂ M be compact Lagrangian submanifold. If L
is graphical and two-convex, then the mean curvature flow of L exists for

all time, and remains graphical and two-convex. Moreover, it converges

smoothly to a flat Lagrangian submanifold as t → ∞.

This theorem generalizes [19, Theorem A], which assumes L is con-
vex, or λi > 0 for all i. In fact, all results of Lagrangian mean curvature
flows [19, 4, 5] known to us are in the following cases: (1) the convex
case, (2) cases that are equivalent to the convex case through unitary
transformations (see the next subsection), or (3) cases that are pertur-
bations of (1) and (2).

Remark 1.4. In the proof of Theorem 1.3, we implicitly assume that
the ambient space M is also compact. It follows that M is topologically
a torus, or its finite quotient. The theorem holds true for some non-
compact M as well. For instance, if M is the cotangent bundle of a
flat n-torus, one can prove by using the distance (squared) to the zero
section that the mean curvature flow of L remains in a compact subset.
See for instance [21, Theorem A].

We briefly describe the steps involved the proof as follows:

(i) We start with a compact two-convex Lagrangian that satisfies (1.6).
We derive the evolution equation of the following quantity
(see (2.6))

log
∏

i<j

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
,

show that it is monotone non-decreasing along the mean curvature
flow, and therefore (1.6) is preserved.
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(ii) We derive the evolution equation of

log(∗Ω) = −1

2
log

( n
∏

i=1

(1 + λ2
i )

)

and show that it is monotone non-decreasing along the mean cur-
vature flow as long as 1 + λiλj > 0, which was established in the
last step. This in particular shows that each λi remains uniformly
bounded.

(iii) We prove that the second fundamental forms are bounded by con-
tradiction. Suppose the second fundamental forms are unbounded,
through a blow-up argument we obtain a non-flat ancient solu-
tion of the graphical Lagrangian mean curvature flow. A Liouville
theorem ([15], see Section 3) which applies the Krylov-Safonov
estimate to the equation of the Lagrangian angle θ,

θ =

n
∑

i

arctanλi,

allows us to conclude that the ancient solution must be stationary.
Finally, we apply the Bernstein theorem of [22] that asserts any
stationary solution satisfying the condition 1 + λiλj > 0 must be
affine and arrive at the contradiction.

We remark that the underlying parabolic equation is the following
equation for the potential function u:

∂u

∂t
=

1√
−1

log
det(I+

√
−1D2u)

√

det(I+ (D2u)2)
.(1.7)

The estimates of λ′
is correspond to the C2 estimates of the solution

u and the estimates of the second fundamental forms correspond to the
C3 estimates.

The convex assumption implies that the right hand side of (1.7), i.e.
the Lagrangian angle θ, as a function of D2u is concave in the space
of symmetric matrices and thus PDE theories of fully nonlinear elliptic
and parabolic equations [3, 12, 1] are applicable. The two-convex as-
sumption (and the area-decreasing assumption in the next subsection)
arises naturally in the study of the Lagrangian Grassmannian [22] and
the Gauss map of the mean curvature flow [28]. It is interesting to
see if some similar approach would work for related problems such as
the deformed Hermitian–Yang–Mills equation considered in [11, 6] or
the curvature type equations considered in [7]. On the other hand,
it is a natural question to ask if two-convexity can replace the convex
assumption in the work of Caffarelli-Nirenberg-Spruck [3].

1.2. Area-decreasing Lagrangians. It is known that when M = C
n

the convex case λi > 0 for each i is essentially equivalent to the case
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|λi| < 1 for each i through a unitary transformation U(n) of Cn ([22],
or the Lewy transformation in [30]). The two-convex case is essentially
equivalent to the following area-decreasing case through the same uni-
tary transformation.

One can consider another parallel 2-tensor P :

P (X,Y ) = 〈π1(X), π1(Y )〉 − 〈π2(X), π2(Y )〉.(1.8)

With respect to the frame (1.2),

Pij = P (ei, ej) =
1− λ2

i

1 + λ2
i

δij .

For a Lagrangian submanifold F : L ↪→ M , F ∗P being 2-positive means
that

Pii + Pjj =
1− λ2

iλ
2
j

(1 + λ2
i )(1 + λ2

j )
> 0(1.9)

for any i 6= j.

Definition 1.5. A graphical Lagrangian submanifold L ⊂ M is said
to be area-decreasing if

|λiλj | < 1 for any i 6= j(1.10)

holds true at every p ∈ L.

When M = C
n and L is the graph of ∇f , the condition corresponds

to ∇f as a map from R
n to R

n is area-decreasing.
The same results in Theorem 1.3 hold true for the mean curvature

flow of area-decreasing Lagrangians.

Theorem 1.6. Let L ⊂ M be compact Lagrangian submanifold. If it

is graphical and area-decreasing, then the mean curvature flow of L ex-

ists for all time, and remains graphical and area-decreasing. Moreover,

it converges to a flat Lagrangian submanifold as t → ∞.

This theorem generalizes [18, Theorem 2], which assumes dimL = 2.
The paper is organized as follows. In section 2, we derive the evolution

equations and provide quantitative bounds of relevant quantities. In
section 3, a Liouville Theorem for ancient solutions of Lagrangian mean
curvature flows is discussed. Section 4 is devoted to prove Theorem 1.3
and Theorem 1.6.

Acknowledgments. The second and third authors thank Professor
Smoczyk for a discussion in December 2012, in which it was observed
that the argument in [23] also implies the positivity of S[2] defined
in (2.5) is preserved along Lagrangian mean curvature flows.
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2. Evolution equations

For a Lagrangian submanifold, J induces an isometry between its
tangent bundle and its normal bundle. As a consequence, its second
fundamental form is totally symmetric. That is to say,

hijk = 〈∇̄eiej , J(ek)〉(2.1)

is totally symmetric in i, j, k, where {ei} is an orthonormal basis for its
tangent space. Here ∇̄ is the covariant derivative of M .

Suppose that F : L × [0, T ) → M is a Lagrangian mean curvature
flow. From [19, section 3.2], F ∗S satisfies

(

∂

∂t
−∆

)

Sij = hmkihmk`S`j + hmkjhmk`Si` + 2hki`hkjmS`m,(2.2)

where the equation is in terms of an evolving orthonormal frame and
repeated indexes are summed.

Since S is a parallel tensor on M , ∇̄S = 0, the (spatial) gradient of
F ∗S is (see for example [23, p.1121])

Sij;k = ek(S(ei, ej))− S(∇ekei, ej)− S(ei,∇ekej)

= S(∇̄ekei −∇ekei, ej) + S(ei, ∇̄ekej −∇ekej),(2.3)

where ∇ is the covariant derivative on L. The definition of second
fundamental forms (2) implies ∇̄ekei −∇ekei = hki`J(e`) and

Sij;k = hki` S(J(e`), ej) + hkj` S(ei, J(e`)).

At a space-time point p, Sij;k can thus be expressed in terms the
frame (1.2) as

Sij;k = hkij

(

λ2
j

1 + λ2
j

− 1

1 + λ2
i

)

= −1

2
hkij

(

1− λ2
i

1 + λ2
i

+
1− λ2

j

1 + λ2
j

)

.(2.4)

2.1. The logarithmic determinant of S[2]. In [3], another tensor

S[2] is introduced to study the two-positivity of F ∗S; see also [23, sec-
tion 5]. Similar to [20], we consider the equation of the logarithmic

determinant of S[2].
With respect to an orthonormal frame, S[2] is defined by

S
[2]
(ij)(k`) = Sikδj` + Sj`δik − Si`δjk − Sjkδi`(2.5)

for any i < j and k < `. It can be regarded as a symmetric endomor-
phism on Λ2TL.

At a space-time point p, suppose that S is diagonal in terms of the

frame (1.2). It follows from (2.5) that S
[2]
(ij)(k`)|p = (Sii + Sjj)δikδj`.

Thus, the 2-positivity of F ∗S is equivalent to the positivity of S[2].
It can be proved that the positivity of S[2] is preserved along the flow

in the same way as in [23]. However, in this article we consider another
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quantity that also controls the two-convexity condition: the logarithmic
determinant of S[2]:

(2.6) log det(S[2]) = log
∏

i<j

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
.

It is a straightforward computation to show that the function
log det(S[2]) satisfies

(

∂

∂t
−∆

)

log(detS[2])

at p
=

∑

1≤i<j≤n

[

(Sii + Sjj)
−1(

∂

∂t
−∆)(Sii + Sjj)

+ (Sii + Sjj)
−2|∇(Sii + Sjj)|2

]

+ 2
∑

1≤i≤n

∑

1≤j<k≤n
j 6=i, k 6=i

(Sii + Sjj)
−1(Sii + Skk)

−1|∇Sjk|2.

(2.7)

The main task is to calculate the first term on the right hand side
of (2.7). According to (2.2),

(

∂

∂t
−∆

)

(Sii + Sjj) = 2
∑

k,`

[

h2k`i(Sii + S``) + h2k`j(Sjj + S``)
]

= 4
∑

k

[

h2kii Sii + h2kjj Sjj

]

+ 4(Sii + Sjj)
∑

k

h2kij

+ 2
∑

k

∑

` 6={i,j}

[

h2k`i(Sii + S``) + h2k`j(Sjj + S``)
]

.

By (2.4),

|∇(Sii + Sjj)|2 =
∑

k

(

hkii
1− λ2

i

1 + λ2
i

+ hkjj
1− λ2

j

1 + λ2
j

)2

.(2.8)

It follows that

(Sii + Sjj)

(

∂

∂t
−∆

)

(Sii + Sjj) + |∇(Sii + Sjj)|2

− 4(Sii + Sjj)
2
∑

k

h2kij

− 2(Sii + Sjj)
∑

k

∑

` 6={i,j}

[

h2k`i(Sii + S``) + h2k`j(Sjj + S``)
]
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= 4(Sii + Sjj)
∑

k

[

h2kii Sii + h2kjj Sjj

]

+
∑

k

(

hkii
1− λ2

i

1 + λ2
i

+ hkjj
1− λ2

j

1 + λ2
j

)2

=
∑

k

[

(λi + λj)
2 + (1 + λiλj)

2

(1 + λ2
i )(1 + λ2

j )
(h2kii + h2kjj)

+
(1− λ2

i )(1− λ2
j )

(1 + λ2
i )(1 + λ2

j )
2hkiihkjj

]

=
∑

k

[

(1 + λiλj)
2

(1 + λ2
i )(1 + λ2

j )
(hkii + hkjj)

2

+
(λi + λj)

2

(1 + λ2
i )(1 + λ2

j )
(hkii − hkjj)

2

]

.

Hence,

(Sii + Sjj)
−1

(

∂

∂t
−∆

)

(Sii + Sjj) + (Sii + Sjj)
−2|∇(Sii + Sjj)|2

= 4
∑

k

h2kij + 2(Sii + Sjj)
−1
∑

k

∑

` 6={i,j}

[

h2k`i(Sii + S``) + h2k`j(Sjj + S``)
]

+
∑

k

[

(1 + λ2
i )(1 + λ2

j )

(λi + λj)2
(hkii + hkjj)

2

+
(1 + λ2

i )(1 + λ2
j )

(1 + λiλj)2
(hkii − hkjj)

2

]

.

With (2.7), it leads to the following Proposition.

Proposition 2.1. Suppose that a graphical Lagrangian mean curva-

ture flow is two-convex, then the function log(detS[2]) satisfies
(

∂

∂t
−∆

)

log(detS[2])

≥
∑

i<j

∑

k

[

4h2kij +
(1 + λ2

i )(1 + λ2
j )

(λi + λj)2
(hkii + hkjj)

2

+
(1 + λ2

i )(1 + λ2
j )

(1 + λiλj)2
(hkii − hkjj)

2

]
(2.9)

≥ 2|A|2 ≥ 0.(2.10)

In particular, min log(detS[2]) is monotone non-decreasing along the

flow and two-convexity is preserved.
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Proof. It remains to show that (2.10) is no less than 2|A|2 under the
condition (1.6). It is straightforward to verify that under the condi-
tion (1.6),

(1 + λ2
i )(1 + λ2

j )

(λi + λj)2
≥ 1 and

(1 + λ2
i )(1 + λ2

j )

(1 + λiλj)2
≥ 1.(2.11)

Note that both equalities are attained when λi = 1 = λj . Hence, the
right hand side of (2.9) is no less than

∑

i<j

∑

k

[

4h2kij + 2h2kii + 2h2kjj
]

= 2|A|2 + 2(n− 2)
∑

i,k

h2kii.(2.12)

It finishes the proof of this proposition. q.e.d.

2.2. The logarithmic determinant of the Jacobian of π1. In the
minimal Lagrangian case, the equation for log(∗Ω) is derived in [22,
(2.4)]. The computation in the parabolic case is essentially the same,
and

(

∂

∂t
−∆

)

log(∗Ω) =
∑

i,j,k

h2ijk +
∑

i,j

λ2
i h

2
iij + 2

∑

i,j,k
i<j

λiλj h
2
ijk.

By re-grouping the summations, one finds the following proposition.

Proposition 2.2. Along a graphical Lagrangian mean curvature flow,

the function log(∗Ω) satisfies
(

∂

∂t
−∆

)

log(∗Ω) =
∑

i

(1 + λ2
i )h

2
iii +

∑

i 6=j

(3 + λ2
i + 2λiλj)h

2
iij

+
∑

i<j<k

(6 + 2λiλj + 2λjλk + 2λkλi)h
2
ijk.

(2.13)

If the flow is in addition two-convex, then ( ∂
∂t

− ∆) log(∗Ω) ≥ 0 and

min log(∗Ω) is monotone non-decreasing along the flow.

Proof. It is clear that the right hand side is non-negative if 1+λiλj >
0 which is part of the two-convexity assumption. q.e.d.

2.3. Some quantitative bounds. Since λ
1+λ2 takes value in [−1

2 ,
1
2 ],

the expression (1.5), Sii+Sjj , is always no greater than 1. It follows that

for a two-convex Lagrangian, detS[2] takes value within (0, 1]. Hence,

log(detS[2]) ∈ (−∞, 0]. Since ∗Ω = 1/
√

∏

i(1 + λ2
i ), log(∗Ω) ∈ (−∞, 0].

For a two-convex Lagrangian submanifold, suppose that log(∗Ω) ≥
−δ1 and log(detS[2]) ≥ −δ2 for some δ1, δ2 > 0. It follows that

∑

i

λ2
i ≤ e2δ1 − 1(2.14)
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for all i. From log(detS[2]) ≥ −δ2,

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
≥
∏

k<`

(Skk + S``) ≥ e−δ2

for any i 6= j. Therefore,

(λi + λj)(1 + λiλj) ≥ e−δ2 .(2.15)

Under the condition (1.6), (2.14) and (2.15) lead to that

1 + λiλj ≥
e−δ2

√

2(e2δ1 − 1)
and λi + λj ≥

2e−δ2

e2δ1 + 1
(2.16)

for any i 6= j.

3. A Liouville theorem

In this section, we state a Liouville theorem for ancient solutions of
the Lagrangian mean curvature flow in C

n ≡ R
2n under the graphical

condition. For discussions of ancient solutions of the Lagrangian mean
curvature flow under other assumptions, see [13]. The theorem is due
to Nguyen and Yuan [15, Proposition 2.1] and is a direct consequence
of the Krylov–Safonov estimate [12]. We include the proof here for
completeness.

Theorem 3.1. Let u be a smooth solution to

∂u

∂t
=

1√
−1

log
det(I+

√
−1D2u)

√

det(I+ (D2u)2)
(3.1)

in Q = R
n × (−∞, t0] for some t0 > 0. Denote by λ1, . . . , λn the eigen-

values of the Hessian of u, D2u. Suppose that every |λi| is bounded

over Q. Then, u is stationary, i.e. u satisfies the special Lagrangian

equation.

Proof. Denote the right hand side of (3.1) by θ. It is the argument
of the complex number det(I +

√
−1D2u). Note that θ is a smooth

function over Q, and takes value within (−nπ/2, nπ/2). According to
[8, §III.2.D], the differential of θ is equivalent to the mean curvature of
the graph of Du. As a consequence, (3.1) means that the Lagrangian
{(x,Du)} evolves under the mean curvature flow.

The induced metric on the graph of Du has the first fundamental
form given by

g = I+ (D2u)2 = (I+
√
−1D2u)(I−

√
−1D2u).

In particular, (I+
√
−1D2u)−1 is (I−

√
−1D2u)g−1 = g−1(I−

√
−1D2u).

With this understood, the derivative of (3.1) in t gives

∂θ

∂t
= gij ∂tuij = gij ∂i∂j(∂tu) = gij ∂i∂jθ,(3.2)
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where [gij ] is the inverse of g = I + (D2u)2. Since |λi|’s are uniformly
bounded, (3.2) is a uniformly parabolic equation. As the right hand
side of (3.2) has no first and zeroth order terms, the Krylov–Safonov
estimate [12, Lemma 2 on p.133] implies that there exist positive α and
C depending on n, supQ |u| and supQ |D2u| such that

sup
(x̃,t̃),(x,t)∈Br×[t0−r2,t0]

(x̃,t̃) 6=(x,t)

|θ(x̃, t̃)− θ(x, t)|
max{|x̃− x|α, |t̃− t|α2 }

≤ C
1

rα

for any r > 0. By letting r → ∞, one finds that θ(x, t) = θ(x̃, t̃) for any
(x, t) 6= (x̃, t̃).

It follows that the graph of Du is a time-independent minimal/special
Lagrangian submanifold. It finishes the proof of this theorem. q.e.d.

4. Proof of the main theorems

This section is devoted to the proof of Theorem 1.3. The proof of
Theorem 1.6 is almost the same, and we only address the key ingredient
at the end of this section.

4.1. Preserving the graphical and two-convexity condition. Sup-
pose that L is a compact, oriented n-dimensional manifold, and F0 : L →
M is a two-convex Lagrangian submanifold. Consider the Lagrangian
mean curvature flow F : L× [0, T ) → M with F (·, 0) = F0(·), where T
is the maximal existence time. Let

τ̄ = sup{τ ∈ (0, T ) : the flow remains two-convex in [0, τ)}.
Denote by Lt the image of L × {t} under F . Since L is compact,

log(detS[2]) ≥ −δ2 and log(∗Ω) ≥ −δ1 for some δ1, δ2 > 0 on L0.
Due to Proposition 2.1, Proposition 2.2 and the maximum principle,
both minLt

log(detS[2]) and minLt
log(∗Ω) are non-decreasing in t ∈

[0, τ̄). If τ̄ < T , it follows from (2.14) and (2.15) that L × {τ̄} is two-
convex. Because of the openness of the two-convexity condition, this is
a contradiction, and τ̄ must be the maximal existence time.

4.2. Long-time existence. With (2.10), one may use the same ar-
gument as that in the proof of [26, Theorem A] to prove the mean
curvature flow exists for all time. It is based on Huisken’s monotonicity
formula [10] and White’s regularity theorem [29].

Below, we present another argument based on the Liouville theorem
(Theorem 3.1). Recall that Huisken proved that if the maximal exis-
tence time T < ∞, then it is characterized by

lim sup
t→T

max
Lt

|A|2 = ∞;(4.1)

see [9, Theorem 8.1] for the hypersurface case.
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Assume (4.1) for some T < ∞. There exist sequences {tk} ∈ (0, T )
and {xk} ∈ L such that

• tk → T monotonically as k → ∞;
• |A|2(xk, tk) = max{|A|2(x, t) : (x, t) ∈ L× [0, tk]};
• |A|2(xk, tk) → ∞ monotonically as k → ∞.

Denote |A|(xk, tk) by ρk. Due to [18, Lemma 3.1] (see also [14, Theorem
1]), the second fundamental form obeys

(

∂

∂t
−∆

)

|A|2 ≤ −2|∇A|2 + 3|A|4.(4.2)

In particular, the right hand side is no greater than 3|A|4. By the
maximum principle with the initial time tk and the criterion (4.1) of
Huisken, one finds that the flow exists at least for t < tk +

1
3ρ2

k

, and

max
Lt

|A|2 ≤
(

1

ρ2k
− 3(t− tk)

)−1

.

Since T is the maximal existence time, T − tk ≥ 1
3ρ2

k

for all k ∈ N.

Identify a neighborhood of F (xk, tk) with a subset of R2n, and consider

F̃k(·, s) = ρk

[

F

(

·, tk +
s

ρ2k

)

− F (xk, tk)

]

.(4.3)

The image of F̃k is given by the graph of Dũk for some ũk : Uk ⊂
R
n × R → R with ũk(0, 0) = 0 and Dũk(0, 0) = 0. It follows from

ρk → ∞ that any compact subset of Rn × (−∞, c) is contained in Uk

for any k >> 1. By the standard blow-up argument1 , ũk converges to
u : Rn × (−∞, c) → R satisfying (3.1), and the convergence is smooth
on any compact subset of Rn × (−∞, c).

Note that the slope is invariant under the rescaling (4.3), and λi’s
remain unchanged. In particular, the eigenvalues of D2u satisfy (2.14)
and (2.16) everywhere. Hence, Theorem 3.1 implies that the graph of
Du is a special Lagrangian submanifold that satisfies the condition that
for any i, j, 3 + 2λiλj ≥ δ over Q; we conclude that the graph of Du
in R

2n, {(x,Du) : x ∈ R
n}, is an affine n-plane by [22, Corollary C].

However, the second fundamental form of the graph of Dũk has norm 1
at (0, 0). This is a contradiction.

4.3. Convergence. The key to conclude the convergence as t → ∞ is
to show that maxLt

|A|2 → 0 as t → ∞.

1Since |λi|
′s are uniformly bounded, so is D2ũk. The third order derivative D3ũk

is equivalent to the second fundamental form, which is bounded. The higher order
derivatives are also bounded; see [2, Proposition 4.8].
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4.3.1. Uniform boundedness of |A|2. The first task is to show that
|A|2 is uniformly bounded. Suppose not, then

lim sup
t→∞

max
Lt

|A|2 = ∞.(4.4)

With the same argument as that in section 4.2, one can extract a blow-
up limit, which is a non-trivial ancient solution to (3.1). By the same
token, it contradicts to Theorem 3.1.

4.3.2. L2-convergence of |A|2. With the uniformly boundedness of
|A|2, [2, Proposition 4.8] asserts that |∇`A|2 is uniformly bounded for
all ` ∈ N.

Denote log(detS[2]) by v, whose value belongs to [−δ2, 0). By Propo-
sition 2.1, it obeys ( ∂

∂t
−∆)v ≥ 2|A|2. Denote by dµt the volume form

of Lt. Since
∂
∂t
dµt = −|H|2dµt,

2

∫

Lt

|A|2 dµt ≤
∫

Lt

[(

∂

∂t
−∆

)

v − v|H|2
]

dµt =
d

dt

∫

Lt

v dµt.

This together with |
∫

Lt
v µt| ≤ δ2 vol(Lt) ≤ δ2 vol(L0) implies that

∫ ∞

0

(
∫

Lt

|A|2dµt

)

dt < ∞.(4.5)

By (4.2) and the uniform boundedness of |A|2 and |∇A|2,

d

dt

∫

Lt

|A|2dµt =

∫

Lt

[(

∂

∂t
−∆

)

|A|2 − |A|2|H|2
]

dµt

≤
∫

Lt

[

3|A|4 − 2|∇A|2 − |A|2|H|2
]

dµt ≤ c1.(4.6)

According to [21, Lemma 6.3], (4.5) and (4.6) imply that
∫

Lt
|A|2dµt →

0 as t → ∞.

4.3.3. Convergence of the flow. Fix t ≥ 0; suppose that maxLt
|A|2

is achieved at x0. On a fixed size neighborhood of x0, Lt is the graph
over π1(Tx0

M), whose higher derivatives are all bounded. It follows that
there exists a c2 > 0 such that

∫

Lt
|A|2dµt ≥ c2maxLt

|A|2. Therefore,

lim
t→0

max
Lt

|A|2 = 0.(4.7)

Since the mean curvature flow is a gradient flow and the metrics
are analytic, it follows from the theorem of Simon [16] that the flow
converges to a unique limit as t → ∞. This finishes the proof of Theo-
rem 1.3.
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4.4. About Theorem 1.6. Analogous to (2.5), we introduce P [2] to
study the 2-positivity of F ∗P . According to [20, Theorem 3.2], the

logarithmic determinant2 of P [2] obeys
(

∂

∂t
−∆

)

log(detP [2]) ≥ 2|A|2(4.8)

along the mean curvature flow. In terms of λi, we have

log det(P [2]) = log
∏

i<j

1− λ2
iλ

2
j

(1 + λ2
i )(1 + λ2

j )
.(4.9)

The proof of Theorem 1.6 is very similar to that of Theorem 1.3, and
is sketched below. As in section 4.1, denote by T the maximal existence
time. Let τ̄ be

sup{τ ∈ (0, T ) : the flow is graphical and area-decreasing in [0, τ)}.
By the maximum principle on (4.8), log(detP [2]) is uniformly bounded
from below. It follows from [20, Lemma 3.3] that Lt remains graphical
and area-decreasing as long as the flow exists.

For the long-time existence, suppose that T < ∞, and perform the
same blow-up argument as that in 4.2 to get a non-trivial ancient so-
lution of (3.1). Here, we rely on [27, Theorem 1.1] to conclude that
any entire, graphical minimal submanifold that satisfies the condition
|λiλj | ≤ 1− δ must be an affine n-plane. It is a contradiction, and thus
T = ∞.

By a similar blow-up argument, the second fundamental form can-
not tend to infinity as t → ∞. As in section 4.3.2, one deduces that
∫

Lt
|A|2dµt → 0 as t → ∞ by considering the integration of (4.8) over Lt.

The same argument as that in section 4.3.3 implies that supLt
|A|2 → 0

as t → ∞. Finally, one invokes the theorem of [16] to finish the proof.
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